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Abstract: In this thesis we study three recent and overlapping developments in

the subject of holography: traversable wormholes, quantum extremal islands, and

holographic models of closed universes.

We construct a traversable wormhole from a charged AdS black hole by adding

a coupling between the two boundary theories. We investigate how the effect of this

deformation behaves in the extremal limit of the black hole and show that under

certain conditions the wormhole can be made traversable even in the extremal limit.

Next, we use braneworlds in three-dimensional multiboundary wormhole geo-

metries as a model to study the appearance of entanglement islands when a closed

universe with gravity is entangled with two non-gravitating quantum systems. We

show that the entropy of the mixed state in the closed universe is bounded by half

of the coarse-grained entropy of the effective theory on the braneworld.

For large values of the tension T , the worldvolume of a constant-tension brane

inside a Schwarzschild-AdSd+1 black hole is a closed FRW cosmology. However, for

d > 2, having a smooth Euclidean solution where the brane does not self-intersect

limits the brane tension to T < T∗, preventing us from realising a separation of

scales between the brane and bulk curvature scales. We show that adding interface

branes to this model does not relax the condition on the brane tension.
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Chapter 1

Introduction

Holography is the idea that gravitational physics, in some sense, is massively re-

dundant; a gravitational theory in (d + 1) dimensions can be exactly described by

a non-gravitational theory in d dimensions. The idea that gravity is holographic

was first inspired by the study of black holes. The Bekenstein-Hawking formula says

that the entropy of a black hole is proportional to its area,

SBH = Ahor

4GN

. (1.0.1)

This is surprising, since if we think of entropy as counting the number of microstates

of a system, we would expect this to scale with the volume of the system, not its

area. What’s more, as argued by Bekenstein, this is an upper bound on the entropy

of a physical system. The maximum entropy associated with a given volume is that

of a black hole with the same volume. Thus, the true number of microstates of any

physical system should not scale more than with the area of a surface bounding

it. Susskind [1] and ’t Hooft [2] were the first to articulate these ideas as a general

feature of quantum gravity.

Over the past few decades, it has become increasingly apparent that holography

will be a crucial principle for developing a complete understanding of quantum

gravity. In fact, holography in its most concrete realization as the AdS/CFT corres-

pondence provides the only precise, non-perturbative definition of quantum gravity
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that we know of [3–6]. The AdS/CFT correspondence is a truly remarkable discov-

ery. Not only does it represent our best attempt at a theory of quantum gravity,

the strong/weak nature of the duality also gives us a powerful tool to investigate

strongly-coupled quantum field theories.

Perhaps one of the most important lessons to come from AdS/CFT is the extent

to which quantum entanglement and classical spacetime geometry are fundamentally

related. Starting with the Ryu-Takayanagi formula [7], we learned that the geometry

of asymptotically AdS spacetimes can be encoded in the entanglement structure of

certain quantum field theories. The Ryu-Takayanagi formula and its subsequent

generalizations later inspired the ideas of subregion-subregion duality, the notion that

a spatial subregion A in the boundary theory contains complete information about

some subregion of the bulk [8,9]; entanglement wedge reconstruction, which says that

this bulk region is the entire entanglement wedge of A [10]; and the quantum error

correcting code interpretation of AdS/CFT, which says that the boundary encoding

of the bulk physics can be understood as a quantum error correcting code that is

robust against erasure errors in the boundary [11].

Recent developments have again highlighted the role of entanglement in un-

derstanding gravity [12–40]. These include traversable wormholes and quantum

extremal islands, two topics that we will investigate in this thesis. Traversable worm-

holes provide a new insight into the relation between entanglement and spacetime in

holographic theories: the passage of a bulk observer through the wormhole can be

understood as quantum teleportation in the dual theory, using the entanglement of

the dual state as a resource and using the coupling to communicate the needed clas-

sical information from one theory to the other. The discovery of quantum extremal

islands [23–25], which arise when a quantum system is entangled with a gravita-

tional system, has allowed us to tackle the black hole information loss paradox and

explicitly show that the entropy of radiation of evaporating black holes follows the

Page curve [41,42].

In this section we will review the background material that motivates and un-
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derpins the later work in this thesis. We will introduce the key concepts of the

AdS/CFT correspondence, covering the relation between bulk and boundary oper-

ators, thermofield double states as the dual of charged and uncharged black holes,

the connection between entanglement and geometry through the various holographic

entanglement entropy formulas, and the dual interpretation of BCFTs as asymptot-

ically AdS geometries terminating on dynamical branes. We will also review the

recently discovered island rule as a method for calculating the entropy of radiation

of an evaporating black hole.

In chapter 2, we extend the work of [12] to construct a traversable wormhole from

a charged AdS black hole by adding a coupling between the two boundary theories.

We investigate how the effect of this deformation behaves in the extremal limit of

the black hole. The black holes have finite entropy but an infinitely long throat in

the extremal limit. We argue that it is still possible to make the throat traversable

even in the extremal limit, but this requires either tuning the field for which we add

a boundary coupling close to an instability threshold or scaling the strength of the

coupling inversely with the temperature. In the latter case we show that the amount

of information that can be sent through the wormhole scales with the entropy.

In chapter 3, we investigate the appearance of islands when a closed universe with

gravity is entangled with a non-gravitating quantum system. We use braneworlds in

three-dimensional multiboundary wormhole geometries as a model to explore what

happens when the non-gravitating system has several components. The braneworld

can be either completely contained in the entanglement wedge of one of the non-

gravitating systems or split between them. In the former case, entanglement with

the other system leads to a mixed state in the closed universe, unlike in simpler

setups with a single quantum system, where the closed universe was necessarily in a

pure state. We show that the entropy of this mixed state is bounded by half of the

coarse-grained entropy of the effective theory on the braneworld.

In chapter 4, we study an approach proposed in [43] (and further developed

in [44–47]) to understand closed universes with big-bang/big-crunch cosmologies
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holographically. This construction comprises an asymptotically AdSd+1 black hole

spacetime with a co-dimension one, constant-tension, dynamical end of the world

brane behind the horizon. The brane worldvolume is a closed FRW spacetime. In

d = 2 dimensions, the brane can be taken close to the conformal boundary by

increasing the tension, producing an effective closed cosmology on the braneworld.

However, in dimensions d > 2, having a smooth Euclidean solution where the brane

does not self-intersect limits the brane tension to T < T∗, preventing us from realising

a separation of scales between the brane and bulk curvature scales. We investigate

a solution to the self-intersection problem suggested by [47] in which an interface

brane is introduced to the spacetime; the idea being that this might allow the end

of the world brane to be multiply wound on one side of the interface brane relative

to the original spacetime. We find that this does not resolve the self-intersection

problem. The brane tension cannot be taken greater than T∗ without the two branes

colliding with each other.

1.1 The AdS/CFT correspondence

The AdS/CFT correspondence is a conjecture that any theory of quantum gravity

that is asymptotically Anti-de Sitter is equivalent to a conformal field theory living

on its conformal boundary1. The first example of this correspondence was discovered

by Maldacena in the context of string theory [3], who demonstrated an equivalence

between type IIB supergravity, the classical limit of type IIB string theory, on

AdS5 × S5 and a particular limit of N = 4 super Yang-Mills (SYM) on R × S3 with

an SU(N) gauge group. The free parameters of the two theories are related via:

g2
YM = 4πgs, g2

YMN =
(
ℓ

ℓs

)4

, (1.1.1)

where gYM is the Yang-Mills coupling, N is the rank of the gauge group, gs is the string

coupling, ℓs is the string length, and ℓ is the AdS radius. The quantity λ ≡ g2
YMN is

1We will often omit the word ‘conformal’ and simply refer to the ‘boundary’.
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called the ’t Hooft coupling. The classical supergravity limit corresponds to taking

gs ≪ 1 and ℓ/ℓs ≫ 1 in which quantum gravitational and stringy corrections can

be neglected. From (1.1.1), this translates to the following limit in the boundary

theory

N ≫ λ ≫ 1. (1.1.2)

This is an example of a strong/weak duality: when the field theory is strongly coupled

(large λ) and has many degrees of freedom (large N), it is fully described by classical

general relativity. The large N limit, with fixed λ, is a special case in which the

structure of the perturbative expansion of the boundary theory simplifies; non-planar

diagrams are suppressed and the sub-dominant diagrams arrange according to their

topology.

While the correspondence was first discovered in a particular limiting case, the

modern view is that it should hold for all possible values of the parameters of

the theory. There should exist a mapping between any statement in the bulk to

a corresponding statement in the boundary. This is referred to as the AdS/CFT

dictionary. The most basic way to view the duality is as an isomorphism of Hilbert

spaces Hbulk ∼= HCFT and operator algebras Abulk ∼= ACFT. In particular, the

spectrum of the Hamiltonian is the same on both sides, and the states decompose

into the same irreducible representations of SO(d, 2). The conformal symmetry of

the CFTd corresponds to the asymptotic isometry group of AdSd+1.

A particularly useful formulation of AdS/CFT is in terms of the bulk and bound-

ary partition functions. For a theory of quantum gravity with a set of fields Φa

(including the metric) on an asymptotically AdSd+1 × C manifold M, with C some

(possibly trivial) compact manifold, dual to a CFT on the conformal boundary ∂M,

we have

Zbulk

[
lim

r→∞
r∆a−dΦa(r, x) = Ja(x)

]
= ZCFT[Ja] (1.1.3)

=
〈

exp i
∫

∂M
ddx

∑
a

Ja(x)Oa(x)
〉

CFT
, (1.1.4)
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where ∆a is the scaling dimension of the CFT primary operator Oa and r is an

asymptotically AdS radial coordinate. This says that the boundary values of the

bulk fields, once stripped of a divergent r-dependant factor, are identified with

sources that couple to dual boundary operators. The left side of (1.1.3) is meant

to represent the complete quantum-gravitational partition function (of course this

is not something we know how to independently define). Without knowing the full

partition function it is useful to work in the leading saddlepoint approximation,

corresponding to a large-N limit in the CFT, where this relation becomes

iSbulk [Φc
a] = lnZCFT[Ja]. (1.1.5)

The left-hand-side is the classical gravitational action1 evaluated on solutions to the

classical equations of motion Φc
a.

To provide some motivation for the form of (1.1.3) and give an illustration as to

how the correspondence can be applied, we will consider a free scalar field ϕ(z, x) of

mass m propagating on a fixed AdSd+1 background M. The action is given by

S = −1
2

∫
M

dd+1x
√

−g
(
gµν∂µϕ∂νϕ+m2ϕ2

)
, (1.1.6)

where gµν is the AdSd+1 metric. From this we get the equation of motion

(
∇2 −m2

)
ϕ = 1√

−g
∂µ(

√
−ggµν∂νϕ) −m2ϕ = 0. (1.1.7)

We use coordinates that put the metric into the form

ds2 = ℓ2

z2 (dz2 + ηabdxadxb) (1.1.8)

where ηab is the d-dimensional Minkowski metric, with xa ∈ Rd, z ∈ (0,∞). These

coordinates cover a subset of AdS known as the Poincaré patch. The asymptotic

boundary of the Poincaré patch is at z → 0, and has topology Rd. The induced

metric on a constant z-slice is just an overall constant times ηab, so the conformal

boundary is d-dimensional Minkowski space. In Poincaré coordinates the equation

1Both quantum and stringy corrections are neglected.
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of motion becomes

(
z2∂2

z − (d− 1)z∂z + z2∂a∂a +m2ℓ2
)
ϕ = 0. (1.1.9)

We want to investigate the asymptotic z → 0 behaviour of the solutions; choosing

a separable ansatz ϕ(z, x) = z∆ϕ(x) and dropping subleading terms, we get two

independent near-boundary solutions

ϕ(z, x) ∼ (ϕ+(x) + O(z2))z∆+ + (ϕ−(x) + O(z2))z∆− , (1.1.10)

with the exponents given by

∆± = d

2 ±
√
d2

4 +m2ℓ2 ≡ d

2 ± ν. (1.1.11)

In Minkowski space we would require a positive mass squared term, m2 ≥ 0, for

stability of the vacuum. In AdS, however, it is possible to have a stable vacuum

with m2 < 0 provided it is no less than the Breitenlohner-Freedman (BF) bound1,

m2ℓ2 ≥ −d2

4 . (1.1.12)

This is because the total energy receives a positive contribution from the kinetic

term which compensates for the negative contribution from the mass term. As a

result, the total energy can be positive. Going forward, we assume the BF bound is

not saturated, m2 > m2
BF. The modes ϕ±(x)z∆± can be classified according to an

appropriate norm on the solution space. A natural inner product for solutions of

the Klein-Gordon equation in curved space is given by

(ϕ1, ϕ2)KG ≡ i

2

∫
Σ

ddx
√
hnµ (ϕ∗

1∂µϕ2 − ϕ2∂µϕ
∗
1) , (1.1.13)

where Σ is a spacelike surface, which we will take to be a surface of constant t and

nµ is the past-pointing unit normal to Σ. Evaluating the norm defined by this inner

product on a solution with asymptotic behaviour ϕ(z, x) ∼ ϕ(x)z∆, we see that the

1Saturating the BF bound corresponds to the degenerate case ∆+ = ∆− = d/2 in which the
asymptotic solution (1.1.10) contains a logarithmic term ϕ(z, x) ∼ ϕBF(x)zd/2 ln µz, where µ is
some scale required to define the logarithm.
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integrand behaves near z = 0 as

√
h
√
gttϕ∂tϕ ∼ z2∆−d+1, (1.1.14)

which leads to a convergent integral if 2∆−d+2 > 0. For the subleading mode, with

∆ = ∆+, this condition becomes ν + 1 > 0, which is always satisfied. This mode is

always normalizable and upon quantization defines a state in the bulk Hilbert space;

in accordance with AdS/CFT, this corresponds to a state in the boundary theory.

The leading mode, with ∆ = ∆−, is non-normalizable for ν ≥ 1 or equivalently

m2 ≥ m2
BF + 1/ℓ2. Non-normalizable modes are not elements of the bulk Hilbert

space. Instead, as we will further justify, they correspond to sources in the boundary

theory. Interestingly, for masses in the range m2
BF ≤ m2 < m2

BF + 1/ℓ2 both modes

are normalizable and give rise to different bulk Hilbert spaces dual to physically

different boundary theories.

AdS is not globally hyperbolic; the equation of motion plus initial data on a

Cauchy surface do not uniquely specify the evolution of ϕ(z, x). In order to have

well-defined dynamics we need to impose boundary conditions at z → 01. We will

consider the standard boundary conditions given by fixing the leading mode ϕ−(x)

to be some fixed function on the boundary

ϕ−(x) = J(x), for x ∈ ∂M (1.1.15)

Let us consider the following bulk isometry

D : (z, xa) → (λz, λxa) , (1.1.16)

which reduces to a dilatation on the boundary

D|∂M : xa → λxa. (1.1.17)

Since ϕ(z, x) is a coordinate scalar, under this isometry ϕ−(x) and ϕ+(x) must scale

1One way to see this is that a null ray can leave the centre of AdS at z = ∞ and reach the
asymptotic boundary z = 0 in a finite proper time for a timelike observer at the centre.
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so as to cancel the transformations of z∆− and z∆+ . This implies that under the

induced dilatation in the boundary, ϕ−(x) = J(x) and ϕ+(x) transform as objects

with scaling dimensions ∆− and ∆+, respectively. Notice, ∆− = d−∆+ is the correct

dimension of a source J to couple to an operator of dimension ∆+ in d dimensions,

in agreement with (1.1.3) (the two radial coordinates are related near the boundary

via z = 1/r).

The full bulk field ϕ(z, x) can be constructed from the boundary configuration

ϕ−(x) via a Greens function solution [4, 5, 48], so that

ϕ(z, x) =
∫

ddx′K∆+(z, x, x′)ϕ−(x′). (1.1.18)

The bulk-to-boundary propagator K∆+(z, x, x′) is defined such that it satisfies the

bulk equation of motion in the unprimed arguments and its leading behaviour near

the boundary is a delta function,

(∇2 −m2)K∆+(z, x, x′) = 0, lim
z→0

z−∆−K∆+(z, x, x′) = −iδd(x− x′). (1.1.19)

It is given by1

K∆+(z, x, x′) = C∆+

(
z

z2 + (x− x′)2

)∆+

, C∆+ = Γ(∆+)
π

d
2 Γ(∆+ − d/2)

. (1.1.20)

Expanding the solution (1.1.18) near z = 0, we find the subleading mode ϕ+(x) as a

functional of the leading mode ϕ−(x):

ϕ+(x) = C∆+

∫
ddx′ ϕ−(x′)

|x− x′|2∆+
. (1.1.21)

A non-trivial test of the AdS/CFT dictionary is that it can be used to generate

CFT correlation functions from an entirely bulk calculation. However, in order to do

this we must first address an apparent problem with the saddlepoint formulation in

(1.1.5): the bulk on-shell action is divergent. To see how this happens, we introduce

a regulator in the form of a radial cutoff z = ε ≪ ℓ. Integrating the action by parts,

1Since we are in Lorentzian signature, the bulk-to-boundary propagator carries an implicit
epsilon prescription for avoiding the lightcone pole: (t − t′)2 → (t − t′)2 − iϵ.
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we get

S = 1
2

∫
z≥ε

dd+1x
√

−gϕ
(
∇2 −m2

)
ϕ− 1

2

∫
z=ε

ddx
√

−hϕnµ∂µϕ, (1.1.22)

where hab is the induced metric, and nµ is the outward pointing unit normal to the

surface. The first term vanishes on-shell, ϕ = ϕc, but plugging in the asymptotic

solution, and using
√

−h = (ℓ/z)d, nµ∂µ = −(z/ℓ)∂z, the second term gives

S[ϕc] = ℓd−1

2

∫
ddx

(
∆−ϕ

2
−ε

−2ν + dϕ−ϕ+ + ∆+ϕ
2
+ε

2ν
)
. (1.1.23)

The first term is singular in the limit ε → 0. While this might seem initially con-

cerning, the appearance of a near-boundary divergence in the action is actually to

be expected; radial transformations in the bulk are associated with scale transform-

ations in the CFT, so this small z (large r) divergence is just the bulk-manifestation

of the short-distance, ultraviolet divergence of the boundary field theory. The action

can be renormalised by introducing suitable counterterms such that the action is

finite on shell and stationary under variations that preserve the boundary conditions.

This procedure is known as holographic renormalisation. In our case, this is achieved

by the renormalised action [49]:

Sre = S − ∆−

2ℓ

∫
∂M

ddx
√

−hϕ2. (1.1.24)

Evaluated on-shell, the divergence of this new boundary term cancels the divergence

from the bulk action, leaving the finite result:

Sre[ϕc] = νℓd−1
∫

∂M
ddxϕ−ϕ+. (1.1.25)

Now consider varying the field ϕ → ϕ+ δϕ, which induces variations δϕ− and δϕ+.

The variation of the renormalised action is given by

δSre[ϕc] =
∫

M
dd+1x

√
−g

(
∇2ϕc −m2ϕc

)
δϕ+ 2νℓd−1

∫
∂M

ddx δϕ−ϕ+, (1.1.26)

which vanishes when ϕ− is fixed on the boundary, as in boundary condition (1.1.15),

so Sre does indeed satisfy the conditions required of it.
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We can now calculate correlation functions for the CFT primary O dual to ϕ. In

the presence of a source J , the one-point function can be defined as the functional

derivative of the CFT partition function with respect to the source,

⟨O(x)⟩J = 1
i

δ

δJ(x) lnZCFT[J ]. (1.1.27)

Using the correspondence (1.1.3) this is equivalent to

⟨O(x)⟩J = δSre[ϕc]
δϕ−(x)

∣∣∣∣∣
ϕ−=J

= 2νℓd−1ϕ+(x) (1.1.28)

= 2νC∆+ℓ
d−1

∫
ddx′ J(x′)

|x− x′|2∆+
.

This tells us that, just as the leading term ϕ− corresponds to the source for the

dual operator, the subleading term ϕ+ corresponds to its expectation value; it is the

response to turning on the leading mode. Setting the source J = 0, gives us a bulk

derivation of the simple fact that CFT one-point functions vanish

⟨O(x)⟩ = 0. (1.1.29)

Taking two derivatives, we get the two-point function

⟨O(x1)O(x2)⟩ = −i δSre[ϕc]
δϕ−(x1)δϕ−(x2)

∣∣∣∣∣
ϕ−=0

= −2iνC∆+ℓ
d−1

|x1 − x2|2∆+
, (1.1.30)

in agreement with the standard CFT result derived via symmetry considerations.

Likewise, considering an interaction term of the form λnϕ
n in the bulk action, one

can calculate connected n-point CFT correlation functions,

⟨O(x1) . . .O(xn)⟩ = (−i)n−1 δSre[ϕc]
δϕ−(x1) . . . δϕ−(xn)

∣∣∣∣∣
ϕ−=0

. (1.1.31)

Bulk duals for operators with scaling dimensions as small as ∆ = d/2 can be

found by taking m2 down to the BF bound. Generically, CFTs can have operators

with scaling dimensions as small as the unitary bound ∆ ≥ d/2−1. It turns out that

these operators can also be realized from the bulk dual. As mentioned previously,



1.1. The AdS/CFT correspondence 12

for the restricted range of m2,

m2
BF < m2 ≤ m2

BF + 1, (1.1.32)

both asymptotic modes are normalizable, so different boundary conditions can be

chosen such that ϕ+(x) = J(x) and ϕ−(x) is dynamical. This is known as the

alternate boundary condition and requires altering the holographic counterterm.

The alternate action is given by

Salt = S +
∫

∂M
ddx

√
−hϕ

(
nµ∂µ + ∆+

2ℓ

)
ϕ. (1.1.33)

With alternate boundary conditions, the one-point function in the presence of a

source is given by

⟨Oalt(x)⟩J = δSalt

δϕ+(x)

∣∣∣∣∣
β=J

= −2νℓd−1ϕ−(x). (1.1.34)

Thus, the dual operator Oalt has scaling dimension ∆−, which hits the unitary bound

at m2 = m2
BF + 1.

1.1.1 Mixed states and entanglement

Before jumping into a discussion of black holes and their holographic dual states,

it will be useful to give a recap of mixed states and entanglement. Entanglement

is one of the primary features distinguishing quantum from classical mechanics

and is an incredibly important concept in holography; it has deep connections to

the emergence of classical gravitational spacetime and is central to the black hole

information paradox. This section largely draws from [50] (see also [51–53]).

Consider a Hilbert space H for a system which can be decomposed into a sub-

system A and its complement Ā as

H = HA ⊗ HĀ. (1.1.35)

Given a state |Ψ⟩ ∈ H of the full system, it is natural to ask if there exists a state

|ψA⟩ ∈ HA that fully describes the subsystem A. More precisely, is there a state
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|ψA⟩ ∈ HA such that for all operators OA ∈ End(HA) acting only on HA we have

⟨ψA|OA|ψA⟩ = ⟨Ψ|OA ⊗ IĀ|Ψ⟩? (1.1.36)

The answer of course for general |Ψ⟩ is no; the state |Ψ⟩ is said to be entangled when

(1.1.36) fails to hold.

To properly formulate a theory of quantum mechanical subsystems, one needs

to introduce the idea of ensembles of states, otherwise known as mixed states. An

ensemble {|ψi⟩, pi} is a collection of orthogonal states and associated probabilities.

The ensemble expectation value of an operator O is defined as the sum of the

expectation values for the individual states weighted by the associated probabilities,

⟨O⟩ensemble ≡
∑

i

pi⟨ψi|O|ψi⟩. (1.1.37)

The probabilities can be thought of as representing some classical uncertainty about

the state of the system.

For any state |Ψ⟩ ∈ HA ⊗ HĀ describing a composite system, the Schmidt

decomposition theorem says that there exist orthonormal states |ψi
A⟩ ∈ HA and

orthonormal states |ψj

Ā
⟩ ∈ HĀ, such that

|Ψ⟩ =
∑

i

√
pi|ψi

A⟩ ⊗ |ψi
Ā⟩, (1.1.38)

where pi are positive real numbers satisfying ∑i pi = 1 [52]. Evaluating the expecta-

tion value of an operator OA acting only on subsystem A gives

⟨Ψ|OA ⊗ IĀ|Ψ⟩ =
∑
i,j

√
pipj⟨ψi

A|O|ψj
A⟩⟨ψi

Ā|ψj

Ā
⟩ =

∑
i

pi⟨ψi
A|O|ψi

A⟩. (1.1.39)

We see that subsystems are examples of ensembles. A convenient means for describing

mixed states is in the language of density matrices. A density matrix is a unit trace,

positive semi-definite operator. For a mixed state {pi, |ψi⟩}, the density matrix ρ is

defined by

ρ ≡
∑

i

pi|ψi⟩⟨ψi|. (1.1.40)
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Alternatively, one can take any unit trace, positive semi-definite operator to define a

mixed state by taking |ψi⟩ and pi to be the orthogonal eigenvectors and eigenvalues

of the operator. The expectation value of an operator is calculated by taking the

trace against the density matrix:

⟨O⟩ = Tr(Oρ) =
∑

i

pi⟨ψi|O|ψi⟩. (1.1.41)

For a pure state |Ψ⟩ ∈ H, the density matrix is simply ρ = |Ψ⟩⟨Ψ|. A subsystem

A is described by the reduced density matrix ρA defined by taking the partial trace

over the complement,

ρA ≡ TrĀ(ρ) = TrĀ(|Ψ⟩⟨Ψ|) (1.1.42)

It is straightforward to show that the reduced density matrix satisfies

⟨Ψ|OA ⊗ IĀ|Ψ⟩ = Tr((OA ⊗ IĀ)ρ) = Tr(OAρA). (1.1.43)

The eigenvalues pi of a reduced density matrix ρA tell us about the entanglement

between the subsystems. The states are separable and have zero entanglement if

there is only a single non-zero eigenvalue pi = 1, and they are maximally entangled

if all eigenvalues are equal pi = 1/min(dim HA, dim HĀ). We can define a measure

for the degree of entanglement of a subsystem as the von Neumann (fine-grained)

entropy of its reduced state,

S(ρA) ≡ − Tr(ρA log ρA). (1.1.44)

It quantifies our ignorance about the precise quantum state of the system. For a

pure bipartite state ρ ∈ HA ⊗ HĀ, the von Neumann entanglement entropy is the

same for both subsystems, S(ρA) = S(ρĀ). This follows straightforwardly from the

Schmidt decomposition theorem. Von Neumann entropy has a number of important

properties, including:

• S(ρ) ≥ 0, with equality if and only if ρ is pure.

• S(ρ) ≤ log(dim H) with equality if and only if ρ is maximally mixed.
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• S(U †ρU) = S(ρ) for any unitary operator U .

• S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2), i.e. S is additive for independent systems.

• For any set of non-negative numbers λi obeying ∑i λi = 1,

S

(∑
i

λiρi

)
≥
∑

i

λiS(ρi). (1.1.45)

It will also be useful to introduce the notion of coarse-grained entropy. Coarse-

grained entropy applies to cases where only a subset of observables are considered.

For a system described by a density matrix ρ, the coarse-grained entropy associated

with a subset of observables O is given by maximising the von Neumann entropy

over all possible density matrices ρ̃ that produce the same expectation values for all

observables in O,

Scoarse(ρ) ≡ max
ρ̃

{− Tr(ρ̃ log ρ̃) | Tr(ρ̃Oi) = Tr(ρOi), ∀Oi ∈ O} . (1.1.46)

A simple example of this is ordinary thermodynamic entropy. Unlike fine-grained

entropy, which is invariant under unitary time evolution, coarse-grained entropy tends

to increase over time. A simple consequence of this definition is that fine-grained

entropy cannot be larger than coarse-grained entropy.

1.1.2 The thermofield double

In the previous section we saw that a subsystem A of a pure states can be described by

a density matrix ρA. However, it is often useful to consider the inverse: starting from

a mixed state ρA ∈ End(HA), one can construct an entangled pure state belonging

to an enlarged Hilbert space |ψ⟩ ∈ HA ⊗ HB such that the expectation values of

operators restricted to the original system reproduce the statistical predictions in

the original mixed state. The auxiliary Hilbert space HB, whose dimension is at

least as large as the number of non-zero eigenvalues of ρA, is said to purify the mixed

state. In general there are an infinite number of purifications of any mixed state.

For a density matrix ρA = ∑
i pi|ψi

A⟩⟨ψi
A|, a general purification can be written as a
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Schmidt decomposition

|Ψ⟩ =
∑

i

√
pi|ψi

A⟩ ⊗ |ψi
B⟩ (1.1.47)

where |ψi
B⟩ are orthogonal states belonging to HB. A simple calculation shows that

this reduces to the original mixed state when traced over HB.

In the context of holography and black hole physics, a particularly important

ensemble to consider is the canonical ensemble or thermal state of a system in which

a system A is weakly coupled to a heat bath Ā. The ensemble can be defined by

maximising the entropy subject to the constraint that the expectation value for the

energy of the subsystem is constant,

Tr(HAρA) = E. (1.1.48)

In terms of the energy eigenstates |Ei⟩ of HA, the ensemble is {|Ei⟩, pi = e−βEi/Z}

where Z = TrA e
−βHA is the thermal partition function of inverse temperature β.

In [54], Maldacena argued using the AdS/CFT correspondence that the maxim-

ally extended AdS-Schwarzschild black hole is dual to a particular entangled state

belonging to a pair of identical non-interacting CFTs, CFTL
∼= CFTR, which live

on each of the two asymptotic boundaries of the spacetime. This state, known as

the thermofield double (TFD), is a symmetric purification of the canonical ensemble

so that restricted to either boundary CFT, expectation values of local operators

are thermal with the same temperature β−1, equal to the Hawking temperature of

the black hole. More precisely, this duality applies to so-called big AdS black holes.

These are black holes that have positive specific heat and are the dominant saddle

point of the Euclidean gravitational path integral.

Let H ≡ HL ⊗HR denote the full Hilbert space of the joint system CFTL ⊗CFTR.

We can define an antiunitary time-reversal operator Θ : HL → HR that implements

the isomorphism HL
∼= HR, with the Hamiltonians of the two CFTs related by

HR = ΘHLΘ†. In terms of the energy eigenbases |Ei⟩L and |Ẽi⟩R ≡ Θ|Ei⟩L, the
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thermofield double state is defined as

|TFD⟩ ≡ 1√
Z(β)

∑
i

e−βEi/2|Ei⟩L ⊗ |Ẽi⟩R, (1.1.49)

where Z(β) is the thermal partition function of one copy of the CFT at temperature

β−1. The density matrix corresponding to this pure state is

ρ = |TFD⟩⟨TFD|

= 1
Z(β)

∑
ij

e−β(Ei+Ej)/2|Ei⟩LL⟨Ej| ⊗ |Ẽi⟩RR⟨Ẽj|. (1.1.50)

This gives a thermal state when reduced to either subsystem ρL = TrR ρ = e−βHL/Z

(and likewise for ρR).

The TFD is a natural candidate for the dual of maximally extended Schwarzschild-

AdS; the AdS/CFT dictionary suggests that the bulk spacetime, having two discon-

nected asymptotically AdS boundaries, should be dual to a state in two CFTs. The

boundary CFTs should be non-interacting since the two exterior regions are causally

disconnected. The bulk Z2 reflection symmetry which exchanges the two exterior

regions implies that the dual state should be identical when restricted to either factor

in the Hilbert space HL ⊗HR. Additionally, it is a universal feature of quantum fields

on black hole backgrounds that equilibrium states are thermal. Up to the insertion

of possible phases, the TFD is the unique state in the product space HL ⊗ HR

that reduces to the thermal state of temperature β−1 on either factor. For a free

scalar field propagating in a static spacetime with a bifurcate Killing horizon with

a regular bifurcation surface, it has been shown that there is at most one quantum

state that is Killing-time independent and regular everywhere on the horizon [55].

In the case of Schwarzschild-AdS, this state is the Hartle-Hawking state and can be

constructed via a path integral over half of the Euclidean section [56,57]. Restricted

to the conformal boundary, this becomes a Euclidean path integral over the cylinder

[0, β/2] × Sd−1 and should construct the TFD state. Equivalently, the TFD state

defines a transition amplitude with boundary conditions ϕ1 and ϕ2 specified on either
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end of the interval [0, β/2]. To confirm this consider the overlap

(
L⟨ϕ1| ⊗ R⟨ϕ̃2|

)
|TFD⟩ = 1√

Z(β)

∑
i

e−βEi/2
L⟨ϕ1|Ei⟩LR⟨ϕ̃2|Ẽi⟩R (1.1.51)

= 1√
Z(β)

∑
i

L⟨ϕ1|e−βHL/2|Ei⟩LL⟨Ei|ϕ2⟩L (1.1.52)

= 1√
Z(β)

L⟨ϕ1|e−βHL/2|ϕ2⟩L, (1.1.53)

where in the second line we used the antiunitary property ⟨Θx|Θy⟩ = ⟨y|x⟩. This

demonstrates that the TFD is prepared by a Euclidean path integral in which

Euclidean time tE runs over an interval of length β/2 [58]. Note also that the TFD

state is invariant under time evolution generated by the Hamiltonian,

Htot = HL ⊗ IR − IL ⊗HR, (1.1.54)

which has the natural interpretation of the dual to the bulk Hmailtonian that

generates time evolution along the Schwarzschild isometry ∂t; the Schwarzchild t

coordinate runs in opposite directions on the left and right asymptotically AdS

regions.

The TFD state serves as a paradigmatic example of the concept of emergent

spacetime - the idea that classical spacetime is an emergent phenomena arising from

the entanglement structure of underlying degrees of freedom. The TFD state is

given by a sum over individual product states |Ei⟩L ⊗ |Ẽi⟩R (i.e. states with zero

entanglement between the two subsystems). Since the CFTs are non-interacting,

and there is zero entanglement, the natural interpretation is that a product state

correspond to two completely independent physical systems. If |Ei⟩L and |Ẽi⟩R

each correspond to an asymptotically AdS spacetime, then their product should

correspond to a pair of disconnected asymptotically AdS spacetimes. However, taking

the particular superposition of these states that constructs the TFD corresponds to

an extended black hole with two asymptotically AdS regions connected by a smooth

classical wormhole. This points towards a profound insight: the connectivity of

classical spacetime is a consequence of (particular kinds of) entanglement in a more
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fundamental quantum mechanical description. This perspective was emphasized

in [59, 60] and is in line with the ER = EPR proposal of Maldacena and Susskind

[61]. They propose a more radical perspective; rather than simply claiming that

entanglement underlies the connectivity of classical spacetime, as has been argued

here, they claim that in a quantum theory of gravity all entangled systems, even

individual entangled particles, are connected by a kind of Einstein-Rosen bridge,

albeit not necessarily one that can be described by a classical geometry.

1.1.3 Charged black holes

Schwarzschild black holes and the TFD are a fundamental example of the relation

of entanglement and geometry. It’s interesting to see how this generalises; a natural,

simple extension is to consider charged black holes, which are dual to an ensemble

with chemical potential, purified by a generalisation of the TFD state.

In this section we will consider the case of a charged black hole in an asymp-

totically AdSd+1 spacetime. This bulk geometry arises from Einstein gravity with

a negative cosmological constant, Λ = −d(d−1)
2ℓ2 , coupled to a U(1) gauge field. The

action is given by

S = 1
2κ2

∫
dd+1x

√
−g

[
(R − 2Λ) − ℓ2

g2
F

F 2
]
, (1.1.55)

where gF is an effective dimensionless gauge coupling. We are interested in the

spherically symmetric AdS Reissner-Nördstrom black hole solution with the metric

and gauge field given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1, A = µ

(
1 − rd−2

+

rd−2

)
dt, (1.1.56)

where dΩ2
d−1 is the round metric on Sd−1 and

f(r) ≡ 1 − M

rd−2 + Q2

r2d−4 + r2

ℓ2 . (1.1.57)

The constants Q and M are proportional to the charge and ADM mass of the black
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hole respectively and the constant µ is given by

µ =
√

d− 1
2(d− 2)

gFQ

ℓrd−2
+

. (1.1.58)

For fixed mass M , there is an open interval Q ∈ (0, Q∗) for which the metric function

f(r) has two distinct positive roots f(r−) = f(r+) = 0, corresponding to the inner

and outer horizons of the black hole. As Q approaches the extremal charge Q∗, these

two roots converge and f(r) develops a double root at r∗ = r+ = r−. For Q > Q∗,

the metric function has no positive roots and no black hole solution exists. It will

be useful to express the mass and charge parameters in terms of the inner and outer

radii [44]:

M =
ℓ2
[
r

2(d−2)
+ − r

2(d−2)
−

]
+ r

2(d−1)
+ − r

2(d−1)
−

ℓ2
(
rd−2

+ − rd−2
−

) , (1.1.59)

Q2 = rd−2
+ rd−2

−

ℓ2
(
rd−2

+ − rd−2
−

)
+ rd

+ − rd
−

ℓ2
(
rd−2

+ − rd−2
−

)
 . (1.1.60)

In the extremal limit these become

M∗ = 2rd−2
∗

(
1 + (d− 1)r2

∗
(d− 2)ℓ2

)
,

Q2
∗ = r2(d−2)

∗

(
1 + dr2

∗
(d− 2)ℓ2

)
. (1.1.61)

To calculate the black hole temperature, we can analytically continue to the

Euclidean solution and impose a periodicity β in Euclidean time so as to remove the

conical singularity at the outer horizon. This periodicity is the inverse temperature

of the Lorentzian black hole. One finds the black hole temperature

T = d− 2
4πr+

[
2r2

+
(d− 2)ℓ2 + M

rd−2
+

− 2Q2

r2d−4
+

]
. (1.1.62)

Evaluating this expression in the extremal limit using (1.1.61), we see that the

extremal limit Q → Q∗ corresponds to the limit of zero temperature, T → 0. In the

grand canonical ensemble with fixed µ, zero temperature is only reached if

µ2 > µ2
c ≡ 2(d− 2)ℓ2

(d− 1)g2
F

, (1.1.63)
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as can be seen by eliminating the mass parameter and expressing the temperature

in terms of µ:

T = d− 2
4πr+

[
1 + dr2

+
(d− 2)ℓ2 − µ2 2(d− 2)ℓ2

(d− 1)g2
F

]
. (1.1.64)

As mentioned previously, in the extremal limit the metric develops a double pole

at the horizon f(r) ∝ (r − r∗)2 + O(r − r∗)3. This implies a peculiar feature of

extremal black holes: on a constant-t hypersurface, the horizon is an infinite proper

distance away from any other radial point. Explicitly, the proper distance from any

point r to the horizon r+ → r∗ is logarithmically divergent,

∫ r

r+

dr′√
f(r′)

∼ ln
(
r − r∗

r+ − r∗

)
. (1.1.65)

Curiously, extremal charged black holes also retain a non-zero Bekenstein-Hawking

entropy, S∗ = A(r∗)
4GN

, indicating non-zero entanglement in the dual state. These

two facts motivate our study in chapter 2 of near-extremal AdS black holes in

the context of traversable wormholes. The non-zero entanglement in the dual state

suggests the possibility of constructing a traversable wormhole solution along the lines

of [12] via introducing a simple coupling between the two boundaries; however, the

divergence in the length of the wormhole’s throat implies that correlation functions

of operators on different boundaries vanishes in the extremal limit (unless the field

dual to the operator is tuned to the threshold of an instability [62]), suggesting that

the effect of the boundary coupling on the bulk geometry may also vanish in this

limit. This begs the question: can we make these infinite wormholes traversable,

enabling communication between the two CFTs through the bulk? We will find

in chapter 2 that the answer to this question is yes! Aside from taking the bulk

field to be at the threshold of an instability, this can be achieved provided we take

the coupling between the two boundaries to scale to infinity as an inverse power of

the temperature. If we accept this tuning of the coupling, we can communicate an

amount of information that scales with the entropy of the black hole through the

wormhole in the bulk.

We now wish to consider the holographic dual of the Reissner-Nördstrom AdS
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geometry. We know that the gauge field At is dual to a conserved current Jt in

the boundary theory corresponding to a global U(1) symmetry. According to the

holographic dictionary, the boundary value of the gauge field, µ = At(r → ∞), is

equal to the source of the conserved current, i.e. µ is the chemical potential in the

field theory. Thus, we expect the dual state to be a generalization of the TFD state

to the grand canonical ensemble. That is, we include a chemical potential µ in the

Boltzmann weights and define the charged TFD (CTFD) state to be [62]

|CTFD⟩ = 1√
Z(β, µ)

∑
i

e−β(Ei+µQi)/2|Ei, Qi⟩L ⊗ |Ẽi,−Qi⟩R, (1.1.66)

where Qi are eigenvalues of the global conserved U(1) charge conjugate to µ and

Z(β, µ) is the grand canonical partition function. Here, the antiunitary Θ is taken

to also implement charge conjugation, |Ẽi,−Qi⟩R ≡ Θ|Ei, Qi⟩L. This state, as with

the uncharged case, can also be constructed via a Euclidean path integral over a

cylinder [0, β/2]×Sd−1, but now we couple the charge Q to a background U(1) gauge

field A = −iµdtE. The AdS Reissner-Nördstrom black hole is the dominant saddle

point in the grand-canonical ensemble for all temperatures provided µ > µc [63], so

it provides the bulk dual of the CTFD state. Note that the form of (1.1.66) tells us

that the CTFD is equivalent to the uncharged TFD state defined by the deformed

Hamiltonians H ′
L,R ≡ HL,R ± µQ.

In order for the CTFD state to have a well-defined zero-temperature limit β → ∞,

the spectrum of the deformed Hamiltonians E ′
L,Ri = Ei ± µQi must be bounded

from below. In the zero-temperature limit, the reduced density matrices on either

CFT approximate projection operators onto the states which minimize E ′
L, E ′

R. The

non-zero entropy of the black hole in the extremal, zero-temperature limit, implies

an approximate degeneracy in the states at minimal E ′
L,E ′

R. This ground-state

entanglement gives us the required entanglement for quantum teleportation, the

dual interpretation of bulk wormhole traversability.
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1.1.4 Holographic entanglement entropy

Building on the work of Bekenstein, Hawking showed that black holes are thermal

objects with an entropy given by one quarter the area of their event horizon in Planck

units. This famous result hints at a deep relationship between entropy and spacetime

geometry. The study of holography has allowed us to gain remarkable insight into

this relationship, most notably in the form of the Hubeny-Rangamani-Takayanagi

(HRT) conjecture and its subsequent generalizations, which relate the entanglement

entropy of a region in a holographic CFT to the area of certain co-dimension two

surfaces in the bulk. This represents a large generalization of the black hole entropy

formula; in the context of holography we can associate entropy with a large class of

extremal surfaces, not just black hole horizons. Holographic entanglement entropy

has been used extensively to study both sides of the AdS/CFT correspondence and

has played a crucial role in the recent understanding of the black hole information

problem.

Consider a holographic CFTd on a manifold ∂M which is the conformal boundary

of some asymptotically AdSd+1 spacetime M and let ∂Σ ⊂ ∂M be some boundary

Cauchy slice. The Hubeny-Rangamani-Takayanagi conjecture says that for any

subregion R ⊂ ∂Σ, and any appropriate state ρ ∈ HCF T which is dual to semiclassical

Einstein gravity in the bulk, the von Neumann entropy of the reduced density matrix

ρR on R is given by

S(ρR) = min
γR

ext
γR

[
Area(γR)

4GN

]
, (1.1.67)

to leading order in GN [64]. The extremum (and minimum if the extremum is not

unique) is taken over co-dimension two manifolds γR anchored to R, i.e. ∂γR = ∂R,

that are homologous to R, meaning there exists a spatial surface ΣR such that

∂ΣR = γR ∪ R. The extremal surface γR is called the HRT surface. In the special

case where the spacetime possesses a time-reflection symmetry under which the

boundary spatial region R is invariant, this reduces to the original conjecture of

Ryu and Takayanagi (RT) [65]. The original RT formulation applies to states with
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this time-reflection symmetry e.g. a constant time slice of a static spacetime, and

the RT surface is defined as the minimal area surface on this time slice. The HRT

conjecture serves as a covariant generalization of RT which can accommodate general

time-dependant states.

The RT/HRT formulae have been extensively tested in the literature, having

been applied to a wide variety of different spacetimes and passing a number of non-

trivial checks. For example, the RT proposal produces the correct universal formula

for the entanglement entropy of an interval of length L for the vacuum state of a

two-dimensional CFT. The holographic dual to the vacuum state of a CFT on R2 is

the Poincaré patch of AdS3 whose metric on a constant timeslice is

ds2 = ℓ2

z2 (dz2 + dx2). (1.1.68)

The minimal surfaces in this space are easily found to be coordinate semi-circles

centred on the boundary, with the minimal surface associated with the interval

x ∈ [−L
2 ,

L
2 ] given by

x2 + z2 =
(
L

2

)2
. (1.1.69)

To regulate the divergence associated with the infinite distance to the AdS boundary,

we calculate the area of the surface in the region z > ϵ with ϵ ≪ L. The RT

prescription then gives

SL = Area
4GN

= ℓ

2GN

ln
(
L

ϵ

)
. (1.1.70)

Now, let us compare this to a direct calculation of the entanglement entropy in the

CFT. In terms of the central charge c and UV cutoff 1/ϵ, the result is

SL = c

3 ln
(
L

ϵ

)
(1.1.71)

We see that not only does the RT formula produce the correct logarithmic divergence

but it also allows us to read off the Brown-Henneaux formula relating the central
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charge of a two-dimensional holographic CFT to the bulk AdS3 parameters [66],

c = 3ℓ
2GN

. (1.1.72)

Notice that on the CFT side, the divergence in the entanglement entropy originates

from the UV, short-distance, entanglement across the boundaries of the interval; On

the bulk side this corresponds to the divergence of the AdS metric near the boundary

as z → 0, demonstrating the correspondence between boundary RG flow and the

bulk radial direction.

The RT prescription also obeys all known properties of entanglement entropy,

including an infinite set of inequalities [67]. For example, RT obeys the property

of strong subadditivity. In fact, the proof of this is remarkably simple compared

to the standard quantum-information-theoretic proof of the strong subadditivity of

entanglement entropy. For a tripartite Hilbert space H ≡ HA ⊗ HB ⊗ HC , strong

subadditivity says that for any state ρABC ∈ End(H), the following inequality holds

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (1.1.73)

To show that this is obeyed by the RT formula, consider three boundary regions

A, B, C, on a constant timeslice of a holographic CFT. Let γA∪B, γB∪C be the RT

surfaces corresponding to the regions A ∪ B and B ∪ C, respectively. The key to

the proof is to notice that the union γA∪B ∪ γB∪C always defines homology regions

ΣA∪B∪C and ΣB, therefore it is always a candidate for the union of RT surfaces

γA∪B∪C ∪ γB. Since RT surfaces have minimal area, we have

Area(γA∪B) + Area(γB∪C) = Area(γA∪B ∪ γB∪C) (1.1.74)

≥ Area(γA∪B∪C ∪ γB) (1.1.75)

= Area(γA∪B∪C) + Area(γB), (1.1.76)

which confirms (1.1.73). This argument crucially relies on the fact that RT surfaces

are defined to minimise the area functional. In contrast, HRT surfaces are defined

to extremise the area functional, so this argument cannot be easily generalised to



1.1. The AdS/CFT correspondence 26

prove the strong subadditivity of HRT surfaces. In fact, this remained unproven for

seven years until it was finally proven by Wall in [68].

Wall put forward an alternate definition of the HRT surface γR, known as the

maximin construction. Maximin surfaces are defined operationally in the following

way: given a boundary subregion R, consider all bulk Cauchy slices containing

∂R1. For a each Cauchy slice Σ, find the minimal area surface homologous to R,

denoted min(Σ, R). The maximin surface M(R) is then defined as the maximal area

min(Σ, R) when varying over all possible Σ. Under certain general assumptions about

the bulk spacetime, such as it being smooth, locally asymptotically AdS, and obeying

the null curvature condition (Rabk
akb ≥ 0 for any null vector ka), Wall proved that

maximin and HRT surfaces are equivalent. Wall then used this construction to prove

various results about HRT surfaces, including the strong subadditivity condition.

Additionally both RT and HRT have been derived from first principles assuming

only basic elements of the AdS/CFT dictionary. Lewkowycz and Maldacena derived

the RT prescription by mapping the replica construction used to compute entan-

glement entropy in quantum field theories to the Euclidean quantum gravity path

integral [70]. This was extended in [71] to derive the HRT prescription.

A number of generalizations have appeared in the literature since the HRT

prescription was first introduced. These extend the prescriptions to account for

higher derivative theories of bulk gravity and to include higher order quantum effects

in the bulk. In particular, the quantum extensions of HRT have led to considerable

progress in our understanding of the black hole information problem through the

quantum extremal island phenomenon, as will be discussed in section 1.3.

From the low-energy effective field theory view of Einstein gravity, it is natural

to ask how the holographic entanglement entropy formula is modified by higher

curvature corrections. In the black hole context the analogous question was answered

1In [69], they showed that this is equivalent to a restricted maximin proposal in which one varies
over Cauchy slices with a fixed boundary ∂Σ ⊃ R when the restricted maximin surface lies in a
smooth region of spacetime.
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by Wald who proposed the following entropy formula in (d+ 1) dimensions [72–74]:

SWald = −2π
∫

B
dxd−1

√
h

δL
δRµνρσ

εµνερσ, (1.1.77)

where hab is the induced metric on the black hole horizon B, εµν is the binormal to

the horizon normalized by εµνε
µν = −2, and L is the gravitational Lagrangian. This

reduces to the Bekenstein-Hawking area formula in the case of Einstein gravity. One

might guess that Wald’s formula can simply be carried over to give the prescription

for the holographic entanglement entropy for theories dual to higher derivative

gravity. However, as pointed out by Hung, Myers and Smolkin [75], this does not

give the correct universal logarithmic term in the entanglement entropy for CFTs

when the bulk entanglement surface has non-zero extrinsic curvature. In [76], using

a generalization of the Lewkowycz-Maldacena derivation of RT, Dong derived an

expression for entanglement entropy for general higher derivative gravity theories

with a Lagrangian L(Rµνρσ) built from arbitrary contractions of the Reimann tensor.

This was extended in [77] to also include derivatives of the curvature. These more

general functionals consist of a term corresponding to Wald’s formula plus corrections

involving the extrinsic curvature. The prescription then for higher derivative classical

gravity is that the holographic entanglement entropy associated with a boundary

spatial region R is given by

S(ρR) = min
γR

ext
γR

[
A(γR)
4GN

]
, (1.1.78)

where A is the appropriate generalised functional which reduces to the area in the

Einstein gravity limit. For a Lovelock-type term in the action, the correction to the

area functional takes a particularly simple form as the next lower Lovelock term

applied to the surface [75,78]. For example, a Gauss-Bonnet term in the gravitational

action adds an Einstein-Hilbert term to the area functional.

Moving away from the classical limit, the HRT formula should receive additional

higher order corrections. At order G0
N , or equivalently order N0 in the boundary

theory, Faulkner, Lewkowycz, and Maldacena (FLM) argued that the correction is
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given by the bulk entanglement entropy of the homology surface ΣR [79]:

S(ρR) = min
γR

ext
γR

[
A(γR)
4GN

]
+ Sbulk(ρΣR

). (1.1.79)

This correction arises from a semi-classical treatment in which the bulk fields and

metric perturbations are considered quantum fields propagating on a fixed back-

ground. The entanglement entropy Sbulk(ρΣR
), therefore, is a standard quantum

field theory entanglement entropy1.

The modern form of the HRT prescription is an all orders generalization of FLM,

conjectured by Engelhardt and Wall, known as the quantum extremal surface (QES)

prescription [80]. It states that the entanglement entropy of a boundary state ρR

supported on a boundary subregion R is given by

S(ρR) = min
γR

ext
γR

[
A(γR)
4GN

+ Sbulk(ρΣR
)
]
. (1.1.80)

The sum of the two terms inside the brackets is known as the generalised entropy and

the minimal surface that extremises the generalised entropy is called the quantum

extremal surface. The QES should also satisfy the same homology condition required

of HRT surfaces. The QES surface prescription has since also been derived from

basic elements of the AdS/CFT dictionary [81].

The quantum extremal surface formula has led to a number of important results.

For example, it implies a feature of AdS/CFT known as subregion-subregion duality

holds between the boundary subregion R and the bulk domain of dependence of

the quantum extremal homology surface, also known as the entanglement wedge

WR ≡ D[ΣR]. That is, it suggests that WR is entirely encoded in R. Assuming

the QES formula, this was proven using general information-theoretic arguments

in [82]. They showed that all bulk operators in WR have a representation in the dual

CFT as operators supported only on R, which is referred to as entanglement wedge

reconstruction. This result both made use of and helped develop the quantum error

1Strictly speaking, (1.1.79) is ill-defined since Sbulk(ρΣR
) is UV divergent, however it can be

renormalized by including appropriate local counterterms in the action, so we should think of
(1.1.79) as containing the renormalized bulk entanglement entropy.
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correcting code interpretation of AdS/CFT [11,83,84].

1.2 AdS/BCFT

1.2.1 Boundary states

An interesting extension of conformal field theory is to consider manifolds with

boundary; we can define a theory on a manifold with boundary by choosing boundary

conditions for the fields, and possibly adding boundary degrees of freedom coupled

to the bulk fields. When the boundary conditions preserve a maximal subset of the

conformal symmetry, the theory is called a boundary conformal field theory (BCFT).

This is a subject with an extensive literature; below we will give a brief review based

on [46,85].

To be concrete, consider a Euclidean CFT defined on the half-space M ≡ Rd−1 ×

R+ with Cartesian coordinates (τ, xi) such that the boundary ∂M = Rd−1 is located

at τ = 0. This theory is a BCFT when the choice of boundary physics preserves the

subset of the conformal group mapping the half-space to itself, SO(d, 1) ⊂ SO(d+1, 1).

We will investigate how correlation functions transform under infinitesimal conformal

transformations that map the half-space to itself fε : M → M,

fε : xµ → x′µ = xµ + εµ(x), ετ (0,x) = 0. (1.2.1)

Using a path integral formulation, conformal invariance of correlation functions gives

δε ⟨X⟩ =
∫

DΦ e−S[Φ]
(
δϵX +X

∫
M

ddxT µν∂µεν

)
= 0 (1.2.2)

where we take X to be some product of local operators

X =
∏

i

O(xi). (1.2.3)

After integrating by parts we arrive at

⟨δεX⟩ =
∫

M
ddx εν∂µ ⟨T µν(x)X⟩ −

∫
∂M

dd−1x ενnµ ⟨T µν(x)X⟩ . (1.2.4)
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The first term is the familiar condition that the stress tensor is conserved away from

the insertion points of other fields. The second term leads us to the Cardy boundary

condition Tτi(τ = 0,x) = 0, i.e. momentum flow vanishes at the boundary. This is

a necessary condition for boundary conformal field theories.

The presence of a boundary modifies a theory’s correlation functions. For ex-

ample, consider the one point function of a local operator. For a CFT without

boundary, the one point function of a primary operator is required to vanish by

translation invariance. This symmetry is broken in a BCFT. The remaining con-

formal symmetry requires the one point function takes the form

⟨O(τ,x)⟩M = AO

τ∆ , (1.2.5)

where AO is determined by the details of the theory and the boundary state. For a

two-point function we have

⟨O1(x1)O2(x2)⟩M = F (ξ)
τ∆1

1 τ∆2
2
, (1.2.6)

where F (ξ) is some function of the conformal invariant

ξ = (x1 − x2)2

τ1τ2
(1.2.7)

that is not fixed by conformal symmetry.

Using the correspondence between states and path integrals with an unspecified

boundary condition, we can formally define a boundary state |b⟩ associated with

boundary condition b. The wavefunctional ⟨ϕ0|b, τ0⟩ is defined by a Euclidean path

integral for the CFT on a cylinder of height τ0, with boundary condition b at

Euclidean time τ = −τ0 and CFT field configuration ϕ0 at τ = 0. The boundary

state |b⟩ is then defined by

|b⟩ = lim
τ0→0

|b, τ0⟩. (1.2.8)

Alternatively, we can think of the state |b, τ0⟩ as arising from a Euclidean time
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evolution of the boundary state

|b, τ0⟩ = e−τ0H |b⟩. (1.2.9)

The boundary state itself has infinite energy expectation value. However, the Euc-

lidean time evolution suppresses the high energy components so that |b, τ0⟩ is a finite

energy state.

In two dimensions, an important quantity is the overlap of the boundary state

with the vacuum g ≡ ⟨0|b⟩, computed via a path integral on a semi-infinite cylinder.

This can mapped to the disk via a conformal transformation, so is equivalent to

the disk partition function. The parameter g can be understood as the boundary

analogue of the central charge; it has been shown that g is strictly decreasing along

boundary RG flows [86]. The parameter g also appears in the expression for the

vacuum entanglement entropy for a CFT on a half line. The entanglement entropy

for an interval of length L including the boundary is given by

S(L) = c

6 log
(
L

ϵ

)
+ log g. (1.2.10)

The second term is known as the boundary entropy.

1.2.2 End of the world branes

In [65], Takayanagi proposed a remarkably simple holographic dual to BCFTs from

a bottom-up perspective. He argued that for a BCFT defined on a d-dimensional

manifoldM with boundary ∂M , the holographic dual is given by a (d+1)-dimensional

asymptotically AdS space N so that ∂N = M ∪ Q, where Q is a d-dimensional

manifold satisfying ∂Q = ∂M (see fig. 1.1). We think of the co-dimension one surface

Q as the worldvolume of a brane which we will often refer to as the end of the world

(ETW) brane. In particular, he proposes imposing Neumann boundary conditions on

the bulk metric at Q (and the standard Dirichlet boundary conditions at M). Using

this he is able to successfully calculate the boundary entropy in two-dimensional

BCFTs and find agreement with the finite part of the holographic entanglement
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entropy as well as derive a holographic g-theorem. Alternative prescriptions have

since been considered in the literature [87–89]; however, in this thesis we will only

consider Takayanagi’s prescription using Neumann boundary conditions.

Figure 1.1: A depiction of the holographic dual of a BCFT defined on a
manifold M with boundary ∂M . Its gravity dual is denoted by N and is
bounded by M and a surface Q.

Consider the Einstein-Hilbert action including Gibbons-Hawking boundary terms

(taking 16πG = 1)

I =
∫

N

√
−g(R − 2Λ) + 2

∫
Q

√
−hK + 2

∫
M

√
−γK + 2

∫
P

√
−σθ, (1.2.11)

where P ≡ ∂M = ∂Q is the codimension two submanifold where M and Q meet;

the induced metrics on Q, M , and P are denoted hab, γij, and σαβ respectively;

θ = arccos(nQ · nM) is the supplementary angle between the boundaries M and Q,

calculated using the outward pointing unit normals nQ, nM ; and K = habKab (or

K = γijKij) is the trace of the extrinsic curvature on Q (or M). The extrinsic

curvature Kab is defined by

Kab = ha
chb

d∇cn
Q
d . (1.2.12)

The final term in (1.2.11) is necessary for a well defined variational principle in

the presence of a cusp-like singularity where Q and M are joined non-smoothly at

P 1 [91].

1This boundary term is often omitted since many physical quantities are left unchanged by its
exclusion; one exception is the boundary energy momentum tensor [90].
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Considering the variation of the on-shell action, we have

δI = −
∫

Q

√
−h(Kab −Khab)δhab −

∫
M

√
−g(Kij −Kgij)δgij +

∫
P

√
−σθσαβδσαβ.

(1.2.13)

Takayangi’s prescription is to impose Dirichlet boundary conditions on M and P ,

δgij|M = δσαβ|P = 0, but Neumann boundary conditions on Q. This leads to a

dynamical brane worldvolume whose position is determined by

Kab −Khab = 0. (1.2.14)

This can be generalized by including matter fields localized on Q. Adding a boundary

matter term to the action,

Imat
Q =

∫
Q

√
−hLQ, (1.2.15)

our equation of motion for Q becomes

Kab −Khab = TQ
ab, (1.2.16)

where we define

TQab = 2√
−h

δImat
Q

δhab

(1.2.17)

In this thesis we will only be interested in the case where the boundary matter

Lagrangian LQ is a constant

LQ = −(d− 1)T. (1.2.18)

The constant T can be interpreted as the tension of the brane. The boundary

condition for this case reads

Kab = (K − (d− 1)T )hab, (1.2.19)

and taking the trace we obtain

K = dT. (1.2.20)

As mentioned previously, the boundary we consider breaks the SO(2, d) symmetry
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of the CFT to SO(2, d− 1). This motivates the following ansatz for the bulk metric

ds2 = gµνdxµdxν = dρ2 + cosh2
(
ρ

ℓ

)
ds2

AdSd
. (1.2.21)

If we let ρ take all values ρ ∈ (−∞,∞), then (1.2.21) represents a foliation of AdSd+1

by AdSd leaves given by surfaces of constant ρ; the isometry group of the AdSd slices

correspond to the unbroken SO(2, d− 1) conformal symmetries. To see that (1.2.21)

is equivalent to the AdSd+1 metric, take the Poincaré metric for AdSd,

ds2
AdSd

= ℓ2

y2 (dy2 + ηabdxadxb), (1.2.22)

where ηab is the d-dimensional Minkowski metric, and define new coordinates

z = y

cosh ρ
ℓ

u = y tanh ρ
ℓ
. (1.2.23)

This gives the Poincaré metric for AdSd+1

ds2 = ℓ2

z2 (dz2 + du2 + ηabdxadxb). (1.2.24)

To realize a gravity dual to a BCFT we restrict this space to the region ρ ∈

(−∞, ρ∗), placing the boundary Q at ρ = ρ∗. The BCFT in this case is defined on

the half-space M = Rd−1 ×R−, given by u ≤ 0. The metric (1.2.21) is in a Gaussian

normal coordinate system, i.e. it takes the form

ds2 = dρ2 + habdxadxb, (1.2.25)

so the extrinsic curvature on Q can be straightforwardly calculated via

Kab = 1
2
∂hab

∂ρ

∣∣∣∣∣
ρ=ρ∗

. (1.2.26)

We find

Kab = 1
ℓ

tanh
(
ρ∗

ℓ

)
hab(ρ∗). (1.2.27)

This satisfies the boundary condition (1.2.19) provided

T = 1
ℓ

tanh ρ∗

ℓ
, (1.2.28)



1.2. AdS/BCFT 35

which leads to the constraint −1 ≤ Tℓ ≤ 1.

1.2.3 Branes behind horizons

In this thesis we will be interested in eternal Schwarzschild geometries in which one

asymptotic region terminates in an end of the world brane. These geometries are

dual to pure states of the CFT living on the single asymptotic boundary. These

states were first suggested in [92] and further explored in [43]. To describe these

states let us first consider the thermofield double state of two CFTs on Sd,

|Ψβ
T F D⟩ = 1√

Zβ

∑
n

e− βEn
2 |En⟩L ⊗ |En⟩R. (1.2.29)

For sufficiently high temperatures, this is dual to a maximally extended large AdS-

Schwarzchild black hole. If we project this state onto a particular pure state |B⟩ of

the left CFT, the result is a pure state of the right CFT given by

|Ψ̂β
B⟩ = 1√

Zβ

∑
n

e− βEn
2 ⟨B|En⟩|En⟩. (1.2.30)

This state can be thought of as arising from a measurement of the state of the left

CFT. Projecting onto a generic state |B⟩ ∈ HL, we would expect the bulk dual

of the resulting state |Ψ̂β
B⟩ ∈ HR not to contain a significant portion of the left

asymptotic region. In order to retain a significant portion of the left asymptotic

region, we consider only states |B⟩ with no long-range entanglement. This is due

to the duality between boundary RG flows and the bulk radial direction; avoiding

states with long-range (IR) correlations should avoid modifying the geometry deep

in the bulk.

Let us consider the time reversed state |Ψβ
B⟩ ≡ T |Ψ̂β

B⟩, where T the anti-linear

and anti-unitary time-reversal operator. We have

|Ψβ
B⟩ ≡ T |Ψ̂β

B⟩

= 1√
Zβ

∑
n

e− βEn
2 ⟨En|B⟩|En⟩
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= 1√
Zβ

∑
n

e− βEn
2 |En⟩⟨En|B⟩

= 1√
Zβ

e− βH
2 |B⟩. (1.2.31)

Thus, we see that the states |Ψβ
B⟩ correspond to a state |B⟩ evolved in Euclidean

time by an amount β/2. These states are naturally defined by a Euclidean path

integral on a cylinder of height β/2. We will consider states that are symmetric under

time-reversal, |Ψβ
B⟩ = |Ψ̂β

B⟩, so that (1.2.31) and (1.2.30) are equivalent definitions.

1.3 Islands

For the past half-century, Hawking’s black hole information problem has posed a

serious challenge to consistently combining gravity and quantum mechanics. Using

semi-classical techniques, Hawking showed that when coupled to quantum fields,

black holes will evaporate, losing their mass to thermal radiation [93, 94]. When

a black hole forms, the horizon divides the spacetime into two regions, the region

inside the black hole and the region outside. We can imagine a black hole forming

form an initial pure quantum state. On a full Cauchy slice, unitarity requires that

the quantum fields are still in a pure state after the black hole has formed, but

restricting to either region gives a mixed state due to the short-range entanglement

in the state of the fields across the horizon. It is this entanglement that is responsible

for the thermal nature of the radiation. The mixed state of the radiation is purified

by the interior of the black hole. This means that the fine-grained entropy of the

black hole is equal to the fine-grained entropy of the radiation, Sblack hole(t) = Srad(t).

According to Hawking’s calculation, however, the von Neumann entropy of the

radiation increases linearly in time. This implies that eventually the fine-grained

entropy of the radiation would exceed the coarse-grained Bekenstein-Hawking entropy

of the black hole SBH. After this point, the fine-grained entropy of the black hole and

the radiation can no longer be equal, since Sblack hole ≤ SBH < Srad, meaning that

the radiation cannot be purified by the interior and the state on the entire Cauchy
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slice is now mixed. This violates unitarity; a pure state has evolved into a mixed

state and information about the original pure state has been lost.

The fine-grained entropy of any subsystem is bounded from above by the coarse-

grained entropy of the smaller subsystem and when the subsystems are macroscopic

this bound is approximately saturated. Therefore, unitarity would predict the follow-

ing evolution of the fine-grained entropy Srad(t). At early times, when the radiation

is the smaller of the two subsystems, Srad(t) is given by the growing thermal entropy

of the radiation (as calculated by Hawking), Srad(t) = Sthermal(t). At late times,

however, when the black hole is the smaller of the two subsystems, Srad(t) is given

by the decreasing Bekenstein-Hawking entropy of the black hole, Srad(t) = SBH(t),

tending to zero as the black hole evaporates completely. This trajectory of Srad(t) is

called the Page curve and the time at which SBH(tPage) = Sthermal(tPage) is known as

the Page time [41,42]. The black hole information problem can be encapsulated as

the semi-classical predicted departure of Srad(t) from the Page curve.

Assuming unitarity, there must be a flaw in Hawking’s calculation. However, it

is very difficult to see what this might be. The calculation can be done far from

the singularity, where quantum-gravitational effects are negligible, and the problem

emerges at the Page time, well before the black hole’s size has become comparable

to the Planck length where we expect the semi-classical gravity description to break

down. This is a puzzling situation: is quantum gravity a unitary theory? And if so

how did Hawking’s calculation go wrong?

The discovery of the AdS/CFT correspondence strongly favours unitarity and

shows that at least in the case of asymptotically AdS black holes, Hawking’s calcula-

tion must be wrong. This is because a small black hole (with negative specific heat)

in AdS can evaporate via Hawking radiation and, according to the correspondence,

this process should be dual to a manifestly unitary evolution of the non-gravitational

boundary quantum system. While this answers the question of whether AdS black

hole evaporation is unitary, it does not illuminate our understanding of how unitarity

is preserved from the gravitational perspective and how to correctly calculate the
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entropy of the radiation, nor does it decisively answer the unitarity question for

black holes in non-asymptotically AdS spacetimes.

In recent years, significant progress has been made in resolving the information

loss problem. This was triggered by new insights gained from applying the recently

developed quantum extremal surface prescription for entanglement entropy to various

holographic models of black hole evaporation and has resulted in a new rule for

computing the von Neumann entropy of a quantum mechanical system entangled

with a gravitational system, known as the Island rule [23–25]. When applied to the

Hawking radiation of an evaporating black hole, this new rule has been shown to

reproduce the Page curve, confirming unitarity. The island rule says that the von

Neumann entropy of some subsystem A of a quantum system that is entangled with

a gravitational system that has a semi-classical, effective description is given by

S(A) = min
I

ext
I
Sgen(A ∪ I), (1.3.1)

where I is the island, some spatial subregion of the spacetime the gravitational

system lives in, and Sgen is the generalised entropy. If the semi-classical theory is

Einstein gravity coupled to matter, the island formula is given by

S(A) = min
I

ext
I

[
Area(∂I)

4GN

+ Seff(A ∪ I)
]
, (1.3.2)

where Seff is the von Neumann entropy of the effective semi-classical state of A

together with the fields in the island. The minimal spatial subregion that extremises

Sgen is called a quantum extremal island; the boundary of the island ∂I is the

quantum extremal surface.

The classic information paradox is difficult to directly study in AdS/CFT; small

black holes are subdominant in the Euclidean path integral and large black holes

do not evaporate. Large black holes will reach thermal equilibrium, reabsorbing

radiation reflected back from the AdS boundary. To realize the classic version of

the information paradox in AdS, one can couple AdS to an auxiliary system R that

absorbs the radiation, allowing a large black hole in the bulk to evaporate. In [23,24],
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the authors considered a setup in which the auxiliary system is constructed by gluing

half of non-gravitating Minkowski space along the AdS boundary with absorbing

boundary conditions1. Using this construction, they studied the time-evolution of

the fine-grained entropy of the black hole, Sblack hole. Since the radiation is collected

in the auxiliary reservoir R, the fine-grained entropy of the black hole is simply the

entanglement between the entire AdS boundary and R. The QES prescription gives

Sblack hole = min
Q

ext
Q

[
Area(Q)

4GN

+ Seff(ΣQ)
]
, (1.3.3)

where Q is the quantum extremal surface and ΣQ is the region between Q and

the AdS boundary. They found that at exactly the Page time, there was a phase

transition in the minimal QES. At very early times, before the radiation can escape

the AdS region, the quantum extremal surface is the empty surface with zero area,

in agreement with the classical extremal surface. Assuming the black hole formed

from a pure state, the initial entropy is zero, Sblack hole(0) = 0. Once the radiation

starts to escape the AdS region, the von Neumann entropy starts to increase linearly

as the number of quanta in the reservoir that are entangled with the interior of the

black hole increases. This is the initial phase of the Page curve. However, shortly

after the radiation begins to escape, another candidate QES appears. This second

surface lies inside the black hole, close to the horizon and has generalized entropy

approximately equal to the Bekenstein-Hawking entropy of the black hole. At early

times this is much larger than the generalised entropy of the empty surface, so this

second surface does not contribute to the fine-grained entropy of the black hole. At

the Page time this ceases to be true and the fine-grained entropy is calculated using

1There are two differences between analysis of [23] and [24] that are worth mentioning. The first
is that [23] considered a single-sided black hole formed from collapse, whereas [24] considered an
eternal two-sided black hole with initially reflecting boundary conditions that become transparent
at some fixed time. Secondly, the fine-grained entropy that [24] considered was the entropy of the
single AdS boundary coupled to the reservoir. Even before the radiation is allowed to escape the
AdS region, the state on this boundary is mixed with the QES coinciding with the bifurcation
surface and having non-zero generalised entropy. Our discussion more closely follows [23], tracking
the entropy of an initially pure state. In either case, the qualitative behaviour of the Page curve of
the black hole is the same.
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the non-vanishing QES,

Sblack hole(t) ≈ Area(horizon(t))
4GN

, t ≥ tPage, (1.3.4)

where the contribution from the bulk quantum fields Seff(ΣQ) is negligible since ΣQ

now contains only a very small portion of the black hole interior. The precise location

of the non-vanishing extremal surface depends on the amount of radiation that has

escaped and therefore on the boundary time t. It was shown to move outward in a

spacelike direction, asymptotic to the black hole horizon. Since the area of the black

hole decreases as it evaporates, this extremal surface gives a decreasing fine-grained

entropy, in agreement with the Page curve.

Note that this calculation of the fine-grained entropy of the black hole, Sblack hole(t),

does not resolve the information loss paradox. A resolution of the information loss

paradox would involve a calculation of the fine-grained entropy of the radiation,

Srad(t), that agrees with the Page curve and is consistent with unitarity. However,

it does suggest a precise alternate prescription for calculating Srad(t). Let Σ = Σ(t)

be a Cauchy slice of the full AdS plus Minkowski space, passing through the AdS

boundary at some time t > tPage. This can be decomposed into three disjoint regions,

Σ ≡ I ∪ ΣQ ∪ ΣR, (1.3.5)

where ΣR is the region contained in the auxiliary system, R; ΣQ is the region bounded

by the non-vanishing QES, Q, and the AdS boundary; and I is the remaining portion

behind the horizon of the black hole. The fine-grained entropy of the black hole

receives a contribution from the state of the fields only on ΣQ. Assuming unitarity,

the full state on Σ is pure. This implies that in order for the von Neumann entropy of

the radiation to follow the Page curve, Srad = Sblack hole, it must receive contributions

both from the region ΣR containing the radiation and the region I behind the horizon.

In particular it should be given by a variation of the usual QES prescription, in
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which the extremal surfaces can bound disconnected ‘islands’ in the bulk,

Srad = min
I

ext
I

[
Area(∂I)

4GN

+ Seff(ΣR ∪ I)
]
. (1.3.6)

An island is only included in the generalised entropy if there is sufficient entanglement

between the radiation and the spacetime in the semi-classical state to compensate

for the large contribution to Sgen from the area term. Then Srad < Seff(ΣR), and the

true fine-grained entropy of the radiation, calculated according to this prescription,

is smaller than the effective entropy. This formula is telling us that the radiation

and the interior of the black hole contained within the island are not really distinct

systems. The effective semi-classical state in the island region is encoded in the

radiation; semi-classically it looks like we have a separate Hilbert space HI of the

quantum fields on the island, but in fact this is encoded as a code subspace in the

Hilbert space HR of the radiation.

Arriving at (1.3.6), we are begging the question with regards to the information

loss paradox, since it was only justified on the assumption of unitarity. However, it

does tell us what to aim for in a unitary theory. With this in mind, [25] constructed

an ingenious doubly holographic setup in which an evaporating AdS2 black hole

in Jackiw-Teitelboim (JT) gravity was embedded into a holographic theory in one

higher dimension. In this setting, they were able to derive the Page curve for the

radiation, from purely geometric RT holographic entanglement calculations in the

ambient AdS3 space, in precise agreement with (1.3.6). This led them to conjecture

the general formulation of the island rule (1.3.1) for any quantum system entangled

with a gravitational system.

While initially the island rule was discovered in the context of holographic,

low dimensional theories, it has since been derived directly from the Euclidean

gravitational path integral [26, 27], so it is believed to apply more generally. The

island rule has now been studied in a wide range of higher-dimensional and non-

holographic contexts [30, 31,38,95–100].
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1.3.1 The doubly holographic picture

It will be useful for chapter 3 for us to elucidate the doubly holographic view first

presented in [25] and further developed by [30, 101–104]. These models essentially

consist of some holographic CFTd coupled to a co-dimension one conformal defect.

This is dual to some asymptotically AdSd+1 geometry containing a co-dimension one

dynamical brane supporting a copy of the same CFTd, which intersects the AdS

boundary at the location of the conformal defect. The interesting feature of these

models is that in addition to the usual AdSd+1 bulk and boundary CFTd descriptions

of the physics, one can also consider an intermediate effective description, where we

integrate over the bulk spacetime to obtain an effective gravity theory on the brane

coupled to the holographic CFT. This is known as the brane perspective; there is a

non-gravitational CFTd on the rigid AdSd+1 boundary joined across an interface to

the same CFTd coupled to the brane gravity theory.

The advantage of this is that it allows us to relate the prima-facie surprising

appearance of quantum extremal islands in the effective brane gravity perspective

to the usual, entirely geometric, RT prescription for evaluating holographic entan-

glement entropy in the higher-dimensional bulk perspective. An island in the brane

perspective corresponds to an RT surface in the bulk intersecting the brane; from

the lower dimensional point of view, the island and the subregion in the fixed CFT

for which we are calculating the entanglement entropy are disconnected, but they

are connected through the additional holographic dimension.

For example, let us consider the model in [25]. They study the evaporation of an

AdS2 black hole in JT gravity coupled to a holographic CFT2. The action for JT

gravity is

IJT = 1
16πG(2)

N

∫
M

dx2√−gϕ (R + Λ) + 1
8πG(2)

N

∫
∂M

dy
√

−hϕ (K − 1) , (1.3.7)

where ϕ is the dilaton field. They allow the black hole to evaporate by coupling the

AdS2 boundary to a half-line supporting the same holographic CFT2 but without

gravity. The AdS2 black hole is holographically dual to a (0+1)-dimensional quantum
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system on its boundary; from the boundary perspective coupling the AdS2 gravity

theory to the bath CFT gives a CFT2 on a half-line coupled to a quantum mechanical

system on its boundary. Additionally, because the CFT2 matter is holographic, the

joint system is dual to an asymptotically AdS3 spacetime with the JT gravity theory

defined on a dynamical ETW brane and the non-gravitating CFT2 supported on the

rigid AdS3 boundary.

Let us define a coordinate w running along the brane and bath, such that w < 0

corresponds to points in the brane, and w > 0 corresponds to points in the bath.

We can summarise the three alternate descriptions of this setup as follows:

• Boundary: A two-dimensional CFT on a half-line, w > 0, with some quantum-

mechanical system on its boundary, w = 0.

• Bulk: A three-dimensional asymptotically AdS3 gravity with a dynamical

ETW brane.

• Brane: A two-dimensional gravity-plus-matter theory on w < 0 joined across

and interface to a two dimensional CFT living on a half-line, w > 0.

In the two-dimensional gravity theory, we can compute the fine-grained entropy

of its quantum mechanical boundary theory using the prescription of extremizing

the generalized entropy Sblack hole = minx extxSgen(x), where

Sgen(x) = ϕ(x)
4G(2)

N

+ S2d−eff(Σx). (1.3.8)

Here, x is a point in the two-dimensional bulk and Σx is an interval from the point

x to the AdS2 boundary. The quantity S2d−eff(Σx) is the von Nuemann entropy of

the semi-classical state on this interval. Note that the value of the dilaton ϕ(x) is

the zero-dimensional analogue of the area, ϕ(x) = Area(2)(x); in two dimensions, the

area of a point is the coefficient of the curvature term in the action.

Assuming the CFT2 has a large number of degrees of freedom, the contribution to

S2d−eff(Σx) from the CFT matter fields dominates that of fluctuations of the dilaton

and AdS2 metric. Therefore, since the CFT2 has a holographic dual, S2d−eff(Σx)
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can be computed to leading order using the RT/HRT formula in the AdS3 bulk as

proportional to the area of a minimal (or an extremal) co-dimension two surface Γx

in the three-dimensional geometry homologous to Σx. We have

Sgen ≈ ϕ(x)
4G(2)

N

+ Area(3)(Γx)
4G(3)

N

. (1.3.9)

Extremising the generalised entropy in the two-dimensional brane perspective is

equivalent to the RT/HRT prescription in three dimensions with a dynamical brane.

As argued in [101], when the brane supports an intrinsic gravitational action, the

three-dimensional RT/HRT prescription should also include an area contribution

from the region where the RT/HRT surface intersects the brane.

Now, calculating entropy of the radiation in the bath (after the Page time) is

incredibly straightforward from the bulk/boundary perspectives. It is the entropy of

the boundary region w > 0, excluding the quantum mechanical degrees of freedom

at w = 0, which we calculate holographically using RT/HRT in AdS3. Since this

region is just the complement of the region considered above, the extremal surface

is identical and the entropies are equal, Srad = Sblack hole. The homology surface of

the bath is the complement of the homology surface of Σx in the AdS3 bulk. In

particular this includes the portion of the dynamical brane outside of Σx; part of the

AdS2 black hole is contained in the entanglement wedge of the radiation. This is the

appearance of a quantum extremal island from the two-dimensional brane gravity

perspective.



Chapter 2

Making Near-Extremal Wormholes

Traversable

Time-independent black hole solutions have a wormhole, or Einstein-Rosen bridge,

connecting two asymptotic regions. In holography, these solutions are related to

entangled states in two copies of the dual CFT [54]. In the classical solution, this

wormhole is not traversable; the two asymptotic regions are causally disconnected.

In the holographic theory, this is a consequence of the fact that the two copies of

the CFT are not coupled (only entangled), so no signal can propagate from one

to the other. In [12], a simple coupling between the two boundaries was shown to

make the wormhole traversable. In addition to realising the dreams of many science

fiction authors, this provides a new insight into the relation between entanglement

and spacetime in holographic theories: the passage of a bulk observer through the

wormhole can be understood as quantum teleportation in the dual theory, using the

entanglement of the dual state as a resource and using the coupling to communicate

the needed classical information from one theory to the other [14,15].

Much of the quantitative analysis of this phenomenon has focused on the simple

example of the BTZ black hole in three dimensions, dual to a thermofield double

(TFD) state in two copies of a two-dimensional CFT (although TFD states translated

in time were considered in [16], and rotating BTZ was considered in [18]). It is
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interesting to extend the discussion to more general cases: any entangled state can

be used to realise quantum teleportation, but the bulk description in terms of a

traversable wormhole may be special to particular forms of entanglement.

In this chapter, we take a step in this direction, by considering adding a boundary

coupling to a charged Reissner-Nördstrom black hole in AdSd+1, dual to a TFD state

with a chemical potential for the charge in the CFT. The interest in this case is that

the black holes have finite entropy (indicating finite entanglement in the dual state)

but an infinitely long throat in the extremal limit. We would like to understand how

difficult it is to make this infinite wormhole traversable, enabling communication

between the two CFTs through the bulk. The divergence in the length of the throat

implies that the correlation functions of operators on different boundaries vanishes

in the extremal limit, unless the field dual to the operator is tuned to the threshold

of an instability [62], suggesting that the effect of the boundary coupling on the

bulk geometry may also vanish in this limit. Indeed, we find that unless we tune

the bulk field to this instability threshold, we need to take the coupling between

the two boundaries to scale to infinity as an inverse power of the temperature to

have a finite effect on the bulk geometry in the extremal limit. If we accept this

tuning of the coupling, however, we can communicate an amount of information

that scales with the entropy of the black hole through the wormhole in the bulk.

This is qualitatively different from the quotient construction of [19, 20], where the

traversability of the wormhole traversable increased in the extremal limit. The

key reason for this difference is that the double trace deformation we consider is a

marginal or irrelevant deformation in the near-horizon AdS2 region.

In section 2.1, we review the bulk solution, its extremal limit, and the dual CFT

state. In section 2.2, we add a double-trace boundary coupling and consider the

resulting bulk deformation. There are no analytic solutions for the propagator of

bulk fields on the full black hole background, so in our analysis we focus on the near-

horizon region, which in the extremal limit has an AdS2 ×Sd−1 geometry. Boundary

couplings on AdS2 and traversable wormholes have been considered previously [13,
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14,17,22], but our case is different as we emphasize the relation to the extremal limit

of the asymptotic charged black hole geometry; we consider a charged field on the

original near extremal black hole, which reduces to a charged field on AdS2 with a

uniform electric field background. We explicitly calculate the propagator for this

charged field with the double-trace boundary condition.

We find that to obtain a non-trivial opening of the wormhole, we need to either

consider the operators dual to fields at threshold, or take the strength of the coupling

to infinity as we take the temperature to zero. We argue that the limit of infinite

coupling remains under control, precisely because the distance between the two

boundaries in the bulk diverges, so the back-reaction in the bulk remains finite.

Under these conditions, the coupling leads to a traversable wormhole in the bulk.

The timescale for travel through this wormhole is set by the temperature of the black

hole.

We consider the back-reaction of a particle propagating through the wormhole in

section 2.3, and infer bounds on the amount of information that can be transmitted

through the wormhole. We find that the bound is related to the entropy of the black

hole, as expected from the relation to quantum teleportation. This indicates that

this entropy from the entanglement of ground states is “available” as a resource for

teleportation using simple boundary couplings, just as the thermal entropy in the

usual TFD state was.

It would be interesting to extend the calculations to consider other, general

entangled states of the dual field theory where the two-point functions between

the two boundaries are suppressed [105, 106]. The entanglement in such states in

principle provides a resource for quantum teleportation, but it is not clear if this

teleportation could have a bulk description as in [12]. It would also be interesting

to consider states where the dual field theory has interacted with an environment,

as in [29].
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2.1 Bulk geometry and boundary CFT

2.1.1 RNAdS bulk solution

We consider Einstein-Maxwell gravity with a negative cosmological constant. The

action is

S = 1
2κ2

∫
dd+1x

√
−g

[
(R − 2Λ) − ℓ2

g2
F

F 2
]
, (2.1.1)

where gF is an effective dimensionless gauge coupling and the cosmological constant

is related to the AdS radius by

Λ = −d(d− 1)
2ℓ2 . (2.1.2)

As discussed in section 1.1.3, this theory admits a spherically symmetric Reissner-

Nördstrom AdS black solution with the metric and gauge field given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1, A = µ

(
1 − rd−2

+

rd−2

)
dt, (2.1.3)

where dΩ2
d−1 is the round metric on Sd−1 and r+ is the largest root of the metric

function

f(r) ≡ 1 − M

rd−2 + Q2

r2d−4 + r2

ℓ2 . (2.1.4)

The chemical potential µ is related to the other bulk quantities through

µ =
√

d− 1
2(d− 2)

gFQ

ℓrd−2
+

. (2.1.5)

The full black hole geometry has two asymptotic regions, connected by an Einstein-

Rosen bridge. These coordinates cover one of the asymptotic regions. Our interest

lies in the extremal limit, Q → Q∗, T → 0, which was described in detail in section

1.1.3. We recall that working in the grand canonical ensemble with fixed µ, zero

temperature is only reached if µ2 > µ2
c = (d−1)g2

F

2(d−2)ℓ2

The Euclidean black hole geometry is a saddle-point for the dual CFT in an

appropriate ensemble, and the Lorentzian black hole is a saddle-point for the TFD

state obtained by slicing the Euclidean path integral defining the ensemble in half.
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The TFD state for the grand canonical ensemble is [62]

|ψ⟩ = 1√
Z

∑
i

e−β(Ei+µQi)/2|Ei, Qi⟩1 ⊗ |Ei,−Qi⟩2. (2.1.6)

This is a state in the Hilbert space of two copies of the CFT, |ψ⟩ ∈ H1 ⊗ H2,

corresponding to the two asymptotic boundaries in the full spacetime, where |Ei, Qi⟩

are a basis of eigenstates of the Hamiltonian and the U(1) charge in the CFT Hilbert

space. For this state to be well-defined at low temperatures, β → ∞, E+µQ must be

bounded below. The black hole is the dominant saddle-point in the grand canonical

ensemble for all temperatures if µ > µc [63], so it provides the dual of this generalised

TFD state. The finite entropy of the black hole in the extremal, zero-temperature

limit implies an approximate degeneracy in the states at minimal E + µQ; in the

extremal limit the TFD state remains entangled, with an entanglement entropy given

by the black hole entropy.

2.1.2 Near horizon geometry

In the zero temperature limit the metric develops a double pole at the horizon r = r∗.

This implies that the black hole develops an infinite throat; the horizon is an infinite

proper distance away on constant t hypersurfaces. Taylor expanding,

f(r) = 1
2(r − r∗)2f ′′(r∗) + O(r − r∗)3 ≈ (r − r∗)2

ℓ2
2

, (2.1.7)

where

ℓ2 ≡
[
d(d− 1)

ℓ2 + (d− 2)2

r2
∗

]− 1
2

. (2.1.8)

For a large black hole r∗ ≫ ℓ we have ℓ2 ≈ ℓ/
√
d(d− 1). If we introduce the

coordinate

ζ = ℓ2
2

r − r∗
, (2.1.9)

the extremal geometry for large ζ is approximately AdS2 × Sd−1,

ds2 ≈ ℓ2
2
ζ2

(
−dt2 + dζ2

)
+ r2

∗dΩ2
d−1, A ≈ e2

ζ
dt, (2.1.10)
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where we have defined

e2 ≡ (d− 2)ℓ
2
2
r∗
µ∗ =

√
(d− 1)(d− 2) ℓ2

2QgF√
2ℓrd−1

∗
, (2.1.11)

with e2 ≈ gF/
√

2d(d− 1) for r∗ ≫ ℓ. We see that ℓ2 and r∗ become the radii of

AdS2 and the (d − 1)-sphere respectively. In this coordinate system the horizon is

at ζ → ∞, and the geometry above is valid in a region of large ζ, ζ > ζc where

ζc ∼ ℓ2
2/r∗ is a cutoff where we patch onto the full geometry, which is small for

r∗ ≫ ℓ.

For near-extremal, finite temperature black holes, we in addition define

ζ0 ≡ ℓ2
2

r+ − r∗
. (2.1.12)

Close to extremality ζ0 ≫ ζc, and the near-horizon geometry becomes an AdS2 black

hole,

ds2 = ℓ2
2
ζ2

−
(

1 − ζ2

ζ2
0

)
dt2 + dζ2

1 − ζ2

ζ2
0

+ r2
∗dΩ2

d−1, A = e2

ζ

(
1 − ζ

ζ0

)
dt, (2.1.13)

with inverse temperature β = 2πζ0. The extremal limit is ζ0 → ∞. Rescaling the

coordinates z = ζ/ζ0, τ = t/ζ0, the AdS2 metric becomes

ds2 = ℓ2
2
z2

[
−(1 − z2)dτ 2 + dz2

1 − z2

]
. (2.1.14)

with β̃ = 2π and cut-off zc = ζc/ζ0. This is the metric of AdS2 in Rindler coordinates.

There is a horizon at z = 1 and the conformal boundary is at z = 0. We see that in

these coordinates the extremal limit ζ0 → ∞ leaves the metric unchanged and acts

to take the cut off zc → 0, reflecting the infinite length of the throat in the extremal

limit.

These Rindler coordinates cover the right wedge of the spacetime. To discuss the

full AdS2 black hole region, we will also work in Kruskal coordinates on the AdS2,

which are related to the Rindler coordinates above by

U, V =
√

1 − z

1 + z
e±τ . (2.1.15)
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In these coordinates, the metric and gauge field are

ds2 = 4ℓ2
2dUdV

(1 − UV )2 , A = e2
V dU − UdV

(1 − UV ) . (2.1.16)

The bifurcation surface of the Rindler horizon is at U = V = 0. The asymptotic

boundaries are at UV = 1; the right boundary has U, V > 0 and the left boundary

has U, V < 0. The near-horizon geometry is pictured in figure 2.1.

U

V

Figure 2.1: Near-horizon AdS2 geometry of the near-extremal black hole,
showing the cutoff boundaries and horizons. The coordinates U, V increase
towards the right boundary.

It will also be useful later in discussing the back-reaction to write AdS2 in terms of

embedding coordinates (X0, X1, X2) in R2,1, where AdS2 is realised as the universal

cover of the hyperboloid −X2
0 − X2

1 + X2
2 = −ℓ2

2. The embedding coordinates are

related to Kruskal coordinates by

(X0, X1, X2) = ℓ2

(
U − V

1 − UV
,
1 + UV

1 − UV
,
U + V

1 − UV

)
. (2.1.17)

If we define lightlike coordinates X± = X0 ±X2, the hyperboloid is −X+X− −X2
1 =

−ℓ2
2, and

(X+, X−, X1) = ℓ2

( 2U
1 − UV

,− 2V
1 − UV

,
1 + UV

1 − UV

)
. (2.1.18)

The near-horizon AdS2 region is associated in the dual CFT description with a

flow to a theory with an IR conformal symmetry acting just on the time direction

[107]. This IR conformal symmetry is broken by the deviation away from AdS2 in the

full geometry, and we have a nearly AdS2/ nearly CFT1 duality in the IR [108–110].1

1The one-dimensional conformal symmetry of the fixed point is not related to the conformal
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The dynamics of the Einstein-Mawxell theory in this near-horizon region of the

RNAdS black hole reduces to JT gravity [111].

It is useful to organise bulk fields in the near-horizon region in terms of their

scaling with respect to this IR conformal symmetry. Consider a bulk scalar field

Φ(t, r,Ω) of mass m and charge q on the full RNAdS background, dual to a local

operator O(t,Ω) in the UV boundary theory.

Expanding in spherical harmonics on the sphere,

Φ(x) =
∑
l,m

ϕlm(t, ζ)Ylm(Ω),
∫

Sd−1
r∗

dΩY ∗
lmYl′m′ = δll′δmm′ , (2.1.19)

the field modes ϕlm are scalar fields on AdS2 of mass

m2
l ≡ m2 + l(l + d− 2)

r2
∗

. (2.1.20)

The coupling to the gauge field implies these fields are dual to operators of scaling

dimension [107]

∆ = 1
2 +

√
1
4 +m2

l ℓ
2
2 − q2e2

2. (2.1.21)

If we take q2e2
2 > m2ℓ2

2 + 1
4 , the scalar field is unstable to condensing in the near-

horizon AdS2 region [112,113], and the RNAdS solution will become unstable suffi-

ciently close to extremality. We will be interested in studying fields just below this

instability threshold, corresponding to ∆ ≃ 1
2 .1

2.2 Wormhole construction

We want to consider the analogue of the traversable wormhole construction of [12] for

this black hole. This involves turning on a double trace deformation coupling the two

CFTs on the left and right cut-off boundaries with a time-dependant Hamiltonian

δH(t, ζc) = −h(t)OL(−t, ζc)OR(t, ζc), (2.2.1)

invariance of the ultraviolet CFTd which is broken by the non-zero chemical potential.
1In AdS2, we could obtain operators with ∆ < 1

2 by considering the alternative quantization of
the scalar field, but the near-horizon limit of the higher-dimensional solution gives us the standard
quantization, so ∆ ≥ 1

2 .
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where h(t) is a coupling which we take to vanish for t < t0, and O is a boundary

CFT operator dual to some bulk scalar field Φ on the RNAdS black hole. This

coupling is dual to a modified boundary condition for the scalar Φ relating the fast

fall-off part of the scalar at one asymptotic boundary to the slow fall-off part at

the other and vice-versa. The idea of [12] is that introducing this coupling (with

an appropriate choice of sign of h) produces a quantum stress tensor which violates

the averaged null energy condition (ANEC) along the black hole horizon. That is,∫
dU⟨TUU⟩ < 0, where U is an affine parameter along the horizon. This ANEC

violation means that the back-reaction of this quantum stress tensor can make the

wormhole traversable; an observer crossing the horizon from one asymptotic region

experiences a time advance due to the negative null energy (crossing the horizon

moves them to an earlier time), and if they enter sufficiently early this enables them

to escape into the other asymptotic region.

In [12], this calculation was carried out on the BTZ black hole, where it was

possible to calculate the propagator for the scalar field with the modified boundary

condition explicitly, at leading order in the coupling h, and hence to obtain the

ANEC violating stress tensor on the horizon. We cannot do such a calculation

explicitly in the full RNAdS black hole geometry, as the scalar propagator on this

geometry is not known in closed form. We therefore focus on the calculation in the

near-horizon AdS2 region. We can see the essential physics of the extremal limit in

this near-horizon region. In particular, we can study how the calculation is affected

by the diverging length of the Einstein-Rosen bridge. As discussed in the previous

section, in the Rindler coordinates of (2.1.14), this divergence is reflected in the

cutoff approaching the boundary of the AdS2 space, zc → 0.

We will consider one of the scalar modes ϕlm on the AdS2 space, and take a

double-trace coupling of the form (2.2.1) on the cutoff boundary at z = zc in AdS2.

This is not precisely the same as taking this double-trace coupling on the boundary

of the full AdSd+1 spacetime, but we assume that in the limit of large black holes

r∗ ≫ ℓ, the renormalization group flow from the AdS boundary to the near-horizon
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region has a small effect.

As in [12], we then want to calculate the modified propagator for a charged

scalar field on AdS2 with these boundary conditions. Using the evolution operator

U(t, t0) = T e−i
∫ t

t0
dtδH(t,ζc) in the interaction picture the modified Wightman function

is

⟨ϕH
R (t, ζ)ϕH†

R (t′, ζ ′)⟩ = ⟨U−1(t, t0)ϕI
R(t, ζ)U(t, t0)U−1(t′, t0)ϕI†

R (t′, ζ ′)U(t′, t0)⟩.

(2.2.2)

The superscripts H and I represent the Heisenberg and interaction picture respect-

ively. To leading order in h this is (suppressing the ζ coordinate at intermediate

steps and omitting I)

Gh
+ ≡ − i

∫ t

t0
dt1h(t1)⟨[OL(−t1)OR(t1), ϕ†

R(t)]ϕR(t′)⟩

− i
∫ t′

t0
dt1h(t1)⟨ϕ†

R(t)[OL(−t1)OR(t1), ϕR(t′)]⟩

≈ i
∫ t

t0
dt1h(t1)⟨ϕR(t′)OL(−t1)⟩⟨[ϕ†

R(t),OR(t1)]⟩

+ i
∫ t′

t0
dt1h(t1)⟨ϕ†

R(t)OL(−t1)⟩⟨[ϕR(t′),OR(t1)]⟩

= i
∫ t

t0
dt1h(t1)⟨ϕR(t′)O†

R(−t1 + iβ/2)⟩⟨[ϕ†
R(t),OR(t1)]⟩

= −
∫ t

t0
dt1h(t1)G+(t′, ζ ′; −t1 + iβ/2, ζc)G†

ret(t, ζ; t1, ζc) (2.2.3)

where G+,ret are the Wightman and retarded bulk-to-boundary propagators respect-

ively, with the standard Dirichlet boundary conditions, and we have used analytic

continuation to write tL = tR + iβ/2. In the second line we used large N factoriz-

ation and causality [OL, ϕR] = 0. The second term in the second line is zero from

⟨ϕϕ⟩ = ⟨ϕ†ϕ†⟩ = 0.

This expression is written in terms of the t, ζ coordinates obtained from the near-

horizon limit of the RNAdS black hole; to make the dependence on the extremal

limit more explicit, it is useful to switch to the τ, z Rindler coordinates. We have

Gh
+ = −ζ1−2∆

0

∫ τ

τ0
dτ1h(τ1)G+(τ ′, z′; −τ1 + iπ, zc)G†

ret(τ, z; τ1, zc), (2.2.4)
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we see that this vanishes in the extremal limit ζ0 → ∞, unless ∆ = 1
2 . The wormhole

is becoming infinitely long in this limit, so the bulk-boundary two-point functions G

go to zero as ζ−∆
0 , and the effect of the change on the boundary conditions on the

propagator between points in the interior of the geometry is going to zero. There is

an exception for fields with ∆ = 1
2 , which correspond, as discussed at the end of the

previous section, to scalars on the threshold of instability. For this case the effect

remains finite in the extremal limit.

This discussion is assuming fixed coupling h(t1). We can instead take it to scale

with the inverse temperature β. This source function has dimension 1 − 2∆, so we

can take the coupling to scale as

h(t1) = h

(
2π
β

)1−2∆

θ

(
2π
β

(t1 − t0)
)

= hζ2∆−1
0 θ(τ1 − τ0), (2.2.5)

where h is a dimensionless constant.1 The scaling of the prefactor will then cancel

the ζ1−2∆
0 term in Gh

+, giving us a finite result for ∆ > 1
2 . This requires a diver-

ging boundary coupling in the extremal limit, but we see explicitly from the bulk

propagator calculation that this has only a finite effect in the bulk.

We will be interested in evaluating Gh
+ for bulk points on the Killing horizon.

In the Kruskal coordinates, this corresponds to V = V ′ = 0 and some values

U,U ′. On the right boundary, the Kruskal coordinates U1, V1 are related to τ1, zc

by (2.1.15), which for small zc gives 1 − U1V1 ≈ 2zc. On the left boundary, we have

(UL, VL) = −(VR, UR). Thus the modified propagator is

Gh
+ = −

∫ U

U0

dU1

U1
hG+(U ′, 0; −V1,−U1)G†

ret(U, 0;U1, V1) (2.2.6)

with 1 − U1V1 = 2zc.2

1This scaling of the coupling is introduced by hand to offset the behaviour of the propagator.
There is an RG flow from the AdSd+1 boundary to the AdS2 boundary, but this is unaffected by
the extremal limit, as the matching surface remains at finite distance from points in the outside
region in the extremal limit.

2The scaling of the boundary coupling assumed in (2.2.5) cancels against the explicit dependence
on ζ0 in the propagator, so even though the boundary coupling is growing in the extremal limit,
the perturbative calculation of the propagator remains valid so long as the dimensionless constant
h is small.
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2.2.1 Charged scalar in AdS2

To calculate Gh
+ explicitly, we need to know the bulk-boundary propagators for a

charged scalar field on AdS2, with the standard Dirichlet boundary conditions. By

symmetry, the propagator for a neutral scalar on AdSd+1 is a function only of the

invariant distance between the two points. On AdS2, the bulk-bulk Green’s function

is (see e.g. [114])

G(x, x′) = C∆ξ
∆

2F1

(
∆
2 ,

∆ + 1
2 ; 2∆ + 1

2 ; ξ2
)
, (2.2.7)

C∆ ≡ Γ(∆)
2∆π1/2(2∆ − 1)Γ(∆ − 1

2) , ∆ = 1
2 +

√
1
4 +m2ℓ2

2, (2.2.8)

where we represent the bulk points in terms of their embedding coordinates X,X ′,

thinking of AdS2 as the hyperboloid −X2
0 − X2

1 + X2
2 = −ℓ2

2 in flat R2,1, and

ξ = −1/X ·X ′ is an SL(2)1 invariant related to the invariant distance between the

two points.

For a charged scalar, by contrast, the Green’s function cannot be written purely

as an SL(2) invariant function of the coordinates. This is because the gauge field

is not invariant under SL(2) transformations, so the scalar equation of motion

isn’t either. However, as the field strength is invariant, the gauge field must only

transform by some gauge transformation. The solution of the scalar equation of

motion will then be some phase times an SL(2) invariant function of the coordinates,

G(x, x′) = eiqe2Λ(x,x′)P (ξ). We can determine P (ξ) by solving for G in the case where

the source is at the bifurcation surface of the Rindler horizon, that is at U ′ = V ′ = 0

in the Kruskal coordinates of (2.1.16). The scalar equation of motion is

DµDµϕ−m2ϕ = 0, (2.2.9)

where Dµ = ∂µ − iqAµ. In this case ξ = z, and we expect the solution to be

independent of τ by time-translation symmetry. Taking ϕ = P (ξ), the equation of

1We use the notation SL(2) ≡ SL(2,R).
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motion becomes

ξ2∂ξ

((
1 − ξ2

)
∂ξP

)
−
(
m2ℓ2

2 − q2e2
2
1 − ξ

1 + ξ

)
P = 0. (2.2.10)

Taking the solution that is normalizable at infinity we get

P (ξ) = C∆

(
ξ

1 − ξ

)∆ (1 + ξ

1 − ξ

)iqe2

2F1

(
∆ + iqe2,∆ + iqe2; 2∆; 2ξ

ξ − 1

)
, (2.2.11)

with ∆ now given by expression (2.1.21). For q = 0, this reduces to (2.2.7) by

applying a transformation formula for the hypergeometric function.

In the gauge we have chosen for A, the phase factor Λ in the Green’s function

vanishes for a source on the bifurcation surface. To find Λ for a general point on the

horizon we can move the source along the horizon using an SL(2) transformation. A

basis for the Lie algebra sl(2) in terms of the embedding coordinates (X±, X1) is

Qa = 1
2ε

abcJbc, Jab = Xa
∂

∂Xb
−Xb

∂

∂Xa
. (2.2.12)

Let us consider the killing vector

v = Q+ = X−∂1 −X1∂− = ∂U − V 2∂V , (2.2.13)

we see that on the horizon v generates translations along the horizon, so it can be

used to move the source off the bifurcation surface. Under the action of this vector

field, the gauge field changes by LvA = dV . This means that under an infinitesimal

transformation x′ = x + ϵv the gauge transformation required to return A to the

form in (2.1.16) is Λ = −ϵV . This suggests that for a source at position U ′ on the

horizon we should make the ansatz G(x, x′) = eiqΛ(U ′,V )P (ξ). Plugging this into

(2.2.10) one finds that this is a solution provided

Λ = ln(U ′V − 1). (2.2.14)

Thus, the bulk-bulk propagator for a source on the horizon is

G(U ′, 0, U, V ) = (U ′V − 1)iqe2P (ξ), (2.2.15)
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where for a source point on the horizon,

ξ = 1 − UV

1 + UV − 2U ′V
. (2.2.16)

For a single propagator, the phase factor is not physical; one can always choose

a gauge to set it to zero. However, the calculation for Gh
+ involves a product of

propagators from the left and right boundaries to the horizon and it’s not possible

to chose a gauge which sets both of the phase factors to zero. The relative phase

between the propagators is physical.

We now want to obtain the bulk-boundary propagator between a point on the

horizon and points on the left and right boundaries. For the bulk-boundary propag-

ator G+ between the left boundary and the horizon, let us consider a point on the

horizon at U ′ > 0, so that the two points are spacelike separated. We can then

simply take

G+(U ′, 0,−V1,−U1) = bmz
−∆
c G(U ′, 0,−V1,−U1), (2.2.17)

where the constant bm relating the bulk-bulk and bulk-boundary propagators is

bm =


2∆ − 1, ∆ > 1

2 ,

1
2 , ∆ = 1

2 .

(2.2.18)

In the limit as the bulk point approaches the boundary, ξ ≈ zc

1−U ′V
, so the propagator

simplifies, as the hypergeometric function is simply one to leading order. Thus

G+(U ′, 0,−V1,−U1) = bmC∆e
−πqe2

( 1
1 + U ′U1

)∆−iqe2

. (2.2.19)

For the propagator to the right boundary, G†
ret(U, 0;U1, V1), there is an interesting

subtlety; at finite cutoff, there is a region of the boundary with U1 ∈ (U(1 − 2zc), U)

which is connected to the point (U, 0) by a timelike geodesic, as shown in figure 2.2.

The structure of the propagator is different in this region. The size of this region

goes to zero as zc → 0, but we need to check whether it makes a finite contribution

to Gh
+. In this region, it is useful to make a change of variables U1 = U(1 − 2zcx),
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U

V

Figure 2.2: The portion of the cutoff boundary between the two dashed
curves is connected to the point on the horizon by a geodesic.

with x ∈ (0, 1). Then
2ξ
ξ − 1 = (1 − U1V1)

V1(U − U1)
≈ 1
x
. (2.2.20)

Thus, the bulk-bulk propagator does not simplify in this region. However, P (ξ) is a

function only of x, with no dependence on zc at leading order, and the phase factor

(UV1 − 1)iqe2 ≈ (2zc(x− 1))iqe2 . (2.2.21)

The bulk-boundary propagator is thus G†
ret(U, 0;U1, V1) = bmz

−∆
c G(U, 0, U1, V1) ∼

z−∆−iqe2
c f(x), so the contribution to Gh

+ from this region is

Gh
+ ∼

∫ U

U(1−2zc)

dU1

U1
G†

ret(U, 0;U1, V1) ∼ z1−∆−iqe2
c

∫ 1

0
dxf(x), (2.2.22)

so the contribution from this region vanishes in the limit as zc → 0 so long as ∆ < 1.

We will henceforth assume that we consider operators with 1
2 ≤ ∆ < 1.

In the region U1 ∈ (U0, (1 − 2zc)U), we have

2ξ
ξ − 1 ≈ zc

UV1 − 1 , (2.2.23)

so

P = bmz
−∆
c P = bme

−iπ∆(UV1 − 1)−∆, (2.2.24)

and

Gret,R = (UV1 − 1)iqe22 Im P = −2bmC∆ sin(π∆)
(

U1

U − U1

)∆−iqe2

. (2.2.25)
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We arrive at

Gh
+ ≈ −hC∆

2

∫ U

U0

dU1

U1

( 1
1 + U1U ′

)∆∗
q
(

U1

U − U1

)∆q

≡ −hC∆

2

∫ U

U0

dU1

U1
H(U,U ′, U1), (2.2.26)

where ∆q ≡ ∆ + iqe2 and C∆ ≡ 4b2
mC

2
∆e

−πqe2 sin(π∆).

2.2.2 Calculation of the stress tensor on the horizon

We now calculate the quantum stress tensor on the horizon due to this boundary

condition, showing that it leads to a violation of the ANEC. The stress tensor for a

charged scalar is1

Tµν = (Dµϕ)(Dνϕ)† + (Dνϕ)(Dµϕ)† − gµνg
ρσ(Dρϕ)(Dσϕ)† − gµνm

2|ϕ|2. (2.2.27)

In the original AdS2 geometry gUU = AU = 0 on the horizon, so the terms involving

the metric and gauge field drop out. The one-loop expectation value can then be

related to the modified bulk propagator via point splitting,

⟨TUU⟩ = 2⟨∂Uϕ∂Uϕ
†⟩ = lim

U ′→U
∂U ′∂U(Gh

+(U,U ′) +Gh†
+ (U,U ′)). (2.2.28)

Evaluating the integral in (2.2.26) we find a closed form expression for the modified

bulk propagator on the horizon2

Gh
+ = hC∆

2(∆q − 1)

( 1
1 + U0U ′

)∆∗
q
(

U0

U − U0

)∆q−1

× F1

(
1; 1 − ∆q,∆∗

q; 2 − ∆q; 1 − U

U0
,
(U0 − U)U ′

1 + U0U ′

)
, (2.2.29)

where F1 is the Appell hypergeometric function. Thus, from (2.2.27), we also have

a closed form expression for the quantum stress tensor.

The wormhole is rendered traversable if the ANEC is violated on the horizon, so

1As the matter fields are charged, they will source a change in the electric field as well, which
changes the Maxwell stress tensor at the same order, but because of the index structure this does
not contribute to the null-null component of the stress tensor we consider below.

2Note that we have used a transformation formula for the Appell function to get Gh
+ in this

form.
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we are interested in calculating the ANE given by

A∞(U0) =
∫ ∞

U0
dU⟨TUU⟩ = 2

∫ ∞

U0
dU lim

U ′→U
∂U ′∂U ReGh

+, (2.2.30)

where the superscript indicates that we are considering a source that is left on forever.

Note that A∞ has a simple relationship to the ANE for a source that is turned on

for a finite interval (U0, Uf ),

A(U0, Uf ) = A∞(U0) − A∞(Uf ). (2.2.31)

Rather than attempting the daunting task of directly integrating the stress tensor,

we choose a different tack; instead, we consider an instantaneous source function

given by

hinst(t1) = h

(
2π
β

)1−2∆

δ

(
2π
β

(t1 − t0)
)

= h

ζ1−2∆
0

U0δ(U1 − U0). (2.2.32)

The ANE for this source is related to A∞ by (see [21])

A∞(U0) =
∫ ∞

U0

du
u

Ainst(u), (2.2.33)

where the limits of integration are determined by A∞(∞) = 0, i.e. if the source is

never turned on, nothing happens. The delta function source significantly simplifies

the calculation. For an instantaneous source, the modified bulk propagator is simply

Ginst
+ = −1

2hC∆H(U,U ′, U0). (2.2.34)

To calculate the ANE, however, it is better to start with the general expression

(2.2.26) and take the derivatives before setting the source to a delta function. This

gives closed form expressions for both ANEs

Ainst(U0) = Re
hC∆Γ (1 − ∆q) Γ (2 Re ∆q + 1)

Γ
(
∆∗

q

) U
2∆q+1
0

(1 + U2
0 )2 Re ∆q+1

 , (2.2.35)

A∞(U0) = Re

hC∆Γ (1 − ∆q) Γ (2∆q + 1)
(2∆q + 1)Γ (∆q)

2F1
(

1
2 + ∆q,

1
2 − ∆q; 3

2 + ∆q; 1
1+U2

0

)
(1 + U2

0 )∆q+ 1
2

 .
(2.2.36)
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Figure 2.3: The ANE as a function of U0 for q = 0.

It is interesting to note that if we considered an uncharged field, q = 0, our final

expression has the same U0 dependence as was found for the BTZ black hole in [12].

Ainst and A∞ for q = 0 are plotted against U0 for different values of ∆ in figure

2.3. For the instantaneous source, maximal ANE is achieved when the non-local

coupling is turned on at U0 = 1 which corresponds to tR = tL = 0. Conversely, A∞ is

maximal when the coupling is turned on in the infinite past U0 = 0 (tR = tL = −∞).

For q = 0 and ∆ = 1
2 , we have the simple expressions

Ainst(U0) = hU2
0

8 (1 + U2
0 )2 (2.2.37)

A∞(U0) = h

16 (1 + U2
0 ) . (2.2.38)

The ANE for q > 0 is plotted against U0 in figure 2.4, and against ∆ for

representative values of U0 in figure 2.5. We see that while it increases with ∆ for

q = 0, for q > 0 there is some maximum at an intermediate value ∆ ∈ (1
2 , 1).
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Figure 2.4: The ANE as a function of U0 for non-zero qe2 = 0.1.

2.3 Back-reaction and information bound

As discussed in the introduction, the back-reaction of this energy along the horizon

will produce a time advance, making it possible for a message from the left boundary

sent in at early times to reach the right boundary. This makes the Einstein-Rosen

bridge in the black hole into a traversable wormhole. We would like to understand

how much information can be transmitted through the wormhole, which requires

taking into account the back-reaction of the message. In the AdS2 context, these

back-reaction questions can be easily addressed using a JT gravity description of the

nearly-AdS2 gravitational dynamics, as in [14] (see [109,115] for further discussion).

The result is the same as in [14], as the back-reaction only depends on the ANE

along the horizon, which have seen above is qualitatively the same for uncharged

or charged fields. Thus, introducing a double-trace coupling for a single field only

allows us to communicate order one bits of information from one boundary to the
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Figure 2.5: The ANE as a function of ∆. For q > 0, the ANE is suppressed
at ∆ = 1 by the factor of sin(π∆) in C∆.

other.

We will describe the calculation here briefly for completeness. In the JT gravity

description, we take the bulk geometry to be fixed to be AdS2, and the position of

the boundaries is the dynamical information. When some matter is emitted into the

bulk from one of the boundaries, the back-reaction causes the boundary trajectory

to change. This change is described in terms of the SL(2) charges associated with

the trajectories of the boundary and the emitted particles.

In terms of the embedding coordinates Xa, the trajectories of the cutoff bound-

aries are described by X ·Q = −2Φb, where Qa is a vector in R2,1 which specifies the

charges of the boundary trajectory under the SL(2) isometries of the bulk (we are

thinking of the boundary as a particle moving in the bulk), and Φb is the boundary

value of the dilaton. This equation gives a hyperbolic trajectory for the boundary,

and the vector Qa can also be thought of as specifying the center of this hyperboloid
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Xa = X̄a ∝ Qa, that is, the point in the bulk which is light-like separated from

the points where the trajectory meets the conformal boundary of AdS2. For the

near-horizon AdS2 geometry described in (2.1.14), the boundaries lie at X1 ≈ ℓ2/zc,

whose center is the bifurcation surface at U = V = 0, that is X̄± = 0, X̄1 = ℓ2. This

implies X ·X̄ = −ℓ2
2/zc. For the right boundary, the SL(2) charge is QR = Q, and for

the left boundary, QL = −Q, so that the total SL(2) charge vanishes, QL +QR = 0.

If we inject matter into the bulk it will also carry an SL(2) charge. Matter particles

in the bulk follow geodesics, which can be described by trajectories X · Qm = 0,

where Qm is the SL(2) charge of the matter. The total SL(2) charge vanishes,

QL + QR + Qm = 0, so the addition of matter will change the trajectories of the

boundaries. If say the left boundary emits some positive energy matter, the recoil

pushes it away, increasing the distance between the two boundaries.

We are interested in two forms of back-reaction. First we consider the back-

reaction of the bulk stress tensor due to the double-trace coupling. In the previous

section, we calculated the null energy integrated along the horizon; this is precisely

the charge

Qm,− =
∫

dU⟨TUU⟩. (2.3.1)

This matter was emitted by the right boundary, so this shifts the right boundary

trajectory by QR → QR − Qm. The negative Qm,− thus moves the center of the

right boundary trajectory to negative V ; the shift ∆V = CQm,−/2, where C is a

normalization factor depending on our conventions for the charges. This makes it

possible for messages leaving the left boundary at early times, at small negative V ,

to reach the right boundary. Note that the message needs to enter the wormhole at

some finite time in the past in the Rindler time coordinate τ ; this implies that the

time with respect to the asymptotic time t = ζ0τ scales as the inverse temperature,

so in the extremal limit the time it takes the message to go through the wormhole

diverges.

Secondly, we consider the back-reaction on the left boundary of the emission of

such a message. The message must be emitted at early times, so it is highly boosted
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V

Figure 2.6: The emission of a null particle back-reacts on the trajectory of
the left boundary, moving the center down along the horizon.

relative to our bulk coordinate system, and will follow a nearly null trajectory in the

bulk, with some momentum Q′
m,+ = pV . The back-reaction of the message shifts

the left boundary by QL → QL −Q′
m, moving the two boundaries further apart and

suppressing the effect of the double-trace coupling. The center of the left boundary

trajectory shifts down by δU = CpV /2, as pictured in figure 2.6. This corresponds

to transforming the boundary trajectory by a translation along the vector field v

considered earlier.

This shift can thus be accounted for by a shift in the horizon coordinate in the

calculation of the propagator from the left boundary to the horizon, so the integrand

of the modified bulk propagator in the shockwave geometry is

Hδ(U,U ′, U1) =
(

1
1 + U1(U ′ + δU)

)∆∗
q ( U1

U − U1

)∆q

. (2.3.2)

Repeating the same analysis as before we find

Ainst
δ (U0) = Re

hC∆Γ (1 − ∆q) Γ (2 Re ∆q + 1)
Γ
(
∆∗

q

) U
2∆q+1
0(

1 + U2
0

(
1 + δU

U0

))2 Re ∆q+1

 .
(2.3.3)

Comparing this expression to (2.2.35) we see that the probe approximation is valid

for δU/U0 ≪ 1. This implies that the total momentum carried by the message is
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bounded,
ptotal

V

2 <
U0

C
. (2.3.4)

A lower bound on the momentum carried by the individual particles making up

the message can be found using the uncertainty principle,

peach
V ≳

1
∆V = 2

C|A|
. (2.3.5)

Combining this with the probe approximation gives a bound on the number of bits

that can be sent through the wormhole,

N = ptotal
V

peach
V

< U0|A|. (2.3.6)

We see from the discussion of the ANE in the previous section that the RHS takes

values less than one.

Thus, coupling a single field in the AdS2 region would only allow us to send

less than one bit of information before the back-reaction of the message starts to

close up the wormhole. It might seem surprising that this result is independent of

the entropy of the black hole; but this is just because we have focused on coupling

a particular spherical harmonic ϕℓm of a (d + 1)-dimensional scalar field Φ. If we

want to restrict attention to operators with ∆ = 1
2 , for which we can generate a

traversable wormhole with a finite boundary coupling even in the extremal limit,

we will only be able to consider the s-wave excitation of a scalar that saturates the

instability threshold, and we will only be able to communicate less than a single bit

for each field. However, if we allow consideration of operators with 1
2 < ∆ < 1 in the

AdS2 region, with a coupling that scales with the temperature, we get to consider a

large number of spherical harmonics on the Sd−1: for r∗ ≫ ℓ, we have K spherical

harmonics with ∆ < 1 where

K ∼ rd−1
∗

ℓd−1
2

∼ A

ℓd−1 , (2.3.7)

so the number of fields we can introduce such a coupling for, and hence the number

of bits we can send through the wormhole, scales as the area of the horizon in
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AdS units, as in the BTZ analysis of [21]. As in [21], to make the number of bits

scale like the area in Planck units, we would need to consider a large number of

(d+ 1)-dimensional fields Φ.



Chapter 3

Islands and Mixed States in Closed

Universes

3.1 Introduction

The Ryu-Takayanagi proposal [7] and its generalizations [64, 79, 80] have given

us important insights into the description of spacetime in holographic theories of

quantum gravity. This has recently been extended by the discovery of the island phe-

nomenon [23–25]: when we consider entangling the holographic theory with another

quantum system, the part of the spacetime described by the holographic dual can

be bounded by a quantum extremal surface [80], and the spacetime region beyond

this surface (the island) is encoded in the other system. These ideas were initially

developed for holographic theories, but they can be derived from the Euclidean

gravitational path integral [26, 27], so they are believed to apply more generally.

Consider a conventional quantum mechanical system (which could be a quantum

field theory, or a simpler system, such as a spin chain) which is entangled with a

gravitational system. The island rule is that given a semiclassical, effective descrip-

tion of the gravitational system, the fine-grained entropy of some subsystem A in

the quantum system is given by

S(A) = minI extI Sgen(A ∪ I), (3.1.1)
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where I is the island, some spatial subregion of the spacetime the gravitational

system lives in, and Sgen is the generalised entropy. If the semiclassical theory is

Einstein gravity coupled to matter, Sgen(A ∪ I) = A∂I
4G

+ Seff(A ∪ I), where A∂I is

the area of the boundary of the island and Seff is the von Neumann entropy of the

effective semi-classical state of A together with the fields in the island. The spatial

subregion that extremises Sgen is called a quantum extremal island; the surface ∂I

is the quantum extremal surface. If there are multiple islands in the spacetime, we

choose the one which minimizes the entropy.

We include an island in the spacetime if there is sufficient entanglement between A

and the spacetime in the semi-classical state to compensate for the large contribution

to Sgen from the area term. Then S(A) < Seff(A), and the true fine-grained entropy

of A calculated according to this prescription is smaller than the effective entropy.

The derivation of this formula from the path integral [26,27] tells us that the effective

semi-classical state in the island region is encoded in A; semi-classically it looks like

we have a seperate Hilbert space HI of the quantum fields on the island, but in fact

this is encoded as a code subspace in the Hilbert space HA of the quantum system

A.

The path integral derivation suggests this prescription applies quite generally,

and in particular we can consider its application to a closed universe. We do not

have a good understanding of quantum gravity in closed universes, but we can still

apply the island rule, as it only requires an understanding of the semi-classical state.

In a closed universe U , if the gravitating system is entangled with A but otherwise

in a pure state, then we can take the island to be the whole universe [25,40].1 Then

there is no boundary term, and Sgen(A ∪ U) = Seff(A ∪ U). As soon as there is

any entanglement between the closed universe and A, the whole closed universe is

encoded in HA. In section 3.2, we review a simple doubly holographic model which

illustrates this in a well-understood setting. Thus, entanglement allows us to recover

some aspects of a theory of quantum gravity on a closed universe from this quantum

1For another perspective see [36,37].
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system, in a way which generalizes the holographic story.

This might seem surprising, as the semiclassical theory on U could have a Hilbert

space HU which is much larger than HA. However, we have so far considered only

semi-classical states on U which have some entanglement with A but are otherwise

pure. The purpose of the present work is to explore the extension to cases where the

closed universe is in a mixed state. In the holographic context, even if individual pure

states are encoded in a dual system, this encoding can break down when we consider

mixtures of them; this is the essential issue underlying the original appearance of the

islands in [23, 24]. To fully understand encoding of the semiclassical Hilbert space

HU in HA, we should ask how the encoding works when we consider mixed states in

HU with some entanglement with A. We can express this by considering a situation

where U is entangled both with A and with some other quantum system B which

acts as a purifier for the mixed state in HU . There is then clearly a competition

between entanglement with A and entanglement with B, and we can have either

Seff(A ∪ U) < Seff(A) or Seff(A ∪ U) > Seff(A); the whole universe is not always

included in an island for A.

The qualitative picture is very similar to the holographic story mentioned above:

if we start with a situation where the spacetime is encoded in a single quantum

system, and add some additional entanglement of the semi-classical state on the

spacetime with another system, initially this describes a mixed state of the quantum

fields on the spacetime. When the entanglement with the new system gets large

enough, a new island appears, and the spacetime is encoded partially or wholly in

this second system. We will explore the limitations this imposes on the entropy of

the mixed state we can consider in the context of our simple model.

We explore this issue in detail in a simple doubly holographic braneworld model,

proposed in [43]. The original model, reviewed in section 3.2, has a bulk spacetime

with two boundaries, where one boundary is a dynamical brane and the other bound-

ary is an asymptotically AdS boundary. We take both boundaries to be closed spaces,

and they are connected by a spatial wormhole (Einstein-Rosen bridge) in the bulk.
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By integrating out the bulk spacetime, we can obtain a semi-classical description of

this spacetime where we have a CFT coupled to gravity on the dynamical brane, and

a second non-gravitating CFT on the asymptotic boundary, in an entangled state.

Then according to the island formula, when we calculate the fine-grained entropy

of the non-gravitating CFT, we include the whole of the other closed universe in

an island. This corresponds simply to the bulk statement that the entanglement

wedge for the CFT on the single asymptotically AdS boundary includes the whole

of the bulk spacetime. Semi-classically we had an entangled state relating degrees of

freedom on the brane and degrees of freedom on the boundary, but the microscopic

theory is a field theory on the boundary; the semi-classical state is encoded in some

subspace in this.

One approach to studying a brane entangled with multiple systems would be to

simply subdivide the non-gravitating boundary in this model into several regions.

The appearance of islands associated with subregions in this model was indeed

already explored in [43]. We instead consider an extension of this model with a

brane and multiple asymptotic regions, dual to several copies of a CFT. These

different boundaries are connected by a multiboundary wormhole. We will focus on

a wormhole with three asymptotic regions, one of which we cut off with a dynamical

brane. This has a couple of advantages: since the two boundaries aren’t coupled, the

entanglement between them is time-independent and free of ultraviolet divergences.

The lengths of the horizons associated with the different asymptotic regions are also

all independent parameters.

We review the bulk wormhole geometry in section 3.3. We introduce the brane

in section 3.4. In the semi-classical description, we have a CFT coupled to gravity

on the brane, and non-gravitating CFTs on the asymptotic boundaries, in some

entangled state |Σ̃⟩. Microscopically, the whole spacetime, including the brane, is

encoded in a state |Ψ⟩ on the two asymptotic boundaries. To determine which of the

CFTs the brane is encoded in, we determine the fine-grained entropies by comparing

the different possible Ryu-Takayanagi (RT) surfaces in the bulk. The brane can be



3.1. Introduction 73

fully encoded in one of the two systems or partially in each, with a quantum extremal

surface dividing the two regions. The latter occurs if the entanglement between the

brane and the other systems is large enough to compensate for the boundary term

in Sgen.

We can treat one of the asymptotic boundaries as a reference system; tracing

over this, we obtain a mixed state both semi-classically and microscopically. The

semi-classical state will give a mixed state on the brane if it is entirely encoded in

the other system, but still has some entanglement with the reference system. In

this case we have a microscopic mixed state, part of whose entropy is associated

with the semi-classical mixed state on the brane. When we consider multiboundary

wormholes with long horizons, as in [116], we can split the microscopic entropy into a

part associated semi-classically with entanglement between the reference system and

the brane and a part associated with the entanglement between the reference system

and the other system. We show that the entropy of the semi-classical mixed state on

the brane has two bounds: it is always less than half the coarse-grained entropy of

the fields on the brane in this semi-classical state (otherwise it would be favourable

to have the brane entirely encoded in the reference system rather than the other

boundary) and less than the contribution to the generalized entropy from boundaries

of an island (otherwise it would be favourable to have an island on the brane). The

simplicity of the latter bound is due to our model describing a particular kind of

mixed state, where the reference system is entangled with a particular local region

on the brane. We could certainly imagine entangling the brane with the reference

system in more complicated ways, which could relax this bound. The first bound

seems more universal.

We conclude with a brief discussion and consideration of future directions in

section 3.5.
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3.2 Braneworld model

The model we consider was proposed in [43]; this was further developed in [44–47].

It can be seen as an example of the doubly holographic setup of [25], which was

applied to island calculations in [40]. The idea is to consider an end of the world

brane in AdS which has a closed universe cosmology as its worldvolume, and seek

insight into the quantum theory of the closed universe from the holographic dual

CFT.

We will work with the simplest model of an end of the world brane, developed

in [65, 117]. We consider a three-dimensional locally AdS3 bulk, dual to a two-

dimensional CFT, with a constant-tension end of the world brane in the bulk,

holographically dual to some one-dimensional boundary degrees of freedom coupled

to the CFT2. The bulk three-dimensional theory has action

I = 1
16πG

∫
M
d3x

√
−g(R−2Λ)+ 1

8πG

∫
∂M

d2y
√

−hK− 1
8πG

∫
Q
d2y

√
−h T

ℓ
(3.2.1)

where G is the three-dimensional Newton constant, Λ = − 1
ℓ2 is a cosmological

constant, K is the trace of the extrinsic curvature and T is the tension of the

end of the world brane with worldvolume Q, which we take to be one component

of the boundary ∂M of the spacetime, the other component(s) corresponding to

asymptotically AdS boundary(ies). We will work in units where the AdS scale ℓ = 1.

The brane has a stress-energy tensor 8πGTab = −Thab, and the action implies that

the boundary condition for the bulk metric at Q is Kab −Khab = 8πGTab = −Thab.

A simple solution of this theory is pure AdS3 in Poincaré coordinates,

ds2 = −dt2 + dx2 + dz2

z2 , (3.2.2)

with the end of the world brane Q along x = z tan θ for x > 0, where θ = sin−1(T ),

so we have a solution for T < 1. For T > 0, the spacetime is the region between the

AdS boundary at z = 0 for x < 0 and the brane worldvolume Q, as pictured in figure

3.1.1 We obtain a useful insight into the interpretation of the tension by considering

1For T < 0, the brane has the same position but the spacetime is the wedge between the AdS
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the entanglement entropy for a region A in the AdS boundary with x ∈ (−L, 0).

The bulk RT surface drawn in figure 3.1, cut off at z = ϵ, gives

S(L) = c

6 ln
(
L

ϵ

)
+ ln g, (3.2.3)

where c = 3
2G

is the central charge of the dual two-dimensional CFT, and

ln g = 1
4G tanh−1 T. (3.2.4)

The first contribution to the entropy comes from the part of the surface at x < 0,

while the second part comes from the part at x > 0. The first contribution is the

usual entanglement entropy for an interval of length L in a two-dimensional CFT,

while the second term is the boundary entropy which appears in BCFTs.1 Thus,

ln g can be viewed as a boundary analogue of the central charge, and we see that T

controls this central charge, analogously to the relation between ℓ and c.

Figure 3.1: A constant-time slice of the geometry with an end of the world
brane in Poincaré-AdS, showing the RT surface for a region x ∈ (−L, 0) on
the boundary

It is useful to consider the regime T ≈ 1, when θ ≈ π/2, and the end of the world

brane can be viewed as a cutoff version of the AdS boundary. This corresponds to

a limit where the number of boundary degrees of freedom is large, ln g ≫ c. We

can then obtain an effective gravitational theory on the brane by integrating over

the bulk spacetime. In the higher-dimensional context, this gives a Karch-Randall

theory, with an effective Einstein action on the brane [118–120]. In the present

boundary at z = 0 for x > 0 and the brane worldvolume Q.
1From the CFT perspective, there is a boundary state |B⟩ associated to the boundary at x = 0,

and g = ⟨0|B⟩.
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two-dimensional case, this gives a non-local gravity action [121], as discussed in [101].

This can be written in a local form by introducing an auxiliary scalar field; the brane

gravity action is then a Polyakov action

IP oly = 1
32πG

∫
d2y

√
−h

[
−1

2h
ab∇aϕ∇bϕ+ ϕ (2)R − 2e−ϕ

]
, (3.2.5)

where (2)R is the Ricci scalar of the metric hab on the brane.

In earlier holographic analyses, attention focused on the relation between the

bulk spacetime description, where we have Einstein gravity coupled to a constant-

tension brane, and the boundary perspective, where we have the CFT dual to the

bulk theory with some boundary state |B⟩ at x = 0. The novelty in recent work,

such as in [25], is to highlight an intermediate effective theory, where we integrate

over the bulk spacetime to obtain an effective gravity theory on the brane; we then

have a non-gravitational CFT for x < 0 joined across an interface to the same CFT

coupled to the brane gravity theory (3.2.5) for x > 0. This is then a useful model

to study the appearance of islands in the gravitational theory, by relating them to

the classical RT surfaces in the bulk gravity. We can illustrate the idea by relating

the entropy (3.2.3) to the brane gravity theory. For the Polyakov action (3.2.5), the

generalized entropy is

Sgen(I) = ϕ∂I

8G + Seff(I), (3.2.6)

where ϕ∂I is the value of the scalar at the boundary of I and ϕ∂I/2 is the zero-

dimensional analogue of the area. In the solution we considered above, the brane

has an AdS2 geometry with (2)R = −2/ℓ2
2 = −2(1 − T 2), and the auxiliary scalar is

ϕ = ln
(

− 2
(2)R

)
= − ln(1 − T 2) ≈ 2 tanh−1 T. (3.2.7)

Thus, we can re-interpret the ln g term in the entropy (3.2.3) as due to the boundary

term in brane gravity,

S = ϕ

8G ≈ ln g, (3.2.8)

where this comes from the boundary of the region in the brane that is included as
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an island for the region we consider in the boundary CFT.

To investigate gravity in closed universes, [43] considered a solution with a brane

in one asymptotic region of an eternal black hole. We consider the simplest version,

with a brane in a BTZ geometry. Considering first the Euclidean solution, we take

the bulk metric to be

ds2 = (r2 − r2
h)dτ 2 + dr2

(r2 − r2
h) + r2dϕ2, (3.2.9)

where τ is periodic with period β = 2π/rh to make the metric regular at r = rh. We

consider a brane which respects the U(1) symmetry along ϕ, so the position of the

brane is parametrized by r(τ). The trajectory of the brane is given by [43]√√√√r2

r2
h

− 1 cos(rhτ) = T√
1 − T 2

. (3.2.10)

The brane intersects the AdS boundary at r → ∞ at τ = ±β/4, and reaches a

minimum radius r = r0 at τ = 0, where

r0 = rh√
1 − T 2

. (3.2.11)

For T > 0, the spacetime includes r = rh, so the τ = 0 slice includes the whole of

one asymptotic region of the black hole, and a portion of the other region, up to

r = r0. In the boundary, the intersection of the brane with the asymptotic AdS

boundary corresponds to a boundary state |B⟩ for the CFT, and the Euclidean

evolution defines a state |Ψ⟩ = e−βH/4|B⟩. In the regime where this bulk solution

dominates the path integral with these boundary conditions, this state is dual to the

bulk τ = 0 time slice.

This time slice provides initial conditions for a Lorentzian evolution, which is

just obtained by analytically continuing in time. The bulk metric is the Lorentzian

BTZ black hole, and the brane now follows a trajectory given by√√√√r2

r2
h

− 1 cosh(rht) = T√
1 − T 2

, (3.2.12)

which reaches a maximum radius r = r0 at t = 0, and falls into the black hole and
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meets the singularity at r → 0 in the past and future. Thus, the brane worldvolume

is a closed universe undergoing a big-bang, big-crunch FRW cosmology.

Fundamentally, this bulk spacetime is described by the two-dimensional CFT in

the state |Ψ⟩, but we can also consider it from the intermediate perspective, where

we integrate over the bulk spacetime to obtain an effective theory where we have a

CFT coupled to gravity on the brane, entangled with the CFT on the AdS boundary.

The appropriate semi-classical state is a deformation of the usual dual description

of BTZ, in terms of an entangled thermofield double state [54],

|TFD⟩ =
∑

i

e−βEi/2|i⟩L|i⟩R. (3.2.13)

Considering the situation with an end of the world brane, at least for T ≈ 1, can be

understood as turning on gravity in one of the two copies with the effective action

(3.2.5). So in the semi-classical picture, we have two copies of the CFT, one in a

universe with dynamical gravity and one in a fixed background, in an entangled

state which is a deformation of (3.2.13).

In this semi-classical effective theory, we apply the island rule to conclude that

the entanglement in the semi-classical state implies that the whole of the gravitating

universe is included in an island for the boundary CFT. From the fundamental

microscopic point of view, this is just the statement that the whole spacetime,

including the brane system, is encoded in the fundamental state |Ψ⟩ of the dual

CFT; fundamentally the brane is not something independent which is entangled

with the CFT, but rather is a part of it. There is presumably some code subspace

of states in the CFT built on |Ψ⟩ which encodes excitations in the semi-classical

Hilbert space in the closed universe on the brane.

3.3 Review of multiboundary wormholes

We want to generalize the previous model to a situation where the semi-classical

theory has a gravitating brane entangled with several non-gravitating systems. We
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will build this model by adding an end of the world brane to the multiboundary

wormhole solutions discussed in [116,122–127]. In this section we give a brief review

of the multiboundary wormhole solutions in three-dimensional gravity, and their

relation to the Euclidean path integral in the dual two-dimensional CFT.

We consider solutions of the action (3.2.1), so the bulk spacetime is locally

AdS3. We can obtain Lorentzian solutions with multiple asymptotic boundaries

by considering quotients of AdS3 by some discrete subgroup of its isometry group

SL(2,R)×SL(2,R). We will describe the quotient using the SL(2,R) representation

of AdS3, following [128]. A point in the spacetime is described by an SL(2,R) matrix

p, and the spacetime metric is ds2 = − det(dp). We can parametrize p in terms of

coordinates in an R2,2 embedding space,

p =

X0 +X2 X3 −X1

X3 +X1 X0 −X2

 . (3.3.1)

This has det p = 1 if the embedding space coordinates satisfy −X2
0 −X2

1 +X2
2 +X2

3 =

−1. The global coordinates on AdS3 are given by

X0 = coshχ cos t, X1 = coshχ sin t, (3.3.2)

X2 = sinhχ cos θ, X3 = sinhχ sin θ. (3.3.3)

The metric in global coordinates is

ds2 = − cosh2 χdt2 + dχ2 + sinh2 χdθ2. (3.3.4)

The SL(2,R)L × SL(2,R)R isometries act as p → gLpg
t
R. We will focus on the

diagonal subgroup acting as p → gpgt. This maps symmetric p to symmetric p,

so it leaves the surface at X1 = 0, corresponding to t = 0 in global coordinates,

invariant. Thus, a quotient by a discrete subgroup Γ of this diagonal SL(2,R)

preserves the time-reflection symmetry about this surface, and we can define a

Euclidean continuation which is the quotient of H3 by the same group Γ. We will

largely focus on the action of the quotient on the surface X1 = 0, which is described
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in global coordinates as the Poincaré disc.

We will consider the geometry with three asymptotic boundaries, formed by a

quotient by a subgroup Γ with two hyperbolic generators. We parametrize these

generators as

g1 =

cosh( ℓ1
2 ) sinh( ℓ1

2 )

sinh( ℓ1
2 ) cosh( ℓ1

2 )

 , g2 =

 cosh( ℓ2
2 ) eω sinh( ℓ2

2 )

e−ω sinh( ℓ2
2 ) cosh( ℓ2

2 )

 . (3.3.5)

The generator g1 acts as a boost in the X0 −X3 plane in the embedding space. The

generator g2 can be written as a similar boost, up to conjugation,

g2 = gωg̃2g
−1
ω , gω =

eω/2 0

0 e−ω/2

 , g̃2 =

cosh( ℓ2
2 ) sinh( ℓ2

2 )

sinh( ℓ2
2 ) cosh( ℓ2

2 )

 . (3.3.6)

The conjugating matrix gω acts as a boost in the X0 −X2 plane. If we considered just

the quotient by the abelian group generated by g1, the resulting spacetime would

be the BTZ black hole (3.2.9) with rh = ℓ1/2π. The BTZ coordinates are related to

the embedding coordinates by

X0 = r

rh

cosh (rhϕ), X1 =

√√√√r2

r2
h

− 1 sinh (rht) (3.3.7)

X3 = r

rh

sinh (rhϕ), X2 = ±

√√√√r2

r2
h

− 1 cosh (rht). (3.3.8)

The quotient by g1 acts as translation in ϕ, ϕ → ϕ + 2π. In the Poincaré disc

representation, on the right in figure 3.2, a symmetric fundamental region for this

identification is the region between the two blue geodesics, corresponding to ϕ = ±π.

The horizon is the closed geodesic at X2 = 0, of proper length ℓ1. The other

generator g2 similarly identifies the two orange geodesics on the right of the picture,

and the dotted curve connecting them is a closed geodesic of proper length ℓ2,

which is a horizon for the asymptotic region on the right. We restrict to eω >

coth
(

ℓ1
4

)
coth

(
ℓ2
4

)
, so that the orange and blue geodesics don’t intersect [128]. The

region bounded by these geodesics is a fundamental region for the quotient by the

group Γ generated by g1, g2. The quotient geometry has three asymptotic regions,
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each of which is isomorphic to the BTZ black hole outside a horizon. The horizon in

the third asymptotic region is formed of the two minimal geodesics connecting the

blue and orange surfaces in the right picture. The length ℓ3 of this horizon is given

by

cosh ℓ3

2 = 1
2 Tr g3 = −1

2 Tr g1g
−1
2 = coshω sinh ℓ1

2 sinh ℓ2

2 − cosh ℓ1

2 cosh ℓ2

2 . (3.3.9)

The region in between the three horizons is referred to as the causal shadow region,

as no causal influence can propagate from this region to the asymptotic regions. The

quotient of the surface X1 = 0 is thus a surface Σ with the topology of a pair of

pants, labelled by three parameters ℓ1, ℓ2, ℓ3, as pictured on the left in figure 3.2.

This is the simplest example of a multiboundary wormhole.

Figure 3.2: The pair of pants geometry with an end of the world brane
(red) in one asymptotic region. On the left is a cartoon of the geometry of
the t = 0 surface, and on the right is its description as a quotient of the
Poincaré disc model. In the right picture the central region bounded by
the blue and orange geodesics is a fundamental region for the identification.
The geodesic W ≡ W ′ ∪ W ′′, which is the minimal geodesic anchored on
the end of the world brane running in between the two asymptotic region,
is shown in green. The horizon H3 is similarly defined as H3 ≡ H ′

3 ∪H ′′
3 .

We can analytically continue the Lorentzian solution to a Euclidean spacetime

with geometry

ds2 = dρ2 + cosh2 ρ dΣ2. (3.3.10)

Recall that the Euclidean BTZ black hole has the topology of solid torus with the
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non-contractible cycle parameterised by Euclidean time. Its conformal boundary is

a two-torus (a Riemann surface of genus one). Slicing the torus along a moment

of time-reflection symmetry gives two cylinders as the conformal boundaries; the

Euclidean path integral over one of these cylinders then defines the dual state at

the moment of time-reflection symmetry in two copies of the Hilbert space of the

CFT on S1. Similarly, the conformal boundary of the Euclidean three-boundary

wormhole is a Riemann surface of genus two formed by gluing together two copies of

the surface Σ. The Euclidean path integral in the CFT on one copy of Σ defines an

entangled state for the CFT in three copies of the Hilbert space of the CFT on S1,

|Σ⟩ ∈ H1 ×H2 ×H3. The bulk geometry provides a candidate bulk saddle-point dual

to this Euclidean path integral; when this is the dominant bulk saddle-point, the

bulk geometry on Σ is the dual of the CFT state |Σ⟩. In the state |Σ⟩, the reduced

density matrix ρi on each copy of the CFT is not thermal, but one-point functions of

local operators are determined by the geometry in the exterior region, so they take

thermal values. In particular, the stress tensor of the CFT degrees of freedom will

be a perfect fluid with coarse-grained entropy S(c)
i = ℓi

4G
. The fine-grained entropy

of ρi is Si = 1
4G

min(ℓi, ℓj + ℓk), so if one of the horizons is longer than the sum of

the other two, the actual entropy of the density matrix in that region is less than

the coarse-grained thermal value.

We will be particularly interested in the limit of large ℓ1, ℓ2, ℓ3, with fixed ratios.

In [116], the entanglement structure of |Σ⟩ was shown to simplify in this limit. The

essential point is that the causal shadow region has a constant negative curvature

geometry bounded by geodesics, so its area is fixed by the Gauss-Bonnet theorem.

Hence, as the horizons become long, the distance between them must become small.

We can decompose the path integral over Σ defining the state |Σ⟩ into an integral

over the regions Ea outside the horizons, which are conformal to round cylinders,

and the integral over the causal shadow region. The path integral over the causal

shadow region then identifies the horizons locally. There are two different regimes,

as pictured in figure 3.3: if one of the horizons is longer than the sum of the other



3.4. Islands on the braneworld 83

two, we have an “eyeglass” picture, where the whole of the two short horizons are

identified with the long one, and the remaining parts of the long horizon are identified

with each other. Otherwise, each horizon has a portion which is identified with each

of the others. In the “eyeglass” regime, to leading order in c the state |Σ⟩ only

involves entanglement between the boundaries associated to the short horizons and

the long one; there is no entanglement between the two boundaries associated to the

short horizons.

Figure 3.3: In the large ℓi limit, the horizons are locally identified. There are
two cases: if one length is larger than the sum of the other two, ℓi > ℓj + ℓk,
we have an “eyeglass” picture, where the whole of the two short horizons
are identified with the long one, and the remaining parts of the long horizon
are identified with each other. Otherwise, each horizon has a portion which
is identified with each of the others.

3.4 Islands on the braneworld

We now turn to the main point of this chapter: to add a brane to the multiboundary

wormhole spacetime, to obtain a model where we can investigate the description of a

closed universe entangled with a quantum system with two components. We simply

consider inserting the same kind of brane considered above in one of the exterior

BTZ regions in the t = 0 slice, as pictured in figure 3.2, at the maximum radius

r0 given by (3.2.11). We will call the asymptotic region that is cut off in this way
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region 1. This initial data has a Euclidean continuation where the brane intersects

the conformal boundary of the Euclidean wormhole spacetime (3.3.10). The brane

intersects the Euclidean boundary at τ = ±β/4 in the BTZ coordinates. The path

integral over half the Euclidean boundary, with the boundary state |B⟩ dual to the

end of the world brane inserted at τ = −β/4, defines a state |Ψ⟩ ∈ H2 × H3 dual to

this bulk geometry.

At least when r0 ≫ rh, this geometry can also be described in a semi-classical

effective theory where we integrate out the bulk spacetime to obtain a CFT coupled

to gravity living on the end of the world brane, entangled with the two other copies

of the CFT. In this description, the semi-classical state of the theory is roughly the

state |Σ⟩ dual to the multiboundary wormhole, but with some deformation from

coupling the CFT in boundary 1 to gravity; we will call this deformed state |Σ̃⟩.

The brane is embedded in a BTZ geometry, with horizon length ℓ1. The effective

stress tensor of the semi-classical theory on the brane is thus a perfect fluid, with a

coarse-grained entropy Scoarse = ℓ1
4G

.

In the state |Σ̃⟩, we have some entanglement between the degrees of freedom in the

closed universe and the two CFTs on boundaries 2 and 3. This entanglement is most

easily characterised in the large ℓi limit, where the entanglement is approximately

local; small regions in the brane form a thermofield double state with corresponding

regions in one of the other systems (or with another region on the brane). We will

explore the entanglement structure of |Σ̃⟩ by considering RT surfaces in the bulk

spacetime in figure 3.2. Before carrying out a quantitative analysis, we give a general

qualitative description.

Since the microscopic state |Ψ⟩ ∈ H2×H3 is pure, the entropy of ρ2 = Tr3(|Ψ⟩⟨Ψ|)

is equal to the entropy of ρ3 = Tr2(|Ψ⟩⟨Ψ|). There are three candidate RT surfaces

for this entropy: the horizon H2, of length ℓ2, the horizon H3, of length ℓ3, or a

geodesic with end points on the end of the world brane which separates the two

boundaries, as pictured in figure 3.2. We call the minimal-length geodesic in this

class W. We take without loss of generality ℓ2 ≤ ℓ3; then the RT surface is either
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H2 or W .

When the RT surface is W, the brane is partially encoded in H2 and partially

in H3. This is the situation where the entanglement of the brane with boundaries

2 and 3 in |Σ̃⟩ is big enough to overcome the cost of having a non-trivial island. In

this situation the entropy S = ℓW
4G

is partially due to the geometric entropy on the

brane, and partially due to entanglement between the degrees of freedom in system

2 together with the associated island on the brane and the rest.

When the RT surface is H2, the brane is entirely encoded in H3. This is the

regime which we are particularly interested in. If we treat H2 as a reference system,

and trace over it, semi-classical entanglement between the brane and H2 gives us a

mixed state on the brane, which is encoded microscopically in the mixed state ρ3 of

the CFT on the boundary. The fine-grained entropy is S = ℓ2
4G

. Semi-classically, this

can include both contributions from entanglement between the brane and boundary

2, and between boundary 3 and boundary 2. In the large ℓi limit, we can cleanly

separate these two contributions, because of the local structure of the entanglement:

the portion of H2 which lies along H1 represents entanglement between the brane

and boundary 2 in the semi-classical state, so we identify the length of this portion

with the entropy Sbrane of the semi-classical state of the matter on the brane. There

are three cases:

• If ℓ1 > ℓ2 + ℓ3, in |Σ̃⟩ boundary 2 is entirely entangled with the brane, with

no entanglement with boundary 3. The whole entropy Sbrane = S = ℓ2
4G

can be

thought of as entropy of the mixed state on the brane.

• If ℓ3 > ℓ1 + ℓ2, boundary 2 is entirely entangled with boundary 3, with no

entanglement with the brane. The effective semi-classical state on the brane

remains pure on tracing out boundary 2, as it’s solely entangled with boundary

3.

• Otherwise, the entanglement is partially with the brane and partially with

boundary 3. The entropy of the mixed state on the brane is determined by
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the portion of H2 that lies along H1, which gives Sbrane = 1
8G

(ℓ1 + ℓ2 − ℓ3).

We see that Sbrane ≤ Scoarse/2, with equality when ℓ2 = ℓ3 > ℓ1/2.

3.4.1 The W geodesic

We now compute the length of the W geodesic, to compare it to the horizon H2.

By time reflection symmetry the geodesic lies in the t = 0 slice of the geometry. In

the Poincaré disc model W corresponds to two geodesics W ′ and W ′′, which hit the

orange identification surfaces. There is a Z2 reflection symmetry about the θ = 0, π

axis in the Poincaré disc, corresponding to the reflection symmetry about the plane

of the page in the pair of pants geometry shown in figure 3.2. This Z2 symmetry

implies that the two geodesics are identical and meet the identification surfaces

orthogonally, so as to produce a smooth connected curve in the quotient space. The

end of the world brane sits at constant r, and the geometry between the brane and

the identification surface is locally BTZ, so if we consider connecting a fixed point

on the identification surface to the end of the world brane, the the length is minimal

when the curve lies at constant ϕ. The W ′ geodesic is then obtained by varying the

point on the identification surface, to find the curve of constant ϕ which meets the

identification surface orthogonally. The identification surfaces are geodesics in the

Poincaré disc, given by

tanhχ cos(θ − α) = cosψ, (3.4.1)

in global coordinates. By finding the point where the normal to the identification

surface n ∝ dr, we find the angle θ1 at which the geodesic hits the identification

surface. It will be more convenient to define ϑ ≡ θ − α. We get

tanϑ1 = tanα tan2 ψ. (3.4.2)

The geodesic distance between two spacelike separated points s(X,X ′) is

cosh s(X,X ′) = −X ·X ′. (3.4.3)
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The length of W is then given by

cosh 1
2ℓW = cscψ√

1 − T 2

(
cosα + T

2
√

cos 2α + cos 2ψ
)
. (3.4.4)

To relate this to the horizon lengths, we need to relate the parameters α, ψ

specifying the geodesics identified by g2 to the horizon lengths. The geodesics

identified by g1 have tanhχ cos(θ ± π/2) = cos δ, where

cos δ = tanhχmin = tanh ℓ1

2 ⇒ sin δ = sech ℓ1

2 . (3.4.5)

The geodesics identified by g2 are similar, but conjugated by gω. That is, there

is a conjugated Poincaré coordinate system with α̃ = π/2, (sin ψ̃)−1 = cosh ℓ2
2 .

Conjugation by gω acts on the boundary coordinates bycos θ
2

sin θ
2

 ∝ gω

cos θ̃
2

sin θ̃
2

 . (3.4.6)

This gives

sinα = 1√
cosh2 ω − sinh2 ω sin2 ψ̃

, sinψ = sin ψ̃ sinα. (3.4.7)

Thus,

cosh ℓ2

2 = 1
sin ψ̃

= sinα
sinψ. (3.4.8)

Using (3.3.9), we find

tanα =
√

2 cosh ℓ2
2 sinh ℓ1

2√
1 + cosh ℓ1 + cosh ℓ2 + cosh ℓ3 + 4 cosh ℓ1

2 cosh ℓ2
2 cosh ℓ3

2

. (3.4.9)

This gives an expression for the length of the W geodesic as a function of the

horizon lengths and the tension T ,

cosh 1
2ℓW =

csch ℓ1
2√

2(1 − T 2)

√1 + cosh ℓ1 + cosh ℓ2 + cosh ℓ3 + 4 cosh ℓ1

2 cosh ℓ2

2 cosh ℓ3

2

+ T

√
2 + cosh ℓ2 + cosh ℓ3 + 4 cosh ℓ1

2 cosh ℓ2

2 cosh ℓ3

2

 .
(3.4.10)
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We can now compare this to the horizon lengths. Since we assume ℓ2 ≤ ℓ3, we want

to know whether ℓW is bigger or smaller than ℓ2.

The length ℓW is monotonically decreasing in ℓ1, and monotonically increasing

in ℓ2, ℓ3. The former gives us a lower bound for the length: taking the large ℓ1 limit

at fixed ℓ2, ℓ3, limℓ1→∞ ℓW = 2 tanh−1 T , so ℓW ≥ 2 tanh−1 T for any values of the ℓi.

Thus,

ℓ2 < 2 tanh−1 T ⇒ ℓW > ℓ2; (3.4.11)

for sufficiently small ℓ2 the minimal geodesics is always H2. Since ℓW is monotonically

increasing in ℓ3, the minimum value for fixed ℓ2 is at ℓ2 = ℓ3, where the formula

simplifies to

cosh 1
2ℓW =

csch ℓ1
4√

1 − T 2

√cosh2 ℓ2

2 + sinh2 ℓ1

4 + T cosh ℓ2

2

 . (3.4.12)

Here it is interesting to note that

ℓ1 < 4 sinh−1

√1 + T

1 − T

 ⇒ ℓW > ℓ2, (3.4.13)

so also for sufficiently small ℓ1 the minimal geodesic is always H2. In figure 3.4, we

plot the regions where ℓW < ℓ2 for ℓ2 = ℓ3 for various values of T .
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Figure 3.4: The regions where ℓW < ℓ2 for ℓ2 = ℓ3 for various values of T
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We can simplify the expression by working in a regime where ℓW is large — this

is achieved either by considering large values of the ℓi, or T → 1, or both. Let us

first consider the limit T → 1, for general ℓi. This corresponds to taking the brane

towards the asymptotic boundary in region 1, so the W geodesic gets longer as it

extends further out into this region. In this limit we can write

ℓW ≈ ℓS + ln 2
1 − T

≈ ℓS + 2 tanh−1 T, (3.4.14)

where

e
ℓS
2 =

csch ℓ1
2√

2

√1 + cosh ℓ1 + cosh ℓ2 + cosh ℓ3 + 4 cosh ℓ1

2 cosh ℓ2

2 cosh ℓ3

2

+
√

2 + cosh ℓ2 + cosh ℓ3 + 4 cosh ℓ1

2 cosh ℓ2

2 cosh ℓ3

2

 . (3.4.15)

The entanglement entropy when the W geodesic is minimal is then

SW = ℓW

4G = ℓS

4G + 2 ln g, (3.4.16)

where ln g = tanh−1(T )/4G is the boundary entropy of the end of the world brane. As

in the simpler Poincaré-AdS solution discussed in section 3.2, the 2 ln g contribution

can be seen from the brane gravity perspective as the boundary contribution to the

generalized entropy from the boundaries of the island on the brane (there is a factor

of 2 here compared to the discussion in section 3.2 because the island here has two

boundaries).

If we also consider the limit of large horizon lengths, ℓ1,2,3 ≫ 1, then ℓS will

typically also be large. In the large horizon length limit, ℓS can be interpreted as the

portion of the W geodesic in the “shadow region” beyond the horizon, running over

the pair of pants between H2 and H3, while the ln g term comes from the portion of

the geodesic between the brane and H1.

There are three distinct cases in the large horizon length limit:

• If ℓ1 > ℓ2 + ℓ3, the dominant contribution to ℓW comes from the cosh ℓ1 in the
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first square root; then

cosh 1
2ℓW ≈ 1√

1 − T 2
, (3.4.17)

or

ℓW ≈ 2 cosh−1
(

1√
1 − T 2

)
= 2 tanh−1 T. (3.4.18)

That is, in this case ℓS is small, as part of H1 lies along another portion of H1,

so the minimal geodesic over the pair of pants is short. In this regime the W

geodesic is minimal as soon as ℓ2 > 2 tanh−1 T .

• If ℓ3 > ℓ1 + ℓ2, the dominant contribution to ℓW comes from the cosh ℓ3 in both

square roots; then

cosh 1
2ℓW ≈ e

ℓ3−ℓ1
2

√
1 + T√
1 − T

, (3.4.19)

that is

ℓW ≈ ℓ3 − ℓ1 + 2 ln
(

2
√

1 + T√
1 − T

)
≈ ℓ3 − ℓ1 + 2 tanh−1 T, (3.4.20)

where we again drop an order one term. That is, ℓS = ℓ3 − ℓ1: the W geodesic

follows the part of H3 that is not along H1. In this regime the W geodesic

is never minimal, as the first term on the RHS is already bigger than ℓ2 by

assumption.

• Otherwise, the dominant contribution to ℓW comes from the final term in both

square roots; then

cosh 1
2ℓW ≈ e

ℓ3−ℓ1−ℓ2
4

√
1 + T√
1 − T

, (3.4.21)

that is

ℓW ≈ 1
2(ℓ3 +ℓ2 −ℓ1)+2 ln

(
2
√

1 + T√
1 − T

)
≈ 1

2(ℓ3 +ℓ2 −ℓ1)+2 tanh−1 T, (3.4.22)

again dropping order one terms. That is, ℓS = 1
2(ℓ3 + ℓ2 − ℓ1). The W geodesic

lies along the section where H2 and H3 lie along each other, as pictured in

figure 3.3. In this regime the W geodesic is minimal if

ℓ2 > ℓ3 − ℓ1 + 4 tanh−1 T. (3.4.23)
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Note that we have not assumed that ℓ3 − ℓ1 is positive, but we have assumed

ℓ3 +ℓ2 −ℓ1 is positive, so this is a stronger condition than the general condition

ℓ2 > 2 tanh−1 T .

We now have a full picture of the behaviour of the entanglement structure as a

function of ℓi, T , at least in the region where all geodesics are long. To illustrate

this, let’s consider what happens as we change ℓ2 at fixed ℓ1, ℓ3, T . There are two

different cases: ℓ3 > ℓ1 and ℓ1 > ℓ3.

If ℓ1 > ℓ3, at small ℓ2 some of the degrees of freedom on the brane are actually

entangled with other regions on the brane, as we are in an “eyeglass” situation. The

reference system boundary 2 is entirely entangled with the brane in the semi-classical

state, and tracing over it gives us a mixed state on the brane of entropy Sbrane = ℓ2
4G

.

This gives a model of the encoding of a mixed state in a closed universe. As we

increase ℓ2, we will eventually make a transition to W being minimal, and there is an

island on the brane associated to boundary 2. If ℓ1 − ℓ3 > 2 tanh−1 T , we make the

transition at ℓ2 = 2 tanh−1 T , before we get out of the “eyeglass” situation; otherwise,

we first enter a regime where boundary 2 is partially entangled with boundary 3,

and the entropy due to entanglement with the brane is Sbrane = 1
8G

(ℓ1 + ℓ2 − ℓ3). If

ℓ1 > 4 tanh−1 T , we make a transition to W being minimal at ℓ2 = ℓ3−ℓ1+4 tanh−1 T .

Otherwise, we reach ℓ2 = ℓ3 and make a transition to H3 being minimal, and the

brane gets entirely encoded in boundary 2.

If ℓ3 > ℓ1, at small ℓ2 we are in an “eyeglass” situation where horizon 3 is long,

so initially boundary 2 is entangled only with boundary 3, and the effective semi-

classical state on the brane is entangled only with boundary 3. Microscopically, H3

factors into a piece which encodes the brane state and a piece which carries the

entanglement with boundary 2. H2 remains the minimal geodesic until we reach

a regime with non-zero Sbrane = 1
8G

(ℓ1 + ℓ2 − ℓ3), and the transition to W being

minimal is again at ℓ2 = ℓ3 − ℓ1 + 4 tanh−1 T for ℓ1 > 4 tanh−1 T .

In all cases, when there is a transition to W being minimal the transition is at

Sbrane = 1
2G

tanh−1 T = 2 ln g. Thus, we learn that the entropy of the effective state
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on the brane is bounded by Sbrane <
1
2Scoarse (otherwise it would be favourable to

have the brane entirely encoded in the reference system rather than boundary 3)

and Sbrane < 2 ln g (otherwise it would be favourable to have an island on the brane).

The simplicity of the latter bound is due to our model describing a particular kind of

mixed state, where the reference system is entangled with a particular local region

on the brane. We could certainly imagine entangling the brane with the reference

system in more complicated ways, which could relax this bound. The first bound

seems more universal.

3.5 Discussion

We have shown that entangled or mixed states of closed universes can be described

in the context of the island formula, if we consider a closed universe entangled

with a non-gravitating system with multiple components. We can have situations

where the closed universe is encoded in one system, but still has some entanglement

with another, which corresponds microscopically to a part of the entanglement

between the two systems. We studied a simple model in three dimensions, based on

multiboundary wormholes, and found that the portion of the entropy that could be

assigned to the state on the brane was bounded by half of the coarse-grained entropy

of the effective theory on the brane, and also bounded by the gravitational entropy

of an island on the brane.

The relation to the gravitational entropy on the brane is interesting, and deserves

further exploration; it would be interesting if this could shed some light on the inter-

pretation of horizon entropy in closed universes. However, the simple relationship

obtained in our model depends on the assumption that the degrees of freedom on

the brane that are entangled with the CFT are localised in a particular region of the

brane. We would expect that the semi-classical theory would include more general

mixed states on the brane with less localised entanglement, by considering more

abstract reference systems or systems with more components.
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Another interesting way to use this model is to take ℓ2 and ℓ3 much smaller

than ℓ1; the brane then has a large coarse-grained entropy, but the fundamental

microscopic description has a much smaller entropy, reminiscent of a ‘bag-of-gold’

spacetime [129]. This could be an interesting avenue to explore the reconstruction of

states on the brane, using the Petz map [26,130] or the tensor network ideas of [131].

It would also be interesting to explore the relation of the model we used here to

the somewhat different model in [132]. Finally, if we take all the horizon lengths

small, the system should also have a non-trivial phase structure; it would also be

interesting to explore the description of the brane universe in cases where it’s not

connected to the conformal boundaries in the bulk spacetime.

It would be interesting to carry out similar calculations in higher dimensions.

There is no simple higher-dimensional version of the multiboundary wormholes, but

we could consider working in the original model of [43], where we introduce a brane

in an eternal black hole spacetime. The brane is then encoded in the CFT on the

asymptotic AdS boundary, and we can consider dividing this boundary into two

regions. There are similarly two candidate RT surfaces for this case, one which

remains outside the black hole horizon (analogous to H2 in our discussion) and one

which crosses the horizon and ends on the brane (analogous to W in our discussion)

as pictured in figure 3.5. In the first case the brane is entirely described in the larger

boundary region, while in the latter case it is divided into two regions, described in

the two parts of the boundary.

Because the two regions interact, the entanglement entropy is no longer time

independent in this case. The discussion in [43] focused on this time dependence;

focusing on the entanglement at t = 0 should be similar to our previous discussion.

To clearly identify the portion of the entanglement entropy that is associated with

the mixed state on the brane, we would like to work with a solution where the horizon

area is large compared to the AdS scale rh ≫ ℓ, so the entanglement between the

brane and the boundary in the semi-classical state is local, as in our discussion. Then

to have a large enough region where the surface outside the horizon is minimal, we
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Figure 3.5: For a brane in an eternal black hole spacetime, when we consider
a subregion of the CFT on the boundary, the RT surface is either outside
the horizon or crosses the horizon and ends on the brane. For large black
holes, the surface outside the horizon has a portion which lies along the
horizon, whose area can be interpreted as entropy of the mixed state on
the brane.

need the brane to lie far from the horizon, r0 ≫ rh. In [43], it was found that the

brane can’t be taken arbitrarily far from the horizon in uncharged black holes, but

this is possible if we consider charged black holes close to extremality [44].

In this context, of large black holes with the brane far from the horizon, we

would expect qualitatively similar results to our analysis: the RT surface which stays

outside the horizon will have a portion which lies along the horizon, which we can

interpret as giving the entropy Sbrane of the mixed state on the brane. This will

never be more than half the horizon area, and the transition to the RT surface that

ends on the brane should occur when Sbrane is bigger than the area of the surface

extending from the horizon to the brane, which should correspond to the boundary

term in the island formula from the perspective of the induced gravity theory on the

brane.



Chapter 4

Constraints on Cosmologies Inside

Black Holes

An approach to understanding closed universes with big-bang/big-crunch cosmologies

holographically was proposed in [43] (and further developed in [44–47]). The idea

is to consider an asymptotically AdSd+1 black hole spacetime with a d-dimensional

dynamical end of the world (ETW) brane behind the horizon providing an inner

boundary of the spacetime, as depicted in figure 4.1. Starting from the t = 0 surface,

the ETW brane falls into the black hole and terminates at the singularity, so its

worldvolume geometry is a big-bang/big-crunch cosmology. The state in the bulk

on the t = 0 surface is dual to some state in the dual d-dimensional CFT on the

asymptotic boundary on the right in figure 4.1, which therefore includes a description

of the cosmology on the ETW brane worldvolume.

An appealing feature of this model is that the state in the bulk on the t = 0

surface can be constructed from a Euclidean path integral, as depicted on the left

in figure 4.2. In the Euclidean section, the ETW brane moves outward away from

t = 0, and eventually meets the asymptotic boundary. Such solutions were proposed

in [65,117] as duals of boundary conformal field theories (BCFTs). The state in the

d-dimensional CFT dual to the t = 0 slice in the bulk is then constructed by starting

with a (d − 1)-dimensional boundary state specified by the BCFT and evolving
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through some period of Euclidean time. Such states have been extensively discussed

in recent investigations of black holes, see e.g. [25,26,40,92].

Figure 4.1: Penrose diagram of an AdS black hole with the left asymptotic
region terminating in an ETW brane (shown in red). The worldvolume
geometry of the ETW brane is a big-bang/big-crunch cosmology.

To have a controlled description of the cosmology on the ETW brane, we want

to have a separation of scales between the scale that controls the curvature of the

ETW brane and the bulk curvature, such that there is a good effective description

of the dynamics in terms of ordinary Einstein gravity localised on the ETW brane.

This can be achieved by taking the radial position rET W
0 of the brane at t = 0 to

be much larger than the horizon scale rh, which can be achieved by increasing the

tension T of the ETW brane [118–120].

However, in simple examples of this construction this separation of scales is

incompatible with the path integral construction described above. If we are in d > 2,

and we take the bulk solution to be an uncharged black hole, increasing T for fixed

bulk black hole geometry, there is a critical value T = T∗ at which the ETW brane

intersects the asymptotic boundary at t = 0; increasing T beyond T∗, the ETW

brane will self-intersect before it reaches the asymptotic boundary, as depicted in

figure 4.2. Thus, for T > T∗, we lose the Euclidean path integral construction of

the state dual to the t = 0 slice. This would not prevent us from considering the

Lorentzian brane solution – the Lorentzian solution remains well-behaved even for

T > T∗ – but we would lose control of the dual CFT state, limiting our ability to
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study the holographic duality in detail.1 One resolution of this problem, proposed

in [44], is to take the bulk solution to be a charged black hole.

Figure 4.2: Euclidean ETW brane trajectories for different values of the
brane tension. The shaded regions are the bulk regions that we keep from
the original Euclidean/Schwarzschild geometry without an ETW brane.
Below the critical tension, T < T∗, there are sensible solutions with the
brane intersecting the asymptotic boundary at times t > 0; at T = T∗ the
brane intersects the asymptotic boundary at t = 0; for T > T∗, the brane
intersects itself before reaching the asymptotic boundary and we lose the
Euclidean path integral construction of the state dual to the t = 0 slice.

In [47], a different perspective on this issue was given. Suppose the spatial

directions along the ETW brane are flat. We can then analytically continue the

Euclidean solution along one of the spatial directions, to obtain a time-independent

Lorentzian solution where the ETW worldvolume has two asymptotically AdS ends.

So the geometry on the ETW brane is an example of an eternal traversable wormhole

[13]. Thus, these solutions can alternatively be viewed as constructing an eternal

traversable wormhole by taking the (d− 1)-dimensional CFTs at the two ends of the

ETW brane and coupling them through the d-dimensional CFT.2 The construction

of traversable wormholes requires violations of the energy conditions, and in d > 2

obstructions to the construction of such wormholes were noted in [134]. In [47], the

constraints were analysed from the perspective of the ETW brane worldvolume, and

shown to obstruct the construction of traversable wormholes with a separation of

scales between the brane and bulk AdS scales. This is the same obstruction as the
1The situation is somewhat similar to considering a small black hole in AdS with a spherical

boundary; this is a perfectly good Lorentzian solution, but we do not understand the precise dual
CFT description, unlike for large black holes.

2Similar constructions were considered in [133].
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self-intersection problem mentioned above, as we will explain below.

In [47], it was proposed that this obstruction could be overcome by considering a

more complicated bulk solution with interface branes in addition to the ETW brane.

From the bulk self-intersection perspective, the advantage of adding interface branes

is that one can allow the time at which the ETW brane reaches the boundary to

become negative without necessarily encountering a self-intersection, as pictured in

figure 4.3 and explained in more detail below. The aim of this chapter is to explore

this construction with interface branes in more detail. Unfortunately, we will find

that it does not resolve the self-intersection problem; requiring that the ETW brane

remains outside of the interface brane and that the interface brane does not self-

intersect limits us to T < T∗, just as before. Moreover, in the limit as T approaches

T∗, the interface brane tension must go to zero, returning us to the original setup

without an interface brane.

It is not clear if this failure is essentially technical, or is indicative of a deeper issue;

the connection to eternal traversable wormholes suggests that it may be the latter.

As we will comment on later, the charged black hole solution of [44] provides an

example where we obtain a good ETW brane solution and can construct its state by

a Euclidean path integral, but this does not define an eternal traversable wormhole,

as the analytic continuation that gives us the wormhole makes the Maxwell field

associated with the charge imaginary (analytically continuing the charge to make the

Maxwell field real would instead break the mechanism that avoids self-intersection).

The organisation of the rest of the chapter is: in the next section, we review

the models we consider and relate the worldvolume discussion in [47] to the self-

intersection picture. In section 4.2, we look at the constraints on the model with

interface branes. We give a simple scaling argument to show that no solutions

without self-intersection exist in the limit of large rET W
0 , and explore the regions

of the parameter space where solutions exist for finite rET W
0 numerically, showing

that solutions exist only for T < T∗. In section 3.5, we discuss the differences in the

charged black hole case and make some brief concluding comments.
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Note added: after completing this work, we learned that similar results were

obtained independently in [135].

Figure 4.3: The combined model containing both an ETW brane and an in-
terface brane I. The two solutions are glued along the interface brane. Since
the Euclidean horizon is not included in the left-hand solution, both branes
are multiply wound relative to a single copy of Euclidean/Schwarzschild
AdS avoiding self-intersections.

4.1 End of the world brane cosmology

The holographic model of cosmology we consider was first proposed in [43]. The

model consists of an AdS black hole bulk with one asymptotic region, with a dynam-

ical constant-tension ETW brane behind the horizon, as pictured in figure 4.1. The

induced geometry on the ETW brane worldvolume is that of a closed FRW universe,

with the radial position playing the role of the scale factor.

Consider first the original setup with just an ETW brane. The bulk action is

I = 1
16πG

[∫
M

dd+1x
√

−g (R − 2Λ) + 2
∫

∂M
ddy

√
−hK − 2(d− 1)

∫
Q

ddy
√

−hT
]
,

(4.1.1)

where Λ = −d(d−1)
2L2 is a cosmological constant, K is the trace of the extrinsic curvature

and T is the tension of the ETW brane with worldvolume Q, which we take to

be one component of the boundary ∂M of the spacetime, the other component

corresponding to the symptotically AdS conformal boundary. We consider a planar
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AdS-Schwarzchild black hole bulk solution

ds2 = −f(r)dt2 + dr2

f(r) + r2

L2 dxadxa, f(r) ≡ r2

L2 − µ

rd−2 . (4.1.2)

This has a horizon at r = rh, where rd
h = µL2. The brane has stress-energy tensor

8πGTab = (1 − d)Thab, and the action implies that the boundary condition for the

bulk metric at Q is

Kab −Khab = (1 − d)Thab (4.1.3)

The tt component of this equation leads to the brane equation of motion(
dr
dt

)2

= f 2(r)
T 2r2

(
T 2r2 − f(r)

)
. (4.1.4)

In the Lorentzian black hole geometry, the brane will reach a maximum radius rET W
0 ,

with (rET W
0 )d = rd

h

1−T 2L2 , which we take to occur at t = 0. Note rET W
0 > rh for

T > 0, and rET W
0 → ∞ as T → L−1. To the future and past of this, r(t) decreases,

as pictured in figure 4.1. The brane worldvolume geometry is thus a closed FRW

big-bang/big-crunch cosmology, where the brane radius r(t) plays the role of the

scale factor, and the brane equation of motion (4.1.4) corresponds to the Friedmann

equation in this worldvolume cosmology.

The state on the t = 0 slice can be obtained by a Euclidean path integral. In the

Euclidean black hole, the motion of the ETW brane is(
dr
dτ

)2

= f 2(r)
T 2r2

(
f(r) − T 2r2

)
. (4.1.5)

This now has a minimum at r = rET W
0 . Since the ETW brane is inside the black hole

in the Lorentzian geometry, it is at its minimum radius in the Euclidean solution at

τ = β/2, where β = 2πL2/rh is the periodicity in Euclidean time τ . It reaches the

AdS boundary at a time

τET W = β

2 −
∫ ∞

rET W
0

dr

f(r)
Tr√

f(r) − T 2r2
. (4.1.6)

To avoid self-intersections in the Euclidean solution, we need τET W > 0. However,
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setting r = rET W
0 x, we have

σET W = 2τET W

β
= 1 − d

2πTL(yET W
0 ) d−2

2

∫ ∞

1

dx

x2(1 − (yET W
0 )−dx−d)

√
1 − x−d

,

(4.1.7)

where yET W
0 = rET W

0 /rh, so (yET W
0 )−d = 1 − T 2L2. It is clear that for d > 2 we

can’t take rET W
0 → ∞ while keeping τET W > 0. There must then be some critical

value T = T∗ < L−1 such that τET W = 0, and if we consider T > T∗ we will have

self-intersecting branes in the Euclidean solution.

It is interesting to note in passing that the integral can be computed exactly:

σET W = 1 − d

2
√
π
TL(1 − T 2L2) 2−d

2d

Γ
(
1 + 1

d

)
Γ
(

1
2 + 1

d

)2F1

(
1, 1
d

; 1
2 + 1

d
; 1 − T 2L2

)
. (4.1.8)

For d = 2, the identity 2F1(b, a; b; z) = (1 − z)−a reduces this to σET W = 1
2 , so the

brane hits the boundary at τET W = β
4 independent of the value of rET W

0 , while for

d > 2 the critical tension T∗ is defined implicitly by solving σET W = 0.

4.1.1 Obstruction from worldvolume perspective

As remarked above, if we take the Euclidean solution and analytically continue one

of the flat directions xa, we obtain a solution where the metric on the ETW brane is

an eternal traversable wormhole. Thus, the obstruction above can be understood as

an obstruction to the existence of such eternal traversable wormholes in the effective

induced gravity theory on the brane.

A general analysis of obstructions from the worldvolume perspective was given

in [47], in the spirit of [134]. Following [47], we give the discussion for the case d = 4.

The analysis there is performed in terms of a new coordinate z along the ETW brane,

which makes the ETW brane geometry conformally flat,

ds2 = a2(z)(dz2 + ηabdxadxb), (4.1.9)

where a(z) has simple poles at z = ±z0/2 and a minimum at z = 0. We assume that

we have an effective gravity theory on the brane; the zz-component of Einstein’s
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equation then gives

3
(
a′

a

)2

− 3a2

ℓ2 = 8πG4Tzz, (4.1.10)

where G4 is the effective 4-dimensional Newton’s constant on the brane and ℓ is the

effective AdS scale on the brane. We take the matter on the brane to be conformal;

then Tzz = −3ρ/a2. The minimum value of a occurs where a′ = 0 so we have

amin = (8πG4ρℓ
2) 1

4 . (4.1.11)

Integrating from this minimum radius to the asymptotically AdS boundary at z =

z0/2, we get
z0

2 =
∫ ∞

amin

da√
a4

ℓ2 − 8πG4ρ
= ℓ

(8πG4ρℓ2) 1
4
I, (4.1.12)

where

I ≡
∫ ∞

1

dx√
x4 − 1

≈ 1.311. (4.1.13)

Thus we have

ρz4
0 = 2ℓ2I4

πG4
. (4.1.14)

To have an effective gravitational theory on the brane, we want the RHS to be

large; we want the brane AdS scale ℓ to be large compared to the brane Planck

scale. This ratio can also be interpreted as the central charge c3 of the 3d CFT dual

to the 4d gravity theory on the brane. But the LHS is naturally of order c4, the

number of degrees of freedom of the 4d CFT on the brane. (We get a Casimir energy

contribution with ρ ∼ 1
z4

0
for each species from the finite range of the z coordinate.)

We cannot solve this problem by taking the number of species c4 parametrically

large, of order c3; such a large number of species results in a larger effective UV

cutoff on the brane, of order ℓ [134]. Thus, there seems to be a general obstruction

to the construction of such traversable wormhole solutions.

For the Schwarzschild-AdS construction considered before, this obstruction is

the same as the self-intersection problem. Using (4.1.4), the induced metric on the
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brane in Schwarzschild-AdS is

ds2 = f(r)2

T 2r2 dτ 2 + r2

L2 dxadxa = r2

L2 (dz2 + dxadxa), (4.1.15)

so dz2 = f(r)2L2

T 2r4 dτ 2, and (4.1.4) becomes

L2

r2

(
dr
dz

)2

= f(r) − T 2r2 = r2
( 1
L2 − T 2

)
− µ

r2 . (4.1.16)

This maps to equation (4.1.10) with the identifications

r2 → a2L2,
( 1
L2 − T 2

)
→ 1

ℓ2 , µ → 8πG4ρL
4. (4.1.17)

As stated before, we tune the brane AdS scale ℓ to be large by taking the tension T

close to L−1, and as usual, the energy density on boundary (in this case, a dynamical

brane) is set by the black hole mass parameter µ in the bulk.

We have f(r) < r2

L2 , so dz < dτ
LT

, and

ρz4
0 <

ρτ 4
0

L4T 4 =
(
τ0

β

)4
L2

G4

8π3

L4T 4 , (4.1.18)

so we see that ρz4
0 is indeed naturally of the order of L2/G4 ∼ c4, the central charge

of the CFT dual to the Schwarzschild-AdS bulk, and the problem of making ρz4
0

large maps on to the problem of making τ0 large compared to β, which we can’t

achieve in this model without self-intersection.

4.1.2 Interface branes

The proposed solution of this problem is to consider adding an interface brane in

the bulk [47]. Using results of [136, 137], [47] showed that for extreme values of

the interface brane tension, ρz4
0 could indeed be made large. From the spacetime

perspective we will focus on, the idea is that for some choices of the interface tension

and bulk parameters, the spacetime on one side of the interface brane doesn’t contain

a horizon, so both the ETW brane and interface brane can be multiply wound relative

to a single copy of the Euclidean Schwarzschild-AdS5 geometry on that side without

encountering self-intersections, as pictured in figure 4.3. We find that this setup
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doesn’t solve the problem however, as the two branes run into each other. In this

section we will give a brief overview of interface brane setup; we will discuss the

details of the constraints in the next section.

With an interface brane, we have a spacetime region on either side of the brane,

so the relevant terms in the action are

I = 1
16πG

[∫
M1

dd+1x
√

−g1(R1 − 2Λ1) +
∫

M2
dd+1x

√
−g2(R2 − 2Λ2)

+ 2
∫

I
ddy

√
−h(K1 −K2) − 2(d− 1)

∫
I

ddy
√

−hκ

+ 2
∫

Q
ddy

√
−hK − 2(d− 1)

∫
Q

ddy
√

−hT
]
, (4.1.19)

where I ≡ ∂M1∩∂M2 is the interface brane worldvolume, and Q is the worldvolume

of the ETW brane as before. We assume a constant tension brane with tension

parameter κ. The motion of the interface brane is determined by the second Israel

junction condition

K1ab −K2ab = κhab. (4.1.20)

We consider a bulk solution with either side of the interface brane having the metric

of a planar AdS black hole of mass µi and AdS scale Li ≡ 1√
λi

,

ds2
i = fi(r)dt2 + dr2

fi(r)
+ r2dxadxa, fi ≡ λir

2 − µi

rd−2 . (4.1.21)

where i ∈ {1, 2}. The black hole horizon radii are rd
hi = µi

λi
. We will have an ETW

brane in region 1, so in region 1 r lies in a finite range between the ETW brane

and the interface brane, while in region 2 r runs from the interface brane to the

asymptotic boundary. The second junction condition leads to

f1
dt1
ds

− f2
dt2
ds

= κr, (4.1.22)

The first junction condition along with the definition of the proper length parameter

s leads to

fi

(
dti
ds

)
+ 1
fi

(
dti
ds

)
= 1. (4.1.23)
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Using these we find(
dr

ds

)2

− Veff (r) = 0, Veff (r) ≡ 1
2(f1 + f2) − (f1 − f2)2 + κ4r4

4κ2r2 , (4.1.24)

and

dt1
dr

= 1
f1
√
Veff (r)

( 1
2κr (f1 − f2) + 1

2κr
)
, (4.1.25)

dt2
dr

= − 1
f2
√
Veff (r)

( 1
2κr (f2 − f1) + 1

2κr
)
. (4.1.26)

The minimum radius of the brane, Veff (rI
0) = 0, is found to be

(rI
0)d =

(λ1 − λ2)(µ1 − µ2) − κ2(µ1 + µ2) − 2κ
√
λ1µ2

2 + λ2µ2
1 − (λ1 + λ2 − κ2)µ1µ2

κ4 − 2κ2(λ1 + λ2) + (λ1 − λ2)2 .

(4.1.27)

It will be useful to define λ̄ = λ2
λ1

, µ̄ = µ2
µ1

and κ̄ = κ√
λ1

. In terms of these parameters

the minimum radius is given by

(rI
0)d = rd

h1

(1 − λ̄)(1 − µ̄) − κ̄2(1 + µ̄) − 2κ̄
√
µ̄κ̄2 +

(
µ̄− λ̄

)
(µ̄− 1)

κ̄4 − 2κ̄2(1 + λ̄) + (1 − λ̄)2

 (4.1.28)

We want solutions that include a horizon in region 2, and don’t include the horizon

in region 1. The solution will contain a horizon if ṫ2 < 0 near r = rI
0 or

f2(rI
0) − f1(rI

0) + κ2(rI
0)2 > 0. (4.1.29)

This condition becomes

(rI
0)d

rd
h1

[
κ̄2 − (1 − λ̄)

]
+ (1 − µ̄) > 0. (4.1.30)

From (4.1.28), we see that this condition only depends on the three parameters

(λ̄, µ̄, κ̄). From (4.1.30), we find that the t2 region will contain a horizon if

κ̄ >

√√√√1 − λ̄

µ̄
or µ̄ < λ̄. (4.1.31)
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Requiring there is no horizon in the t1 region, ṫ1(rI
0) < 0, leads to

(rI
0)d

rd
h1

[
κ̄2 − (λ̄− 1)

]
+ (µ̄− 1) > 0. (4.1.32)

giving the condition

κ̄ <
√
λ̄− µ̄ and µ̄ < λ̄. (4.1.33)

Therefore, the desired solution requires we satisfy the second inequality in (4.1.31),

µ̄ < λ̄. From (4.1.33) and κ̄min = |
√
λ̄− 1| we get the stronger condition

λ̄ >
1
4(1 + µ̄)2. (4.1.34)

4.2 Constraints on interface brane models

We now want to consider the constraints we need to satisfy to build well-behaved

Euclidean solutions in the interface brane models. Assuming we choose parameters

so that the event horizon is not included in region 1, we do not need to impose a

periodicity condition on the time coordinate in region 1, so we can have tET W < 0

without a self-intersection problem. However, in the presence of the interface brane,

we have new constraints from requiring the ETW brane to not run into the interface

brane: we need the minimum radius larger, rET W
0 > rI

0, and we need the time at

which the ETW brane meets the boundary to be larger, tET W > tI1. To avoid self-

intersection of the interface brane in region 2, we also need tI2 > 0. We will find that

we can satisfy these constraints simultaneously only for T < T∗.

These conditions are conveniently analysed by working in terms of the dimen-

sionless combinations

σET W = 2tET W

β1
= 1 − 2

β1

∫ ∞

rET W
0

dr
f1(r)

Tr√
f1(r) − T 2r2

, (4.2.1)

σI
1 = 2tI1

β1
= 1 + 2

β1

∫ ∞

rI
0

dr
f1(r)

f1(r) − f2(r) + κ2r2

κr
√
Veff (r)

 , (4.2.2)

σI
2 = 2tI2

β2
= 1 − 2

β2

∫ ∞

rI
0

dr
f2(r)

f2(r) − f1(r) + κ2r2

κr
√
Veff (r)

 , (4.2.3)
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where βi = 4π
dλirhi

is the inverse temperature associated to either side of the interface

brane.

Let us first consider the region of parameters where both rET W
0 and rI

0 are large

compared to rhi. Large rET W
0 is the regime we wanted to reach, where the theory on

the ETW brane is approximately d-dimensional Einstein gravity, while we will see

that large rI
0 is required to satisfy the constraints; this corresponds to the extreme

values of the interface brane tension which were found in [47] to give large ρz4
0 . In

this limit we can give a simple scaling argument that no good Euclidean solution

exists.

Recall that for the ETW brane, we have

σET W = 1 − d

2π
T√
λ1

(yET W
0 ) d−2

2

∫ ∞

1

dx
x2(1 − (yET W

0 )−dx−d)
√

1 − x−d
. (4.2.4)

It is clear that for d > 2 we can’t take yET W
0 → ∞ while keeping σET W > 0. The

interface brane scenario relaxes the condition on σET W to σET W > σI
1 while keeping

σI
2 > 0. Let us write the integrals in terms of the parameters (λ̄, µ̄, κ̄) and scale out

rh1, r = rh1y,

σI
1 = 1 + d

4π

∫ ∞

yI
0

dy
f̄1(y)

 f̄1(y) − f̄2(y) + κ̄2y2

κ̄y
√
V̄eff (y)

 , (4.2.5)

σI
2 = 1 − dλ̄

4π
rh2

rh1

∫ ∞

yI
0

dy
f̄2(y)

 f̄2(y) − f̄1(y) + κ̄2y2

κ̄y
√
V̄eff (y)

 , (4.2.6)

where f̄1 = y2(1 − y−d), f̄2 = λ̄y2(1 − µ̄
λ̄
y−d),

V̄eff = − y2

4κ̄2

[
(κ̄4 − 2κ̄2(1 + λ̄) + (1 − λ̄)2) + 2

yd
(κ̄2(1 + µ̄) − (1 − λ̄)(1 − µ̄))

+ 1
y2d

(1 − µ̄)2
]
. (4.2.7)

To allow σET W → −∞, we want to make σI
1 very negative, by making yI

0 large. For

κ̄ close to |1 −
√
λ̄|, we have

(yI
0)d ≈ (µ̄−

√
λ̄)(1 −

√
λ̄) + |µ̄−

√
λ̄||1 −

√
λ̄|

2
√
λ̄[κ̄2 − (1 −

√
λ̄)2]

. (4.2.8)
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Thus, for
√
λ̄ not between µ̄ and 1, yI

0 blows up as κ̄ approaches its lower limit

|1 −
√
λ̄|. This is the extremal limit of the interface brane tension introduced in [47].

In this limit, setting y = yI
0/w, we have

V̄eff ≈ (µ̄−
√
λ̄)(1 −

√
λ̄)

(yI
0)d−2κ̄2

(
1 − wd

w2

)
, (4.2.9)

and f̄1 ≈ (yI
0)2w−2, f̄2 ≈ (yI

0)2λ̄w−2, so

σI
1 ≈ 1 − d

2π (yI
0) d−2

2
(
√
λ̄− 1)√

(
√
λ̄− µ̄)(

√
λ̄− 1)

∫ 1

0

dw√
1 − wd

(4.2.10)

and

σI
2 ≈ 1 − d

2π (λ̄) d−2
2d (µ̄) 1

d (yI
0) d−2

2
(
√
λ̄− 1)√

(
√
λ̄− µ̄)(

√
λ̄− 1)

∫ 1

0

dw√
1 − wd

. (4.2.11)

We see from these that σI
1 < 0 requires λ̄ > 1. Then to make σI

2 > 0, we need to

make µ̄ small, so that (µ̄) 1
d (yI

0) d−2
2 remains finite as yI

0 → ∞. Note these conditions

are consistent with the previous condition on λ̄, µ̄ given in (4.1.34). In this limit of

small µ̄,

σI
1 ≈ 1 − d

2π (yI
0) d−2

2

√
1 − 1√

λ̄

∫ 1

0

dw√
1 − wd

. (4.2.12)

Since yET W
0 > yI

0 ≫ 1, the ETW brane tension is close to its upper bound

T ≈
√
λ1 and we have that

σET W − σI
1 ≈

[
(yI

0) d−2
2

√
1 − 1√

λ̄
− (yET W

0 ) d−2
2

]
d

2π

∫ 1

0

dw√
1 − wd

< 0. (4.2.13)

The requirement that the ETW brane is initially outside the interface brane implies

that it will run into the interface brane before reaching the boundary.

Thus, we have shown that our constraints cannot all be satisfied in the region

where yET W
0 is large. This is disappointing, as this is the limit of interest. From the

perspective of the worldsheet analysis of [47] reviewed in section 4.1.1, increasing yI
0

increases ρ, but at the same time it requires us to increase yET W
0 , which corresponds

to increasing c3. The increasing value of ρz4
0 never quite catches up with the target

value.
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However, it looks like the introduction of the interface brane has improved things

somewhat; while (4.2.13) is always negative, we can make it close to zero if we take

λ̄ large and yI
0 close to yET W

0 . Surprisingly, we will see in the next subsection that

this seeming improvement is misleading; there are no values of T where we have

good Euclidean solutions with interface branes where we did not already have good

solutions without interface branes.

4.2.1 Numerical investigation

In this section, we numerically study the region of the parameter space in which

the constraints σET W > σI
1 , σI

2 > 0 are satisfied. The relevant parameters are the

dimensionless combinations λ̄, µ̄ and the brane tensions κ̄, T̄ = T/
√
λ1. We show

that the solutions with interface branes only exist for choices of T that also admit

solutions without interface branes.

Due to the constraint on λ̄ in (4.1.34), we define

λ̄′ ≡ λ̄− λ̄min = λ̄− 1
4(1 + µ̄)2. (4.2.14)

Plots will be more clear in terms of this shifted variable. The interface tension is

constrained to the interval κ̄ ∈ (κ̄min, κ̄max) = (|
√
λ̄−1|,

√
λ̄− µ̄), so we parameterise

it as

κ̄ = κ̄min(1 − x) + κ̄maxx, x ∈ (0, 1). (4.2.15)

We plot the allowed regions as functions of λ̄′, µ̄ for a range of values of T̄ , x.

In figure 4.4, we plot this for a value T̄ < T̄∗, where we see that there is a small

allowed range of values of the parameters where all the constraints are satisfied. In

figure 4.5, we plot for T̄ = T̄∗ (to numerical accuracy), seeing that the allowed region

shrinks to the single point at λ̄′ = 0, µ̄ = 1, for all values of x. This corresponds to

the solution with no interface brane, as κ̄min = κ̄max = 0 for λ̄′ = 0, µ̄ = 1.

Thus, while there are allowed solutions with interface branes, these only exist

for choices of T that also admit solutions without interface branes, and the range of

possible values for the interface brane tension shrinks to zero as the critical value is
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reached. Allowing the possibility of interface branes has not enlarged the range of

possible ETW branes for which we can find eternal wormholes, or good Euclidean

solutions describing the initial conditions for our cosmology.
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Figure 4.4: Plots of the regions in the parameter space (λ̄′, µ̄) with σET W >
σI

1 , σI
2 > 0, or yI

0 < yET W
0 with d = 4, for the sub-critical value T̄ = 0.6 < T̄∗.

Reading from top left to bottom right: x = 0.16, 0.12, 0.08, 0.04. We see
that there is a small region where all constraints are satisfied. As we
decrease x, the constraint that yI

0 < yET W
0 becomes more constraining –

this is because, as noted earlier, the interface brane moves towards the
boundary as we approach the lower bound on κ.

4.3 Discussion

In this chapter we considered the construction of holographic models for studying

closed FRW cosmologies using ETW branes, following [43]. An issue with the
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Figure 4.5: Plots of the regions in the parameter space (λ̄′, µ̄) with σET W >
σI

1 , σI
2 > 0, or yI

0 < yET W
0 with d = 4, T̄ = T̄∗ ≈ 0.7977. Reading from top

left to bottom right: x = 0.08, 0.06, 0.04, 0.02. At this critical value, we see
that the only point where all the constraints are satisfied is λ̄′ = 0, µ̄ = 1,
for all values of x. This corresponds to the solution with no interface brane,
as κ̄min = κ̄max = 0 for λ̄′ = 0, µ̄ = 1.

construction of such models for d > 2 is that the requirements of having a good

Euclidean solution and having a separation of scales which gives us Einstein gravity

on the ETW brane are difficult to satisfy simultaneously.

We studied a proposed model for satisfying these conditions using interface branes

from [47]. We found that the use of interface branes relaxes the constraint in the

simple model, but introduces new constraints, from requiring that the ETW brane

and the interface brane don’t collide. Taking into account all the constraints, we

find that adding interface branes doesn’t increase the range of values of the ETW

brane tension for which we have good solutions.
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A key question is whether this failure is essentially technical, or is indicative of a

deeper issue. In [47], it was observed that the Euclidean solutions we are trying to

construct are related to eternal traversable wormhole solutions, and it has previously

been found [134] that it is difficult to construct such solutions in higher dimensions,

which might suggest that the problem is deeper. However, we are not aware of

any clear physical obstruction to the existence of such eternal traversable wormhole

solutions either; see also the discussion of (non-eternal) traversable wormholes in

[138].

One hint that the connection to eternal traversable wormholes is relevant to the

obstruction we find is that the known way around the obstruction [44] does not

give a wormhole solution. By replacing the Schwarzschild-AdS solution we have

considered by a charged black hole, we can decouple the period β and the horizon

scale rh. By taking the black hole close to extremality we can make β arbitrarily

large, allowing us to keep τET W in (4.1.6) positive as rET W
0 grows [44]. However,

if we have a real electric or magnetic charge in the Lorentzian black hole solution,

after we analytically continue t and one of the xa, the field will be imaginary, so

we do not obtain a good wormhole solution. If we analytically continue the charge

parameter, the analytically continued solution does not have an extremal limit, so

we can’t make β large. It would be very interesting to find some other method for

constructing eternal traversable wormholes or brane cosmologies in d > 2 to explore

these questions further.
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