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Transitórios e Sinais nos Detetores LIGO

Deep Learning for the Classification of Transient
Noises and Signals in the LIGO Detectors
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Investigador Doutorado de Ńıvel 1 da Universidade de Aveiro



agradecimentos /
acknowledgements

Em primeiro lugar, quero agradecer ao meu orientador, Doutor António Morais, e
ao meu co-orientador, Doutor Felipe Freitas, por esta oportunidade.

Quero também prestar um profundo agradecimento ao Professor António Onofre
por ter aceitado acompanhar o meu trabalho e pelo inprescind́ıvel apoio que prestou.
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gens

Resumo Neste trabalho, dados dos detetores aLIGO recolhidos nos dois primeiros peŕıodos
de observação de LIGO e Virgo (O1 e O2), na forma de espectrogramas, foram
classificados usando modelos de Deep Learning baseados em redes neuronais con-
volucionais. Além de serem usados modelos treinados do zero, também se testaram
modelos pré-treinados, e os resultados foram comparados.

Para isso, começou por se fazer uma breve introdução às ondas gravitacionais e
sua deteção nos detetores de LIGO. Foram também introduzidos os fundamentos
relacionados com algoritmos de Deep Learning e das boas práticas para o treino
de modelos para a classificação de imagens.

Verificou-se que usar os diferentes canais de cor das imagens para apresentar in-
formação com diferentes janelas temporais melhora os resultados dos modelos e
que, além disso, arquiteturas pequenas são capazes de separar eficazmente as 22
classes presentes no dataset Gravity Spy. Adicionalmente, a técnica de transfer le-
arning permite acelerar a fase de treino e obter classificadores com um desempenho
competitivo.

Os melhores modelos obtiveram um F1-score médio (macro) de 96.84% para o
modelo pré-treinado e de 97.18% para o modelo base treinado do zero. Estes
resultados estão em linha com os melhores resultados encontrados na literatura
para o mesmo dataset. Adicionalmente, os modelos foram testados em sinais
reais de ondas gravitacionais de Coalescências Binárias Compactas detetadas por
LIGO, obtendo sensibilidades de, respetivamente, 25% e 75%, apesar de terem sido
treinados com um número reduzido de sinais provenientes de simulações de ondas
gravitacionais.



Keywords deep learning, aLIGO, transient noise, gravitational waves, image classification

Abstract In this work, data from the aLIGO detectores collected during the first two aLIGO
and AdV observing runs (O1 and O2), in the form of spectrograms, were classified
using Deep Learning models based on Convolutional Neural Networks. As well as
training models from scratch, pre-trained models were also employed, and their
performance compared.

Initially, a brief theoretical introduction on gravitational wave detection was per-
formed, focusing on the LIGO detectors. In addition, the foundations of Deep
Learning and current best practices for the training of image classification models
were also presented.

The computational experiments showed that encoding information from different
time windows in the different colour channels enhanced the performance of the
models and that small architectures were capable of separating the 22 classes
present in the Gravity Spy dataset. Moreover, transfer learning was able to accel-
erate the training process and achieve classifiers with competitive performance.

The best models obtained a macro-averaged F1 score of 96.84% (fine-tuned model)
and 97.18% (baseline trained from scratch), which are in line with the best results
in the literature for the same dataset. In addition, these models were evaluated on
real gravitational wave signals from Compact Binary Coalescences from the first
two aLIGO and AdV observing runs, and they achieved recalls of 75% and 25%,
respectively, while only having been trained with a small number of signals from
gravitational wave simulations.
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Chapter 1

Introduction

On September 14, 2015, the Advanced Laser Interferometer Gravitational-Wave Observatory
(aLIGO) [1] made the first direct observation of a Gravitational Wave (GW), which was caused
by the violent merger of a pair of black holes more than 1.3 billion years ago [2]. The detection of
gravitational waves initiated a novel era of astrophysics, as it provides a new window for observing
the Universe and an unique way to study fundamental physics - for instance, allowing to test general
relativity in new regimes [3] and presenting new ways to measure the Hubble constant [4]. Since its
very first detection, aLIGO, most recently in collaboration with Virgo [5], has already detected 90
candidate signals from Compact Binary Coalescences (CBCs), most of which resulting from Binary
Black Hole (BBH) mergers [6].

Measuring a gravitational wave requires detectors with enormous sensitivities, as the displacements
produced by the GWs that reach Earth are smaller than the radius of a proton [2]. For this reason,
aLIGO relies on interferometers with 4 km arms and cutting-edge designed and fabricated subsystems
to amplify the gravitational signals and isolate the sensitive components from non-gravitational wave
disturbances such as seismic noise. Nevertheless, gravitational wave detection is still affected by the
existence of noise fluctuations of non-astrophysical origin, the so-called glitches [7], which contaminate
the GW data and negatively affect the detection pipelines, as they can trigger false positives or overlap
with GW signals.

Therefore, there is a need for strategies that reduce the rate of glitches in the aLIGO data, either by
performing denoising, that is, subtracting the glitches from the data, or by attenuating or eliminating
the sources of the glitches, when that is possible. Both strategies have a need for the study of the
different glitches and their categorization into classes, as it allows to enhance the denoising mechanism
and to search for correlations between each glitch type and the numerous auxiliary detectors at the
Laser Interferometer Gravitational-Wave Observatory (LIGO).

The problem of glitch classification is characterized by the need to learn patterns from struc-
tured labelled data, either in raw time-series form or as spectrograms (time-frequency-energy images).
Therefore, it is a good candidate for supervised Machine Learning (ML) algorithms, i.e., algorithms
that learn from labelled examples instead of being explicitly programmed [8]. Of particular interest
is Deep Learning (DL), a specific type of machine learning that has the advantage of not needing
human feature engineering, and has achieved breakthroughs in tasks related to image, video, speech
and audio processing, setting the state of the art and even achieving super-human performance on
some of those tasks [9]. Having the previous reasons in mind, this work focuses on the application of
supervised deep learning methods to the task of glitch classification in the aLIGO detectors.

This document is divided in five chapters, this being the first. In chapter 2, gravitational waves
are introduced, as well as the main detection techniques, and some issues of the current GW detection
paradigm are presented. Chapter 3 presents the theoretical foundations of Deep Learning and Con-
volutional Neural Networks (CNNs), as well as some modern performance-enhancing techniques that
are used throughout this work. Chapter 4 contains the core of this work, introducing the methods
and results of the application of deep learning methods to glitch classification, and includes a brief
study of the application of glitch classifiers to the task of gravitational wave detection. Finally, the
main conclusions are summarized in chapter 5.

1



Chapter 2

Gravitational wave detection

This chapter gives an overview of the detection of Gravitational Waves (GWs). In section 2.1, the
concept of gravitational waves, the main sources of astrophysical GWs, and the effect of GWs on matter
is presented. Then, section 2.2 introduces the first generation of GW detectors, based on resonant bar
detectors. Finally, section 2.3 focuses on the modern GW detectors based on interferometry. In this
section, both the basic detection principle and the necessary enhancements are examined. Moreover,
the unwanted glitches and the different detection pipelines are presented. A brief account of the first
direct GW detection and the prospects for GW detection are also included in this section.

2.1 Gravitational waves

The concept of gravitational waves was introduced in 1905 by Poincaré [10], who proposed that
gravity was not instantaneous but instead transmitted at the speed of light by a wave, appropriately
called a gravitational wave. With the publication of Albert Einstein’s Theory of General Relativity in
1915 [11], the paradigm of gravitation was revolutionized: gravity was not a force but a manifestation
of the curvature of the space-time. Shortly after, he also conjectured that the existence of gravitational
waves, similar to the already known electromagnetic waves, was a possibility. However, for a long time
GWs were deemed more as a mathematical artifact than a real phenomenon.

It was not until 1974 that the first proof of the existence of gravitational waves was found, after
the discovery of a binary pulsar system, which general relativity had predicted to radiate gravitational
waves. The orbits of the stars were closely monitored for several years, and it was found that they
closely followed the predictions of general relativity, resulting in the first indirect detection of gravita-
tional waves [12]. Since then, more observations of binary pulsars have corroborated the existence of
GWs. Despite these advances, the first direct observation of a gravitational wave was only achieved
in 2015, as detailed in section 2.3.5, in one of humanity’s greatest scientific achievements.

Today, it is widely agreed that gravitational waves are real. They are ripples in the fabric of
space-time, caused by accelerating masses that lose energy emitted in the form of undulations of the
space-time itself, which propagate in all directions through the Universe at the speed of light, bringing
information about their genesis.

2.1.1 Sources of gravitational waves

According to General Relativity, every object that accelerates originates GWs. However, the
masses and accelerations of objects on Earth are far too small to produce detectable GWs. Instead,
the waves detected so far are astrophysical GWs, originated in cataclysmic events outside of our Solar
System.

Astrophysical gravitational waves can have many different origins, from the Big Bang itself to a
single spinning massive object, such as neutron star. The former waves are thought to be mixed in
the so-called stochastic signal, which is a random mixture of many small GWs, while the later are due
to the imperfections of the spherical shape of the object, originating a continuous wave, i.e., a wave
with constant frequency and amplitude. There are also waves from impulsive sources that emit bursts
of intense gravitational waves. [13]

Nevertheless, the most studied class of GWs corresponds to the Compact Binary Coalescences
(CBCs). This type of wave is produced by orbiting pairs of massive and dense objects such as neutron
stars and black holes. So far, all the GW events detected belong to this type, which can be further
divided in three categories, each associated to a unique wave pattern: Binary Neutron Star, Binary
Black Hole (BBH), and Neutron Star-Black Hole Binary. In these binary systems, the two objects
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revolve around each others for millions of years, slowly losing energy as they emit gravitational waves.
They gradually become closer and thus emit stronger GWs, until they finally collide, merging together
and releasing huge amounts of energy. [14]

2.1.2 Effect of gravitational waves on matter

In order to better understand the nature of GWs and the strategies for their detection, it is
useful to consider how a GW affects a circular ring of particles, initially at rest, when the motion of
the GW is perpendicular to the direction to the plane of the particles. Consider Fig. 2.1, with the
particles initially arranged in a circle (and not attached to anything or each other) as shown in the
left diagram, and a gravitational wave which propagates downwards in a direction perpendicular to
the paper. Initially, the particles are compressed in the vertical direction and stretched horizontally,
starting to form an ellipsis until the deformation reaches its maximum, at which point the process is
reversed, the particles reach the initial position and continue to be stretched and squashed until the
direction in which it initially compressed is at a maximum. This process continues until the wave has
passed through the particles. [15]

Figure 2.1: Scheme of the effect of a gravitational wave, going in a downward direction (i.e. entering
the paper) on a ring of particles. The diagram on the left shows the initial state and the other
diagrams show subsequent instants in time. The amount of the displacements is highly exaggerated
for visualization purposes. Figure inspired by [15].

Having this behaviour in mind, it could be naively suggested that it is very simple to detect GWs,
as one only needs to compare distances between perpendicularly placed pairs of particles in free motion
as a wave passes through. This is not the case mainly for two reasons. First, the squashes and stretches
shown in Fig. 2.1 are actually much smaller, in the order of zeptometers (10−21 m). Moreover, even
if one could use an instrument like a ruler to measure such small displacements, it would not stretch
the same way as the free particles, due to the elastic properties of the ruler. For these reasons, more
ingenious strategies are needed for the detection of gravitational waves.

2.2 Primitive gravitational wave detectors

The first instruments developed to detect GWs were the so-called Weber bars, which are large
cylinders of metal proposed by Joseph Weber that would, in theory, show resonant vibrations produced
by the transit of a GW [16]. The first Weber bars consisted of a big aluminum cylinder, weighting
three tonnes, which was hanging from a system designed to isolate environmental vibrations. Each
instrument was equipped with a belt of piezoelectric crystals, which would convert the mechanical
vibrations into electrical pulses. Two such detectors were built and located 950 km away, allowing
to eliminate local signals by discarding signals which were not recorded in both detectors within an
appropriate time interval1.

Since 1969, Weber made multiple publications claiming the detection of GW signals; however,
theoretical physicists soon found out that some of his measurements did not agree with established
theories and, more importantly, none of the efforts to replicate his detectors, even with enhanced
sensitivities achieved through cooling of the devices, was able find a gravitational wave [15]. Thus,
this class of detectors was mostly abandoned in detriment of new detection strategies, which is greatly

1Modern gravitational wave detectors still take advantage of this technique to increase the significance of detections.
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illustrated by Peter Kafka’s statement in the 1975 International School of Cosmology and Gravita-
tion [17]: “only a combination of extremely high quality and extremely low temperature will bring
resonance detectors near the range where astronomical work is possible. (Another way which seems
worth exploring, is laser interferometry with long ‘free-mass antennas’.)”.

As reported in section 2.3, the mentioned laser interferometry based methods turned out to revo-
lutionize the field of gravitational wave detection. Nevertheless, methods based on cryogenic resonant
bars are still studied, and experiments such as AURIGA [18] are still trying to detect GWs. At the
time of the writing of this report, no detection of a gravitational wave has been made using a resonant
bar.

2.3 Interferometric gravitational wave detectors

Since the 1960s, there have been several proposed schemes to detect gravitational waves using
interferometers, which are all based in the classic Michelson interferometers.

2.3.1 Basic detection principle

Consider again the example at the end of section 2.1.2, where it was tried to measure the dis-
placement between free particles as they were traversed by gravitational waves. Instead of trying to
measure the distances, the time it takes by light to travel between them can be measured accurately,
as the speed of light (in vacuum) is invariant and thus unaltered by a gravitational wave.

In principle, such measurement can be achieved with a very simple device, the Michelson inter-
ferometer, as schematized in Fig. 2.2. This simple setup comprises a light source, typically a laser,
which is equally split by a beam-splitter (BS) into two equally long perpendicular arms with a mirror
at the end. When the light is reflected back and recombines at the BS, interference patterns known
as fringes are observed in the photodetector. When a GW passes through the interferometer at a
certain direction, one of the mirrors slightly reduces its distance to the BS, while the other increases
its distance. The difference in arm length originates a phase shift between the beams of the two arms,
which is detected in the form of a variation of the intensity reaching the photodiode.

Figure 2.2: Configuration of a Michelson interferometer to measure gravitational waves. The image
shows three sequential time instants as a wave is passing. The distance between each proof mass and
the splitter changes, and this is measured at the detector. Figure reproduced from [19].

In practice, the detection is not so simple, as the GW signals that reach the Earth are very faint,
making it difficult to extract them from the background noise. It turns out that the length of the
interferometric arms is a limiting factor of its sensitivity. For instance, for a gravitational wave at
100Hz, the optimal length of the arms of a Michelson interferometer would be 750 km [20]. As shown
in section 2.3.2, modern interferometers overcome this issue by combining their huge arm length with
ingenious modifications to enhance the signals of interest.
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2.3.2 Large scale gravitational wave interferometers

The LIGO project was born from a collaboration between competing groups at the United States,
which were working on small interferometric detectors for gravitational wave detection. After over-
coming organizational difficulties, LIGO managed to obtain funding for the construction of two similar
Michelson based interferometers with 4 km arms, one in Hanford (Washington, USA) and the other
in Livingston (Louisiana, USA). From the start, the goal was to produce an evolutionary apparatus,
which could be evolved by improving the interferometer components through different stages. The
first stage, “initial LIGO” was designed to test the concept of a large scale detector, and the detection
of GWs would only be likely in a later stage. The initial LIGO started operating in 2002. [15]

Simultaneously, two similar projects appeared in Europe. In Germany, the study of the noise
and performance of a 30m-arm detector culminated in the construction of a 600m interferometer,
GEO 600 [21], which started operating in 2002. Since then, GEO 600, due to its close collaboration
with LIGO, has been an important development and test laboratory for technologies that eventually
are implemented in the larger interferometers. In Italy, the Virgo collaboration managed to build a
3 km interferometer [22], which started operation in 2000. In 2007, Virgo and LIGO started a formal
collaboration that included the exchange of data and joint analysis. The large detectors made joint
observations from 2002 to 2010, but failed to detect gravitational wave signals. [15].

In late 2010, LIGO was disassembled for the construction of the second-stage detector, “advanced
LIGO” (aLIGO). This major upgrade, which included the replacement of all the interferometer com-
ponents with the ultimate goal of enhancing the initial LIGO sensitivity by a factor of 10, ended in
March 2015. Among the notable changes are the use of much larger mirrors, the improvement of the
passive seismic isolation system with a quadruple pendulum and the usage of glass fibers instead of
metal wires, and the introduction of active seismic cancellation mechanisms. [1]

Figure 2.3: Simplified diagram of an aLIGO detector. Figure adapted from [2].

A simplified diagram of an aLIGO detector is shown in Fig. 2.3. This detector is based on the
Michelson interferometer shown in Fig. 2.2, but with the necessary enhancements to achieve the
required sensitivity to measure GWs. The laser source is a 1064 nm Nd:YAG laser stabilized in
amplitude, frequency and beam geometry. Each arm contains a resonant Fabry-Perot cavity, formed
by the two test mass mirrors, which multiplies the effect of a GW in the light phase by a factor of 300
and increases the power circulating in each arm. Moreover, a partially transmissive power recycling
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mirror provides additional buildup of the beam power circulating in the interferometer. A signal
recycling mirror at the output is used to maintain a broad detector frequency response. [1, 2]

All components apart from the laser are kept in a ultra-high vacuum system. As mentioned
before, the test masses are suspended at the final stage of a quadruple-pendulum system supported
by an active seismic isolation platform, providing more than 10 orders of magnitude of isolation from
seismic noise. Additional precautions are taken regarding the thermal noise of the test masses and
the alignment of the optical components, in order to minimize noise sources. [1, 2]

The output port of the Michelson is held close to a dark fringe, resulting in a small amount of
light leaving the output port and most of the light being kept circulating. The output light signal is
measured by a homodyne detector and calibrated with less than 10% uncertainty in amplitude before
it is sent to the detection pipelines. [2]

2.3.3 Glitches

The aLIGO detectors are designed to minimize the noise sources, enhancing the sensitivity of the
instruments. Nevertheless, seismic noise dominates at low frequencies, while thermal noise from the
coating of the test masses is relevant at intermediate frequencies. At higher frequencies, the detectors
are fundamentally limited by the quantum noise. [1]

In the daily operation of the detectors, they are also affected by the existence of short, non-
Gaussian, transient noise fluctuations that happen due to instrumental or environmental reasons,
the so-called glitches [7], which contaminate the strain data and reduce the quantity and quality of
the detections. Glitches vary widely in duration, frequency range, and morphology; moreover, the
commissioning of the detectors between each observing run is expected to originate new types of
glitches [7]. The most common glitch type is named “blip”, and it resembles the merger of high
mass binaries [23]. In the last observing run, these glitches happened at a rate of 4 per hour at the
Livingston detector, and 2 per hour at Hanford, and they were responsible for a significant amount of
the discarded data [23].

Overall, glitches occur quite frequently: despite the efforts to reduce the occurrence of glitches,
even in the last aLIGO-Virgo’s observing run the glitch rate was close to 1min−1 [6]. Moreover, the
origin of many of the glitch types, including the “blips”, is still unknown [23]. Glitches can either
raise false alarms when they occur simultaneously in multiple detectors or overlap with GW signals,
reducing the effectiveness of both the modelled and unmodelled detection pipelines. Although possible,
it is computationally expensive to artificially remove glitches from the signals, and this problem will
increase as more GWs are detected in future observing runs [24]. The best way to reduce the amount
of glitches is to identify their causes and fix them, which requires a proper classification of different
glitches into well-defined classes. Having this information, it is easier to try to correlate each glitch
type with the auxiliary sensors and unveil their cause.

2.3.4 Detection pipelines

In the data measured at LIGO, the gravitational signals are buried inside noise (see e.g. Fig. 2.4),
so there is a need for methods that allow to search for the GW signals, preferably with low latency
and high confidence. Currently, the array of detectors employs two distinct types of search methods:
modelled and unmodelled searches.

Modelled searches are used to detect well-modeled GW sources, such as CBCs, using the tech-
nique of Matched-Filtering (MF), where waveform templates obtained from numerical relativity are
correlated with the detectors’ data, in order to extract signals from the noise. Even though MF is
the optimal method only in the case of known waveforms embedded in stationary Gaussian noise, it
is successfully used for the detection of GWs originated in CBCs [25].

However, other GW sources cannot be well modelled by general relativity, demanding the use of
unmodelled searches. These are generic searches that make minimal assumptions about the signal
morphology, and rely on identifying coincident excess power on the strain data. Due to their robust-
ness, these algorithms are also used for CBC searches, complementing the MF methods. They allow
to detect events with features such as misaligned spins, high mass ratios, or eccentric orbits, that
could escape from the MF pipeline [25]. In fact, the signal GW150914 (see section 2.3.5) was first
detected by a generic algorithm, within three minutes of data acquisition [2].
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After the identification of a GW candidate by a search pipeline, bayesian inference algorithms are
used to estimate the properties of the event, such as the sky localization, distance, and the masses
and spins (in the case of CBCs). These algorithms can take hours to converge, although probability
sky maps with comparable accuracy can be obtained within tens of seconds. [25]

Despite its success, matched-filtering is a costly method, as the execution time scales linearly with
the number of waveform templates. This limits the number of waveforms in the template bank, as a
bigger bank will slow the detection pipeline. Moreover, unmodelled searches have the disadvantage
of not using all the available knowledge about the morphology of the signals expected from a CBC.
An ideal CBC detection pipeline would remain low-latency, while containing the information about
many examples over the full range in every parameter dimension. Nevertheless, this is impossible in
the current paradigm, which gives rise to the need for new detection pipeline methods, perhaps taking
advantage of Machine Learning tools.

2.3.5 GW150914: the first direct gravitational wave detection

The first aLIGO detection happened four days before the start of the inaugural official observing
run, after a long night of last-minute tests [15]. On September 14, 2015, at 4:50 a.m. local time, the
two detectors observed the coincident signal GW150914, shown in Fig. 2.4, within seven milliseconds of
each other. In the time-frequency representation, the signals show the characteristic chirp morphology,
where the frequency increases over time.

Figure 2.4: Gravitational wave event GW150914 observed by the Hanford and Livingston detectors.
The top row shows the strain signals while the middle row shows the signal predicted by general
relativity for a BBH system with the parameters recovered from GW150914 and the 90% credible
regions for two independent waveform reconstructions. The bottom row shows a time-frequency
representation of the strain data. Figure adapted from [2].

The signal was found to have been produced by the coalescence of two black holes, starting with
the last phase of the orbital inspiral, followed by the merger of the two black holes, which corresponds
to the maximum in the strain amplitude, and the subsequent ringdown of the final black hole. The
estimated masses of the two black holes are 36M⊙ (solar masses) and 29M⊙, which resulted in the
formation of a 62M⊙ black hole, meaning that 3M⊙ were released as energy in the form of GWs.
This energetic event occurred at a distance of about 410Mpc (approximately 1.3 billion light years)
from Earth.
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2.3.6 Prospects for gravitational wave observation

So far, the LIGO-Virgo-KAGRA (LVK) Collaboration2 has conducted three observing runs. In
the first observing run (O1), which took place between September 2015 and January 2016, the aLIGO
detectors achieved a BBH range (computed for a 30M⊙ + 30M⊙ black hole system) of 740Mpc [26].
O1 managed to detect three GW signals, all from BBH mergers [26].

After a commissioning phase to increase the detectors’ sensitivity, the second observing run (O2)
took place from the end of November 2016 to the end of August 2017. Here, the aLIGO detectors
operated at a BBH range of 910Mpc. Moreover, they were joined in the last month of O2 by the
Advanced Virgo (AdV) detector, with a range of 270Mpc [26]. During this run, eight GW signals
were detected, including the first detection of a binary neutron star merger [26]. Furthermore, the
addition of AdV allowed to enhance the accuracy of the localization of some of the events [26].

The third observing run (O3) started on April 2019 and ended prematurely due to the COVID-19
pandemic on March 2020. Here, aLIGO achieved BBH sensitivities between 990 and 1200Mpc, while
AdV operated at 500Mpc [26]. O3 was very prolific regarding the detection of GW signals, with a total
of 79 events, including the first confident observations of binary neutron star-black hole binaries [6].

After an intense period of upgrades and commissioning, the next observing run (O4) is scheduled
to begin on March 2023 and last a full year [27]. The ranges of the aLIGO and AdV detectors will be
significantly higher than O3 (60% and 100% increases, respectively) [27]. The KAGRA detector [28],
located in Japan, is set to join the three detectors at the beginning of the run, albeit with a much
lower sensitivity [27]. A fifth observing run (O5) is also planned to begin in 2026. Moreover, there
are plans to join a new observatory, LIGO-India, to the array of networks. This observatory will have
an aLIGO detector configured identically to the other two at the United States [26].

The increases in sensitivity and in the number of detectors will dramatically increment the rate
of GW detections. However, this will accentuate the problems with the current detection pipelines.
Since matched-filtering algorithms are run independently for each detector, the computational cost of
the searches will increase. Moreover, unmodelled searches can be affected, as coincident glitches at
two or more detectors will be more likely with the increase in the number of detectors. Therefore,
there is a necessity for a detection pipeline that scales well with the number of detectors and is robust
against the noise glitches as well as the reduction of the glitch rate.

2LVK Collaboration includes the LIGO Scientific Collaboration, as well as the Virgo Collabotation (which has been
carrying joint analysis and co-authoring observational result papers since 2010) and the KAGRA Collaboration (which
started in 2021 to co-author observational results from the second half of O3 onward).
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Chapter 3

Deep Learning

This chapter contains the theoretical foundations of the Deep Learning (DL) methods used in this
work. First, a brief introduction to Machine Learning (ML) is presented in section 3.1 and then,
section 3.2 reports what is Deep Learning, how it became possible, and some of its applications.
Afterwards, sections 3.3 to 3.6 focus on the theory of artificial Neural Networks (NNs), which are at
the core of Deep Learning. In section 3.3, a brief history of the field is presented, along with the
main theory behind NNs, while section 3.4 focuses on the task of training such networks. Moreover,
Convolutional Neural Networks (CNNs), which are the cornerstone of many DL applications in the
visual domain, are introduced in section 3.5, as well as the revolutionary concept of skip connections.
Then, section 3.6 reports some algorithmic advances that allowed to overcome the Vanishing Gradient
Problem and to effectively train deep networks. Following that, section 3.7 explains the metrics used
to compare models in this work, and section 3.8 presents some important model hyperparameters and
strategies to optimize them. Finally, this chapter ends in section 3.9, with a presentation of the fastai
DL library and some of its useful methods, including the powerful technique of transfer learning.

3.1 Introduction to Machine Learning

A traditional computer program follows a set of rules created by a human in order to turn input data
into an appropriate output. The Machine Learning (ML) paradigm turns this around: the computer
is fed many examples and autonomously learns the rules that allow it to complete the desired task.
Thus, a ML algorithm is one that is trained with data, and learns how to solve a task without being
explicitly programmed to do so. More formally, in Mitchell’s definition [29]: “A computer program is
said to learn from experience E with respect to some class of tasks T and performance measure P if
its performance at tasks in T , as measured by P , improves with experience E.”

The two most common tasks are classification, in which the algorithm specifies which categories
the input belongs to, and regression, where the program predicts a numerical value when given some
input. Nevertheless, ML can tackle much more tasks, from anomaly detection to data synthesis. In
the case of classification, a simple performance metric is accuracy, which is the proportion of examples
that the algorithm classified correctly. For regression problems, mean squared error, i.e., the average
squared difference between the predicted and real values, is a common choice. [8]

According to the experience that the algorithms get during the training phase, they can be cate-
gorized as unsupervised or supervised algorithms. In both cases, the algorithms experience an entire
dataset, X, which is a collection of m data points x(i) = (x0, x1, ..., xn), also called examples, each of
which has n features. Unsupervised algorithms try to learn useful patterns from the structure of the
dataset, by implicitly or explicitly estimating the probability distribution of the dataset. On the other
hand, supervised learning algorithms experience a dataset where each example x(i) has additionally
an associated label y(i), which is the target for the prediction of the point. The latter algorithm
category will be the focus of this work.

The main challenge of machine learning is that it does not suffice that the algorithm works well in
the dataset used for training. Instead, the algorithm must generalize, that is, perform well on previ-
ously unseen data. As the algorithm is iteratively modified during training in order to minimize some
measure of the training error, the error measured in the samples used for training is an over-confident
measure of the generalization ability of the algorithm. For this reason, the training phase is performed
using a training dataset and, after training, the algorithm is evaluated in a different dataset containing
data not previously seen by the model, the so-called test dataset. For an accurate estimation, it is
important that the two datasets are sampled from the same distribution and, furthermore, that the
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test set is not used to guide the choices made in the training phase. [8]
Consequently, a good ML algorithm must make the training error small while also keeping the gap

between training and test error as small as possible. A large training error is usually associated with
underfitting, which occurs when the model does not possess sufficient capacity to find the underlying
relationships between the data. For example, underfitting happens when a linear function is fitted to
data that follow a quadratic distribution, as seen in Fig. 3.1 (left). On the other hand, the gap between
the training error and the testing error will be large if the model is overfitted to the training dataset.
This means that instead of learning general patterns, the model is too optimized for the training set
and learned patterns that are specific from the training data but not relevant to new data. Overfitting
happens, for instance, when a m-degree polynomial is used to fit a dataset with m−1 points, as shown
in Fig. 3.1 (right). To summarize, a good model needs to be between underfitting and overfitting,
that is, having enough capacity to learn meaning patterns from the data, but being simple enough to
avoid learning the noise in the training dataset. This is the case of Fig. 3.1 (middle).

x

y

Underfitting

x

y

Appropriate capacity

x
y

Overfitting

Figure 3.1: Three models fitted to a training set containing 10 points that follow a quadratic dis-
tribution with some random noise. (Left) A linear function suffers underfitting because it cannot
capture the curvature of the data. (Middle) A quadratic function fits the data well and will be able
to generalize to new points. (Right) Despite fitting the training points, the 9th degree polynomial will
not be able to generalize because it has captured the noise of the training set. Figure inspired by [8].

3.2 The Deep Learning revolution

Deep Learning (DL) is a subfield of Machine Learning which relies on neural networks1 with many
intermediate layers, each of which builds on the representations learned by the previous layer in order
to automatically develop increasingly complex and useful representations of the data [30]. While
shallow learning methods, i.e., methods with very few layers, rely on carefully handcrafted features
to produce useful results, deep learning requires no feature engineering, as it can autonomously find
what are the useful features, considerably simplifying machine learning workflows.

For instance, consider the case of an image that comes in the form of raw pixels. The features
learned in the first layer would typically represent the existence of edges at certain locations and
orientations, and the second layer would detect particular arrangements of the edges of the previous
layer. Subsequent layers would assemble these patterns in larger combinations that are relevant
for the chosen task, and the final layer would use these to make the predictions. The same result
could not be achieved by stacking multiple shallow models, as they would be trained in succession,
learning representations that would be good for each individual model but not the best for the overall
goal [30]. On the contrary, the power of deep learning comes from the ability to train the multiple
representational layers jointly [30].

In the last decade, DL methods have been very successful in a wide range of tasks. The first widely
recognized breakthrough result was achieved in the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [31] using AlexNet [32], a deep convolutional network with eight layers. This
network significantly increased the top-5 accuracy of the image classification challenge, which had

1In this work, the term “neural network” is used to refer to artificial neural networks unless stated otherwise.
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been dominated by classical computer vision2 algorithms, from 74.3% to 83.6%. This astounding
result revived the interest in deep neural networks, which have since become the dominant approach
for image recognition and detection tasks [9].

Despite the fact that by the 1990s the core ideas behind deep learning were already well understood,
it took until the 2010s for deep learning to take off. This can be explained by two main factors: the
improvement of hardware and the abundance of large datasets and benchmarks. Since deep learning
is fundamentally guided by experimental findings, only when appropriate data and hardware became
available could new ideas be tried, leading to improved techniques that resulted in advancements in
the field. [30]

In 20 years, commercial Central Processing Units (CPUs) became about 5000 times faster, which
allows to run on current laptops small deep learning models that would be impossible to run even in
the most powerful computers 25 years ago. Yet, the most important improvement was brought from
the massification of Graphical Processing Units (GPUs), developed to power the graphics of video
games. In 2007, NVIDIA launched CUDA [33], which creates a programming interface for its line of
GPUs, and soon some researches started to write CUDA implementations of neural networks, taking
advantage of the possibility of paralellizing matrix multiplications, which are the main operation of
neural networks. This increase of the computational power allowed to experiment with much more
complex algorithms, as modern GPUs can easily achieve computational power on the order of O(1012)
floating point operations per second. [30]

With the exponential progress in storage hardware and, most notably, the popularization of the
Internet, it is very easy to collect and distribute large datasets for machine learning. For instance,
Wikipedia articles are a key source of data for natural language processing models. In terms of
computer vision, the most important dataset has been ImageNet [34], which contains more than
1.2 million images, each hand-labelled with one of 1000 categories. From 2010 to 2017, a yearly
competition using the ImageNet dataset, the aforementioned ILSVRC [31], pushed competing teams
against each other, resulting in rapid advances in DL for computer vision.

Since 2012, deep neural networks have dominated ILSVRC, achieving a 96.4% top-5 accuracy
by 2015. At the same time, deep learning also emerged as a powerful tool in other areas, achieving
breakthroughs in tasks such as speech transcription [35], machine translation [36], speech synthesis [37],
image generation [38] and protein structure prediction [39].

Deep learning has also gained traction in the field of physics, particularly in particle physics and
gravitational wave science. In particle physics, deep learning was shown to beat previous methods
for both event selection and jet tagging at the Large Hadron Collider [40]. In the GW domain,
deep networks are very promising for glitch classification, signal denoising, gravitational-wave signal
searches and parameter estimation. A review of the use of machine learning for GW-related tasks can
be found in [41].

3.3 Simple Neural Networks

After introducing deep learning and its great potential, it is important to understand its corner-
stone, artificial neural networks. The field of Neural Networks (NNs) started with the investigations
of McCulloch and Pitts, who in 1943 created a simple model of a biological neuron [42]. The model
accepted one or more binary inputs and produced one binary output by activating the output if more
than a certain number of inputs were active and keeping the output inactivated otherwise. This very
simple model was able to compute logical propositions such as “and” or “or”.

In the late 1950s, Rosenblatt [43] further developed this model by introducing real-valued weights,
which allowed to attribute a different importance to each input. The resulting model, depicted in
Fig. 3.2, became known as the Threshold Logic Unit (TLU). In order to produce the output, first
the neuron computes the weighted sum of the inputs, z = Σn

i=1wixi = xTw, and then applies a step
function to the result, yielding

hw(x) = step(z) = step(xTw). (3.1)

The most common step function used was the Heaviside step function, which returns 0 if the argument

2Computer vision is a sub-field of artificial intelligence that tries to derive meaningful representations from visual
data, tackling the tasks of image classification, image segmentation, and object detection.
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is lower than 0 and 1 otherwise:

H(z) =

{
0 for x < 0
1 for x ≥ 0

. (3.2)

A single TLU can be used for binary classification, as it computes a linear combination of the inputs
and, if the result exceeds a threshold, outputs 1, which corresponds to the positive class; otherwise, it
returns 0, the negative class. The behaviour of the neuron depends on the input weights, which must
be tuned for the task, that is, they need to be trained.

Instead of relying on a single neuron, algorithms become more powerful when using multiple
neurons combined in a network like Perceptron [43], which is a neural network composed of a layer of
TLUs, each of which connected to all the inputs. In this architecture, each input is fed to passthrough
neurons that act like the identity function, leaving it unchanged. Additionally, a bias neuron, which
is a simple neuron that always outputs 1, is added to the inputs of all TLUs, allowing to, in essence,
change the threshold of the TLUs. A Perceptron with Ni = 2 input neurons and No = 3 outputs is
shown in Fig. 3.3. Since the inputs travel through the network in only one direction, from the input
layer to the output layer, the Perceptron is an example of a feedforward neural network. Moreover, as
the neurons of one layer are connected to all the neurons of the next layer, the Perceptron is a fully
connected network.

Figure 3.2: The threshold logic unit, a
simple neuron model which is the build-
ing block of the Perceptron architecture.
Figure reproduced from [44].

Figure 3.3: Architecture of a Perceptron with two inputs
and three outputs. Figure reproduced from [44].

One important aspect of the neural network is that it is possible to efficiently compute its outputs
for several instances at once, using the following equation [44]:

hW ,b = ϕ(XW + b), (3.3)

where X is the matrix of data previously introduced. It is an m by n matrix, where each row is
associated with a different example and each column corresponds to a distinct feature. W is the
weight matrix containing all the connection weights except the ones from the bias neuron. It has one
row per input neuron and one column per output neuron, resulting in a n by No shape3. b is the bias
vector, which contains all the connection weights involving the bias neuron, thus having No elements.4

Together, the weights and biases form what are called the model’s parameters, that is, the values that
control the model’s behaviour. Finally, ϕ is an activation function, which is the Heaviside function in
the case of the Perceptron.

It was shown in [45] that Perceptrons are incapable of solving some trivial but important problems,
like replicating the “exclusive or” (XOR) logical function, but the authors also showed that these
limitations could be eliminated by stacking multiple TLU layers, which results in a architecture called
the MultiLayer Perceptron (MLP). An MLP contains one passthrough input layer, followed by one
or more intermediate layers of TLUs called hidden layers, and one final TLU layer, the output layer.

3The number of input neurons, Ni, is set to match the number of features, n, so n = Ni.
4Note that b is summed to the XW matrix using broadcasting, i.e., adding the vector to each matrix row.

12



Every layer except the output layer contains one bias neuron, connected to all neurons of the next
layer. Fig. 3.4 shows a MLP based on the Perceptron of Fig. 3.3, but with the addition of a hidden
layer containing four neurons, which introduces additional non-linearity to the model.

Figure 3.4: Architecture of a Multilayer Perceptron with two inputs, a hidden layer with four units,
and three output neurons. Figure reproduced from [44].

In this network, the outputs of the lth layer can be calculated similarly to equation (3.3):

hl = ϕ(hl−1W l + bl), (3.4)

where superscripts denote the layer number, following the same conventions as equation (3.3). Note
that h0, the output of the input layer, is not calculated using this equation, as it corresponds to
the input data matrix, X. Using this equation, the output of a feedforward network can easily be
calculated by sequentially computing the output of each layer from the input layer to the output layer.

The use of a non-linear activation function is of utmost importance for neural networks because
it allows the network to apply a range of non-linear transformations to the data. Since the rest of
the network only applies linear transformations, if there was not a non-linear activation function, the
network would only be able to apply linear transformations even when using a large number of hidden
layers5. Thus, the additional layers would not be useful, as the resulting composite function would be
linear, and thus, could be achieved using a single layer of neurons.

Therefore, it is the non-linear activation function that gives the representational power to NNs.
In fact, the universal approximation theorem [46] states that a feedforward network with at least one
hidden layer and a squashing activation function (one whose outputs are in a closed interval) can, in
theory, approximate a desired function with arbitrarily high precision.

The simple network architecture of an MLP can be used for multi-label classification problems,
i.e., when each example belongs to one or more classes, by replacing the activation function of the last
layer with the sigmoid function, which returns a real value between 0 and 1. Applying this change, the
output of each neuron is a continuous value between 0 and 1, which can be interpreted as a probability.
Thus, the network would need one output neuron per class, and, for each sample, it would return the
probability of the sample belonging to each class.

The aforementioned sigmoid function is defined by

σ(z) =
1

1 + e−z
. (3.5)

This function, similarly to the Heaviside step function, squashes the output between 0 and 1. A note-
worthy difference is that, unlike the step function, it is differentiable across the whole domain, which
is useful for the training procedures described in section 3.4. A comparison between the Heaviside
and sigmoid functions is depicted in Fig. 3.5

The sigmoid activation function can also be used in the particular case of binary classification by
having just one neuron which outputs the probability of belonging to one of the classes. However,

5Chaining two linear functions yields another linear function. For two linear functions f(x) = ax+b and g(x) = cx+d,
the composite function is also a linear function: f(g(x)) = (ac)x + (ad + b). It can be proven by induction that the
same will happen for n chained linear functions.
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Figure 3.5: The Heaviside and sigmoid step functions. The sigmoid resembles a smoothed version of
the Heaviside.

for multi-class classification tasks, where there are more than two classes and each sample belongs
to one and only one class, another activation function, the softmax, is used in the last layer. Then,
the classifier’s prediction is the class with the highest estimated probability, which corresponds to the
one with the highest score. The softmax function, which is a generalization of the sigmoid for more
than two classes, takes a vector of scores (the activations of the output neurons), z, computes the
exponential of every score and normalizes them in order to estimate the probability of each class.
Thus, the probability that the instance belongs to class k is

p̂k =
exp(zk)

ΣK
j=1 exp(zj)

, (3.6)

where K is the total number of classes. Due to the normalization, the sum of all p̂k is 1.

3.4 Training Neural Networks

It was previously stated that neural networks, per universal approximation theorem, can approx-
imate any desired function, so the only issue is how to tweak them in practice to find good network
parameters. In ML, this task of gradually adjusting the parameters so that performance gets better
and better is known as training the model. This is not a trivial task, and it held back the field of NNs
for many years.

The process of training a ML algorithm is depicted in Fig. 3.6. At the beginning, one starts with a
chosen architecture, which is the term for the backbone of a model (for instance, a MLP with a specified
number of neurons and layers), and initializes the parameters. During training, the model, composed
of the architecture and parameters, predicts the labels for the input data. Then, the parameters of
the model (in the MLP case, they correspond to the weight and bias of each neuron connection) are
updated according to the loss function, which is a mathematical function that evaluates the mismatch
between the labels the model predicts and the true labels. This loop is then repeated as long as
wanted.

Note that after a model is trained, it is very easy to use it, as it behaves like a traditional computer
program, as shown in Fig. 3.7. Thus, the sheer amount of computation is spent during training, and
processing new data after the algorithm is fully trained can be done very quickly.

3.4.1 Loss function

As mentioned above, the loss function is important for the training loop. This loss function, L,
returns a real number, which is small when the performance of the algorithm is good. Furthermore,
to enable the use of the gradient algorithms introduced in section 3.4.2, it must be differentiable with
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Figure 3.6: Training loop of a supervised ML algorithm. Figure inspired by [47].

model
(with optimized parameters) predictionsinputs

Figure 3.7: Using a trained ML model for inference is very straightforward. Figure inspired by [47].

respect to the model parameters. Thus, a simple loss function such as the number of incorrectly
classified samples cannot be used as it is not smooth, since making small changes to a parameter is
not likely to change the classification of any sample and, consequently, the value of the loss.

The problem of the lack of differentiability can be addressed by using instead the mean squared
error, which is defined as

L(x) = 1

n

∑
x

∥ŷ − y∥2, (3.7)

where ŷ is the model prediction for the given example, y the true label, and the sum is computed
over n examples. Note that the function depends on the model parameters, since they control the
predictions of the model. This function has the property of being non-negative, and becoming closer
to 0 as the predictions become more similar to the target labels. Thus, the optimization goal is to
minimize this loss function.

3.4.2 Gradient descent

But how does one update the parameters to increase the model’s performance? The training of
modern ML algorithms is based on gradient-based optimization, specifically using the gradient descent
algorithms and similar variants. These are generic optimization algorithms, which tweak parameters
iteratively in order to minimize a cost function.

At the beginning, all the network’s trainable parameters are randomly initialized. Then, for each
data sample, the model is used to predict its label. At this point, the algorithm needs to decide
in which direction to update each weight. A simple approach would be, for each weight, to slightly
increase it, and then decrease it, while keeping the other parameters frozen, in order to find what
direction lowers the loss function. This would be highly inefficient, as two forward passes through the
network would be needed for each single parameter.

Gradient descent, on the other hand, allows to minimize the loss function L(θ), parameterized
by the model’s parameters θ, without having to compute the function for the whole domain, by
updating the parameters in the opposite direction of the gradient of the loss function with respect
to the parameters. It takes advantage of the differentiability of the functions used in the model6,
which when chained also form a differentiable function. Thus, the function which maps the model
parameters to the loss of the model given an input is differentiable, which allows to compute the
gradient of the loss with respect to each parameter.

6The neural networks described in section 3.3 are not differentiable because of the use of the step function, which has
no derivative at z = 0 and null derivative in the rest of the domain. Modern NNs use differentiable activation functions
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Since the loss function may not be smooth, the gradient can change considerably between close
points, so the magnitude of the gradient is multiplied by a small positive constant, the so-called
learning rate, one of the most important model hyperparameters.7. The gradient of a function at a
certain point gives the direction of steepest ascent of a function around that point, so to minimize the
loss function one needs to move against the direction of the gradient. The following equation describes
how to update a parameter using gradient descent [8]:

θ = θ − α∇θL(θ), (3.8)

where θ is the parameter vector, α is the learning rate, and ∇θL(θ) is the gradient of the loss function
at point θ. Note that the gradient is a vector which contains all the partial derivatives, with element
i of the gradient corresponding to the partial derivative of L(θ) with respect to θi.

The gradient descent algorithm is guaranteed to converge if an adequate learning rate is chosen,
but it may find a local minimum instead of the desired global minimum [8]. Nevertheless, gradient
descent has been used in practice with great success, and the convergence to local minima appears
not to be a common problem, as the algorithm often finds a very low value of the loss function fast
enough to be useful [8].

Normally, this iterative process is repeated for a pre-defined number of forward passes through all
the training data, known as epochs, but it can be stopped earlier depending on the behaviour of the
loss function or a performance metric. Note that the number of epochs, n epochs, is an important
hyperparameter. The whole process of gradient descent is summarized in Fig. 3.8.

initialization prediction

loss gradient

steprepeat stop

Figure 3.8: Overview of the gradient descent algorithm for the optimization of parameters. Figure
inspired by [47].

Depending of the number of data points used for each iterative step, gradient descent can be clas-
sified in three types: batch gradient descent, stochastic gradient descent and mini-batch (stochastic)
gradient descent. In batch gradient descent, the whole dataset is used for each parameter update.
This gives the most accurate gradients at each step, as the whole dataset is used for the calculation,
at the cost of being too slow for large training sets. Stochastic gradient descent, on the other hand,
uses only one sample per iterative step to compute the gradients. This is much faster, but since only
one sample is used to estimate the loss function, the behaviour is much more uncertain, and the algo-
rithm may not converge. Mini-batch gradient descent is at a halfway point between the two previous
algorithms, as it computes the gradients on small random subsets of the training data. This allows to
increase the accuracy of the estimation while not running out of memory and taking advantage of the
GPUs’ parallelization capabilities [44]. Therefore, it is the most widely used in practice. The number
of samples per mini-batch is another very important hyperparameter, known as the batch size, bs.

Mathematically, the gradient estimation using mini-batch gradient descent can be expressed as [8]:

grad =
1

bs

bs∑
i=1

∇θL(f(x(i);θ),y(i)), (3.9)

where f represents the transformation that maps the inputs to the outputs using the parameters θ,
and x(i) and y(i) represent, respectively, the ith example of the dataset and the associated target.
Note that one gradient is calculated for each example, and the final gradient estimation is a simple
average of those gradients.

in order to allow the use of gradient based optimizations.
7An hyperparameter is a parameter which does not affect the model’s behaviour, but changes the learning process

itself. Hyperparameters are discussed in section 3.8.
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Gradient descent can be further accelerated with the introduction of momentum [48], which is
analogous to velocity in a physics setting. If one imagines a ball rolling down a hill with the shape of
the loss curve, it will not always follow the direction of the gradient, due to the velocity acquired so
far (resulting from past acceleration). If the ball has enough momentum, it will not get stuck at local
minima, and is more likely to reach the base of the hill, i.e., the global minimum. In practice, using
momentum means including a moving average of the parameters’ values, and including them in the
calculation of the next parameters.

3.4.3 Backpropagation

In the explanation of the gradient descent algorithm, it was implicit that there is a way to calculate
the gradient of the loss of a given example with respect to each parameter. However, only in the 1980s
an effective algorithm to train MLPs was popularized, after a paper [49] used backpropagation to
successfully train neural networks. This algorithm manages to compute the gradient of the loss
function using only one backward pass through the network by calculating the gradient for each layer
based on the immediately deeper layer, using the chain rule of calculus.

Backpropagation is a very efficient method, as it only requires a backward pass through the network
in addition to the forward pass, and they have approximately the same complexity. It works on two
assumptions: that the loss function can be written as a average over loss functions for individual
examples, and that the loss function can be written as an function of the model’s outputs. Fortunately,
both hold for NNs and the loss functions used in practice. [50]

3.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a subset of feedforward deep networks, inspired by the
study of the brain’s visual cortex, and have been used with success for image-related tasks since the
1980s [51,52]. They have re-gained popularity in the last decade and have been the cornerstone of deep
learning applications in the vision domain, as all the editions of ILSVRC from 2012 to 2017 were won by
different CNN architectures. The distinctive feature of such networks is the employment of convolution
operations, instead of regular matrix multiplications. CNNs have at least one convolutional layer,
where neurons are optimized to detect specific image features. Typically, they have more than one
such layer, with the first layers serving as detectors of small-scale low-level features such as edges, and
the deeper convolutional layers detecting larger high-level features.

In a convolutional layer, the neurons share weights within a kernel filter, so rather than learning
a separate set of parameters for every different input location, the model only learns a single set
of parameters, the filter weights, which allows to detect similar features in different locations of the
image. In the convolution operation, the kernel is slid across the input, multiplying each element of the
kernel by an element of the input and then adding together the products. The sharing of the weights
greatly reduces the number of parameters to be learned, thus reducing the memory requirements of
the models.

Moreover, unlike traditional fully-connected networks, CNNs often have sparse interactions, be-
cause the kernel size is much lower than the size of the input. This means that each neuron is only
connected to a small rectangle8 of the previous layer of neurons (or the image, in the case of the first
layer). This sparsity allows the model to compute the output with much less operations than a classic
neural network. [8]

Typically, each layer has many different filters, in order to detect multiple features. In a regular 2D
convolution, each filter is slid over three dimensions (width, length and depth/number of channels),
producing one two-dimensional (width × length) distinct feature map for each filter. These feature
maps are then stacked over the depth dimension, as shown in Fig. 3.9. Thus, by controlling the
number of filters, it is possible to control the depth at each layer. Similarly, changing the filter size
and stride (the step size of the moving window) allows to alter the width and the length.

Generally, at the end of a convolutional layer, in addition to a non-linear activation function, there
is a pooling layer that acts as a downsampling operator, allowing to reduce the size of the output

8Unlike fully-connected networks, where neurons in the same layer are organized in a long line, in CNNs the neurons
are better represented in a rectangle, to better match each neuron with the corresponding input.
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Figure 3.9: Two convolutional layers applied to a three-channel (RGB) image input. Each filter
detects a different feature and produces a two-dimensional feature map. The multiple feature maps
are then stacked. Figure reproduced from [44].

while preserving the depth. For example, the popular max pooling operation returns the maximum
output value within a moving rectangular window for each feature map. Pooling helps to make the
representations approximately invariant to small translations of the input, since small shifts in the
input positions will not change the pooled outputs, allowing the convolutional layers that follow to
still find the features even if they are not in the exact expected positions. [8]

3.5.1 Residual Neural Networks

One of the most important algorithmic advances in DL for computer vision was arguably the
introduction of residual connections, also known as skip connections, by He et al. in 2015 [53], which
allowed to successfully train the first truly deep convolutional neural networks, with tens to hundreds
of layers. Their model, which was called a Residual Neural Network (ResNet), won the 2015 edition of
ILSVRC. Since then, skip connections have been ubiquitous on modern convolutional networks, like
Inception v4 [54], EfficientNet [55] and the novel ConvNeXt [56].

ResNets were introduced to solve the problem of training deep CNNs, as it was observed that
the training error of the networks would saturate for a certain number of layers and even decrease as
more layers were increased (see e.g. [57]). This is counter-intuitive, since the result should be at least
the same if the additional layers would simply be identity mappings. Residual connections solve this
problem by skipping over layers, that is, creating a direct path between non-adjacent layers, as seen in
Fig. 3.10. This way, the network only needs to learn the residuals, i.e., the slight differences between
doing nothing and passing through the skipped convolutional layers [47].

Figure 3.10: Simple ResNet block with a residual connection. Figure reproduced from [53].

It has been reported that using skip connections helps to smooth the loss function, which makes
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training easier [58]. Moreover, the authors of [59] argue that the benefit of residual connections is
providing many short paths through the network, which contribute the most to the gradients and are
easier to train than the longer paths which use less skip connections.

3.6 The Vanishing Gradients Problem

In section 3.2, better hardware and more data were deemed essential for the rise of deep learn-
ing. However, these improvements by themselves were not enough to train deep neural networks, as
researchers faced the problem of unstable gradients, which would either fade away or become bigger
and bigger as the number of layers increased, resulting in either null or enormous parameter updates
and thus hindering the training of the NNs. This issue, known as the vanishing/exploding gradients
problem, was alleviated with the improvement of algorithms, mainly through the choice of better loss
functions, activation functions, weight-initialization schemes, and optimizers.

Mean squared error (introduced in section 3.4.1) was a popular loss function in the 1980s and 1990s,
but the models suffered from saturation of neurons and slow learning [8]. This issue was addressed
with the use of the cross-entropy loss function, which for the case of a single example and K neurons
in the output layer is given by [44]

L(θ) = −
K∑

k=1

yk log(p̂k), (3.10)

where yk is the target probability of class k, typically either equal to 0 or 1, and p̂k is the probability
that the example belongs to class k, computed for instance using equation (3.6). In contrast with the
mean squared error, cross-entropy has the handy property of, when used in conjunction with sigmoid
activations, resulting in bigger gradient updates when the mismatch between predictions and targets
is higher, and slower learning when the probabilities are close to each other [50].

The sigmoid was the most used activation function in the hidden layers for many years, but it was
shown by Glorot and Bengio [60] that this function was not appropriate for deep networks because
neurons would easily saturate. As inputs become large in modulus, the function saturates either at
0 or 1, with an almost null derivative, which makes the gradient very small and hinders training.
Gradually, it was replaced by an activation function which does not saturate for positive values, the
Rectified Linear Unit (ReLU) function [61], defined as ReLU(z) = max(0, z). Despite not having
derivative at z = 0 and null derivative for z < 0, it is very easy to compute and it has proven to work
very well in practice [44].

The same paper [60] also raised the point that the unstable gradient problem could be alleviated if
the signal travelling the network could flow properly in the forward and backward directions. For this
to happen, the variance of the outputs of a layer would need to be equal to the variance of its inputs
and the gradients should keep their variance after traversing a layer in the reverse direction. They
showed that this was not addressed by the random parameter initialization techniques used at the
time and, despite the impossibility to fulfill the two requirements simultaneously, Glorot and Bengio
proposed a good compromise that works well in practice, known as Glorot initialization. Using this
technique, the initial value of each weight from layer j is sampled from the following distribution:

W ∼ U

[
−

√
3

fanavg
,

√
3

fanavg

]
, (3.11)

where U denotes an uniform distribution, nj is the number of neurons in layer j and fanavg is the
average between the number of inputs and the number of neurons of the layer. As Glorot initialization
was proposed considering sigmoid functions, this method was subsequently adapted by He et al. in [62]
to account for ReLU (and alike) activation functions by scaling the limits of the distribution by

√
2,

which became known as He initialization.

Another very important improvement was the introduction of the batch normalization tech-
nique [63], which introduces an operation that zero-centers and normalizes the output of a layer,
and then scales and shifts the result using two tunable parameters. The “batch” in its name comes
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from the fact that at training time, the mean and variance of the inputs is computed over the mini-
batch9. It was found that, apart from avoiding unstable gradients during training10, reducing the
dependence on the activation functions and weight initialization, it increases the speed of training, as
it allows the use of higher learning rates. Finally, it was found empirically that batch normalization
acts as a regularizer, i.e., avoids overfitting and allows the model to generalize better [63].

Deep learning also benefited from the development of better optimizers, the most popular being
Adam [64], which is inspired in the momentum approach. Adam uses an exponentially decaying
average of past gradients as a direction and divides it by the decaying average of past squared gradients
to yield an adaptive learning rate to each parameter [47].

3.7 Model evaluation

In section 3.1, it was stated that after a model has been trained, using the training set, its per-
formance is evaluated on the test set. But how can two different models be compared? The simplest
approach would be to directly compare the test loss of both models. It is true that the loss function
is a measure of performance, but it mostly exists to allow for the automatic update of weights during
training and usually is not very meaningful to humans, at least in classification problems. Thus, it
is better to rely on metrics, which are functions that measure the quality of the model’s predictions,
but in a human-friendly way that does not usually possess the properties needed by a loss function.

To better introduce the most common metrics, it is useful to visualize the model results in a
confusion matrix, which is a table that summarizes the number of times an example of each class was
classified as each of the classes. The structure of the confusion matrix for a binary classification can be
seen in Table 3.1. Table 3.2 shows an example confusion matrix filled with hypothetical values, which
will be used to compare the different metrics. The confusion matrix can be extended to multi-class
classification problems by having one column and one row for each class, and it easily allows to find
the most confused classes (hence its name).

Table 3.1: Structure of the confusion matrix for a binary
classification problem.

Predicted
Positive Negative

A
ct
u
al Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 3.2: Example of a confusion matrix
for a binary classification problem.

Predicted
Positive Negative

A
ct
u
al Positive 3 5

Negative 0 92

The most straight-forward metric for classification problems is accuracy, which is given by the
number of correctly classified examples over the total number of examples. Using the confusion
matrix nomenclature, accuracy is computed using

accuracy =
TP + TN

TP+ TN+ FP + FN
. (3.12)

In multi-class problems, accuracy is computed by dividing the number of samples in the main diagonal
of the confusion matrix by the total number of samples.

Accuracy is a useful metric when the dataset is balanced and all classes are equally important.
However, in a case such as the one in Table 3.2, accuracy can return a over-optimistic value. In
fact, despite misclassifying most of the samples from the negative class, the model would have a 95%
accuracy.

Instead of accuracy, precision and recall are often used together for such problems. Precision is
defined as the ratio of correct positive predictions to the actual number of positive examples, that is:

precision =
TP

TP + FP
. (3.13)

9Since this is not feasible at test time, the statistics are then estimated using a moving average.
10Note that the enhanced activation functions and weight initialization schemes mostly address the problem of unstable

gradients at the beginning of training, but do not guarantee the problem will not appear later.
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On the other hand, recall is the ratio between the number of correct positive predictions and the total
number of positive examples:

recall =
TP

TP + FN
. (3.14)

Despite being defined for the binary class, precision and recall can be used in multi-class problems by
computing these two metrics for each class. To do so, the selected class is considered as the positive
class and all the other classes are the negative class.

In the case shown in Table 3.2, the precision is 100% but the recall is a mere 37.5%, which is more
indicative of the true performance of the model. However, relying on precision and recall introduces
the problem of having two metrics to compare models, instead of a single number. This is solved by
the so-called F1 score, which is the harmonic mean of precision and recall:

F1 score =
2

1
precision + 1

recall

=
TP

TP + FN+FP
2

. (3.15)

The choice of the harmonic mean gives more weight to low values and, consequently, a high F1 score
can only be achieved if both precision and recall are high. For instance, in the presented example the
F1 score is only 54.5% despite the perfect precision.

Similarly to precision and recall, the F1 score can also be computed for each class in multi-class
problems. Nevertheless, once again the issue of having multiple metrics appears, as there will be
one metric for each class. This is solved by computing the macro-averaged F1 score instead. This
metric is calculated by plugging in the macro-averaged precision and macro-averaged recall, which are
respectively the precision and recall averaged across all classes, in equation (3.15).

3.8 Hyperparameter optimization

Most machine learning algorithms have hyperparameters, which are not the specific parameters of
the algorithm (the weights and biases in the case of NNs), but the settings that change the behaviour
of the algorithm itself (e.g. the number of layers in a NN) or its training (for instance, the number of
samples in each mini-batch during training).

3.8.1 The importance of hyperparameters

One of the most important hyperparameters when using gradient-based optimization methods is
the learning rate, which is the small number, α, that is multiplied by the gradient in equation (3.8).
The choice of a good learning rate is of utmost importance to allow the algorithm to converge in
reasonable time. In fact, if the learning rate is too small, the gradient descent steps can become
very small, increasing the time until training converges to a minimum. On the other hand, if the
learning rate is too high, the gradient descent can overshoot the minimum, bouncing around it or
even diverging away from it. [47]

As mentioned before, another important hyperparameter is the batch size. Larger batch sizes
ensure more accurate gradient estimates and take advantage of modern hardware parallelization ca-
pabilities, while needing more memory. In contrast, lower batch sizes will yield longer training times,
but often contribute to regularize the model, achieving lower generalization errors. Typical batch sizes
try to balance the aforementioned advantages and disadvantages, using powers of 2 between 32 and
25611. [8]

The number of epochs is also important, as too few epochs will cost less time but not allow
the model to learn enough from the data and too many epochs will take longer and run the risk
of overfitting [8]. Considering the variety of different training enhancement algorithms that have
been developed, there are many more hyperparameters related to training, such as the choice of the
optimizer (like Adam) and the tunable parameters of the optimizer itself, the various learning rate
scheduling options (i.e., algorithms that change the learning rate during training), and so on.

There are also hyperparameters related to the model architecture, such as the number of layers
or the number of neurons in each layer. Nowadays, an already-proven fixed architecture is used in

11Powers of 2 were initially used because of the better runtimes due to the architecture of the available hardware, but
nowadays are used mostly due to historical reasons. See for example this blog post.
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most cases, so they are typically not optimized, albeit different models can be tried and the choice of
architecture can be seen as another hyperparameter.

3.8.2 Validation dataset

The optimization of the hyperparameters cannot be done using only the training dataset, as
sometimes a choice can lead to worse fits in the training set but lower generalization error. If it
is instead evaluated on the test dataset, there is a fundamental problem if one follows the iterative
approach of training the model in the training set, estimating the generalization error using the test
set, and tweaking the hyperparameters accordingly: the more iterations are done, the sooner the
model will be overfitted to the test data, yielding overly-confident estimations of the generalization
error.

Thus, a new dataset is introduced: the validation set, which serves the purpose of evaluating the
model during each training iteration. With this inclusion, the test set is used only once, at the end
of training, to estimate the generalization error of the algorithm. Using the improved approach with
three datasets, the estimation of the generalization error will be much more accurate. To avoid biasing
this estimation, no exploratory data analysis or statistics should be computed over this dataset prior
to training. In ML practice, a good rule of thumb is to randomly split all the available data into three
subsets: the training set, the validation set, and the test set, for instance using a 70/15/15 split [65].

3.8.3 Hyperparameter optimization techniques

The value of a single model hyperparameter can make the difference between an average model
and a state of the art result. In modern machine learning, hyperparameter tuning is still a engineering
discipline, with some guidelines but without formal rules. As the hyperparameter space is often formed
by discrete decisions, it is not differentiable, meaning that the powerful gradient descent techniques
are not applicable.

The most common hyperparameter optimization technique is a combination of manual search and
grid search, where a few hyperparameters as well as their possible values are chosen manually relying
on the experimenter’s expertise in the task and the algorithms. Then, each combination of values for
all the chosen hyperparameters is tested and the results compared at the end. However, due to the
so-called curse of dimensionality, this technique is not feasible when the number of hyperparameters
to be tested increases, because the number of possible configurations grows exponentially.

As typical problems have much fewer relevant dimensions (unknown a priori) than the number of
hyperparameters, grid search wastes many trials in the irrelevant dimensions. A good alternative is
random search, in which the hyperparameters of each trial are chosen at random and independently
from previous trials. Unlike grid search, this method has the same efficiency in the relevant parameter
space as if it had been used only in the relevant dimensions, allowing to significantly reduce the
number of necessary trials. In sum, random search has the simplicity of grid search but trades a
small reduction of performance in low-dimensional hyperparameter spaces for a large increase in high-
dimensional search spaces. [66]

One issue with both grid search and random search is that the trials are independent of each other,
that is, the previous information is not used to enhance the search method. This can be addressed
taking advantage of bayesian optimization algorithms, which use a simple surrogate model like a
Gaussian kernel to model the metric to optimize in function of the hyperparameters, and iteratively
choose the hyper-parameter set that performs best on the surrogate model, train a model with the
chosen hyper-parameters and use the results to update the surrogate model. This bayesian approach
has the advantage of using all the previous information to compute the next point to sample. Although
it requires more time to decide each new set of hyperparameters, fewer iterations are needed to find
good results, which is useful in cases where each new point is costly, like when training DL models. [67]

3.9 The fastai deep learning library

fastai [68] is a modern deep learning library, which is built on top of the very popular PyTorch
library [69]. It combines PyTorch’s flexibility with high-level components that are easy to use, and
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allows to achieve state-of-the-art results by providing a high-level API that offers ready to use functions
for domains such as vision, while using sensible default values.

For instance, the main training routine for models is a variant of the 1cycle policy [70], which
consists of a hyperparameter scheduler with a cosine annealing that increases the learning rate up to
a point and then decreases it, and does the inverse for the momentum. The default setting is to reach
the maximum of the learning rate at 30% of the training. The behaviour of the learning rate and
momentum hyperparameters is represented in Fig. 3.11.
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Figure 3.11: Evolution of the learning rate and momentum values when using fastai’s fit one cycle

training routine, with a maximum learning rate of 5.75×10−4 and momentum between 0.85 and 0.95.

The use of a smaller learning rate at the beginning of training is not new, because it allows to
warm-up the training and to make sure it does not diverge. Then, the use of higher learning rates
during the middle of training acts like a regularizer, since if forces the model to stay in a smoother
minimum of the loss function, thus avoiding overfitting. Finally, the descending learning rates in the
last part of training allow to explore steeper local minimums inside the smoother part. Regarding
the momentum, the point of the cycling momentum is mostly to make the training more robust to
the large learning rates. This 1cycle was found to allow training at higher learning rates, without
overfitting, and train neural networks an order of magnitude faster than with standard methods [71].

In fastai, the default optimizer is Adam, introduced in section 3.9, with a default maximum
learning rate of 0.001, β2 = 0.999 and β1, which is the momentum, cycling between 0.95 and 0.85 when
using the 1cycle policy. In addition, fastai introduces weight decay by default. It is a regularization
technique, which penalizes the loss function by a value proportional to the sum of all squared weights.
By benefiting lower weight values, the model avoids overly complex functions, resulting in better
generalization [47].

Instead of using the default learning rate, the best practice is to choose an appropriate learning
rate using the learning rate finder [70]. This tool is remarkably simple, as it consists of starting with a
very small learning rate, passing one mini-batch through the model, computing the loss and repeating
this process while gradually increasing the learning rate until the loss stops decreasing. Finally, the
loss is plotted against the learning rate, as shown in Fig. 3.12, and there are a few methods to choose
a good learning rate value based on this plot, using one of the following suggestion functions:

• steep, which chooses the learning rate where the slope of the loss is the steepest, i.e., where
the model is learning faster;

• minimum, which returns a learning rate one-tenth of the minimum before the loss diverges;
• valley, which suggests the learning rate associated with the steepest slope through the longest
valley in the plot;

• slide, which returns a learning rate following an internal slide rule.

Moreover, this library allows to easily take advantage of mixed precision training [72], a technique
which reduces the memory requirements and speeds up training. In mixed precision training, the
forward and back-propagation passes are computed in half precision (16-bit signed floats), in order
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Figure 3.12: Result of a learning rate finder, with the points suggested by the four functions available
in fastai.

to save memory and, in the case of NVIDIA’s latest GPUs, reduce the training time. Then, the
parameters are updated in single precision (32-bit signed floats), to correctly handle the common case
where the gradient is several orders of magnitude below the respective parameter. If this step was
instead performed using half-precision, the update would not change the parameter.

3.9.1 Transfer learning

Transfer learning [73] is a technique which allows to take advantage of knowledge learned in one
domain, typically from a task that has many labelled examples, and to apply it to a different but
related task which may have a limited number of examples. This technique is one of the cornerstones
of the fastai library, as it allows to train more accurate models, more quickly, and using less data,
as compared to training the same models from scratch [47]. Transfer learning for vision applications
typically uses the weights of a model pretrained by experts on the aforementioned ImageNet dataset,
and fastai is no exception.

The default fastai’s transfer learning approach is to, after assigning the pretrained weights,
replace the final layer with a fully connected layer with the correct number of outputs, and initialize it
with entirely random weights. As all the previous layers have meaningful weights, in the first epoch(s),
known as a frozen epoch(s)12, the pretrained layers are frozen, and only the final layer is trained using
the first part of the 1cycle policy, with the learning rate monotonically increasing until it reaches the
chosen learning rate. Then, the model is unfrozen and all layers are trained by the desired number
of epochs, also using the 1cycle policy and with a maximum learning rate of half the one used in the
previous step. However, as previously mentioned, the first layers of CNNs learn very simple features,
which are probably useful for all tasks, while the final layers learn more domain-specific features. For
this reason, it is not sensible to train all layers with the same learning rate, so fastai fine-tunes the
models using discriminative learning rates, which simply means using lower learning rates for the early
layers and higher learning rates for the later layers, which more likely need to be updated. By default,
the learning rate of the first layer is 100 times smaller than the one of the last pretrained layer.

12There can be more than one frozen epoch, but this is fastai’s default value.
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Chapter 4

Classification of LIGO data using Deep
Learning

In this chapter, deep learning is applied to the classification of aLIGO data from the first two
aLIGO and AdV observing runs (O1 and O2). In section 4.1, the dataset used is presented and, in
section 4.2, a baseline model consisting of a residual NN is trained on this dataset. In sections 4.3
and 4.4, experiments are performed in order to find better models, respectively, by optimizing the
hyperparameters of the baseline model and trying a transfer learning approach. Finally, the best
models are evaluated on the test set in section 4.5 and used to classify real gravitational wave signals
in section 4.6.

The architectures and pre-trained weights used in this section were retrieved from the timm li-
brary [74]. The code used to train the models and analyze the results can be accessed on GitHub and
the raw results on Weights & Biases.

4.1 Dataset

The Gravity Spy dataset, introduced in [75], and accessible here, is a collection of spectrograms
of (mostly) glitches identified during the first and second aLIGO and AdV observing runs. All the
samples were hand-labelled by volunteers participating in the Gravity Spy project [76], which combines
machine learning with citizen science in the task of categorizing all glitches recorded by the aLIGO
(and Virgo) detectors. Samples were only included in the Gravity Spy dataset after the volunteers’
classifications achieved a high level of agreement with experts and the project’s machine learning
classifier. This dataset presents a multi-class classification problem, where the goal is to assign the
only correct glitch class to each noise sample.

Each glitch sample contains four spectrograms centered at the same instant in time but with
different durations: 0.5, 1.0, 2.0 and 4.0 seconds, all represented as 140×170 pixels grey-scale images,
as seen in Fig. 4.1. It can be seen that the glitch classes vary widely in duration, frequency range and
shape. Nevertheless, some classes can be easily mistaken for each other due to similar morphology,
like the Blip and Tomte classes, or if they are not visualized using the appropriate time window: for
instance, a Repeating Blips sample may be identified as a Blip if the window is too small.

In this version of the dataset, there are 8583 glitch samples distributed unevenly over 22 different
classes, as seen in Table 4.1. The majority of examples are Blips, with almost 1900 samples, while there
are five minority classes with less than 190 examples (10% of the number of Blips), the less represented
being the Paired Doves, with only 27 examples. The Chirp class, with only 66 examples, does not
actually represent glitches but instead hardware injections, which are simulated signals created to
resemble real gravitational waves and used for the testing and calibration of the detectors [75]. The
dataset is already split, using stratified sampling to ensure similar distributions in each subset, in
training (70%), validation (15%) and test (15%) sets, to facilitate the comparison of different methods.

4.2 Baseline classifier

In this work, the ResNet architecture [53], introduced in section 3.5.1, is used as a baseline for the
classification task. In the original implementation, ResNets end with a fully connected layer with 1000
units, but in the case of the Gravity Spy dataset, there are 22 classes, so the last layer was replaced
by a fully connected layer with 22 units, each corresponding to one of the classes.
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Figure 4.1: Examples of the different glitch classes. The classes None of the Above and No Glitch are
not represented. The time-scale is not equal for all images, as some classes require longer periods to be
identified. Despite being grey-scale images, they are shown with a colour map for better visualization.

Table 4.1: Different glitch classes in the Gravity Spy dataset, with the number of samples of each
class indicated in the Total samples column. The dataset is clearly imbalanced, and classes with less
than 10% of the samples of the most represented class are signaled in red.

No. Class Total samples No. Class Total samples

0 1080 Lines 328 11 No Glitch 181
1 1400 Ripples 232 12 None of the Above 88
2 Air Compressor 58 13 Paired Doves 27
3 Blip 1869 14 Power Line 453
4 Chirp 66 15 Repeating Blips 285
5 Extremely Loud 454 16 Scattered Light 459
6 Helix 279 17 Scratchy 354
7 Koi Fish 830 18 Tomte 116
8 Light Modulation 573 19 Violin Mode 472
9 Low Frequency Burst 657 20 Wandering Line 44
10 Low Frequency Lines 453 21 Whistle 305

For a quick search of the baseline classifier trained from scratch, the ResNet18 and ResNet34
architectures1, with and adapted number of inputs for the first convolutional layer, and using random
(He) weight initialization were chosen, training with fastai’s fit one cycle routine over 10 epochs
with the steepest point from the learning rate finder as the maximum learning rate, and the other
hyperparameters set to fastai’s defaults. The loss function chosen was the cross-entropy loss, which
is tailored for multi-class classification.

Several approaches were tested regarding the amount and format of the information provided to

1The Resnet18 and Resnet34 architectures are briefly presented in appendix A.
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the model. In the simplest approach, the model had only access to one of the four spectrograms for
each example, always with the same duration. This corresponds to views single1 (0.5 s), single2 (1.0 s),
single3 (2.0 s) and single4 (4.0s). Thus, these single-view models accepted batches of grey-scale (1-
channel) 140 × 170 (height × width) pixels images. The second approach was a merged view model
inspired in [77], which consists of placing the four single view 140 × 170 images next to each other,
forming a 280 × 340 pixels image. Finally, an approach based on encoding information related to a
different time duration in each image channel, as introduced in [78], was also implemented. Encoded
views with all combinations of 2 to 4 time durations were compared.

Initially, it was evaluated whether mixed precision training, introduced in section 3.9, was useful
for the GPU used on this work, NVIDIA’s RTX A4000 [79]. Thus, a quick grid hyperparameter sweep
was performed using the two architectures and only an example view of each combination of channel
dimension and image size, both with and without mixed precision training. The models were trained
for 10 epochs using the steep learning rate function. In total, 20 different models were trained, and
the results in terms of the use of mixed precision are shown in Fig. 4.2. Mixed precision reduced
the training time median by 29%, while making a difference of less than 0.2 percentage points in the
median macro-averaged F1 score achieved in the validation set. Hence, mixed precision training was
used for the rest of the models, as it saves time at virtually no cost in performance.
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Figure 4.2: Box plots of the results for the grid search to study the effect of mixed precision training
in terms of: (left) total training time, and (right) the F1 score in the validation set. “False” indicates
normal double precision training was used, while “True” labels the usage of mixed precision. Mixed
precision allows to decrease the training time while maintaining the performance of the models.

Moreover, it was also found that most models which use mixed precision took between 6.4 and 9.3
seconds per epoch during training. As models that train faster are easier to optimize and can also
result in faster inference times (if the lower training time is a result of a simpler architecture and not
a reduced number of epochs), a new metric was created to penalize models that take longer to train:

combined f1 time = f1 score− total runtime/30000. (4.1)

The last value of the equation was chosen ad hoc so that an increase of 0.2 percentage points in the
F1 score will only be accepted if it adds less than 60 seconds to the training time. Thus, the metric
allows to search for better models without increasing too much the training time.

Subsequently, a broader grid search was run over two hyperparameters, the two model architecture
and all the possible views, in order to select the best views and choose a baseline model. In this search,
the models were trained for 15 epochs instead of the previous 10, to better allow them to converge
and produce more useful comparisons. The results in terms of each view are shown in Fig. 4.3.

It was found that the single views were outperformed by almost all the other views. In fact, the
merged view and many encoded views yielded better F1 scores than the single views, with enhance-
ments of up to 1.6 percentage points when compared to view 3 (single3). The highest average F1
scores were obtained by encoded134, which was even better than the merged view and encoded1234
while using 25% less information. The views encoded124, encoded34, encoded14 and encoded234 also
achieved competitive F1 scores, within 1 percentage point of the best view. Note that due to the
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Figure 4.3: Comparison of the different views regarding F1 score and combined f1 time, computed
over the validation set. The horizontal bars show the average of the result of the two architectures.
In general, views with more information, simultaneously including views with shorter and longer time
windows, achieve better performance.

reduced number of trials for each view and the randomness inherent to the training process, com-
parisons should be made with caution when the differences are in the order of 1 percentage point or
less. Also, there are many views, including all single views, which show lower results for the ResNet34
architecture than for ResNet18, which does not agree with the higher capacity of ResNet34, but could
be due to the non-optimized training routine used.

Taking the total training time in consideration using the combined f1 time metric, however, can
help to filter the wanted views. For instance, the merged view takes about 6 more seconds per epoch
(a 70% increase) than the encoded view encoded134, while achieving slightly worse performance
regarding the F1 score. Thus, encoded134 is preferable to the merged view, as expressed by a wider
gap in combined f1 time. The view encoded134 was chosen for all subsequent models because, in
addition to being the highest performer, it uses 3 channels, enabling the use of pre-trained models
for transfer learning. Encoded124 could also be tried, but it has the same structure and contains
approximately the same information as the chosen view, so it would be unlikely to yield significantly
better results.

In addition, the results of the grid search were also evaluated in terms of the chosen architecture,
as depicted in Fig. 4.4. It is observed that, on average, ResNet18 achieves better results both on the
F1 score and the training time, resulting in a median combined f1 time 0.6 percentage points higher
than ResNet34. Thus, the ResNet18 was chosen for the baseline model. Nevertheless, the ResNet34
was still kept for subsequent searches for optimizations, due to its higher capacity and the potential
to perform better with a different set of hyperparameters.

After deciding the baseline configuration, five models were trained for 15 epochs using the same
configuration as before, and selecting the ResNet18 architecture and the encoded134 view. The
training and validation curves are plotted in Fig. 4.5. It is possible to observe that both curves
converge to a low value in all of the runs, with final training losses and validation losses lower than,
respectively, 0.002 and 0.06 for all runs. Although there are some accentuated increases in the first
half of training, especially in the validation curves, which contrast with the wanted behaviour of
monotonically decrease for both curves, they are more or less expected as the 1cycle policy is being
used, and the models seem to always have found a good minimum. Moreover, the F1 scores of the five
models are shown in Fig. 4.6. From the five trained models, which obtained F1 scores between 95.9%
and 97.4%, the best one, run 3, was chosen. Note that the best model can be an outlier, as there is
variability of 1.5 percentage points between the best and worst runs and its performance is more than
1 percentage point higher than the median.

The confusion matrix of the model’s predictions for the validation set is shown in Fig. 4.7. In
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Figure 4.4: Comparison of the architectures regarding F1 score and combined f1 time, computed
over the validation set. ResNet18 achieved comparable performance while taking less time to train,
resulting in higher values of F1 scores and combined f1 time.
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Figure 4.6: F1 score distribution
of the five models trained with the
baseline configuration. The best
model outperforms the worst by 1.5
percentage points, with a F1 score
of 97.4%.

total, there are only 13 instances out of the matrix diagonal, which correspond to the only validation
examples incorrectly classified out of all 1288. Moreover, the model shows perfect precision and recall
for 9 of the 22 classes (that is, all their examples were correctly identified an these classes were not
attributed to any mislabeled example), and these values are simultaneously above 95% for 18 out
of the 22 classes. The Chirp class is not included in the previous group, as one Chirp which was
identified as a Tomte reduces the recall of the Chirp class to 90%.

The 12 validation examples where the model shows the greatest losses (all but 1 of the misclassified
examples) are depicted in Fig. 4.8. In some cases, like the Repeating Blips example which was
identified as a single Blip (row 3, column 3), or the Whistle example that was labeled as Blip

(row 2, column 1), the model’s error is obvious. However, in other cases it is not so clear. For
instance, the None of the Above that was classified as a Koi Fish (row 1, column 4) actually looks
like a somewhat sideways Koi Fish. Regarding the case of the misclassified Chirp (row 1, column 1),
the high-energy at lower frequencies after the peak time makes the spectrogram almost symmetric,
which is not typical in Chirps and could explain the confusion with the symmetrical and wide-base
Tomte class. Additionally, the samples of two cases where the model mistook Paired Doves and
Low Frequency Burst, once in each direction (row 1, column 2 and row 3, column 1) actually look
very similar despite being labelled with different classes. After looking at the samples of these classes
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Figure 4.7: Confusion matrix of the predictions of the baseline model over the validation set. Note
that only 13 examples are misclassified. The model shows precision and recall simulatenously above
95% for 18 of the 22 classes.

in the training and validation sets and finding, it is clear that this is an error in the labelling, and
that the example labelled with Low Frequency Burst is indeed from the class Paired Doves. If this
is taken in account and the instance label is corrected, the recall and precision of the Paired Doves

increase to 100% and 80%, respectively, and the macro-averaged F1 score increases to 98.1%.

Taking into account the high F1 score that the model achieves, especially with the corrected label,
and looking at its number of mistakes in the validation dataset, it might appear that there is not much
that can be done to improve it. However, note that this model instance was chosen exactly because
it was the best performing in the validation dataset, and it is not guaranteed to generalize well to
the test set. In fact, from Fig. 4.6, it seems that other models trained with the same configuration
can achieve significantly lower performances. Thus, it is justified to search for stabler configurations
using different hyperparameters which have not yet been optimized. In addition, given that 4 of the
12 errors (the mislabelled sample is excluded) involve the five less represented classes, methods of
increasing the importance of these classes can be tried.

4.3 Improving the baseline classifier

Initially, an attempt was made to tune the learning rate choice, the number of epochs and the
batch size with the goal of further optimizing the model’s performance. Hence, a bayesian sweep was
performed over 50 configurations of the following three hyperparameters:

• number of epochs, between 8 and 25;
• batch size, sampling from the set [32, 64, 128, 256];
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Figure 4.8: Misclassified examples of the validation set, with their true class and the model prediction.
The examples are represented using a single view that was in one of the encoded view channels
presented to the model and allows for a human to identify the glitch class.

• learning rate finder function, sampling from the four available methods in fastai (steep,
valley, slide, minimum).

The configurations of the ten models with the best F1 score are compared with the baseline in
Table 4.2. It was found that no model obtained a F1 score higher than the baseline, although some
models obtained a slightly better combined score than the baseline by mantaining a comparable F1
score while training for less epochs. There is a prevalence of models with the valley suggestion
function, while no model uses the steep function chosen for the baseline. In terms of the batch size,
32 seems to be a good size, especially in combination with valley. Most models were trained for 12
to 15 epochs, although there are two models that were trained for only 9 epochs and three for 20 or
more epochs.

Table 4.2: Configuration of the baseline model and the ten best models found in the bayesian sweep
over the number of epochs, batch size and learning rate function. Metrics are computed on the
validation set. The last column shows the names of the seven configurations that were saved based
on the ten models.

name epochs lr function batch size combined f1 time f1 score configuration

baseline run 3 15 steep 64 0.9771 0.9807 baseline
jumping-sweep-48 9 valley 32 0.9776 0.9802 best1
polar-sweep-24 14 valley 32 0.9754 0.9788 —
efficient-sweep-23 15 valley 32 0.9734 0.9776 best2
valiant-sweep-33 25 minimum 128 0.9724 0.9775 best3
earnest-sweep-35 15 minimum 32 0.9719 0.9755 best4
breezy-sweep-30 12 minimum 64 0.9723 0.9749 best5
dauntless-sweep-14 13 valley 32 0.9705 0.9744 —
northern-sweep-19 9 valley 32 0.9711 0.9734 —
polished-sweep-12 20 valley 256 0.9679 0.9728 best6
summer-sweep-1 24 slide 256 0.9649 0.9715 best7

Following, additional instances of each configuration were trained in order to produce more mean-
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ingful comparisons with the baseline. Since some models are similar in terms of configuration, using
close number of epochs and the valley function with equal batch size, not all configurations were
chosen. In Table 4.2, the last column shows the name attributed to model configuration if it was
saved. In total, seven different configurations were chosen, and five new models were trained using
each of the configurations.

The box plots of the distributions of the F1 scores for the newly trained models using the seven
configurations, in addition to the baseline (recomputed with the label correction), are shown in Fig. 4.9
for the validation set. It was found that only the best1 configuration achieved an F1 score higher than
the baseline maximum in one of the runs, but the value distribution suggests that this configuration
is not better than the baseline. Configurations best6 and best7, which use a 256 batch size, on
the other hand, achieved medians higher than the baseline median, although their maximum value is
lower than the baseline maximum. On the other hand, the configurations with the minimum suggestion
function (best3-5) are clearly worse than the baseline, while best2, which uses the valley function
is better than them but also appears to perform worse than the baseline.

baseline best1 best2 best3 best4 best5 best6 best7
configuration
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Figure 4.9: Box plots of the F1 scores on the validation set fot the five runs for the baseline and each
of the seven best configurations from the first bayesian sweep. None of the configurations appear to
be significantly better than the baseline.

Afterwards, a weighted loss function was tried, to penalize more the model for mistakes in the
less represented classes, by introducing a class-dependent weight, wi in the cross-entropy loss of
equation (3.10):

L(θ) = −
K∑

k=1

wk yk log(p̂k). (4.2)

If wk is equal to 1 for all classes, the previous equation is the plain cross-entropy loss. In turn, the
choice of higher wk values for the classes with less samples increases the loss function’s dependence
on these classes. Thus, such weighted loss function can be interpreted as an artificial oversampling of
the dataset.

One possible way to calculate the weights of each class is to use the inverse number of samples
weighting scheme, where the weight of class k is given by

wk =
1

Nk
, (4.3)

with Nk being the total number of samples of class k. In order to create weights closer to unity, they
are then normalized by dividing each class weight by the sum of the class weights and multiplying
by the number of classes. The weights must be calculated using the total number of samples in the
training and validation sets but not on the test set, to prevent any possible information leak.
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Another interesting weighting scheme is the effective number of samples, proposed in [80], which
obtains weight associated with each class using

wk =
1− β

1− βNk
, (4.4)

where β is a hyperparameter which allows to control the re-weighting degree from no re-weighting
(β = 0) to inverse class frequency (β → 1). The authors suggest trying β values like 0.9, 0.99, 0.999
and 0.9999.

The weights obtained in the Gravity Spy dataset using the two previous methods are shown in
Fig. 4.10. As expected, the inverse strategy produces the most aggressive weighting, with the highest
difference between the maximum and minimum weights. The two highest β values produce weights
very close to the inverse method, so they were not tested. The lowest β was also not used, as it seems
to introduce almost no re-weighting, with a difference of only 0.1 between the extreme weights. On
the other hand, β = 0.99 seems to introduce a more balanced re-weighting, so it was tried in addition
to the inverse weighting.
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Figure 4.10: Class weights for the Gravity Spy classes using the inverse weighting scheme and the
effective number of samples with different values of β. The inverse method produces the most aggres-
sive cost-sensitivity while the effective number of samples with the highest β introduces almost no
change. The same method with β = 0.99 seems to achieve a good balance.

The re-weighting strategies were compared using the baseline and best6 configurations, in addition
to a configuration equal to the baseline but with the ResNet34 architecture instead of the ResNet18.
Each configuration/strategy combination was run for 10 times, and the results are shown in Fig. 4.11.

Comparing only the models without re-weighting, the increased number of runs seems to confirm
that the baseline configuration is better than best6, although the latter achieved the highest overall
F1 score. Once again, the ResNet34 architecture also seems to perform worse than the ResNet18.
When the inverse weighting strategy is introduced, the performance of the baseline decreases, while
the best6 performance is not much changed and the ResNet34 F1 scores even slightly increase. Finally,
the effective re-weighting strategy seems to result in similar performance for the baseline in comparison
to the models without re-weighting, while the best6 models slightly deteriorate and the ResNet34
models very slightly increase performance.

About half of the misclassification errors of the two models trained with re-weighting were found
in the same exact validation samples as the unweighted baseline model, some of which not involving
the minority classes. This raises the question whether the problem might be that the model is relying
too much on the easier samples and has more difficulty in harder samples like the ones it constantly
misclassifies on the validation set.

The focal loss function, introduced in [81] for the task of object detection, addresses this exact
issue by adding to the cross-entropy loss a modulating factor which down-weights easy examples,
that is, examples where the model is more confident; it has also been reported to help in imbalanced
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Figure 4.11: F1 scores on the validation set for three different weighting strategies using three different
configurations. The re-weighting strategies do not appear to increase the performance of the config-
urations with the ResNet18 architecture (baseline and best6) but slightly increase the performance
for the ResNet34.

classification tasks (see e.g. [82]). In practice, focal loss is combined with the re-weighted cross-entropy:

L(θ) = −
K∑

k=1

wk (1− p̂k)
γ yk log(p̂k), (4.5)

where γ is the focusing parameter. When γ = 0, the equation reduces to equation (4.2), and as γ is
increased, the effect of the modulating factor does too, practically unaffecting the loss for misclassified
examples with small p̂k and pushing to 0 the importance of examples classified with higher confidence,
that is, high p̂k). The authors of [81] have found that γ = 2.0 is a good default, so this value was kept
constant in this work.

The baseline configuration was trained, using the focal loss, five times for each of the previous
weighting strategies (including the absence of re-weighting), and the results are shown in Fig. 4.12.
Focal loss does not seem to work with the inverse re-weighting strategy, and yields similar performance
without re-weighting and using the effective number of samples strategy. In any case, the results with
focal loss are worse than the results with cross-entropy in all cases, which suggests that the inclusion
of focal loss is not positive.

To sum up, even after extensive efforts to optimize hyperparameters such as the number of epochs,
the batch size and the learning rate finder function, as well as attempts to address the misclassifi-
cation of harder examples using class-dependent weights and a different loss function, the baseline
configuration with vanilla cross-entropy loss appears to be the best choice.

4.4 Transfer learning classifier

After being unable to improve the baseline model in the last section, an approach using transfer
learning was attempted. Although the models used in transfer learning are pre-trained on the Im-
ageNet dataset, the features from the first layers may still be relevant for the Gravity Spy dataset,
possibly allowing to train models faster and achieve better results.

Initially, pre-trained models using the ResNet18 and ResNet34 architectures were trained with
fastai’s fine tune routine using the same configuration as the baseline. The results obtained over
10 runs with each architecture are compared to the models trained from scratch in Fig. 4.13. The
use of transfer learning degrades the performance of the models with the ResNet18 architecture, but
appears to improve the performance of the ResNet34 models, reaching F1 scores close to the ResNet18
trained from scratch. One possible explanation is that the increased number of layers allows to combine
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Figure 4.12: Comparison between the F1 scores on the validation set for the cross-entropy loss and
focal loss functions, using the baseline configuration with three different re-weighting strategies. The
use of focal loss does not improve the performance of the models.

general features learned on ImageNet in the initial layers with specific features from this dataset in the
later layers, and that this is harder with only 18 layers. Moreover, it should also be considered that
the models are trained with a configuration that was found to be the best for the ResNet18 trained
from scratch, and not necessarily for the other cases.
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Figure 4.13: Comparison between the F1 scores on the validation set for the models trained from
scratch and the ones using transfer learning. Transfer learning appears to improve the performance
of the ResNet34, but does not for the ResNet18 architecture.

As the previous result suggest that ResNet18 architecture might not to be the best for transfer
learning, other architectures, both from the ResNet family and other families, were tried in the next
step. First, the ResNet26, a variant which has a size between the two previous architectures, was
considered. Furthermore, bigger ResNet networks which might better make use of the pre-trained
features, namely ResNet50 and ResNet101, were also analyzed. In terms of other architecture families,
the novel Vision Transformers such as ViT [83] and Swin [84] were discarded because, as they are
not CNNs, they are out of the scope of this work. On the other hand, the ConvNeXt family [56] is
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a strong contender, as it is fully based on CNNs whose design is inspired on the successful Vision
Transformers, achieving competitive performances (see e.g. [85]).

In order to avoid selecting models that are too big, and thus, too slow to train and prone to
overfitting, the number of parameters of selected models from the ResNet and ConvNeXt families
was compared in Fig. 4.14. ResNet18 is the smallest model overall, with about 11 million parameters,
while ResNet101 has more than 42 million parameters and ConvNeXt Small contains almost 50 million
parameters. The smallest model from the ConvNeXt family is the ConvNeXt Nano, which has almost
the same size as the ResNet26. It was decided to use models up to three times bigger than ResNet18,
which includes ResNets 18 through 50 and the “nano” and “tiny” versions of ConvNeXt.
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Figure 4.14: Comparison of the size of different models of the ResNet and ConvNeXt families.

Having selecting the six architectures, a grid sweep was performed in order to compare them,
training each model for 4, 9 and 14 epochs (in addition to the initial frozen epoch) and using two
different learning rate functions, steep and minimum, while keeping the other hyperparameters at the
default values. In total, each architecture was trained six times, with the results shown in Fig. 4.15.
It can be observed that ResNet18 produced the best single run, but it appears to be worse than all
the other architectures when averages and medians are considered. The performance of the ResNet
family seems to peak with the ResNet34 architecture, but it is surpassed by the ConvNeXt family.
ConvNeXt Nano is close to ConvNeXt Tiny in terms of F1 score, but is preferable when the training
time is considered. For these reasons, ConvNeXt Nano2 was chosen as the architecture for subsequent
optimizations.

In addition to evaluating the different architectures, the models were evaluated in terms of the
number of epochs. It was found that the models trained for only 4 epochs outperformed the others even
in terms of F1 score without time considerations, which accentuates the power of transfer learning for
quickly training powerful models. For this reason, the following optimizations explored a parameter
space with a reduced number of epochs.

Then, a bayesian sweep was run to optimize the hyperparmeters of the transfer learning model with
the ConvNeXt nano architecture. Fifty configurations were evaluated, given the following parameter
space:

• number of frozen epochs, with a uniform integer distribution between 1 and 5
• number of unfrozen epochs, using a uniform integer distribution between 1 and 10;
• batch size, sampling from the set [32, 64, 128, 256];
• learning rate finder function, sampling from the four available methods in fastai;
• loss function: either cross-entropy or focal loss;
• re-weighting strategy, which could be none, inverse of class frequency, or effective number of
samples.

The configurations of the overall top 7 models in terms of F1 score in addition to the three best
models trained for 6 epochs or less are reported in Table 4.3, as well as the baseline configuration.

2The ConvNeXt Nano architecture is briefly described on appendix A.
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Figure 4.15: Comparison of the architectures regarding F1 score and combined f1 time, computed
over the validation set. ConvNeXt Nano is the best model in terms of both metrics.

Four of these models achieved higher performance than the baseline, both in terms of F1 score and
combined f1 time, with an increase of almost 0.3 percentage points in F1 score. Moreover, they take
generally less epochs to train, achieving good results with 7 to 10 epochs in total. In terms of batch
size, 64 appears to be a good default value, as it appears in most of the top runs. The minimum

learning rate finding function appears to be the best choice, closely followed by steep. Unlike the
results obtained in the models trained from scratch, the use of the focal loss function and loss re-
weighting strategies is helpful, as they are present in most of the best models. As to the faster models,
they all use the cross-entropy loss with a re-weighting strategy, and achieve F1 scores higher than
97.5% with minimal training.

Table 4.3: Configuration of the seven best overall and the three best fast pre-trained models found in
the bayesian sweep, in addition to the baseline (trained from scratch). The top four models slightly
beat the baseline model in both metrics.

bs3 epochs4 lr function loss re-weighting combined f1 time f1 score configuration

64 0 + 15 steep cross entropy none 0.9771 0.9807 baseline
64 3 + 7 minimum focal loss effective 0.9804 0.9836 tl best1
64 2 + 6 minimum focal loss none 0.9804 0.9830 tl best2
32 1 + 6 steep focal loss none 0.9787 0.9818 tl best3
128 2 + 7 minimum focal loss effective 0.9785 0.9816 tl best4
64 2 + 8 minimum focal loss effective 0.9766 0.9800 —
64 2 + 8 minimum cross entropy inverse 0.9760 0.9792 tl best5
256 1 + 9 steep focal loss effective 0.9755 0.9789 tl best6
64 1 + 5 minimum cross entropy inverse 0.9749 0.9768 tl fast1
64 1 + 4 steep cross entropy inverse 0.9750 0.9765 tl fast2
64 1 + 4 steep cross entropy effective 0.9746 0.9762 tl fast3

The nine chosen configurations were more thoroughly evaluated by running them five times each,
and the results are shown in Fig. 4.16. The best overall score was obtained by the tl best6 config-
uration, which beat the baseline’s best run. The tl best5 and tl fast1 configurations achieved F1
scores higher than the baseline median in all five runs, and both also produced one run with F1 score
very close to the baseline maximum. Moreover, tl fast1 has the highest median among all models.
This configuration outperforms the baseline while being trained for only 6 epochs (about one third of
the baseline model), which is a good indicator of the power of transfer learning.

3“bs” denotes the batch size.
4The two values in each entry of the “epochs” column are, respectively, the number of frozen and unfrozen epochs.
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Figure 4.16: F1 scores on the validation set of the five runs for the baseline and the nine configurations
selected from the second bayesian sweep. tl best6 obtained the best F1 score in a single run, but
tl best5 and tl fast1 appear to be the more consistent configurations, always performing above the
baseline median.

It is true that the baseline and transfer learning models use a different architecture and that the
improvement could be partially due to the ConvNeXt architecture. To resolve this question, a bayesian
sweep with parameters similar to the previous bayesian sweep, but training the ConvNeXt models
from scratch, was performed. This architecture proved very difficult to train from scratch, and even
when training for about 25 epochs the highest F1 score was lower than 95%, which is worse than the
first quick models using encoded views shown in Fig. 4.3.

One final investigation was performed to assess whether the use of image augmentation techniques
would improve the models, as reported in [78]. Image augmentation allows to artificially increase
the training data, as each sample experiences random transformations that yield different but still
recognizable images. Following the procedure of [78], each image suffers a random horizontal and
vertical shift and is slightly zoomed in or out at each epoch. The maximum shift value for each
dimension was defined as shift fraction × dim length and the zoom ratio as (1 − zoom range, 1 +
zoom range). Thus, shift fraction and zoom range are two additional hyperparameters which can be
optimized.

Two bayesian sweeps were performed over 30 runs each, using the tl best5 and tl fast1 config-
urations, in order to optimize the image augmentation hyperparameters for each configuration, using
a distribution of values from 0 to 0.10 for both of them. The shift and zoom values from the three
runs with highest F1 score for each configuration are shown in Table 4.4, and the best four achieved
higher F1 scores than the baseline’s best run.

Each of the previous configurations was repeated ten times, and the results are plotted in Fig. 4.17.
The very high F1 scores obtained in the bayesian sweep could not be replicated later, so they were
likely very lucky outliers. Aside from tl best5 aug2, no other set of augmentation hyperparameters
produced results comparable to the versions without data augmentation. Moreover, tl best5 aug2

has only minimal zoom and shifts in comparison to the other configurations, which yielded considerably
poorer results than the versions without augmentation. Although data augmentation is frequently
used in many applications with low sized an imbalanced datasets, results here showed that it does
not improve the performance of the models on the validation set or, at least, that only a very small
amount of zooming and shifting could be useful. To reinforce this hypothesis, another hyperparameter
sweep similar to the one at the beginning of this section was performed, while also varying the zoom
and shift, and it failed to produce F1 scores higher than the version without augmentation.

Finally, the best model of tl best5 was chosen as the transfer learning classifier. In comparison

38



Table 4.4: Selected configurations with data augmentation, based on the top performing configurations
in the previous sweep, shown in Fig. 4.16. The tl fast1 models with almost no zoom and a shift
fraction of 8.5% achieved the highest F1 scores so far.

base configuration zoom range shift fraction f1 score configuration

tl fast1 0.000 0.085 0.9843 tl fast1 aug1
tl fast1 0.015 0.085 0.9842 tl fast1 aug2
tl fast1 0.035 0.005 0.9826 tl fast1 aug3
tl best5 0.085 0.070 0.9822 tl best5 aug1
tl best5 0.015 0.005 0.9800 tl best5 aug2
tl best5 0.070 0.050 0.9786 tl best5 aug3
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Figure 4.17: F1 scores on the validation set of the ten runs for each configuration of Table 4.4 and
the respective base configurations without augmentation. Data augmentation does not appear to help
improve the performance of the models on the validation set.

with the baseline model, it only increases the F1 score from 98.07% to 98.21%, but the transfer
learning configuration appears to result in stabler performances across multiple training trials, with
its worst performance higher than the baseline median. In fact, the baseline configuration achieves a
F1 score of (97.4±0.5)%, less than tl best5’s (97.8±0.2)% and tl fast1’s (97.9±0.2)%. Note that
the previous F1 scores are reported in the form (µ± σ)%, where µ is the distribution average and σ
its standard deviation.

4.5 Evaluation of the selected models

Finally, the baseline and tl best5 model’s performance was evaluated on the test dataset, which
had been kept apart until that point. It was found that the F1 score of the baseline slightly dropped
to 97.18%, while tl best5, the best model on the validation set, performed worse than the baseline
on the test set, with a F1 score of 96.84%. Nevertheless, the F1 scores, obtained on data which was
never seen by the models nor used to perform choices regarding hyperparameter optimization, are still
very high for both models.

Despite not being the best on the validation set, the baseline model turned out to show better
generalization than the best optimized model on the validation set, which could be due to having
overfitted the validation dataset, as it was used to validate hundreds of models through this work. In
hindsight, it is possible that using k-fold cross validation [86], at least for the repeated runs using the
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same configurations, would have been a better approach to estimate the performance of the models.

The confusion matrix of the baseline model, using the predictions on the test set, is shown in
Fig. 4.18. The model shows both precision and recall of at least 95% for 19 out of the 22 classes,
as it only appears to have difficulties in the Air Compressor, None of the Above and Paired Doves

classes, all of which have very few examples on the training set. Moreover, the model shows perfect
precision and recall on the Chirp class, which might be useful for the task of detecting GW signals, as
explored on the next section. Looking at the off-diagonal entries of the matrix, the only mistakes which
occurred more than once were confusing two Repeating Blips samples for Blips and identifying three
None of the Above examples as Light Modulation. In these cases, it was found that the correct label
was the the class where the model had the second highest score, which is a good indicator, related to
the so-called top-2 accuracy. In fact, the model shows a top-2 accuracy of 99.69%, that is, for that
percentage of the samples the correct class is among the model’s top two predictions.
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Figure 4.18: Confusion matrix of the predictions of the baseline model over the test set. The model
shows precision and recall of at least 95% for 19 of the 22 classes, and perfect scores for Chirps.

Finally, the two models were compared to the literature in terms of their F1 score and accuracy5

in Table 4.5. Both selected models of this work obtained competitive results, higher than the merged
view CNNs and even than an ensemble of models, in case of the baseline. The baseline model, which
uses a ResNet18 architecture trained from scratch, is only slightly worse than the fine-tuned ResNet50
from [87], with a decrease in F1 score of less than 0.5 percentage points. However, the authors of
the paper used a different dataset split, without a validation dataset, which was distributed over the
training and test sets. This lack of a validation dataset raises the question of how the final model was
chosen, since in a related pre-print paper [78] the authors state that the models were check-pointed
after each epoch and subsequently the best check-points were chosen. This would not be possible
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without either basing the choice on training set metrics and almost surely overfitting the data (thus
yielding lower test scores), or making the decision based on the test dataset, which means that the
real generalization performance of the model would be worse than reported.

Table 4.5: Performance of different models on the Gravity Spy dataset. F1 scores of other works were
calculated from the reported confusion matrices, when available. The best model of this work is only
outperformed by the fine-tuned ResNet50.

Model F1 score (%) accuracy (%) Notes

merged view CNN [77] not reported 96.89 different dataset version (20 classes)
merged view CNN [75] not reported 97.67 improved version of [77]
hard fusion ensemble [75] not reported 98.21 combines four CNNs
fine-tuned ResNet50 [78,87] 97.65 98.84 different split (no validation set)
tl best5 [this work] 96.84 98.14 fine-tuned ConvNeXt Nano
baseline [this work] 97.18 98.68 ResNet18 trained from scratch

4.6 Gravitational wave detection with the glitch classifiers

As mentioned before, the Gravity Spy dataset contains a few examples of chirps, which are simu-
lated GW signals from CBCs. In addition, the best models have shown perfect precision and recall for
chirp classification in the Gravity Spy test set. These two reasons motivated a brief investigation of
whether the models trained in this work would be able to identify real gravitational waves as Chirps,
using data from the first two aLIGO and AdV observing runs. As a note of caution, it is worth
mentioning that the models were trained with the available hardware injections in the dataset, which
do not include software injections (from PyCBC approximants) in real noise experiments that would
allow a bigger coverage of the CBC parameter space.

The strain data for the 11 confident detections in the O1 and O2 runs, for each aLIGO detector,
Hanford (“H1”) and Livingston (“L1”), was obtained from the Gravitational Wave Open Science
Center (GWOSC) [88]. For each data sample, a Q-graph of the strain data in the 5 seconds around
the GPS time of the detection was obtained using the q transform method from the GWpy library [89].
Furthermore, four crops of this Q-graph, centered at the time with the highest energy, were obtained,
one for each different single view duration in the Gravity Spy dataset. From the resulting 22 samples
(11 events times 2 detectors), 10 were discarded due to being buried in the background noise, with no
visible chirp, or, in the case of GW170817 for the Livingston detector, being in the middle of a very
energetic glitch. The event and detector for selected sample is found in the titles of Fig. 4.19

Then, the views with 0.5, 2.0 and 4.0 seconds of duration were combined taking advantage of the
RGB color channels, as done previously to obtain the encoded134 view. Finally, the resulting images
were passed through the baseline model, with no further training, and the resulting predictions are
depicted in Fig. 4.19, ordered by descending order of loss. The model correctly identified 3 out of the
12 examples as Chirps, thus having a 25% recall. Moreover, in the two misclassified samples with the
lowest loss, the correct class was among the top 3 classes. In all the other cases, Chirp was not even
between the top five predictions of the model.

The poor performance of the model could be partially explained by the fact that, despite trying to
replicate the Gravity Spy spectrogram creation pipeline as closely as possible, the lack of information
on how to do so demanded some choices that may not agree with the original dataset. Moreover,
examples like the first three in the top row show a slightly different chirp morphology, being longer
in duration than the chirp examples in Gravity Spy and different enough than other classes, resulting
in a None of the Above prediction. Additionally, the samples classified as Scratchy have a chirp-like
morphology, but most of the chirps are much less distinguishable from the background noise than in
the original dataset. In these cases, the GW signal appears to be ignored, and the ripply path noise
present in the mid frequencies leads the model to predict Scratchy.

5As previously stated, accuracy is not a good metric for very imbalanced datasets. Nevertheless, its value is reported
to facilitate comparisons with the literature.

41



GW170817 H1
pred: None_of_the_Above

GW170608 H1
pred: None_of_the_Above

GW170608 L1
pred: None_of_the_Above

GW170729 L1
pred: Scratchy

GW170823 H1
pred: Scratchy

GW170818 L1
pred: Scratchy

GW170104 H1
pred: Scratchy

GW170823 L1
pred: Scratchy

GW170809 L1
pred: None_of_the_Above

GW170814 L1
pred: Chirp

GW150914 L1
pred: Chirp

GW150914 H1
pred: Chirp

Figure 4.19: Real GW examples fed to the baseline model and the respective predictions. Only 3
of the 12 examples were correctly identified as Chirp. The error could be due to examples having a
morphology not seen during training or being less energetic than training examples.

The tl best5model was also evaluated on the same samples, and it was found that its performance
was much better, even when using samples obtained with previously tested pipelines where the views
had not been aligned and/or contained excessive background noise. For these pipelines, the baseline
model would classify less than 3 examples correctly, while the transfer learning model always outputted
at least 7 correct predictions.

The predictions for the tl best5model using the same samples as previously are shown in Fig. 4.20.
For these samples, the model successfully identifies 8 of the 12 chirps, achieving a 75% recall. Three
of the misclassified examples are chirps with a much longer duration, which are very different than
the examples used to train the model. In fact, they all result from low mass CBCs, as GW170608
was originated in the merger of two low-mass Black Holes [90] and GW170817 in a Binary Neutron
Star inspiral [90]. In the case of the signal identified as Blip, the GW signal is from GW170823, the
merger of two high mass black holes [90], resulting in a narrow shape very similar to a blip.

GW170608 L1
pred: No_Glitch

GW170817 H1
pred: Wandering_Line

GW170823 H1
pred: Blip

GW170608 H1
pred: Power_Line

GW170729 L1
pred: Chirp

GW170104 H1
pred: Chirp

GW170818 L1
pred: Chirp

GW170823 L1
pred: Chirp

GW150914 L1
pred: Chirp

GW170809 L1
pred: Chirp

GW170814 L1
pred: Chirp

GW150914 H1
pred: Chirp

Figure 4.20: Real GW examples fed to the tl best5 model and the respective predictions. The model
shows a recall of 75%, successfully identifying 8 of the examples as Chirp. Most of the misclassified
samples are chirps that are much longer than the ones in the Gravity Spy dataset.

The performance of the two models tested with real gravitational wave signals is very distinct,
despite both having perfect performance in the Chirps of the test set. Aside from achieving better
performance, the model trained with transfer learning is much more robust to samples which are
different than the training samples in terms of background noise and alignment. One possible expla-
nation for the better performance and behaviour with samples slightly out of distribution could be
the benefit of pre-trained features, which were reported in [91] to produce a boost in generalization
even after fine-tuning.
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Chapter 5

Conclusion

In this work, classifiers were developed to reliably categorize different noise transients found in
the LIGO detectors, using Convolutional Neural Networks. Moreover, these models were capable of
identifying real gravitational wave events from Compact Binary Coalescences, despite being trained
on a low number of relevant examples.

Initially, a baseline model was quickly chosen for comparison with later optimized models. During
this phase, it was found that encoding the different spectrogram time windows in different color
channels was an efficient way of presenting additional information to the model with small impact in
time complexity. Moreover, a simple residual network with just 18 layers was found enough to achieve
good results. Then, a class-dependent weighted loss and the focal loss function were tried in order to
address the imbalance of the dataset, but they were found not to improve the baseline performance.
Subsequently, another approach based on transfer learning was tried, taking advantage of a pre-trained
state of the art small CNN architecture. Using a bayesian hyperparameter optimization sweep, it was
possible to find model configurations that could be trained faster and performed better than the
baseline on the validation dataset.

When the better model trained from scratch, which was the baseline model, and the best model
obtained with transfer learning, tl best5, were compared on the test set, it was found that the
baseline generalized slightly better, with a macro-averaged F1 score of 97.18%, higher than the 96.84%
achieved by the tl best5 model. This unexpected result may indicate that during this work the
validation dataset has been overfitted, which is plausible given the amount of models tested. In future
works which rely on many optimization experiences, more robust validation techniques such as cross-
validation can be useful to address this problem. Nevertheless, both results are very good, in line with
the previous results found in the literature.

Finally, both models were tested on real GW samples obtained from the first two aLIGO and AdV
observing runs. Despite the small number of relevant samples in the dataset, which had less than 50
Chirps in the training dataset, the models could correctly identify real gravitational wave events. In
the case of the baseline model, it was found that its predictions were very dependent on the parameters
chosen for the spectrogram creation, and it failed to identify signals where chirps could be visually
found. The tl best5 model, on the other hand, was much more robust to those parameters, possibly
due to improved generalization from the usage of transfer learning. It always achieved at least 75%
recall, having most difficulties with longer chirps, which were not present on the Gravity Spy dataset.

One limitation to this work is the fact that the dataset only contained glitches from the two first
aLIGO and AdV observing runs, as currently the data from O3 is being analyzed and new glitch
classes are still being proposed. In order to keep up with the glitch classes present in the O4 run,
starting on March 2023, it is important to train the classifiers in a dataset that includes O3 data,
so a future step could be to train models on the portion of O3 data that is already labelled. Still,
the models developed during the course of this work can be useful for a preliminary categorization
of glitches on new data, as they could work in real time to classify the spectrograms generated by
the Omicron trigger pipeline [92]. In addition, the insights gathered regarding the best architectures,
sample formats and hyperparameters will probably be useful for an updated version of the dataset,
and the code developed can be easily changed to train models for the new dataset.

An important factor which affects the quality of the classifiers is the number of samples available,
particularly from the minority classes, as the performance of supervised Deep Learning algorithms
tends to improve with the increase of the number of labelled examples. In this regard, Generative
Adversarial Networks [93] are a good prospect for the generation of synthetic data, which could help
to populate the less represented classes and increase the classifiers’ performance even for the rarer
glitches.
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Appendix A

Description of the most used architectures

A.1 ResNet18 and ResNet34

ResNet18 and ResNet34 are the smallest versions of the original Residual Neural Networks intro-
duced by [53] and presented in section 3.5.1. The architectures have 18 and 34 layers, respectively, and
both consist of one stem block followed by four stages of stacked ResNet blocks like the ones seen in
Fig. 3.10, and a final fully connected layer. Each stage downsamples the image size to a half, and there
are skip connections between the beginning of each residual block. There is a Batch Normalization
block after each single convolution and each convolutional layer (group of 2 convolutions) is followed
by the ReLU activation function. The structures of the ResNet architectures used are summarized in
Table A.1. Note that the only difference between the 18-layer and 34-layer variants is the number of
residual blocks stacked in each stage.

Table A.1: Structure of the ResNet architectures. The building blocks are shown in brackets; inside
them, n × n indicates the kernel size and the number that follows is the number of feature maps.
† denotes that the first convolution of the stage performs down-sampling using a stride of 2. The
output size considers an input of 140 × 170 as done in this work, and the head of the network is
already customized for the number of classes in Gravity Spy.

layer group name output size ResNet18 ResNet34

stem 35×43
7×7, 64, stride 2

3×3 max pool, stride 2

stage 1 35×43

[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

stage 2† 18×22

[
3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

stage 3† 9×11

[
3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

stage 4† 5×6

[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

head 1×1
5 × 6 average pool

512 × 22 fully connected, softmax

A.2 ConvNeXt Nano

ConvNeXt is a family of CNNs which were created by iteratively modifying the ResNet architecture
while being guided by the ideas used in the latest Vision Transformer networks [83]. Hence, ConvNeXt
networks take advantage of Transformer-inspired design principles such as:

• a different stage compute ratio (1:1:3:1);
• a simpler downsampling strategy in the stem;
• the use of depthwise convolutions, a special type of convolution which applies a different filter
for each channel, only mixing information in the spatial dimension (height and width);
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• the inverted bottleneck, i.e., having an inner convolutional layer in the ConvNeXt block which
has a feature map size bigger than the first and last convolutions of the block;

• larger kernel sizes;
• less and distinct activation functions (using the Gaussian Error Linear Unit (GELU) [94],
a smoother version of the ReLU) and normalization layers (Layer Normalization [95] layers
instead of Batch Normalization);

• the usage of separate downsampling layers.

The ConvNeXt family preserves the successful principle of residual connections, allowing to skip each
building block similarly to the ResNets, as shown in Fig. A.1. More details can be found in the
ConvNeXt paper [56].

Figure A.1: Comparison between the ResNet and ConvNeXt building blocks. Adapted from [56].

ConvNeXt Nano is a custom design created by the timm library, which downsamples the Con-
vNeXt Tiny network by reducing the number of blocks in each stage by a third and slightly reducing
the feature map sizes, achieving a size between ResNet18 and ResNet34. The summary of the structure
of the network can be found on Table A.2.

Table A.2: Structure of the ConvNeXt Nano architecture. The notation is the same as in Table A.1.
The “d” before some filter sizes indicates a depthwise convolution. As previously, the output sizes
and head take into account the image size and dataset used in this work.

layer group name output size ConvNeXt Nano

stem 35×42 4×4, 80, stride 4

stage 1 35×42

 d7×7, 80
1×1, 320
1×1, 80

×2

stage 2 17×21

2×2, 160, stride 2 d7×7, 160
1×1, 640
1×1, 160

×2

stage 3 8×10

2×2, 320, stride 2 d7×7, 320
1×1, 1280
1×1, 320

×6

stage 4 4×5

2×2, 640, stride 2 d7×7, 640
1×1, 2560
1×1, 640

×2

head 1×1
4 × 5 average pool

640 × 22 fully connected, softmax
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