
Universidade de Aveiro
2022

David Manuel Teixeira
Alves da Rocha

Recolha de dados em veículos conectados para
aplicações de segurança rodoviária

Data collection on connected vehicles for road safety
applications

Universidade de Aveiro
2022

David Manuel Teixeira
Alves da Rocha

Recolha de dados em veículos conectados para
aplicações de segurança rodoviária

Data collection on connected vehicles for road safety
applications

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Joaquim José de Castro
Ferreira, Professor Coordenador da Escola Superior de Tecnologia e Gestão de
Águeda da Universidade de Aveiro, e do Doutor João Miguel Pereira de Almeida,
Investigador do Instituto de Telecomunicações.

Este trabalho foi realizado no âm-
bito do projeto TRUST com o
nº 037930 (POCI-01-0247-FEDER-
037930), financiado pelo FEDER
através do programa COMPETE
2020, do projeto europeu 5G-
MOBIX com o nº 825496,

financiado pelo programa de investi-
gação e inovação Horizonte 2020 da
União Europeia, e da FCT/MCTES
através de fundos nacionais e,
quando aplicável, cofinanciado por
fundos comunitários no âmbito
do projeto UIDB/50008/2020-
UIDP/50008/2020.

Dedico este trabalho aos meus pais, Manuel Rocha e Beatriz Teixeira, ao
meu irmão Simão e à minha namorada Maria.

o júri / the jury
presidente / president Prof. Doutora Iouliia Skliarova

Professora Auxiliar, Universidade de Aveiro

vogais / examiners committee Prof. Doutor Jorge Manuel Alves Lopes
Diretor de Tecnologia Empresarial, Brisa

Prof. Doutor Joaquim José de Castro Ferreira
Professor Coordenador, Universidade de Aveiro

agradecimentos /
acknowledgements

Aos meus orientadores, Prof. Dr. Joaquim Ferreira e Dr. João Almeida, pela
orientação e partilha de conhecimento. Ao Emanuel Vieira, Mohannad Jooriah
e Seyed Hosseini pela constante disponibilidade para ajudar, e a todo o grupo
Embedded Systems do Instituto de Telecomunicações pelo ambiente de trabalho,
sentido de grupo e colaboração.

Palavras Chave Cidades Inteligentes, Comunicações Celulares, Comunicações Veículares, In-
fraestrutura Rodoviária, Perceção Coletiva, Sistemas de Transporte Inteligentes.

Resumo O constante crescimento da indústria automóvel e a necessidade do sobreuso do
veículo pessoal amplificam problemas diretamente relacionados com a segurança
rodoviária, tais como a degradação da qualidade das estradas, o aumento do volume
de fluxo automóvel e o acréscimo de eventos metereológicos perigosos causados
pelas alterações climáticas. Como forma de atenuar estes problemas emergentes,
surgem os sistemas inteligentes de comunicação cooperativos (C-ITS) e de inter-
net das coisas (IoT), que permitem ultrapassar limitações humanas e de sistemas
sensoriais locais através da recolha e distribuição de dados em veículos conectados,
algo fundamental para encontrar soluções que transformem o conceito de Smart
City em realidade. A presente dissertação implementa um sistema de recolha de
dados sensoriais intra- e inter-veículares, começando pela aquisição de dados rela-
vantes presentes no barramento CAN, coletados através da porta OBD-II do veículo
e de sensores externos. É feito uso de comunicações de curto alcance tais como
Bluetooth-Low-Energy (BLE), Veículo-a-Veículo (V2V), e Veículo-a-Infrastrutura
(V2I) em conjunto com comunicações celulares de longo alcance (LTE/5G). São
fornecido endpoints de acesso aos dados através duma API e de um broker MQTT.
Por fim métodos de logging são desenvolvidos para permitir depuração consciente
destes sistemas e avalição de requisitos temporais. Os resultados dos testes expe-
rimentais efetuados revelam a utilidade forte que os dados adquiridos contém, por
permitirem a realização de análises longitudinais detalhadas a estradas de perigo,
assim como para fornecimento, em quase tempo-real, de condições adversas da
estrada a condutores. Deste modo, o sistema de recolha de dados desenvolvido
revela-se como ferramenta potencialmente valiosa para o fornecimento de informa-
ção útil tanto a autoridades competentes como à população comum, como meio
de melhoria da segurança rodoviária.

Keywords Cellular Communications, Collective Perception, Intelligent Transport Systems,
Road Infrastructure, Smart Cities, Vehicular Communications.

Abstract The increasing growth of the automobile industry and the need of overusing per-
sonal vehicles amplifies problems directly related to road safety, such as the degra-
dation of the quality of the roads, the increase in volume of the automobile flow,
and through the addition of dangerous weather events caused by climate change.
To alleviate these emerging problems, intelligent cooperative communication sys-
tems (C-ITS) and Internet of Things (IoT) solutions emerge, allowing the over-
come of human and local sensory systems limitations through the collection and
distribution of relevant data in connected vehicles, which is fundamental in finding
solutions that transform the concept of Smart Cities into reality. This disserta-
tion implements an intra- and inter-vehicle sensory data collection system, starting
with the acquisition of relevant data present on the CAN bus, collected through
the vehicle’s OBD-II port and external sensors. Use is made of short-range com-
munications such as Bluetooth-Low-Energy (BLE), Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) in conjunction with long-range cellular communica-
tions (LTE/5G). Data access endpoints are provided through an API and a MQTT
broker. At last, logging methods are developed to allow conscious debugging of
these systems, as well as to evaluate timing restrictions. The results of the exper-
imental tests carried out reveal the usefulness of the acquired data, which allows
the realization of detailed longitudinal analyzes of dangerous roads, as well as no-
tifying, in near real-time, adverse road conditions to drivers. Therefore, the data
collection system developed reveals itself as a potentially valuable tool for providing
useful information both to competent authorities and to the common population,
as a method to improve road safety.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Contextualization . 2

1.3 Objectives . 3

1.4 Document Organization . 3

2 Fundamental Concepts and State-of-the-Art 4

2.1 Controller Area Network . 4

2.1.1 Protocol Stack . 5

2.1.2 Security . 8

2.1.3 CAN FD and CAN XL . 8

2.2 Local Interconnect Network . 9

2.3 On Board Diagnostics . 10

2.3.1 Connector . 11

2.3.2 Message . 11

2.3.3 Security . 12

2.4 Bluetooth Low Energy . 12

2.4.1 Protocol Stack . 12

2.4.2 Security . 17

2.4.3 Performance . 17

2.5 Cellular Networks . 19

2.6 MQTT . 22

i

2.7 Cooperative Intelligent Transportation Systems 24

2.7.1 ITS Station . 24

2.7.2 Messages . 25

2.7.3 ETSI ITS-G5 . 28

2.8 State-of-the-Art . 29

3 System Architecture 34

3.1 Global Architecture . 34

3.2 Proposed Solution . 36

4 Implementation 40

4.1 Vehicular Sensor Data . 40

4.1.1 Identification . 41

4.1.2 Extraction . 43

4.2 Dissemination . 44

4.2.1 BLE . 45

4.2.2 Cellular Networks . 46

4.2.3 ITS-G5 . 47

4.3 On-Board Unit Configuration . 48

4.3.1 Development Environment . 49

4.3.2 Services . 49

4.4 Data Access . 52

4.5 Logging . 53

4.5.1 Applications Layer . 54

4.5.2 Network Layer . 55

4.5.3 Processing . 56

5 Tests and Results 57

5.1 Vehicular Sensor Data . 57

5.2 Dissemination . 62

5.3 Data Access . 65

5.4 Logging . 71

5.5 Results Discussion . 78

6 Conclusion and Future Work 80

6.1 Conclusion . 80

6.2 Future Work . 80

ii

Bibliography 81

List of Figures

2.1 Electronic Control Unit (ECU)s organization in the bus. 5

2.2 Layered International Organization for Standardization (ISO) 11898 standard architecture

(left) compared to Controller Area Network (CAN) bus entities (right). 5

2.3 Bit time segments. 6

2.4 CAN standard termination. 7

2.5 CAN standard frame format. 7

2.6 CAN extended frame format. 8

2.7 Local Interconnect Network (LIN) comparison to other network protocols. 9

2.8 LIN interconnections with the CAN bus. 10

2.9 J1962 Connector. 11

2.10 J1962 Connector Location. 11

2.11 On-Board-Diagnostics (OBD)-II message format. 11

2.12 Bluetooth Low Energy (BLE) protocol stack. 13

2.13 BLE host connection diagram. 14

2.14 BLE link layer sate machine. 15

2.15 Data and Advertisement channels packets format and Packet Data Unit (PDU) field structure. 15

2.16 Hierarchy of Generic Atribute Protocol (GATT) profiles. 17

2.17 Theoretical lifetime of a slave for one-way and round-trip Atribute Protocol (ATT) message

exchanges. 18

2.18 Average latency for one-way and round-trip message exchanges. 19

2.19 Network solutions from Third Generation Mobile System (3G) technologies to Long Term

Evolution (LTE). 21

2.20 Comparison between standalone and non-standalone Fifth Generation Mobile System (5G). 22

2.21 Example of an Message Queuing Telemetry Transport (MQTT) connection and message

exchange. 23

2.22 ITS Station (ITS-S) reference architecture. 24

2.23 Cooperative Awareness Message (CAM) general structure. 26

2.24 Decentralized Environmental Notification Message (DENM) general structure. 26

2.25 Collective Perception Messages (CPM) general structure. 27

iii

2.26 ITS-G5 access layer architecture. 28

3.1 Scheme of the global Secure and Accurate Road Weather Services (SARWS) architecture. 34

3.2 Proposed intra-vehicular architecture. 36

3.3 CAN transceiver and controller. 37

3.4 On-Board Unit (OBU) with Global Positioning System (GPS) receiver. 37

3.5 Proposed architecture for the cloud services. 37

3.6 Defined MQTT topic structure. 38

3.7 Defined cloud services architecture on a 5G network. 39

4.1 Representation of the proposed algorithm to identify CAN parameters. 42

4.2 Organization of the peripheral services. 45

4.3 Organization of the OBU developed services. 50

4.4 5G-MOBIX deployed architecture in a cross-border region. 53

4.5 Application layer logging mechanism. 54

4.6 Network layer processing mechanism. 55

5.1 CAN bus OBD Simulator. 57

5.2 OBD data for engine speed (byte A) and CAN ID 0c9 (byte #1). 58

5.3 OBD data for engine speed (byte B) and CAN ID 0c9 (byte #2). 58

5.4 OBD data for engine load (byte B) and CAN ID 3d1 (byte #1). 59

5.5 OBD data for vehicle speed (byte A) and CAN ID 3e9 (byte #0 and #1). 59

5.6 OBD data for engine load (byte A) and CAN ID 0c9 (byte #4). 60

5.7 CAN ID 34a (byte #0 and #1) and CAN ID 34a (byte #2 and #3). 60

5.8 CAN ID 348 (byte #0 and #1) and CAN ID 348 (byte #2 and #3). 61

5.9 BLE connection output from the central side. 62

5.10 BLE connection output from the peripheral side. 63

5.11 Interfaces description on the OBU. 63

5.12 Results of ping commands through LTE and ITS-G5 interfaces. 64

5.13 Capture on ITS-G5 interface showing exchanged packets between stations. 64

5.14 Vehicle equipped with GPS receiver and ITS-G5 antennas. Roadside Unit (RSU) on the

background. 65

5.15 Installed CAN controller. 66

5.16 OBU inside the vehicle. 66

5.17 MQTT explorer during dissemination of the vehicular sensor data to the broker. 66

5.18 Latitude and respective error values. 67

5.19 Longitude and respective error values. 67

5.20 Representation of the trip in a map (values taken from the Application Programming

Interface (API)). 68

iv

5.21 Altitude and respective error values. 68

5.22 Direction and respective error values. 68

5.23 Vehicle speed, according to OBD (red) and GPS (red) data. 69

5.24 Engine speed values. 69

5.25 Engine load values. 69

5.26 Throttle pedal position values. 70

5.27 Ambient temperature values. 70

5.28 Barometric pressure values. 70

5.29 CPM and CAM messages flow in the single Public Land Mobile Network (PLMN) scenario. 71

5.30 Single PLMN: Uplink, message-by-message, applications and network latency (blue and

orange, respectively) and 5G Reference Signal Received Power (RSRP) (red) for CAM

messages. 72

5.31 Single PLMN: Uplink, message-by-message, applications and network latency (blue and

orange, respectively) and 5G RSRP (red) for CPM messages. 72

5.32 Single PLMN: Downlink, message-by-message, applications and network latency (blue and

orange, respectively) and 5G RSRP (red) for CAM messages. 73

5.33 Single PLMN: Downlink, message-by-message, applications and network latency (blue and

orange, respectively) and 5G RSRP (red) for CPM messages. 73

5.34 Single PLMN: Downlink, aggregated by 1000 miliseconds, applications and network latency

(blue and orange, respectively), 5G RSRP (red), and vehicle speed (black) for CAM messages. 74

5.35 Single PLMN: Downlink, aggregated by 1000 miliseconds, applications and network latency

(blue and orange, respectively), 5G RSRP (red), and vehicle speed (black) for CPM messages. 74

5.36 CPM and CAM messages flow in the inter PLMN scenario, before then handover event. . 75

5.37 CPM and CAM messages flow in the inter PLMN scenario, after then handover event. . . 76

5.38 Inter PLMN: End-to-end, message-by-message, applications level latency (blue), 5G RSRP

(red), and LTE RSRP (green) for CAM messages. 76

5.39 Inter PLMN: End-to-end, message-by-message, applications level latency (blue), 5G RSRP

(red), and LTE RSRP (green) for CPM messages. 77

5.40 Inter PLMN: End-to-end, aggregated by 1000 miliseconds, applications latency values

(blue) values, 5G RSRP (red), LTE RSRP (green) and vehicle speed (black) for CAM

messages. 77

5.41 Inter PLMN: End-to-end, aggregated by 1000 miliseconds, applications latency values

(blue) values, 5G RSRP (red), LTE RSRP (green) and vehicle speed (black) for CPM

messages. 78

v

List of Tables

2.1 Performance specifications of different cellular technologies. 20

2.2 Overview of external sensors placed on test vehicles used in [82]. 32

3.1 SARWS architecture components description. 35

4.1 CAN transceiver specifications. 40

4.2 CAN controller specifications. 41

4.3 Bluetooth dual-mode adapter specifications. 44

4.4 LTE module specifications. 44

4.5 WiFi module specifications. 44

4.6 OBU platform specifications. 48

4.7 GPS receiver specifications. 48

5.1 Identified parameters of Opel Adam (2016) with its respective features. 61

5.2 Power inverter specifications. 65

vi

Acronyms

3G Third Generation Mobile System
3GPP Third Generation Partnership

Project
5G Fifth Generation Mobile System
AFH Adaptive Frequency Hopping
AI Artificial Intelligence
API Application Programming

Interface
APN Access Point Name
ACK ACKnowledge
ATT Atribute Protocol
BER Bit Error Rate
BLE Bluetooth Low Energy
BSS Basic Service Set
BSSID Basic Service Set Identification
CiA CAN in Automation
C-ITS-S Central ITS Station
CA Cooperative Awareness
CAM Cooperative Awareness Message
CAN Controller Area Network
CAN DBC CAN Database
CCAM Cooperative, Connected and

Autonomous Mobility
CDMA Code Division Multiple Access
C-ITS Cooperative Intelligent Transport

Systems
CP Collective Perception
CPM Collective Perception Messages
CP-OFDM Orthogonal Frequency Division

Multiplexing
CPS Collective Perception Service
CRC Cyclic Redundancy Check
CSV Comma Separated Values
CSMA/CA Carrier Sense Multiple Access

with Collision Avoidance
DFT-s-OFDM Discrete Fourier Transform spread

Orthogonal Frequency Division
Multiplexing

DLC Data Length Code
DEN Decentralized Environmental

Notification

DENM Decentralized Environmental
Notification Message

DTC Diagnostic Trouble Code
E-UTRA Evolved Universal Terrestrial

Radio Access
E-UTRAN Evolved Universal Terrestrial

Radio Access Network
ECU Electronic Control Unit
EDCA Enhanced Distributed

Coordination Access
eMBB enhanced Mobile Broadband
EOF End of Frame
EOBD European On-Board Diagnostics
EPA Environmental Protection Agency
NBR Nominal Bit Rate
NBT Nominal Bit Time
eNB Evolved Node B
EPC Evolved Packet Core
EPS Evolved Packet System
ETSI European Telecommunications

Standards Institute
EU European Union
FD Flexible Data
GPS Global Positioning System
GAP Generic Access Profile
GATT Generic Atribute Protocol
GFSK Gaussian Frequency-Shift Keying
gNB generation Node-B
HCI Host Controller Interface
HTTPS Hypertext Transfer Protocol

Secure
HSPA High Speed Packet Access
IEEE Institute of Electrical and

Electronics Engineers
IoT Internet of Things
IP Internet Protocol
IT Instituto de Telecomunicações -

Aveiro
ITS Intelligent Transport Systems
ITS-S ITS Station
ITU International Telecommunication

Union
ISM Industrial, Scientific, and Medical

vii

ISO International Organization for
Standardization

ISRG Internet Security Research Group

JSON JavaScript Object Notation
L2CAP Logical Link Control Adaptation

Protocol
LIN Local Interconnect Network
LLC Logical Link Control
LTE Long Term Evolution
LTE-A Long Term Evolution Advanced
M2M Machine to machine
MAC Medium Access Control
MCC Mobile Country Code
MNC Mobile Network Code
MBIM Mobile Broadband Interface

Model
MIB Management Information Base
MIMO Multiple Input Multiple Output
MQTT Message Queuing Telemetry

Transport
ML Machine Learning
MEC Multi-Access Edge Computing
NR New Radio
NFV Network Function Virtualization
NTP Network Time Protocol
OASIS Organization for the Advancement

of Structured Information
Standards

OBU On-Board Unit
OBD On-Board-Diagnostics
OCB Outside the Context of a BSS
OFDM Orthogonal Frequency Division

Multiplexing
OFDMA Orthogonal Frequency Division

Multiple Access
OSI Open Systems Interconnection
PAPR Peak-to-Average Power Ratio
PASMO Plataforma Aberta para o

desenvolvimento e experimentação
de Soluções para MObilidade

PCAPNG PCAP New Generation
PLMN Public Land Mobile Network
PDU Packet Data Unit
PDR Packet Delivery Ratio
PID On-board diagnostics Parameter

ID
PHY Physical Layer
PPCP Peripheral Preferred Connection

Parameters

QoS Quality of Service
RAN Radio Access Network
RSRP Reference Signal Received Power
REST REpresentational State Transfer
RHW Road Hazard Warning
R-ITS-S Roadside ITS Station
RMSE Root-Mean-Square Error
RNC Radio Network Controller
RWM Road Weather Model
RWS Road Weather Station
RSU Roadside Unit
RSSI Received Signal Strength

Indication
RTR Remote Transmission Request
SAE System Architecture Evolution
SARWS Secure and Accurate Road

Weather Services
SCoT Smart Cloud of Things
SIG Special Interest Group
SIM Subscriber Identity Module
SoC System-on-Chip
SOF Start of Frame
SQL Structured Query Language
TCP Transmission Control Protocol
TLS Transport Layer Security
TDMA Time Division Multiple Access
TMC Traffic Management Center
TQ Time Quanta
TRUST Transportation and Road

monitoring system for UbiquitouS
real-Time information services

UE User Equipment
UMTS Universal Mobile

Telecommunications System
URLLC Ultra Reliable and Low Latency

Communications
USB Universal Serial Bus
UUID Universal Unique IDentifier
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2R Vehicle-to-Vulnerable Road User
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
V-ITS-S Vehicle ITS Station
XML Extensible Markup Language
WV-ITS-S Weather-Pollution V-ITS-S

Station

viii

CHAPTER 1
Introduction

The first chapter introduces the theme of the present dissertation. It starts with the motivation
behind this dissertation, analysing the theme from an environmental, economical, social, and
technological point of view and how it affects the road environment. The chapter continues with
the contextualization behind this work, the defined objectives and ends with a brief overview of
the following chapters in this dissertation.

1.1 Motivation

Road traffic in every European country has been in constant growth in the past few years,
and this is expected to continue [1]. According to European manufacturers, the automotive
sector employs 13.8 million workers, which represents 6.1% of the total European Union (EU)
employment, a substantial part of the EU employability [2].

As a result of the growth in the number of vehicles circulating, concerns have arisen about
road safety. Despite the efforts by manufacturers in offering more advanced and effective
safety triggers in their vehicles, more than twenty-three thousand people died in 2018 [3] in
the EU, and if we consider a world scenario, it’s more than a million deaths [4], also resulting
in millions of expenses issued while dealing with road accidents.

Traffic congestion is also a problem in a big scale environment. Drivers spend a large
amount of hours in traffic queues everyday, and its continuously increasing in big cities all over
Europe [5]. This reflects consequences on public health, quality of life and economic costs [6].

Additionally, air pollution is now a key concern of automotive manufactures. In the 60s,
vehicle pollution became a cause for concern due to smog problems in Los Angeles, so the
state of California ordered them to create emission control systems to meet Environmental
Protection Agency (EPA) emission standards. Companies started to produce their systems
but in 1988, the System Architecture Evolution (SAE) established a connector and a set of
standard tests so that they all have the same technology. In 1996 the OBD-II was created
and became mandatory in the United States, later in 2003 also being adopted in the EU,
referred as European On-Board Diagnostics (EOBD). Thanks to this protocol and with the

1

boost in the cars’ electronic development, it is possible to access and report emission related
and status parameters in real-time, through the OBD-II port present in the car [7].

Combining all negative aspects of the road environment, a need for deployment of new
technologies not only in vehicles but also in infrastructures arises, in order to mitigate
driver’s limitations such as slow reaction times and line of sight, giving him and his car
the tools to become more aware of their surroundings and more capable of preventing
dangerous situations. Making use of close-range communication technologies and long-range
communication technologies between vehicles and between vehicles and the infrastructure, a
connected environment can be achieved, creating a large network of vehicular communications
and giving life to the term Intelligent Transport Systems (ITS) [8]. Currently, use cases are
being tested where not only vehicles with communication capabilities are integrated, but also
legacy vehicles which can not communicate with external nodes, creating a solid base for these
technologies to emerge on real traffic scenarios.

Data collected from vehicles own sensors through OBD-II can be used to increase the
reliability and completeness of vehicular networks by providing useful data about the road
environment.

1.2 Contextualization

This dissertation is part the Transportation and Road monitoring system for UbiquitouS
real-Time information services (TRUST) project, that aims to develop an environmental
and weather monitoring system capable of identifying risk conditions for driving in road
infrastructures, equipped with ITS technologies. Communication between vehicles and
infrastructures is intended to alert drivers in transit and warn about the danger of accidents
in specific locations, reducing the number of incidents and associated fatalities.

The work contributes to the collection and dissemination of parameters accessible through
the CAN bus. Nowadays, a single ECU present in modern vehicles produces enormous
amounts of data, which can be used to collect information regarding each vehicle’s condition
and usage. Making wireless communications available, this data offers significant potential for
the development of ITS applications, in themes such as traffic management, traffic information,
road safety and weather-related.

By making data from vehicle integrated sensor systems accessible, an improved perception
of the surrounding environment can be provided. As a result, the TRUST project aims to
integrate the CAN bus with the vehicular communications platforms on fleet vehicles, enabling
sensor-data collection that allow to infer weather-related events and improving station’s
perception of road environment.

Additionally, the logging segment of this dissertation was designed in the context of the
5G-MOBIX project. This project aims to develop and test automated vehicle functionalities
using 5G core technological innovations along multiple cross-border corridors and urban trial
sites [9].

2

1.3 Objectives

For the work developed in this dissertation, the following objectives were set:
• Acquire knowledge about serial, close-range and long-range communications and vehicu-

lar networks. Study the European standards that define the functions of the various
protocol layers in the communications between vehicles;

• Research articles that have contributed to the development in the area of vehicular
sensor data collection. Studying state-of-the-art is essential to understand what already
exists and needs to be improved, offering value to this work;

• Design and implement several processes and methods to extract vehicular data, with
data quality and reliability in consideration;

• Design a process for transmitting the collected data to an OBU platform and dissemi-
nating it to the vehicle network with the cooperative messages defined by Cooperative
Intelligent Transport Systems (C-ITS) protocols;

• Design a process for transmitting the data collected on the OBU platform to various
cloud services;

• Design a reliable logging method to accurately test and verify imposed time restrictions.

1.4 Document Organization

The remainder structure of this dissertation is divided into five more chapters organized as
follows:

• Chapter 2: Fundamental Concepts - Provides detailed information about the main
concepts covered in this dissertation as well as topics important to it’s understanding.
This chapter also presents a review of the literature directed to the theme of this
dissertation;

• Chapter 3: System Architecture - Exposes the contextualization of this dissertation
and the architecture of the proposed system;

• Chapter 4: Implementation - Provides a detailed description of the developed work;
• Chapter 5: Tests and Results - Contains the presentation, analysis and discussion

of the tests performed to the implementation work and the subsequent results obtained;
• Chapter 6: Conclusion and Future Work - Presents the conclusion taken from the

result analysis and future work.

3

CHAPTER 2
Fundamental Concepts and

State-of-the-Art

This chapter introduces related concepts of this dissertation and the State-of-the-Art of the
area. Firstly, the protocols responsible for intra-vehicular networks are presented, from the
physical layer to the higher layers. Next, localized (short-range) and networked (long-range)
wireless communication technologies are explored, that can be used for inter-vehicular and
cloud communications. Afterwards, the standards, messages and protocols related to the work
developed in the European Union regarding the C-ITS environment. The chapter ends with a
review of the current literature with work that contributed to this field.

2.1 Controller Area Network

The CAN bus was designed by BOSCH as a multi-masting, message broadcast system that
defines a maximum of 1 megabit per second as the baud rate [10].

Unlike other network protocols like Universal Serial Bus (USB) or Ethernet, CAN doesn’t
send big blocks of data in an end-to-end direction under the supervision of a bus master.
Rather than that, many small messages are broadcasted to the entire network. It is a message-
oriented protocol, where every message uses an unique identifier within the network and
defines both the content and the message’s priority. The protocol is very flexible, as it can be
used both in systems that require low latency or that demand high bandwidth [11].

These are some characteristics of the protocol:
• Every node can act as a master or a slave in separate moments (Multi-Master);
• All nodes can receive simultaneously any message transmitted (Multi-Cast);
• Messages with smaller identifiers have priority in the bus over messages with bigger

identifiers;
• Intrinsic error detection and automatic re-transmission of corrupted messages is directly

supported;

4

CAN defined by ISO as a serial communication bus, that was originally developed for
the automotive industry to replace the previous complex wiring in vehicular networks. The
specification describes high immunity to electrical interference and the ability to self-diagnose
and fix data errors. This led to CAN popularity in a variety of industries including automation,
medical and manufacturing [12].

The bus enables ECU to communicate with all other ECUs without any complex dedicated
wiring. An ECU can prepare and broadcast data via the CAN bus (which consists of two
wires, CAN low and CAN high), and then, the broadcasted data can be accepted by all other
ECUs on the network [13]. Figure 2.1 represents this organization.

Figure 2.1: ECUs organization in the bus.

2.1.1 Protocol Stack

The CAN communications protocol, ISO 11898, details how data is exchanged between devices
on the network, and conforms to the existing Open Systems Interconnection (OSI) (Open
Systems Interconnection) model. The OSI reference model is represented by seven abstraction
layers where data passes through during communications. It is a reliable model and is widely
used in several communication protocols. The ISO 11898 architecture defines the lowest two
layers of the OSI/ISO model as the physical and data link layers. A representation of the
OSI model is represented in figure 2.2 along with correspondent CAN entities.

Figure 2.2: Layered ISO 11898 standard architecture (left) compared to CAN bus entities (right).

5

The details of the CAN protocol are defined in the standard ISO 11898, and is divided in
three parts:

• ISO 11898-1: Contains the details of the Data-link layer and physical signal link [14];
• ISO 11898-2: Specifies the CAN physical layer for high speed CAN. The high-speed

CAN allows a baud rate up to 1 Mbps. [15];
• ISO 11898-3: Specifies the CAN physical layer for low-speed CAN. It allows baud rate

up to 125 kbps and is used when the speed of the communications is not a critical factor
[16].

Physical Layer

The physical layer details the bit timing, synchronization, and physical signaling. Regarding
bit timing, the protocol defines the Nominal Bit Rate (NBR) as the number of bits per second
transmitted in ideal conditions, and can be described with the equation:

NBR = 1/tbit

The Nominal Bit Time (NBT), or tbit, is made up of non-overlapping segments (Figure
2.3), each made up of integer units called Time Quanta (TQ). The NBT is the sum of the
following segments:

tbit = tSyncSec + tP ropSeg + tP S1 + tP S2

To synchronize every node in the bus, the Synchronization Segment (SyncSeg), and thus
the bit edges are expected to occur within it. The Propagation Segment (PropSeg) exists to
compensate for physical latencies between nodes, which are defined as twice the sum of the
signals propagation time on the bus, including latencies associated with the driver. Finally,
phase segments (PS1 and PS2) are used to compensate for edge phase errors, and both can
be adjusted to synchronize the receiver and the transmitter [17].

Figure 2.3: Bit time segments.

Using two resistors at the termination of each side of the bus is a critical factor for efficient
communication. Only one resistor or none would increase the latency of the transition between
a dominant and a recessive state. In some cases, the transition may not even happen, causing

6

a bit-error. Figure 2.4 shows a recommended termination model for high-speed CAN, with
the traditional 120 Ohm resistors on both ends of the bus [18].

Figure 2.4: CAN standard termination.

The CAN physical layer protocol also specifies cabling types, electrical signal levels and
the bus termination values to suppress reflections [19].

Data Link Layer

This layer specifies the format of the exchanged messages. A CAN frame begins with the
Start of Frame (SOF) bit, that indicates the start of the message. This is followed by an
Arbitration Field, which consists of an 11-bit identifier, following is a Remote Transmission
Request (RTR) bit which is used to distinguish between a data frame and a remote frame [13].

A control bit that follows the RTR makes the distinction between the format of the frame,
which can be either a standard frame or an extended frame. In the case of an extended frame,
this bit is in the Arbitration Field, and more bits are added to the identifier, changing to
29 bits. In the case of a standard frame, the this bit is located in the Control Field. The
Data Length Code (DLC) field is used to indicate the number of bytes in the Data Field,
which in turn contains the message content, up to 8 bytes. As for the error detection, the
messages contain a Cyclic Redundancy Check (CRC) Field with a CRC sum and delimiter.
The ACKnowledge (ACK) also consists of a ACK slot and delimiter. Transmissions are sent
with the ACK slot as a recessive bit and, if the message was received correctly, the receivers
write it as a dominant bit. Finaly, the end of the frame is indicated by the End of Frame (EOF)
bit [13]. Figure 2.5 represents the structure of a standard data/remote frames.

Figure 2.5: CAN standard frame format.

In total, four types of messages are specified: Data, Remote, Error, and Overload frames
[20]. The Data Frame carries data up to 8 bytes between a transmitter and the receiver .
In this type of frame, the RTR bit is dominant. The Remote Frame is used when a given
node wants to request data from another node. This type of message is identified by the RTR
bit, in which it is recessive. The Error Frame is used when a detection of an error in the bus

7

happens. Finally, the Overload Frame uses two fields, the overload flag and overload delimiter
and there are two conditions for an overload frame to be transmitted:

• A receiver requiring a specific delay for the next data or remote frame;
• The detection of a "dominant" bit during intermission.

Until the existence of the CAN 2.0 specification, CAN messages consisted of only 11-bit
identifiers. With CAN 2.0 released came the possibility of using 29-bit identifiers, increasing
the number of messages available. According to the specification, a message with an 11-bit
identifier is denominated a Standard Frame while a message with 29-bit identifiers is an
Extended Frame [20]. Figure 2.6 represents the structure of a extended message, referring to
data/remote frames, respectively.

Figure 2.6: CAN extended frame format.

2.1.2 Security

CAN is a low-level protocol and intrinsically doesn’t have any security features. There is no
encryption, which makes these networks open to man-in-the-middle interception attacks. So,
applications from nodes in the bus are expected to implement their own security mechanisms
(e.g., authenticating incoming commands, addition of specific devices on the network).Not
implementing proper security measures may result in various types of attacks if a way to
inject messages on the bus is found. While solutions based on passwords exist for critical
functions like modifying firmware or controlling the Anti-lock Braking System (ABS), these
systems are not implemented universally and have a limited number of key pairs [21].

2.1.3 CAN FD and CAN XL

The vehicles constant modernization requires a greater capacity of CAN communication to
follow this progress by the manufacturers. Therefore, CAN in Automation (CiA) has designed
new protocols with the requirements of future in-vehicle networks.

CAN Flexible Data (Flexible Data (FD)) was released in 2015 and provides baud rates up
to 5 megabits per second, with a payload of 64 bytes [14]. This growth in the amount of data
reduces the overhead and improves the efficiency of the protocol [22]. Additionally, it presents
an improvement in error detection with an improved CRC field [23]. This protocol operates
simultaneously with classical CAN, by allowing each node in the bus to transmit messages of
both types. When only one node is transmitting, the data rate can increase because the is no
need to synchronize any nodes, however, when several nodes are transmitting, they have the
flexibility to change the type of messages and move to the classic CAN [24].

CAN XL is a protocol still in development, and its specified as the third generation of
the CAN data link layer protocol by the CiA members. CAN XL can transmit messages up

8

to 10 megabits per second, with a payload of 2048 bytes. It is protected with a cascaded
CRC, which features a Hamming Distance of 6, meaning that up to five randomly distributed
bit-errors are detected. This protocol forces an upgrade on the physical layer, producing new
transceivers that can operate with all the other transceivers that support CAN and CAN FD
[25] [26].

2.2 Local Interconnect Network

The LIN protocol standard has been introduced to complement the CAN bus for non-critical
system in vehicles such as air-conditioning and dashboard control, where transmission speed
and reliability are less important.

It is a serial network protocol used for communication between components in vehicles, that
uses a single wire and supports communications up to 19.2 kilobits per second, at a maximum
length of 40 meters [27]. The need for a cheaper serial network came as the technologies
implemented in the each car grew, and the CAN bus was too expensive to implement for
every single component in a car. European car manufacturers started using different serial
communication technologies, but this led to compatibility problems.

The LIN protocol has been serving increasingly important roles in providing low cost
functionalities expansion in modern vehicles. As such, LIN bus has exploded in popularity in
the last decade, and it is expected to exists more than 700 million nodes in cars by 2020 [28].
Figure 2.7 shows a comparison between protocols used in automotive networks [28].

Figure 2.7: LIN comparison to other network protocols.

LIN bus acts as a supplement to CAN, offering worse performance and reliability, but
substantially reducing costs. Its nodes are typically bundled in clusters, each with a master that
interfaces with the backbone CAN bus. Figure 2.8 shows an example of it’s implementation
in junction with the CAN bus [29].

9

Figure 2.8: LIN interconnections with the CAN bus.

These are some examples of automotive use cases in which this protocol is used:
• Steering wheel: Cruise control, wiper, climate control, radio;
• Door: Side mirrors, windows, seat control, locks;
• Other: Window wipers, rain sensors, headlights, airflow.

2.3 On Board Diagnostics

The reporting and self-diagnostic abilities of a vehicle is refered by OBD. These systems
give the vehicle owner or automotive technicians access to the status of the various vehicle
parameters [30].

Nowadays, the amount of diagnostic information available through OBD is very different
from its introduction in the eighties. Primitive versions of OBD would simply irradiate a
Malfunction Indicator Light (MIL) when a problem was detected, but without providing any
hints regarding the cause of the anomalies. Present-day OBD implementations use standardized
communication ports to provide real time data collection as well as a standardized Diagnostic
Trouble Code (DTC) list, which allows to rapidly identify specific problems within a vehicle.

OBD-I implemented the first standerdized interface, and its goal was to incentivize
automobile manufacturers to design efficient emission control systems, forcing annual emissions
testing for California, and denying registrations to vehicles that did not fulfill requirements
in these tests [31]. However, as reporting specific parameters was not standardized between
different manufacturers, OBD-I was not successful.

OBD-II is an expansion over this first iteration in capacities and more importantly,
standardization. It specifies a type of diagnostic connector and its pinout, the available
electrical signalling protocols, and the messaging format [32].

It also provides a candidate a On-board diagnostics Parameter ID (PID) list to monitor,
along with how to encode and decode their data [33]. The presence of OBD-II allows devices
to acquire and process parameters such as the engine speed and load, vehicle speed, fault
codes, fuel usage, etc. Devices can then use this information to determine other variables like
over revving, speeding, fuel consumption, etc.

10

Figure 2.9: J1962 Connector. Figure 2.10: J1962 Connector Location.

2.3.1 Connector

The system is accessed with a 16-pin connector, named J1962 connector [34]. This connector
is used for OBD communications and uses pins 6 and 14 to allow access to the CAN bus,
while pin 16 supplies battery power, making it possible to power devices while the ignition is
off. All the other pins represented in figure 2.9 belong to other communication protocols that
can be accessed through this port. This connector is usually located near the steering wheel
or under the dashboard, behind covers, as represented in 2.10.

2.3.2 Message

Simplifying,OBD-II messages are made of identifiers and data content. The identifier corre-
sponds to the 11-bit CAN ID field, and the data is is composed by a mode, PID and four
data bytes [34]. In figure 2.11 it’s fields are shown, and then an explanation for each of them
is itemized.

Figure 2.11: OBD-II message format.

• Identifier - Used to distinguish between requests and responses;
• Bytes - Length in number of bytes of the remaining data in the message;
• Mode - Used to distinguished between variosu modes specified in the standard [33]

such as live or freeze frame date;
• PID - For each mode, a list of standard OBD-II PIDs exist;
• A, B, C, D - Data bytes, which need to be decoded according to the PID formula

calculations.

11

2.3.3 Security

Keeping up with the increasing popularity of Internet of Things (IoT), various wireless OBD-
II devices are developed, which can be simply plugged in cars, enabling remote control of
many vehicle functionalities. However, since these devices are directly connected to vehicular
networks, they also open over-the-air attack surfaces for vehicles.

Haohuang Wen et. al. [35], finds that out of 77 commercially available OBD-II dongles,
the majority of them are vulnerable to attacks such as Data Leakages, Denial of Service
through fuzzing, and Property Theft. Because of the lack of authentication on the CAN bus,
any device connected through the J1962 connector can act as any other node in the CAN bus,
being able to receive all other broadcasted messages or impersonating other ECU.

2.4 Bluetooth Low Energy

BLE was designed as a wireless personal area network technology. It acts independent of
classic Bluetooth and implements no compatibility, but support for both often coexist in
the same module. It was introduced in 2010 to reduce energy costs between data transfers,
resulting in longer battery life for devices [36].

BLE is mostly used in fields where the transmission of data doesn’t need to be fast and
battery life is a priority, like Machine to machine (M2M) and IoT applications. It is also
adopted by major brands such as Google and Apple, that provide BLE programming interfaces
as part of their respective mobile development software development kits [37].

2.4.1 Protocol Stack

The protocol is divided in two parts. The Controller which consists of the Physical Layer
and the Link Layer, typically implemented in a System-on-Chip (SoC) with an integrated
radio, and the Host, that comprises Logical Link Control Adaptation Protocol (L2CAP),
ATT, GATT, Generic Access Profile (GAP). The communication between these entities is
made through the Host Controller Interface (HCI) [38].

Although BLE and classic Bluetooth implement the same architecture, a device that
supports only BLE cannot exchange messages with a device that only implements classic
Bluetooth. This type of device is called a single-mode device. When both implementations
are present, it is called a dual-mode device [39].

Figure 2.12 shows the BLE protocol stack organization.

12

Figure 2.12: BLE protocol stack.

Physical Layer

This BLE layer describes the analog communications circuitry responsible for translation of
digital symbols over the air. BLE operates in the Industrial, Scientific, and Medical (ISM)
band at 2.4GHz and is divided into 40 radio frequency channels on 2 MHz spacing . There
are two types within these channels: advertising channels (used to discover devices, establish
connections, and broadcast transmissions) and data channels (used for communication between
two devices) [40].

The Adaptive Frequency Hopping (AFH) technique is used on all channels to make the
transmission signal more robust and reliable, adapting to interference that may arise, mainly
from Wi-Fi. Channels also use Gaussian Frequency-Shift Keying (GFSK) modulation, where
data pulses are filtered before being applied to alter the carrier frequency. The transmission
rate of data is 1Mbps, with 1 bit per symbol[41].

For there to be a connection between two devices, it is necessary to share the same channel
of the piconet, tuning in to the same frequency at the same time. In BLE there is no maximum
number of devices that can connect to another. However, in Classic Bluetooth, that number
was limited to seven devices [38].

13

Link Layer

This BLE layer controls the connections between devices, it is responsible for advertising,
scanning, creating and maintaining connections.

When a device intends to broadcast data, it transmits the data in advertising packets
through the advertising channels. Devices that are only receiving data through advertising
channels are called scanners. When two devices establish a connection, one becomes the
master and the other the slave, and the master may have more than one slave. The slave is in
sleep mode and wakes up periodically to check if the master intends to send any data packets.
The master determines this period and coordinates the average access using a Time Division
Multiple Access (TDMA) [39].

The following diagram depicts two BLE hosts, initially in a Standby state. They enter
a Discovery state whereby the device wishing to be discovered becomes the Advertiser and
the host wishing to connect becomes a Scanner. The Advertiser sends advertising packets
containing basic information about the host. All Scanners receive these packets [42].

Figure 2.13: BLE host connection diagram.

At some point, the Scanner becomes an Initiator and decides to initiate a connection with
a specific advertiser. This is known as the Connecting phase and is highlighted by the Initiator
sending a connection request advertising packet to the Advertiser. Finally, the Advertiser
accepts the connection request, thus becoming the Slave while the Initiator becomes the
Master. This is known as the Connected phase [42].

Note that the Link Layer Master is also called as GAP Central and GATT Client, while
the Link Layer Slave is also defined as GAP Peripheral and GATT Server.

The state machine of the different roles is described in figure 2.14.

14

Figure 2.14: BLE link layer sate machine.

Only one packet format is defined in BLE Link Layer, used for both advertising channel
packets and data channel packets, with a length that can vary between 80 bits and 376 bits.
Figure 2.15 represents the package structure [43].

Figure 2.15: Data and Advertisement channels packets format and PDU field structure.

The PDU field is the only field with variable size, varying its structure through the physical
channel through which it will pass.

Advertising channel PDUs serve two purposes, broadcasting data for applications that
do not require a full connection, discovering slaves and connecting to them. Data channel
PDUs are used so devices can send data to one another. This is achieved by exchanging data
during regularly scheduled connection events. Due to protocol overhead of the higher layers,
the maximum data payload is 246 bytes [43].

Host Controller Interface

The HCI allows and controls the communication between the host and the controller through
a serial interface. Due to the controller’s time requirements and the contact with the physical
layer, it’s separation from the host is important. Although the Host is responsible for more
complex implementations, it is not demanding in time [44].

15

Logical Link Control and Adaptation Protocol

This protocol allows the transmission and reception of data packets from the upper layers.
L2CAP is responsible for protocol multiplexing, segmentation. and reassembly operations,
ensuring the quality of information in the upper layers [45].

Attribute Protocol

In the Attribute Protocol, two roles are specified: a server role and a client role. A server can
expose a group of attributes to a client that is available using the ATT protocol [46].

The attributes are discrete values with the following properties:
• Attribute type, defined by a Universal Unique IDentifier (UUID);
• Attribute handle;
• Group of permissions for higher layers that utilize the attribute (read/write);
• Attribute value.

Generic Access Profile

GAP objective is to manage connections and advertisements, using rules described by in
profiles. It is the GAP that controls functions such as visibility, connection establishment and
security procedures.

Four roles are defined at this layer, Broadcaster, Observer, Peripheral and Central. These
can be divided into two groups, those that allow connection establishments (central and
peripheral), and those that do not allow (broadcaster and observer).

Devices operating in the Broadcaster role only send advertising events and, in the Observer
role, only receive advertising events. Any device in the Peripheral role accepts a connection
request and will have the Slave role in the Link Layer Connection state. A device in the
Central role initiates a connection request and will have the Master role in the Link Layer
Connection state. Unlike Peripherals, Centrals support multiple connections [47].

Generic Attribute Profile

GATT describes how BLE devices transfer data back and forth using nested objects called
Profiles, Services and Characteristics, their relationship can be visualized in figure 2.16. ATT
is used to store these objects in a clear lookup table. GATT arises as soon as a dedicated
connection is established between two devices, being present during the GATT advertising
process.

It is important to remember that GATT and its connections are exclusive, this means that
when a BLE peripheral connects to a central device, it will stop advertising, and it will be
impossible to other devices to connect until the prevailing connection is broken. It is essential
to highlight that this connection is the only way to enable back and forth communication.
The central device sends data to the peripheral and vice versa. If there is a need for data
exchange between two peripherals, a mailbox system must be used, and consequently, all
messages go through the central device. Furthermore, the communication can occur in both
directions, contrary to the one-way broadcasting approach, which uses only advertising data
and GAP.

16

The GATT profile can take on two roles: client and server. However, a device does not need
to play a role exclusively, as the same device can be a server and a client simultaneousl. The
GATT server stores the data that will be transported by the ATT, receives commands, requests
and sends responses, notifications and indications to the GATT client. The GATT client
sends commands and requests to the server, receiving the respective responses, notifications,
and indications sent to it about the status of the server [48].

Figure 2.16: Hierarchy of GATT profiles.

2.4.2 Security

In this article [49], the authors present various techniques for listening to BLE conversations,
showing how packets can be picked up and reassembled in connection streams. However, the
Bluetooth Special Interest Group (SIG) responded to most threats and provided ways to
mitigate them. It is concluded that building a secure BLE device can be achieved by making
use of all the security mechanisms provided by the specification.

2.4.3 Performance

In order to understand this technology’s limits, is is important to ascertain the performance
that a BLE device can have [50] [51]. In [39], three researchers performed an overview and
evaluation of BLE performance based on four factors: energy consumption, latency, piconet
size, and throughput.

Energy Consumption

Figure 2.17 illustrates a slave’s lifetime for one-way and round-trip approaches and different
parameter configurations, based on a CC2540 SoC current measurements. The slave was
expected to consume less energy when the connSlaveLatency is at its maximum. The maximum
value obtained was 14.1 and 12.4 years for the one-way and round trip method, respectively,
resulting from a connInterval of 86.25ms and connSlaveLatency of 370 (the master obtained
readings every 32 seconds). The smallest value obtained had a connInterval of 7.5ms and a
connSlaveLatency of 0, with a duration of 2.6 and 2.0 days for each method.

17

Note that the slave’s lifetime, when the connSlaveLatency has the maximum value, does
not differ with the increase in the connSlaveLatency due to the value of the connInterval,
which cannot exceed 499 [39].

Figure 2.17: Theoretical lifetime of a slave for one-way and round-trip ATT message exchanges.

Latency

Figure 2.18 shows the average latency for one-way and round-trip message exchanges, for
various connInterval and Bit Error Rate (BER) values. Latency was measured between the
first message transmitted and the correct reception of the last message. The figure represents
an average of more than ten million simulations. The average latency for smaller BER values
for one-way and round-trip presents values were smaller than 1ms and 2ms, respectively, for
different connInterval values. For higher BER values, the value of connInterval influences
latency levels. The correct data transmissions are slower due to the tendency to have more
than one connection for a single transmission to be successful [39].

18

Figure 2.18: Average latency for one-way and round-trip message exchanges.

2.5 Cellular Networks

Cellular networks provide internet access through broad areas as well as throughput rates
that satisfy generic applications requirements.

The success of 3G (also known as Universal Mobile Telecommunications System (UMTS))
and it’s growth in mobile services resulted in big amounts of data exchanges, which triggered
the necessity of newtechnology deployments. At first, High Speed Packet Access (HSPA)
was introduced, an overall upgrade to the performance of the UMTS system [52]. Although
HSPA was able to achieve higher throughput values and lower latencies, various improvements
were under analysis with the objective to reach greater specifications for 3G systems, which
led to the initiated the search for a long-term evolution of the radio access technology, that
resulted in Release 71 Technical Reports Third Generation Partnership Project (3GPP)
TR 25.912 [53], and 3GPP TR 25.913 [54] conveying the design framework for Evolved
Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access
Network (E-UTRAN), evolutions for the third generation Radio Access Network (RAN) [55].

In 2007, the project known as Evolved Packet System (EPS) had two work items being
developed simultaneously, SAE, focusing in designing a new core network architecture, and
LTE2 covering the air interface, radio access network as well as the User Equipment (UE).

1Each release incorporates hundreds of individual Technical Specification and Technical Report documents,
each of which may have been through many revisions.

2the name LTE was later adopted to refer to the whole project, and will be adopted in the rest of the
document when referring to the EPS.

19

In December 2008, all the specifications for a fully fledged LTE system implementation
were stable and ready to be deployed [56]. Besides the low latency and high data rates
requirements, new features like improved coverage, high mobility support, spectrum efficiency
and interoperability among other networks were introduced. Table 2.1 resumes some of the
specifications between these releases.

Specification UMTS
(Rel.99-4)

HSPA+
(Rel.7-10)

LTE
(Rel.8-9)

Downlink Peak Rate (Mbps) 0.384 42.2 100
Uplink Peak Rate (Mbps) 0.128 11 50
User Plane Latency (ms) 100 25 5

Cell Spectrum efficiency (bps/Hz) 0.53 1.28 1.5
Carrier Bandwidths (Mhz) 5 5 1.4,3,5,10,15,20
Connect Setup time (ms) 1000 100 100

Table 2.1: Performance specifications of different cellular technologies.

Making the transition to LTE, changes to the architecture were made both on the access
network and core network, becoming less complex by introducing more advanced elements
with increased capabilities [57] [58]. Figure 2.19 illustrates these changes.

The Access Network is mainly formed by base stations named Evolved Node B (eNB),
which are enhanced versions of the UMTS Base Station Node B. Node B uses a centralized unit,
Radio Network Controller (RNC), that manages the radio resources and the handovers among
the centralized units and the stations, as well as the connection to the core network. The eNB
in E-UTRAN, eliminates the centralized unit by supporting all the radio resource control,
admission control and mobility management that were previously contained by the RNC.
Each eNB is connected to the core network by means of an S1 interface, and all the packet and
signal forwarding are made throughout the X2 interface, that inter-connects the base stations.
In terms of access technology, UMTS used Code Division Multiple Access (CDMA), which
performs well for low data rate communications such as voice, but is very unstable over high-
speed transmissions, therefore, Orthogonal Frequency Division Multiple Access (OFDMA) is
adopted in LTE, which in turn is more spectral efficient and brings high data rate support as
well as solutions for other problems such multipath interference and narrowband interference.

The Core Network changed from the alternating circuit-switched/packet-switched approach,
to a fully packet switched approach, optimizing the data delivery in LTE and all the costs
associated with infrastructure. The architecture is split into the user plane and the control
plane. The former is responsible for transportation of the user data traffic, while the latter
handles management tasks such as connection or mobility. Another improvement is giving
the ability for the user to maintain an Internet Protocol (IP) address whenever the device is
switched on and released when switched off, something that did not happen in UMTS, where
an IP address was only set on request and disposed when was no longer required.

20

Figure 2.19: Network solutions from 3G technologies to LTE.

Release 10 was the introduction to Long Term Evolution Advanced (LTE-A), which
brought up some additional features such as support to wider bandwidth through carrier
aggregation, the use of advanced Multiple Input Multiple Output (MIMO) techniques and
the introduction of relay nodes, improving the overall peak data rate, capacity, coverage and
flexibility. In October 2010 LTE-A was accepted as a 4G technology, satisfying or exceeding
all the requirements proposed by International Telecommunication Union (ITU) [59].

3GPP Release 15 brought a new 5G RAN, known as 5G New Radio (NR). The 5G
requirements that led to focusing on areas such as enhanced Mobile Broadband (eMBB) or
Ultra Reliable and Low Latency Communications (URLLC) were defined considering new
services already implemented in the market and the necessities by different industry sectors.
The first 5G NR specification was also part of this Release, that introduced the Phase 1 of
the 5G system deployment where two architectures were distinguished: the non-standalone
version that relies on some of the elements in the LTE system, and the standalone version
that is a fully 5G system architecture. Both architectures are shown in Figure 2.20. In a
non-standalone version only 4G services are supported but provided by the 5G NR, this was
seen as a middle step and many current projects have been deployed in a non-standalone
architecture. This version was highly motivated due to the market pressure to release 5G
system parts as soon as possible [60].

21

Figure 2.20: Comparison between standalone and non-standalone 5G.

Regarding the 5G standalone architecture, The Access Network is mainly formed by
the generation Node-B (gNB), a base station formed by several units that manages and
controls several operations in the user and control plane. The gNBs are connected among
each other and to the core network. The connection to the UE uses Orthogonal Frequency
Division Multiplexing (CP-OFDM) both in the downlink and uplink. However, an alternative
can be used in the uplink plane referred as Discrete Fourier Transform spread Orthogonal
Frequency Division Multiplexing (DFT-s-OFDM), that provides low Peak-to-Average Power
Ratio (PAPR) and could improve the uplink coverage.

The Core Network is also split into the user plane and the control plane similar to the
Evolved Packet Core (EPC). Although, the implementation of the 5G core elements is based
on network functions that communicate with each other by sharing different services and
resources. This creates a service-based approach architecture, that through virtualization
enables modularity, reusability and introduces concepts such as network slicing and mobile
edge computing.

5G system enhancements have already been defined in 3GPP Releases 16 and 17 with
several areas of interest [61] [62]. 5G-Advanced is now moving into focus by Release 18,
introducing further machine-learning based techniques at different levels of the wireless
network [63].

2.6 MQTT

MQTT is a messaging protocol standardized by Organization for the Advancement of Struc-
tured Information Standards (OASIS), designed to implement and mechanism for M2M
communications. It is classified as publish-and-subscribe, which means that instead of commu-
nicating with a server, client devices and applications publish and subscribe to topics handled
by a proxy (broker). IP is typically used as its transport but other bi-directional transport
protocols can also bed used [64].

Two entities are defined,MQTT broker client. The MQTT broker acts as a server, receiving
all messages from clients and then routing the messages to the subscribed clients. The MQTT

22

client is any other device that connects and subscribes to the MQTT broker. The broker
organizes data in various topics, When a client wants to publish data, it sends a message to
the specific topic in the broker, and the broker then distributes it to any clients subscribed to
that topic [65]. The following message types are described by the protocol:

• Connect - Used by the MQTT client to establish a connection with the MQTT broker;
• Disconnect - Used by the MQTT client to close a connection with the MQTT broker.
• Subscribe - Used by the MQTT client to inform the intention of receiving messages

published on a topic;
• Publish - Used by the MQTT client and the broker to exchange data between the

nodes.

Figure 2.21 shows the exchanged messages between two clients and a broker during a
connection establishment.

Figure 2.21: Example of an MQTT connection and message exchange.

While message persistence isn’t directly supported, it is possible to retain messages. The
broker stores the last retained message for the selected topic, and each client that subscribes to
that topic receives the retained message immediately after they subscribe. It is only possible
for the broker to retain one message per topic.

Regarding security, MQTT sends connection credentials in plain text format and does not
include any measures for security or authentication [64]. This can be overcome by running
Transport Layer Security (TLS) over MQTT to encrypt and protect the transferred data.

23

2.7 Cooperative Intelligent Transportation Systems

ITS is defined as a combination of state-of-the-art information and communication technologies,
and its objective is improve the efficiency and safety of transportation networks, minimizing
congestions and environmental impacts.

While ITS focus is providing intelligence in roadside infrastructure or in vehicles, C-ITS
focuses on the Vehicle-to-Everything (V2X) communications between entities. These com-
munications are implemented in dedicated devices able to provice real time ITS services to
road users throughout Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) Vehicle-to-
Network (V2N), or Vehicle-to-Vulnerable Road User (V2R).

2.7.1 ITS Station

The European Telecommunications Standards Institute (ETSI) defines an ITS-S with a
reference architecture which refers to various functionalities. Based on the OSI model, this
reference architecture is expanded in order to also describe access technologies and protocols
to handle the ITS services. It is is organized by four horizontal layers and two vertical layers
[66] [67] [68]. Figure 2.22 represents this protocol stack.

Figure 2.22: ITS-S reference architecture.

The Access Layer represents the layer 1 and 2 of the OSI model. It supports the various
protocols, interfaces and types of media responsible for external and internal communications.

24

For external type communications some of the technologies could be non-ITS specific, such as
LTE, or ITS exclusive, like ITS-G5.

The Network and Transport layer represents the layer 3 and 4 of the OSI model. It
specifies the networking protocols, the addressing, data routing from source to destination,
and geographical-based data dissemination. The transport protocols provide end-to-end
reliable data exchange and additional features such as flow control and congestion avoidance.

The Facilities layer represents the layer 5, 6 and 7 of the OSI model and the main purpose
is to assist the ITS applications that require shared data and offering access to common
functionalities.

The Applications layer provides ITS service through ITS applications, relying on common
functionalities and data provided by the facilities layer.

The Management layer is responsible for cross layer functionalities between different layers,
transmission and synchronization management, security and privacy functions management
as well as the configuration of the ITS-S itself. It also grants access to the Management
Information Base (MIB), an entity which is responsible to define important data variables
and data sets.

The Security layer provides different security and privacy functionalities that are responsible
for performing security operations and storing credentials used by security protocols and mech-
anisms used in the different horizontal layers. Such functionalities include key management,
hardware security, firewalls, encryption or decryption, and identity authentication.

2.7.2 Messages

The traffic load that mainly flows by means of the ITS network is based on different types of
messages generated by the different ITS-Ss present in the roadside environment. Following,
some of these message types will be explained.

Cooperative Awareness Message

CAMs are messages shared by an ITS-S that periodically provides information to neighboring
nodes. Therefore, each ITS-S maintains awareness of the environment surrounding it through
status information such as time, position, motion state, and attribute information, including
data of dimensions, type of vehicles, and function in the road traffic. The construction,
encoding, management and processing of CAMs are responsible by the Cooperative Awareness
(CA) basic service. This service interfaces with the ITS applications layer and the facilities
layer to forward the received CAM content for further processing [69]. Figure 2.23 represents
the CAM general structure.

25

Figure 2.23: CAM general structure.

Its different containers can be described as:
• ITS PDU Header - Contains information about the protocol version, message type

and the source ITS-S ID;
• Basic Container - Contains information regarding the source ITS-Sm such as type of

ITS-S and latest location;
• High Frequency container - Contains highly dynamic data about the source ITS-S,

such as the speed;
• Low Frequency Container - Contains mostly static data from the source ITS-S, such

as vehicle dimensions and various sensor status;
• Special Vehicle Container - Contains specific information about the vehicle role of

the source ITS-S.
According to the use cases, there are different transmission frequency requirements, that

can vary between 1 and 10 Hz. Although having a big load in the ITS network, CAMs are
transmitted only from a ITS-S in a single hop to the receiving ITS-Ss, and a received CAM
shall not be forwarded to other ITS-Ss [69].

Decentralized Environmental Notification Message

DENMs are messages only transmitted when the ITS station detects an event on the road.
They are used in Road Hazard Warning (RHW), and these applications are event-based and
composed of multiple use cases that will define the final message structure. The Decentralized
Environmental Notification (DEN) basic service interfaces with the ITS applications layer
to receive the application request for DENM transmission or to provide the received DENM
content directly to the application[70]. Figure 2.24 represents the DENM general structure.

Figure 2.24: DENM general structure.

26

Its different containers can be described as:
• ITS PDU Header - Contains information about the protocol version, message type

and the source ITS-S ID;
• Management Container - Contains information regarding the DENM protocol;
• Situation Container - Contains information that describes the event detected;
• Location Container - Contains information of the event location and relevance area;
• À la Carte Container - Contains additional information that could be usefull for

transmission and is not present in other containers.
Some of its use cases include detection of low visibility conditions, heavy rain, traffic jam

and collision detection. The time interval regarding DENM transmission repetition is not
defined, although the ITS application responsible for the DENM generation event should
provide a repetition interval parameter and a repetition duration parameter. The DENM
repetition should be applied to the most updated DENM regarding specific identifier, and if
no repetition parameters are provided, the DENM repetition will not be executed. Another
important concept is the relevance area, that is set by the ITS application of the originating
ITS-S, with the objective of defining the area that the event could have a direct or indirect
impact. Contrarily to the CAM dissemination, DENMs could be forwarded by different
stations in order to get to as many ITS-S as possible within the area [70].

Collective Perception Message

CPMs are messages that rather than disseminate it’s station current state, shares information
regarding several entities that are detected by the ITS-S local sensorial system. The Collective
Perception (CP) aims to exchange the locally perceived objects in the network, reducing
the uncertainty in the road environment for other ITS-Ss by contributing with information.
Together with CAMs, this concept enhances and enables safety applications based on received
information about objects located outside the range of the ITS-S’s perception sensors. The
Collective Perception Service (CPS) is an entity located at the facilities layer responsible to
generate, receive and process CPMss, which contains information concerning the detected
objects, as well as status information regarding the originating ITS-S and its sensory capabilities
[71]. Figure 2.25 represents the CPM general structure.

Figure 2.25: CPM general structure.

27

Its different containers can be described as:
• ITS PDU Header - Contains information about the protocol version, message type

and the source ITS-S ID;
• Management Container - Contains information about the CPM protocol;
• Station Data Container - Contains information that describes the event detected;
• Sensor Information Container - Contains information of the event location and

relevance area;
• Perceived Object Container - Contains information about every object that has

been perceived by the source ITS-S;
• Free Space Addendum Container - Used to describe changes to a computed free

space description.
The frequency for CPMs should be set between 1Hz and 10Hz for both vehicle and roadside

ITS-Ss. Even if no objects are detected, these messages should be generated anyway to report
that detection is enabled. In a situation where CPMs are dropped because of, for example,
channel congestion the objects present in the dropped CPM could be included in the next
CPM generation event [71].

2.7.3 ETSI ITS-G5

ITS-G5 is one of the wireless technologies specified for the ITS-S architecture, and is based
on the Institute of Electrical and Electronics Engineers (IEEE) 802.11p standard. As stated
in the ITS-S section, the access layer hosts the two lowest layers of the OSI protocol stack
known as the data link layer and physical layer, where the first is subdivided into the Logical
Link Control (LLC), which provides the capability of distinguish between different network
layer protocols and the Medium Access Control (MAC) that is responsible for scheduling
transmissions to prevent interference among ITS-Ss [72]. Figure 2.26 represents the ITS-G5
access layer architecture.

Figure 2.26: ITS-G5 access layer architecture.

The smallest block of an IEEE 802.11 network is the Basic Service Set (BSS), which
consists of a group of stations that can communicate with each other independently or

28

through infrastructure. Although Independent BSSs could be called of ad hoc, they still carry
a magnitude of complexity and overhead that cannot meet the vehicular communications
requirements. Every time a stations wants to join a BSS, the association, synchronization and
authentication procedures are executed, resulting in a time intensive process where transactions
between the nodes in the road environment cannot be completely accomplished if the brief time
window of connection is spent performing these procedures [73]. Communications Outside the
Context of a BSS (OCB) are achieved by setting the Basic Service Set Identification (BSSID)
to a wildcard in every frame transmitted in an 802.11p communication, which means that the
vehicular environment needs to contain predetermined channels, and so channel scanning is
no longer necessary in this scenario [72].

For IEEE 802.11p, changes are mad to the Physical Layer (PHY) and MAC layers, changing
features already implemented in previous versions [74] [75]. In the PHY, the IEEE 802.11p
deploys the half-clocked mode of Orthogonal Frequency Division Multiplexing (OFDM) to
achieve 10MHz frequency channel bandwidths, this way it is possible to address problems
such as interference due to multi-path propagation and the Doppler shift effect [76]. In
the MAC layer, the medium access algorithm deployed is named Enhanced Distributed
Coordination Access (EDCA) which is based on the Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) algorithm principles but adding Quality of Service (QoS).
This means that priority data traffic will have a higher probability of being transmitted by
shortening the nodes listening period of the medium [72].

2.8 State-of-the-Art

Different topics are studied in order to have a clear vision of the current technological
developments in the area, starting with the extraction of data from the CAN bus, the usage
of the vehicular sensor data and finally the importance of cellular networks for C-ITS.

CAN Data Extraction

Correlating responses from the OBD-II diagnostic system with the proprietary signals of each
vehicle is a straightforward approach for analyzing the raw CAN traffic [77]. The SAE J1969
standard defines a list of PID that must be the same in all vehicle models, allowing access to
different types of parameters without knowing the vehicle’s CAN specification. However, this
does not allow identification of parameters beyond the PID list. Therefore, different methods
are needed in order to locate different functions in the bus.

Daniel Frassinelli et. al. [78] presents AutoCAN. This tool extracts unknown CAN data
from vehicles and tries to discover parameters by establishing relationships based on physics
laws. It specifies four signal categories:

• Continuous - Signals like speed or temperature and are generally generated by sensors,
or are derived from them;

• Pseudo-random - Values such as checksums, which are generally contained in frames
carrying safety sensitive information;

29

• Enumeration - Signals like gear, break pressed, door open and are generally used to
encode a certain state of the ca;.

• Cyclic - Signals that iterate continuously like clocks or counters.

After the classification through various steps, the algorithm identifies the signals using
the correlation between them. Unlike other algorithms that correlate the segmented signals
with PID signals, AutoCAN applies physical and mathematical properties relating all signals
simultaneously, for example, integrating vehicle’s speed and the odometer data. The correlation
is classified using Pearson’s coefficient.

AutoCAN was tested in four different vehicles, resulting in a percentage of correct segmen-
tation between 70% and 89% of the known signals and 6% to 11% of average bit-error, based
on a ground-truth with several documents, OBD analysis and manual reverse engineering.

Alessio Buscemi et. al. [79] introduces CANMatch, an automatic CAN reverse engineering
algorithm that eliminates the need of manual effort by re-utilizing similar CAN frames in
different vehicle models. CANMatch is divided into the three steps:

• Frame Matching - Extracts CAN messages, along with a timestamp. CANMatch
matches identifiers found in a trace file with the same identifiers present in previously
decoded signals. If a match occurs, the frame is decoded according to the ground truth
dataset;

• Tokenization - After the matching, portions of the trace may still not be decoded.
This step is performed on this unknown areas, resulting in a set of tokens, represented
by their borders and endianness;

• Redundancy Resolution - The algorithm looks for correlations between the decoded
signals from the first phase and the unknown tokens. If a match occurs, the sensor
function of the decoded signal is attributed to the token.

The application of CANMatch resulted in a mean recall of 83.3% and mean precision of
97.7% by the first phase. However, CANMatch makes intensive use of ground truth CAN
specification files or CAN Database (CAN DBC) files, which if not acquired from third parties,
still implies intensive manual reverse engineering processes.

Ricardo Correia et. al. [80] proposes a solution based on a device connected to the OBD-II
port of the vehicle, providing methods to decode CAN data in less than 30 seconds of manual
work, without the need for CAN DBC files with millions of entries. Implementation is separate
for binary and non-binary parameters.

For binary parameters, such as headlight status, windshield wiper state, or pedal status,
the following phases were defined:

• Reference - In this phase, the user needs to not perform any action inside the vehicle
for a while. The algorithm searches for bits that did not show any transition, saving the
reference for the next phase;

• Monitoring - Here, the user will have an order to make a specific number of transitions in
the parameter he wants to identify (e. g., switching on and off the minimum headlights).
The algorithm then filters the bits with a bit-flip count twice the number of triggers

30

and deletes those that present different results. This filtered parameters are the only
ones that the algorithm will be aware of in the next phase;

• Validation - This phase serves as confirmation to ensure that identification is made
correctly.

The identification of non-binary parameters includes two processes, one based on param-
eters that can be decoded when the car is stopped (e. g., headlight status speed, steering
wheel angle). and the other for parameters that require the car to be moving (e. g., throttle
position, wheels speed).

For the former, the following phases were defined:

• Reference - In this phase, the user needs to not perform any action inside the vehicle for
a while. Here, the algorithm is not scanning the messages bit-by-bit, but byte-by-byte,
so the number of candidates reduces. Any transition of a bit in a determined byte
excludes the candidate;

• Monitoring - When this phase begins with the driver being subjected to several
instructions to execute inside the car. The type of instructions depends on the type
of parameter to be identified. However, the processing and analysis of the data are
identical, as the controller detects the messages via the OBD-II controller, the driver
carries out the instructions, and the algorithm records the increments and decrements
of the respective bytes that are being processed. These counters permit are the used to
calculate derivative of the signals and conclude about if their behaviour are similar to
the driver’s instructions.

Regarding the other functions that require the car to be moving, a solution based on
correlation to other OBD-II parameters was implemented, without the need for the driver
to execute specific instructions. This was achieved by calculating the Root-Mean-Square
Error (RMSE) of some defined features of a specific OBD-II response and all the other signals.
The lower the RMSE value, the lower the distance between them, and so, higher is the
probability of a given candidate to be chosen.

Vehicular Sensor Data

Concerning the use of vehicular sensor data, the success of C-ITS largely depends on the
platform used to access, collect, and process accurate data from the environment [81].

Toon Bogaerts et. al. [82], proposes a model to enhance the current Road Weather
Model (RWM) by making use of vehicular sensor data, enabling real-time road weather
warnings for local weather phenomena and dangerous road conditions.

Vehicles are equipped with a CAN reader and external sensors, and the data collected by
the fleet is then sent to a cloud back-end using a data distribution framework. Although all
the CAN data was collected, within this study only data from external sensors was processed
for investigation of the relationship between the measurements and the road conditions, due
to the fact that CAN data is not always available and can be erroneous due to the reverse
engineering processes. Table 2.2 overviews the external sensors used.

31

In Car Sensor Box
GPS Module Gyroscope

Camera Accelerometer
Thermal Imaging Sensor Temperature Sensor

Humidity Sensor

Table 2.2: Overview of external sensors placed on test vehicles used in [82].

Every 3 seconds, when the GPS module generated a new position, the sensor measurements
are collected at this timestamp as well as all CAN messages within this time interval and
were sent to a data distribution platform. With data from around 2000 hours of driving data
collected from 15 vehicles, the authors findings indicated the potential value of vehicle sensors
in relation to the road weather.

With these sensor measurements, trends with the temperature values were noticeable that
occurred when rain started or stopped. The results showed a median RMSE close to 4 °C
between the temperature forecasts performed at a Road Weather Station (RWS) and the ones
performed at close observed road segments.

Toon Bogaerts et. al. [83], using the same equipment as in [82], demonstrated two examples
of how Artificial Intelligence (AI) and Machine Learning (ML) can be leveraged to process data
from a fleet of vehicles and obtain relevant weather information with an improved data quality
compared to the raw measurements, using convolutions neural networks to extract visibility
and precipitation data from raw camera images. With this, a new RWM was presented, to
enrich the modeling of road weather with the cars data at a high spatio-temporal resolution.

The results showed a median RMSE below 2º C between the temperature forecasts
performed at a RWS and the ones performed at close observed road segments.

Cellular Networks and C-ITS

Gorka Velez et. al. [84], surveys the 5G features and standards that would be required by a
data platform that aims to capture data from vehicles to make it available to other parties in
the cloud.

Considering the huge amount of data that a single connected car produces, the authors do
not consider feasible to deploy a centralized Cloud-based solution that stores all the captured
data. A more sustainable and realistic approach would involve a platform for live-data delivery.
In this case, stakeholders would be subscribed to certain data flows, and decide what to do
with the incoming data, either processing, storing or discarding.

The following 5G features that would enable such a platform were identified:

• Network Function Virtualization (NFV) - The purpose of NFVs is to create a
network architecture that uses technologies widely adopted in virtualization. This
improves load-balance, scalability, and the ability to relocate functions across different
hardware resources. By continually updating virtualized functions, operators can keep
things running on the latest software without interruption;

32

• Network slicing - 5G networks need to support a diverse list of verticals, with an
exhaustive number of use cases each. These use cases demand very different requirements
in terms of network performance. A logical network, named as a 5G network slice, is
composed of several elements of the network, and each of these elements may be used in
a dedicated way or be shared with other network slices. Each 5G network slice is isolated
in a way that the use of the other slices will not affect the QoS provided by another slice.
This is pivotal to achieve the performances needed for most of the relevant use cases of
different Cooperative, Connected and Autonomous Mobility (CCAM) applications;

• Multi-Access Edge Computing (MEC) - MEC is a new paradigm that provides
computing, storage, and general networking resources within the edge of the network,
this is relevant for all the use cases that need scalability and low latency;

• Cybersecurity - This is important for every possible use case. [85] defines different sets
of security measures organised by different domains, like network access, user domain,
application domain, etc.

The authors conclude that 5G is a key enabling technology of CCAM and C-ITS systems,
that includes several features that can contribute to create a scalable, flexible, reliable and
secure data platform.

The work developed during the dissertation, described in detail in the following sections,
makes use of some of this methods and the knowledge shared by the authors to build a
reliable mechanism capable of extracting vehicular sensor data, disseminating it to other
vehicles/infrastructure, and to the cloud.

33

CHAPTER 3
System Architecture

This chapter presents the system’s global architecture where this work is inserted, followed by
the detailed architecture of the proposed solution, describing the functionality of the different
elements involved.

3.1 Global Architecture

As mentioned in the first chapter, the work developed in this dissertation is part of the TRUST
project, which belongs the SARWS project.

SARWS is a project that longs to expand local data collection mechanisms from traditional
road weather data sources to completely new ones, exploiting elements from the C-ITS
environment, proposing the gathering and sharing of meteorological data using units such as
vehicles, road-weather sensors and smartphones. Figure 3.1 and table 3.1 details the SARWS
architecture.

Figure 3.1: Scheme of the global SARWS architecture.

34

Item Description
A Weather-Pollution V-ITS-S Station (WV-ITS-S)
B Vehicle ITS Station (V-ITS-S)
C Roadside ITS Station (R-ITS-S)
D Central ITS Station (C-ITS-S), Traffic Management Center (TMC)
E Broker, Cloud
1 V2I Communication
2 C-ITS-S to R-ITS-S
3 Broker to C-ITS-S
4 V2V Communication
5 V-ITS-S to Cloud

Table 3.1: SARWS architecture components description.

This architecture is divided by four functionality layers:

• Acquisition Layer - Composed by all the sensors that notify about weather/pollution
and traffic information;

• Communication Layer - Uses all communication types (1 to 5), as shown in 3.1,
assuring the connection between ITS-S and providing data to both the C-ITS-S and the
broker in the cloud (D, E);

• Management Layer - Responsible for handling, storing, and analysing the data
obtained from the installed ITS-S. This management process is restricted to the
C-ITS-S with limited interaction with the cloud broker;

• Data Diffusion Layer - This is where the information collection and distribution with
the end-users and brokers occurs.

With SARWS, all the vehicles can benefit from the proposed RWM, even if they are not
equipped with a OBU or Internet access, because SARWS notifies drivers about any relevant
information via smartphones. Furthermore, this project can evaluate the traffic pollution by
tracking the air quality from the vehicles sensors and reporting these to the public authorities.

The main goal of the project is to provide weather services in real-time that ensure safety,
efficiency, and energy sustainable mobility that cannot be seen in traditional approaches, and
that is where a fully fledged ITS environment plays a part, contributing to human comfort
and safety, providing substantial results in an efficient way.

35

3.2 Proposed Solution

As mentioned, this work aims to implement a reliable mechanism capable of extracting
vehicular sensor data, and forward it to other vehicles, infrastructure or to the cloud. To
accomplish this, two sub-systems are designed.

Intra-Vehicular

This subsystem is responsible for requesting, extracting and decoding relevant sensor data
from the CAN bus of the vehicle, and sending it to the local OBU. Figure 3.2 illustrates
architecture scheme.

Figure 3.2: Proposed intra-vehicular architecture.

Detailing this architecture, the following entities are specified:
Vehicle: Represented by 1 in figure 3.2, this element consists of a CAN network responsible

for controlling the various parts of the vehicle through ECUs. The OBD-II port acts as an
input/output port, which allows monitoring the data being communicated between the units,
that will be used to request and collect data;

CAN Transceiver and Controller: Represented by 2 in figure 3.2. This element
consists of a CAN controller and a algorithm capable of identifying and decoding the raw
CAN messages. A CAN transceiver needs to exist to enable the communication between
the bus nodes and the controller. A Carloop with a Redbear Duo combo was chosen for this
role because it implements both functions, while also having a BLE module for short-range
wireless communication. Figure 3.3 shows a picture of the kit;

36

Figure 3.3: CAN transceiver and controller. Figure 3.4: OBU with GPS receiver.

OBU: Represented by 3 in figure 3.2, this element is built on top of a system board
from PC Engines with several features and a set of extensions, including a GPS receiver, a
WiFi module, an LTE or module, and a pair of appropriate antennas for each module. A
Dual-Mode Bluetooth 4.0 USB adapter is also used to allow communication with the CAN
controller. Figure 3.4 shows a picture an example platform.

After the local OBU has possession of the vehicular sensor data, it is ready to start dissem-
inating it to other connected cars via ITS-G5 (implementing V2I and V2V communications),
and to the cloud via LTE or 5G.

Cloud

This subsystem defines the architecture of the services available in the Cloud, their relationships,
the organization of the shared messages and how stakeholders should interpret the data. Figure
3.5 illustrates the architecture scheme.

Figure 3.5: Proposed architecture for the cloud services.

37

Detailing this architecture, the following entities are described:
Server: Represented by 1 in figure 3.5, this is defined by one or more Linux machines

that accommodate other services like brokers, loggers, databases, public key certificates for
secure connections, etc. In order to take advantage of 5G, this should be deployed at the edge
of the access network, to fully take advantage of the MEC concept;

MQTT Broker: Represented by 2 in figure 3.5, the broker provides an endpoint for
other stakeholders such as vehicles to publish and subscribe to different topics in order to
share live data to other vehicles in motion.

Figure 3.6 shows an example of the structure of a topic:

Figure 3.6: Defined MQTT topic structure.

• Queue type Represented by green, this field indicates the message destination agent.
This can take the value of inqueue when the message is received, outqueue for messages
that should be published to other stations, or inter_mecs when publishes should be
made to a different 5G MEC platform;

• Message format Represented by yellow, this field indicates the message encoding type
(e.g.: Extensible Markup Language (XML), JavaScript Object Notation (JSON));

• Station ID Represented by orange, this field indicates the ITS-S identification number.
• Message type Represented by blue, indicates the ITS messages types (e.g.: CAM,

CPM);
• Location Represented by cyan, indicates the geographical location of the sender ITS-S,

following a quad-tree map system representation.

This location representation follows a tree data structure in which children and parent
nodes represent regions of the world map. The map is recursively subdivided into four
quadrants, allowing different precision/zoom levels depending on the number of times the
map has been divided. This approach fits well for topic creation on a MQTT broker because
quadrants can be enumerated which allows a certain region to be specified by a sequence of
numbers;

Logger: Represented by 3 in figure 3.5, this service is implemented in order to assert the
strict CCAM timing requirements, as well as for facilitating debugging;

Message Distribution Service: Represented by 4 in figure 3.5, this service function is
to subscribe to the local MQTT broker input queue and publish relevant messages to other
output queues or to other brokers;

Smart Cloud of Things (SCoT): Represented by 5 in figure 3.5, SCoT is a local platform
developed with IoT in mind, that provides a Hypertext Transfer Protocol Secure (HTTPS)
endpoint for storing sensor data in a database [86];

API: Represented by 6 in figure 3.5, this offers an endpoint for users to access historical
vehicular sensor data, providing an easy way to get relevant road statistics.

38

Figure 3.7 illustrates how the different cloud services would be distributed in a 5G network.
The MQTT broker, the message distribution service and the logger should deployed at the
edge of the network (on a MEC platform), because they need to be able to provide results as
soon as possible, being subjected to strict time restrictions. The API and the SCoT platform
don’t need to fulfill any strict timing requirements because they are only used to provide
historical data, so, there’s no need to deploy them at the edge of the network.

Figure 3.7: Defined cloud services architecture on a 5G network.

39

CHAPTER 4
Implementation

This chapter details the hardware specifications and the software development of the imple-
mented solution, starting with the vehicular sensor data identification and extraction, followed
by the configuration and implementation of the communication mechanisms, the organization
of the different services installed in the OBU, and lastly the framework details of the cloud
services.

4.1 Vehicular Sensor Data

The hardware used in order to be able to identify and extract this data is composed by a
Carloop acting as a CAN transceiver, with a integrated RedBear Duo board functioning as a
controller. Their roles are:

• CAN Transceiver - To provide an interface between the physical layer and a CAN
controller. Table 4.1 details its specifications;

• CAN Controller - To run applications that request, process and make responses to
the bus via the CAN transceiver. Table 4.2 details its specifications.

Model Carloop
Dimensions 10.2 x 7.6 x 2.5 cm

Weight 23 g
CAN Mode CAN2.0A/B
CAN Speed Up to 1Mbit/s

Table 4.1: CAN transceiver specifications.

40

Model RedBear Duo
Dimensions 2.1 x 3.9 cm

Weight 17 g
Microcontroller Unit STMicroelectronics STM32F205
Input/Output Unit 18 General Purpose Input/Output (GPIO)

Clock Speed 120 MHz
Memory 128KB SRAM and 1MB Flash

WiFi + BLE Module Broadcom BCM43438
Temperature Range 0 ∼ 70º C (Operating) / -20 ∼ 70º C (Storing)

Table 4.2: CAN controller specifications.

4.1.1 Identification

Different manufacturers develop distinct ways of representing content in CAN messages (e.g.,
data may be in signed or unsigned, little-endian or big-endian, conversion to integers may
be have different scales and offsets), making it difficult to interpret the data. Furthermore,
CAN DBC files are not easily accessible, and the ones that can be found on online forums such
as opengarages are often incomplete and not available for all car models, making it impossible
to have a ground truth set of CAN IDs. As a consequence, manual reserve engineering methods
must be applied in order to identify relevant data in the bus.

The implementation of the reverse engineering methods in this dissertation follows the
work done by Ricardo Correia et. al. [80], explained in section 2.8, using the developed
algorithms for detection of binary and non-binary parameters. However, since this algorithms
only allow for online identification, they are limited by the capabilities of the Redbear Duo, as
mentioned by the author.

With this in mind, an offline algorithm was developed that uses CAN traces previously
acquired, and calculates the Pearson’s correlation coefficient between different CAN messages
with data requested by OBD. Given a pair of variables (x, y), the correlation ρ is given by:

ρ =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2 (4.1)

Different methods exist for calculating correlations between different data sources, but
the one presented takes factors like different offsets and scales into account, being a suitable
method for correlating different CAN data.

41

Nevertheless, because different CAN messages do not have the same sampling frequency,
data needs to be interpolated in order to achieve the same number of samples in both variables.
Given two points (x1, y1) and (x2, y2), a interpolated value (x, y) can be obtained by the linear
interpolation method:

y = y1 + (x− x1) (y2 − y1)
(x2 − x1) (4.2)

For acquiring a trace, a trip must be made while always making different OBD-II requests
through the CAN controller, sending every CAN message that is captured in the bus to a
application that is listening and logging all the messages. After acquiring the trace, the
following steps are carried out to identify parameters:

• Pre-Processing - In this step, every byte from different CAN IDs is grouped in a
data structure. This results in various arrays containing the evolution of different bytes
throughout the trace. Every pair (ID, Byteindex) gets assigned one of these arrays;

• Processing - In this step, the algorithm will take a reference array from an input, and
calculate it’s correlation to every other (ID, Byteindex) pair;

• Validation - Finally, the algorithm outputs the pair (ID, Byteindex) that most resembles
the input given, with it’s correlation coefficient.

Figure 4.1 illustrates this process.

Figure 4.1: Representation of the proposed algorithm to identify CAN parameters.

42

4.1.2 Extraction

After identifying the CAN IDs that are relevant, a process is designed that listens to the
bus for this messages while also making requests according to the OBD-II standard. A list
of the OBD-II PIDs, as well as the relevant CAN IDs should be pre-configured, and if no
configuration is made at this level, only requests to the OBD-II are done. The following
algorithm represents the process in pseudo-code, where pidList is the list of OBD PIDs to
request, canIdList the list of relevant IDs, and loopFunction the main event loop function.

1: pidIndex← 0
2: totalNumberOfPids← getLength(pidList)
3: loopFunction← sendRequest

4: function sendRequest()
5: pidIndex← (pidIndex + 1)%totalNumberOfPids ▷ Iterate through PIDs
6: message.id← 0x7df ▷ 0x7DF is the ID used for OBD-II requests
7: message.data[0]← 0x02 ▷ Number of remaining data bytes
8: message.data[1]← 0x01 ▷ 0x01 is the mode specified for current data
9: message.data[2]← pidList[pidIndex] ▷ Set PID to request

10: busSendMessage(message) ▷ Sends request message to the CAN bus
11: loopFunction← waitForResponse

12: end function

13: function waitForResponse()
14: if elapsedT ime > 500 then ▷ Check if request timed out
15: loopFunction← sendRequest

16: end if
17: while busReceiveMessage(message) do ▷ While the bus buffer has messages
18: if message.id == 0x7e8 then ▷ 0x7e8 is the ID used for OBD-II responses
19: saveMessage(message) ▷ Saves message to local register
20: loopFunction← sendRequest

21: else if message.id in canIdList then
22: saveMessage(message)
23: end if
24: end while
25: end function

Because OBD-II requests can be lost in the bus or responses could be missed, a timeout
mechanism is applied. If 500 milliseconds go by while waiting for a response, another request
is made instead.

After some seconds of having the process running, all the data for the pre-configured
parameters should be saved in local registers, and the RedBear Duo is ready to start sending
the vehicular sensor data to local the OBU.

43

4.2 Dissemination

Multiple hardware modules are needed for the different communication technologies that are
required by the different flow directions:

• For communications between the RedBear Duo and the OBU, BLE is used. Table 4.3
details the specifications of the Bluetooth Dual-Mode USB adapter used in the OBU;

• For communication between the OBU and the Cloud, cellular networks are the best
option, a LTE module was configured for this purpose. Table 4.4 details its specifications;

• For V2V and V2I communications, these are enabled by the ITS-G5 technology. A WiFi
module was used because as ITS-G5, it is also based on the IEEE 802.11 technology.
Table 4.5 details the specifications of the WiFi module used;

Model Asus USB-BT500
Standard BluetoothR 5.0+EDR BLE

Data Rate (BLE) 2 Mbps
Range (BLE) Up to 40 Meters (open space)

Frequency Band (BLE) 2402 2480 MHz
Spectrum FHSS

Temperature Range 0 ∼ 70º C (Operating) / -20 ∼ 70º C (Storing)

Table 4.3: Bluetooth dual-mode adapter specifications.

Model Huawei ME909s-120
Technology LTE - cat 4

Maximum Speed 150 Mbps (Downlink) / 50 Mbps (Uplink)
SIM Interface Through miniPCIe connector

Temperature Range -40 ∼ 85º C (Operating)

Table 4.4: LTE module specifications.

Model Atheros Compex WLE200NX
Technology 802.11a/b/g/b
Frequency 2.4 / 5 GHz

Maximum Output Power 18 dBm
Temperature Range -20 ∼ 70º C (Operating)

Table 4.5: WiFi module specifications.

44

4.2.1 BLE

The OBU and the CAN controller will both take roles that allows connection establishment,
according to the GAP specification:

• Peripheral - This role will be taken by the CAN controller, waiting for connections
and acting as a slave;

• Central - This role is filled by the OBU, scanning for the peripheral, requesting a
connection to it, and then acting as the master.

Peripheral

This device needs to act as a server to provide the sensor data to other BLE devices, so
it implements a GATT standard profile, composed by four different services. Figure 4.2
illustrates its layout:

• GAP Service - This is a mandatory service for servers that contains three read-only
characteristics, one that specifies the device name, another for the appearance (type
of device), and lastly for Peripheral Preferred Connection Parameters (PPCP) values
(such as connection intervals and timeouts;

• GATT Service - This is a mandatory service for servers that contains one indication
characteristic, to enable the server to change its structure during a connection while
still maintaining synchronicity with the client;

• Data Service - This is a custom service that sends the vehicular sensor data to the
OBU. It’s composed by a single notification characteristic that is configured to send the
most recent raw CAN messages every second to the OBU;

• Battery Service - This is a optional service that provides a read-only characteristic
for reading the battery level.

Figure 4.2: Organization of the peripheral services.

45

Central

This device needs to establish a connection with the Peripheral/Server, receiving its notifi-
cations without needing to provide any data. For this purpose, an application is designed
that is able to access GATT standard profiles suffices, not requiring the implementation of a
GATT profile.

This was implemented with an open-source library called gattlib [87], based on the linux
bluez [88]. The following steps are taken by the application:

• Scan - In the first step, the central starts scanning for other BLE advertising devices
until the peripheral is found (via MAC address, specified in a configuration file);

• Connection and Registration - After locating the peripheral, the central makes a
connection request, registers and subscribes the Vehicular Sensor Data Characteristic in
the Data Service, setting a callback function for processing each notification;

• Main Loop - This is where application keeps waiting for notifications, processing and
writing them to a shared memory. More on this will be detailed in section 4.3. The
loop keeps waiting for a SIGINT signal to stop the notification subscription and then
disconnecting the device.

For managing the main event loop, another open-source library named glib [89] is used,
that provides a main loop abstraction that polls event sources and invokes event handlers,
avoiding busy-waiting periods when no notifications are sent.

4.2.2 Cellular Networks

To support the LTE cellular module, the Linux cdc_mbim driver is used. This driver is
intended to support USB devices that are in compliance with the “Universal Serial Bus
Communications Class Subclass Specification for Mobile Broadband Interface Model (MBIM)”
protocol [90], optimized for mobile broadband devices.

This driver provides a interface (through the character device /dev/cdc_wdmX) so users
can have access to the device. Nevertheless, it does not participate in the device control and
management, so tools such as mbim-network [91] and mbimcli [92] are required. The former is
a simple network management tool of MBIM devices, the latter provides control over MBIM
devices which includes triggering the connection overa cellular network and getting module
information.

46

To start a connection, a mbim-network configuration file is required, to specify the Access
Point Name (APN) details, as well a proxy option, to enable parallel commands to be sent to
the module even if the interface already in use by a data connection. After this initial setup a
connection can be established with the same tool. Code 1 shows the output of the connection
status after its establishment.

it2s@admin@it2s-itss-03:/ mbim-network /dev/cdc-wdm0 status
Loading profile at /etc/mbim-network.conf

APN: internetm2m
APN auth protocol: unset
APN user: unset
APN password: unset
mbim-proxy: yes

Getting status with 'mbimcli -d /dev/cdc-wdm0 --query-connection-state --device-open-proxy'...
Status: activated

Code 1: LTE connection status query.

A 5G module was also used, but its configuration was previously set up in Instituto de
Telecomunicações - Aveiro (IT), which was utilized in the tests described in the next section.

4.2.3 ITS-G5

To fully support vehicular communications, the ITS-S platform should be able not only to
operate within the ITS-G5 channel and power requirements, but also to transmit and receive
OCB packets.

From version 3.19, the Linux kernel started to implement some changes in order to support
IEEE 802.11p communications and OCB mode, making it possible to allow IEEE 802.11p
communications with wireless cards that by default do not support IEEE 802.11p channel
and power requirements, as it is with the Atheros Compex WLE200NX wireless card used.

To support the module, the Linux driver ath9k is used, but some changes must be applied
to the driver in order to operate within the 5.9 GHz frequency band with 10 MHz channels
and OCB mode. This are implemented via a custom kernel patch that specifies each central
frequency of the ITS-G5 channels and the OCB mode of operation to the ath9k driver. This
patch was previously developed at IT [93].

After the module is correctly working and able to communicate, a library was developed for
employment in the access layer of the ITS-S reference architecture. This library is developed
with raw sockets1, implementing the following public methods for sending and receiving
802.11p frames:

• it2s_ath_tx_packet: Sends a frame. As argument, the frame contents and length
are specified;

• it2s_ath_rx_packet: Listens for a frame;
• it2s_ath_rx_packet_callback_set: Sets a callback function to be called whenever

a frame is received. As argument, a pointer to the callback function should be given;
1A raw socket bypasses the normal Transmission Control Protocol (TCP)/IP stack and sends the Ethernet

frames directly to the application.

47

• it2s_ath_loop: Implements a main event loop, always listening for frames. As
argument, a pointer to the object is should be given;

• it2s_ath_user_data_set: Sets a arbitrary value to a data structure to be used by
other methods such as the callback function;

• it2s_ath_free: Used to delete and free the memory of internal variables used by the
library.

In addition the arguments detailed above, all methods should also be given a pointer to
a configuration data structure that contains fields such as socket file descriptors and ifreq
structures, used to specify different interface parameters.

4.3 On-Board Unit Configuration

The protocol stack of the this ITS-S element was previously developed in IT [94], and it is
used for the work described in this dissertation to implement, test and validate new features.

Besides the set of extensions described in the previous sections, it also includes a GPS
receiver for location tracking. Their main specifications can be found in tables 4.6 and 4.7.

Model Apu3d4
Dimensions 16.8 x 16.7 x 3 cm

Weight 245 g (Board) + 250 g (Chassis)
SoC AMD Embedded G series GX-412TC

DRAM 2 GB DDR3-1333
Storage -20 Internal SDHCI Controller, 1 SATA + power connector

Connector Type 2.5 mm Jack, center positive, 12V DC
Input/Output DB9 serial port, 2 USB 3.0 external, 4 USB 2.0 internal

Temperature Range 0 ∼ 90º C (Operating)

Table 4.6: OBU platform specifications.

Model G-Star IV
Dimensions 10.6 x 9.7 x 5.1 cm

Weight 99.8 g
Operating Voltage 24 V

Sensivity 163 dBm
Frequency L1 1575.42 MHz

Number of Channels 48
Rate 0.1 m/s

Temperature Range -40 ∼ 90º C (Operating)

Table 4.7: GPS receiver specifications.

48

4.3.1 Development Environment

The Linux distribution used by the OBU platform is Arch Linux. Although the patch referred
to in the previous section works well for kernel versions lower or equal than 5.13.13-arch1
[95], it stopped working in following versions.

In order to have a stable kernel version that would not bring problems, a custom kernel
was manually compiled and installed for the ITS-S platforms that used the WiFi module.
These were the steps followed to attain this:

• Linux kernel source retrieval: This is achieved with the svn tool [96], allowing the
retrieval of the specific 5.13.13 kernel source code;

• PKGBUILD modification: The intention of applying the patch should be declared
here, as well as avoiding the compilation of documentation to save time;

• Compilation and installation: This is achieved with the makepkg tool [97], automat-
ing the compilation and installation of the pacman2 package;

• Initial ramdisk generation: This is achieved with the mkinitcpio tool [98], which
creates an initial ramdisk3 environment for booting the custom linux kernel;

• Bootloader configuration file generation: The bootloader installed in the platforms
is GNU GRUB [99]. It provides the tool grub-mkconfig that automatically detects the
installed kernels and lists them in an array ordered by sequence of installation.

With the specification of a pacman hook file to run post-transaction commands in addition
to PKGBUILD and patch files, this process was condensed into a single package added to an
unofficial user repository, allowing the installation of the custom kernel to be done with one
pacman command.

It is also important to note that the Arch Linux distribution follows a rolling release model,
which means that not updating the kernel for a long time could bring a lot of issues to other
drivers and applications. Therefore, a version of the newest kernel can always be kept and
updated in addition to the custom kernel, using the modprobe tool (part of the Linux kernel)
to specify which modules to use from either kernel.

4.3.2 Services

Besides the protocol stack of the ITS-S reference architecture running in the OBU, other
services integrated with systemd [100] are developed that accommodate the need to process
the vehicular sensor data received from the CAN controller and disseminate it using the
technologies described in the previous sections:

• it2s-obd-manager: This process implements the BLE central described in section
4.2.1. It keeps listening for new messages from the CAN controller and always keeps the
most recent ones updated, writing them in raw form into a shared memory file used for
inter-process communications;

2pacman is the package manager used by Arch Linux.
3An initial ramdisk is used to load a temporary root file system into memory.

49

• it2s-obd-reader: At 1 Hz, this process gets the vehicle position from the GPS receiver
via gpsd4 [101], and the values in the previous shared memory file, decodes the raw
messages into their corresponding values, and sends them to the cloud. One thread
sends data to the MQTT broker (developed with libmosquitto [102]), and another to
the SCoT platform (developed with libcurl [103]). The decoded messages are also kept
updated in another shared memory file, used to share data with the ITS-S protocol
stack.

In addition to these two services, the facilities layer of the ITS-S reference architecture is
modified in order include relevant data to other ITS-S elements via C-ITS messages. It reads
the values from the decoded shared memory whenever it exists, and include them in CAM
and DENM messages upon their creation. The access layer was also adapted to include the
option to use the Atheros WiFi Module, with the library described in section 4.2.3.

Figure 4.3 illustrates the interactions between the entities in the OBU.

Figure 4.3: Organization of the OBU developed services.

4gpsd is a service daemon that monitors GPS receivers attached to a host computer through serial or USB
ports.

50

In order to automate the execution of these services, udev5 [100] rules were specified to
start the services whenever the Linux kernel detects the insertion or removal of the USB
Blutooth adapter. Code 2 shows the rules specified.

#ASUS USB_BT400
ACTION=="add", ATTRS{idVendor}=="0b05", ATTRS{idProduct}=="17cb", \

MODE="0666", TAG+="systemd", ENV{SYSTEMD_WANTS}+="it2s-obd-manager.service"
ACTION=="remove", ATTRS{idVendor}=="0b05", ATTRS{idProduct}=="17cb", \

RUN+="/bin/systemctl --no-block stop it2s-obd-manager.service"

Code 2: Udev rules specified for the Bluetooth adaptor.

The messages sent to the cloud are in JSON format and include the following vehicular
sensor parameters:

• Vehicle Speed;
• Engine Speed;
• Engine Load;
• Wheels Speed;
• Steering Wheel Angle;
• Headlight Status;
• Barometric Pressure;
• Speed Pedal Position;
• Brake Pedal Position;
• Ambient Temperature;
• Anti-lock Braking System Status;
• Wiper Status.

In addition these parameters, location data is also attached to the messages, including
latitude, longitude, altitude, speed, track and confidence values for each of them. Timestamps
are assigned to to each distinct vehicular sensor parameter, and are in accordance to the ETSI
standards [69], including leap seconds6.

A configuration file must be present that specifies the correspondent IDs of each of these
values in order to properly decoded them. These can be determined by the reverse engineering
methods described in section 4.1.1 or through online repositories such as opengarages. If no
configuration at this level is done, the only responses to the parameters present in the OBD-II
standard will be processed and sent to the cloud.

Finally, the system clock is configured to use the GPS receiver as a the prioritized time
synchronization source. This is accomplished with the Network Time Protocol (NTP) protocol,
through the ntpd daemon.

5udev is a userspace system that enables the operating system administrator to register userspace handlers
for input/output events.

6A leap second is a one-second adjustment that is occasionally applied to the Coordinated Universal Time,
to accommodate the difference between the International Atomic Time and the imprecise observed solar time,
which varies due to irregularities and long-term slowdown in the earth’s rotation.

51

4.4 Data Access

On the cloud, two endpoints for data access are provided. An MQTT broker is used for
message subscription in real time, while an API can be used for historical data retrieval. Both
were installed in Arch Linux servers. For TLS encryption, a public key certificate is generated
with certbot [104], issued by letsencrypt7 and tested with openssl [105].

MQTT Broker

The broker is instantiated with the development version of mosquitto [102]8. A modification
is done to its corresponding systemd [100] service file, to enable writing to a key log file the
TLS session keys exchanged by the the different clients and the server. It’s usage is explained
in section 4.5.2.

As a complement to the broker, a Message Distribution Service is also developed, that
subscribes to the local MQTT broker input queue and publishes relevant messages to other
output queues, which are used by other clients to subscribe to the data.

API

The API was developed on top of the previously existing Plataforma Aberta para o desenvolvi-
mento e experimentação de Soluções para MObilidade (PASMO) API [106]. It gets data from a
postgres [107] database, where the SCoT platform backups various sensor data. It’s developed
with the flask framework [108], instantiating an API conforming to the REpresentational
State Transfer (REST) architectural style. The following endpoints were added:

• /vehicles: Returns data from every vehicle during a time period specified;
• /vehicles/stationID: Returns data from a specific vehicle (stated by stationID) during

a time period specified.

In addition to the endpoints created for the vehicular sensor data, more were created to
accommodate stationary weather stations data, from another partner of the TRUST project:

• /weather: Returns the most recent weather information from every weather station
installed;

• /weather/stationID: Returns weather data from a specific station (stated by stationID)
during a time period specified;

• /weather/stationID/measurement: Returns a specific weather measurement (given
by measurement from a specific station (stated by stationID) during a time period
specified. A groubpy field can also be set to group the results by any length of time.

Order, limit and offset values can also be specified for every endpoint. The API is deployed
using ngnix9 [109] on a Docker container [110].

7letsencrypt is a non-profit certificate authority run by Internet Security Research Group (ISRG), that
provides X.509 certificates for TLS encryption at no charge.

8mosquitto is an open source implementation of a server that applies the MQTT protocol.
9ngnix is a popular lightweight web application that is used for developing server-side applications.

52

4.5 Logging

Reliable logging mechanisms are required in order to test the strict CCAM timing requirements,
to understand the applications and network behaviour, and their relationship with the connect
cars behaviour.

Here, the MQTT broker was installed in a portuguese 5G MEC Arch Linux server. This
server is directly connected to a spanish 5G MEC server, providing a low-latency channel
for communications between the different servers. Another virtual network interface also
exists for communications that come directly from different gNodeB radio towers. Figure 4.4
illustrates the different entities and relationships defined in the context of the project.

Figure 4.4: 5G-MOBIX deployed architecture in a cross-border region.

Due to roaming, according to the type of Subscriber Identity Module (SIM) card that
each OBU has, they will either communicate with the MQTT broker in the portuguese MEC
(with a portuguese SIM card), or to the Spanish one (with a spanish SIM card), regardless of
the gNodeB radio tower they connect to.

Since connected cars can only be subscribed to one broker, and need to be aware of all
other vehicles (despite of their type SIM card), the Message Distribution Service described in
section 4.4 also publishes every message received in the input queue, to an inter-MEC queue,
in addition to the output queue.

Logging at different levels is important to understand why problems might occur. For

53

example, high delays or data-loss could caused by different reasons, such as a high overhead
on the OBU CPU, or a congested network, or even poor Received Signal Strength Indication
(RSSI) on the 5G module of the OBU. Therefore, logging is divided into different abstraction
layers, which are applications, network and access.

The implementation described in this dissertation focuses on the logging part of the MEC
server, which does not include access layer logging because only wired interfaces are used,
defeating it’s purpose.

4.5.1 Applications Layer

Accordingly to the project requirements, the following parameters are logged at the application
level, by the MEC server for each MQTT message published in the broker.

• Timestamp: Absolute Unix timestamp in milliseconds;
• Message: Data contained in the MQTT message, serialized according to the ASN.1

standard [111];
• Message Size: Size in bytes of the data contained in the MQTT message;
• Topic: Topic to which the MQTT message was published;
• Message Type: C-ITS message type of the message, such as CAM or CPM;
• Topic Direction: Queue where the message was published (e.g.: input queue, output

queue, inter-MEC queue).

This is achieved by the Message Distribution Service, where the logger is implemented.
Logging every message that is published by other stations (such as OBUs or RSUs) to the
input queue, and every message it republishes in other output queues. Figure 4.5 illustrates
this mechanism.

Figure 4.5: Application layer logging mechanism.

54

After every log is written to the logfile, they are be imported into a Structured Query
Language (SQL) table, with a python script processing the file and inserting a column for
each MQTT message.

4.5.2 Network Layer

Accordingly to the project requirements, the following parameters are logged at the network
level, by the MEC server for each MQTT packet received or sent by the server.

• Timestamp: Absolute Unix timestamp in milliseconds;
• Source Address: Source IP address;
• Destination Address: Destination IP address;
• Packet Type: MQTT packet type, such as CONNECT, SUBSCRIBE or PUBLISH ;
• Message: Data contained in the MQTT payload, serialized according to the ASN.1

standard;
• Message Size: Size in bytes of the data contained in the MQTT payload;
• Message Type: C-ITS message type of the message, such as CAM or CPM;
• Topic: Topic present in the MQTT payload.

This is achieved through tcpdump, a tool provided by the wireshark [112] command line
interface. A capture is made both on the radio and the inter-MEC interfaces. Finishing the
capture, these are merged with the mergecap tool.

TLS Decryption

Since all the communications with the server are encrypted via public key certificates, a way to
decrypt the traffic from the captures must be implemented in order to extract the parameters
specified in the previous section.

This is done using the TLS session keys already logged by the mosquitto server, as described
in section 4.4.

In TLS, two communicating parties generate 4 session keys at the start of any commu-
nication session, during the TLS handshake. A session key is any encryption key used to
symmetrically encrypt one communication session only. In other words, it’s a temporary key
that is only used once, during one stretch of time, for encrypting and decrypting data.

With the TLS sessions keys and the capture file, it is now possible to inject the keys into
the capture file, filter the important fields out of each packet in the capture, and import these
fields into a SQL database table. Figure 4.6 illustrates the steps to achieve this.

Figure 4.6: Network layer processing mechanism.

55

If multiple capture files exist (e.g: a capture for the radio and inter-mec interfaces of the
5G MEC server), these can be merged with mergecap. Then, the first step uses as input the
capture file and a logfile containing the shared TLS keys, these files are given to tshark10

to select the necessary keys, verify that the keys for every TLS session exist, and then with
injecting them into the capture file, outputting a PCAP New Generation (PCAPNG) capture
file. The next step takes the previous output, filters only the relevant packets (MQTT
connection , subscribe and publish packets), and outputs them into a file formatted as Comma
Separated Values (CSV). Finally, the filtered packets are imported to a SQL database table.

All these steps are condensed into a single python script that automates these processes.

4.5.3 Processing

After acquiring the logfiles for the different elements and importing them to their respective
SQL database tables, additional processing is required in order to extract valuable data, such
as latency, throughput and data-loss ratios.

With this in mind, two types of scripts were created to correlate the data from different
entities:

• Matching: This type of script matches each message/packet one-by-one, through their
data. This allows the calculation of latency values per item and total amount of lost
messages/packets;

• Aggregations: These are similar do the matching scripts, but with the addition of
custom sliding time windows. This allows to count the number of messages/packets
sent and received throughout multiple small time windows, outputting features such
as average end-to-end latency, data-loss/packet-loss ratios, and data-rate/throughput
values.

10tshark and mergecap are tools provided by the wireshark command line interface [112].

56

CHAPTER 5
Tests and Results

This chapter exposes the results from the tests performed to evaluate and validate the imple-
mentation of the system, as well as the tools used for testing. It starts with the results from
the identification and extraction of the vehicular sensor data, then going over the validation
of the communication mechanisms, followed by the usage of the data access channels and the
validation of the logging procedures. Finally, an in-depth analysis of these results is discussed.

5.1 Vehicular Sensor Data

To test the OBD-II parameter extraction, a development board by OZEN Elektronic was
used. This board can simulate up to three different ECUs, generate DTCs, and control five
parameters in real-time, using potentiometers. Figure 5.1 shows the board.

Figure 5.1: CAN bus OBD Simulator.

The controller used in this board is the OE91C1610, which is compatible with the ISO
15765-4 standard, supports multiple fixed OBD-II PIDs and a check engine light [113].

This was a vital component in the initial testing phase of this dissertation because it
allowed to test the communications with the bus through the OBD-II port without needing a
vehicle.

57

After developing and testing a basis for requesting and processing OBD-II data through
the simulator, the next step was to make this requests in a real vehicle, log every CAN message
that was detected in the bus, and finally correlating the data with the script developed at
section 4.1.1. Figures 5.2 to 5.8 provide the comparison between the the evolution of different
OBD-II parameters and the best candidate provided by the algorithm.

Engine Speed

As specified in the OBD-II standard, this value is given by (256A+B)
4 , where A is the first data

byte, and B the second. The algorithm identified the second and third bytes of the 0c9 CAN
ID as the best candidates, with a pearson correlation factor ρ = 0.97 for the first byte, and ρ

= 0.86 for the second.

Figure 5.2: OBD data for engine speed (byte A) and CAN ID 0c9 (byte #1).

Figure 5.3: OBD data for engine speed (byte B) and CAN ID 0c9 (byte #2).

58

Engine Load

The engine load is given by 100
255A, where A is the first data byte. The algorithm identified the

second byte of the 3d1 CAN ID as the best candidate, with a pearson correlation factor ρ =
0.78.

Figure 5.4: OBD data for engine load (byte B) and CAN ID 3d1 (byte #1).

Vehicle Speed

This parameter is given by A, the first data byte. Although only one data byte exists in
the OBD-II response, the algorithm identified that the CAN messages containing the vehicle
speed, used two bytes (256A + B). The first and seconds bytes of the 3e9 CAN ID formed
the best candidate, with a pearson correlation factor ρ = 0.95.

Figure 5.5: OBD data for vehicle speed (byte A) and CAN ID 3e9 (byte #0 and #1).

59

Throttle Pedal Position

This value is given by 100
255A, where A is the first data byte. The algorithm identified the fifth

byte of the 0c9 CAN ID as the best candidate, with a pearson correlation factor ρ = -0.89.

Figure 5.6: OBD data for engine load (byte A) and CAN ID 0c9 (byte #4).

Wheels Speed

Although this value is not specified in the OBD-II PID list, these can be guessed correlating
the vehicle speed CAN data with the other CAN messages. The algorithm identified the 34a
and 348 CAN IDs as the best candidates, both with a pearson correlation factor ρ = 0.97.

Figure 5.7: CAN ID 34a (byte #0 and #1) and CAN ID 34a (byte #2 and #3).

60

Figure 5.8: CAN ID 348 (byte #0 and #1) and CAN ID 348 (byte #2 and #3).

Summary

All the previous results were acquired using a Opel Adam from 2016, and different offset and
scale values are used in comparison to their correspondant OBD-II data. A resume of the
identified parameters and its features is presented in table 5.1.

Opel Adam (2016) CAN ID (HEX) Byte(s) Unit Offset Scale
Engine Speed 0c9 1 rpm 0 1
Engine Load 3d1 1 % -20 4/5
Vehicle Speed 3e9 0-1 km/h 0 1/64
Throttle Pedal 0c9 4 % 100 -1

Wheels Speed

34a 0-1 km/h 0 1/32
34a 2-3 km/h 0 1/32
348 0-1 km/h 0 1/32
348 2-3 km/h 0 1/32

Table 5.1: Identified parameters of Opel Adam (2016) with its respective features.

In addition to the Opel Adam, tests concerning the same parameters were also made in a
Peugeot 308 from 2017 and in a Seat Ibiza from 2011. The former provided similar results to
the Opel, while in the latter, no CAN messages could be captured, in spite of being able to
request OBD-II data and reading the responses without any problem.

Furthermore, tests for other useful parameters such as headlight status, wipers activation
and steering wheel angle were also made using the algorithms developed at [80]. This however
proved to be quite inconsistent between the different cars. A reason for this may be that the
control of these entities is done through the LIN bus, without the need to share messages
through the CAN bus.

61

5.2 Dissemination

To test the different flows, isolated tests and assertions were made regarding each technology.

BLE

The connection from the central device (OBU) to the peripheral was tested using the blue-
toothctl tool, provided by bluez [88]. A successful connection is represented in figure 5.9, also
displaying a service discovery, validating the GATT profile specified in 4.2.1.

Figure 5.9: BLE connection output from the central side.

62

A callback function is also set on the peripheral device, to be called when a device connects.
Figure 5.10 shows the output logs of the peripheral device when the central device performs a
connection.

Figure 5.10: BLE connection output from the peripheral side.

LTE and ITS-G5

The first step is to assert that this interfaces are properly set up and with an assigned IP
address. Figure 5.11 shows the interfaces description on the OBU. where wwp0s19u1u3c3 is
the LTE interface and wlp4s0 the ITS-G5 interface.

Figure 5.11: Interfaces description on the OBU.

63

Following this validation, the actual exchange of packets is tested. ping commands are
tested between the LTE interface and the internet, and between two ITS-G5 interfaces
configured similarly. It’s results are shown in figure 5.12.

Figure 5.12: Results of ping commands through LTE and ITS-G5 interfaces.

A trace file was also captured using wireshark, containing the exchange of C-ITS messages
between different stations, with data, where simulated data such as vehile speed and headlights
status is inserted to the CAM containers. A part of this capture is shown in figure 5.13.

Figure 5.13: Capture on ITS-G5 interface showing exchanged packets between stations.

64

5.3 Data Access

To validate the data endpoints correct behaviour and the full end-to-end flow, several trips
were made through the city of Aveiro where roadside ITS-S stations were deployed by IT,
as well from Aveiro to Oliveira de Azeméis. The data collected in this trips consist of only
parameters accessible through the OBD-II standard. The OBU was powered with the vehicle
own battery, through a power inverter. Its specifications are presented in table 5.2.

Model Bapdas Power Inverter DC 12V to AC 220 V
Input DC Voltage 12 Volts

Output AC Voltage 220 Volts
Output Power 500 Watts
Peak Efficiency > 85 %

Dimensions 150 x 95 x 55 mm
Weight 540 g

Table 5.2: Power inverter specifications.

Picture 5.14 shows a picture taken in Praia da Barra, where a RSU is deployed (in the
background, on the leftmost orange pillar), with a Seat Ibiza used for the tests, equipped with
the GPS receiver and ITS-G5 antennas on top of it. Picture 5.15 displays the CAN controller
attached to the OBD-II port, and 5.16 shows the OBU on top of the right seat.

Figure 5.14: Vehicle equipped with GPS receiver and ITS-G5 antennas. RSU on the background.

65

Figure 5.15: Installed CAN controller. Figure 5.16: OBU inside the vehicle.

MQTT Broker

This endpoint was tested with the MQTT Explorer tool [114], which is comprehensive MQTT
client that connects to a broker and outputs the different messages it gets to a graphic interface.
Figure 5.17 shows the output of this tool, when various ITS-S stations were sending C-ITS
messages, while another was publishing vehicular sensor data (seen as VSM), all according to
the topic structure described in section 3.2.

Figure 5.17: MQTT explorer during dissemination of the vehicular sensor data to the broker.

66

API

The data collected during trips from Aveiro to Oliveira de Azeméis was used to validate the
REST API. The evolution of several parameters gathered are represented from figure 5.18 to
figure 5.28 (taken from the API).

Figure 5.18: Latitude and respective error values.

Figure 5.19: Longitude and respective error values.

67

Figure 5.20: Representation of the trip in a map (values taken from the API).

Figure 5.21: Altitude and respective error values.

Figure 5.22: Direction and respective error values.

68

Figure 5.23: Vehicle speed, according to OBD (red) and GPS (red) data.

Figure 5.24: Engine speed values.

Figure 5.25: Engine load values.

69

Figure 5.26: Throttle pedal position values.

Figure 5.27: Ambient temperature values.

Figure 5.28: Barometric pressure values.

70

5.4 Logging

The logging mechanisms were validated in two different scenarios:

• Single PLMN: In this scenario, both the RSU and OBUs are equipped with PT SIM
cards while under the full coverage of a PT network gNodeB. Every device is connected
to the same network and to the PT MEC MQTT broker;

• Inter PLMN: In this scenario, OBUs are equipped with a spanish SIM card while
the connected vehicles depart from Portugal and travel to Spain. The OBU is always
connected to the ES MQTT broker, while performing handover from the visited network
(PT) to the home network (ES).

Single PLMN Scenario

The flows generated by CAM and CPM messages are illustrated in figure 5.29, where the
numbers represent the order. These tests were performed on the A28 highway, in Porto.

Figure 5.29: CPM and CAM messages flow in the single PLMN scenario.

71

After processing the logfiles generated by every element present in the scenario, analysis
and debugging can be facilitated with the use of the scripts described in section 4.5.

Figures 5.30 and 5.31 illustrate message-by-message metrics from different abstraction
layers in respect to the uplink flow direction (from the OBU/RSU to the MEC server), for
both CAM and CPM messages, where the Packet Delivery Ratio (PDR) was equal to 100%.

Figure 5.30: Single PLMN: Uplink, message-by-message, applications and network latency (blue
and orange, respectively) and 5G RSRP (red) for CAM messages.

Figure 5.31: Single PLMN: Uplink, message-by-message, applications and network latency (blue
and orange, respectively) and 5G RSRP (red) for CPM messages.

Here, the latencies from both layers are very similar, with an average difference of 2
ms, and 12 ms at most. These are almost ideal results, showing that the overhead of the
applications that implement this data flow is minimal on the MEC/OBU platform CPU.

72

Figures 5.32 and 5.33 illustrate message-by-message metrics from different abstraction
layers in respect to the downlink flow direction (from the broker in the MEC server to the
OBU), for both CAM and CPM messages, where the PDR was equal to 100%.

Figure 5.32: Single PLMN: Downlink, message-by-message, applications and network latency (blue
and orange, respectively) and 5G RSRP (red) for CAM messages.

Figure 5.33: Single PLMN: Downlink, message-by-message, applications and network latency (blue
and orange, respectively) and 5G RSRP (red) for CPM messages.

In this case, the latencies from both layers are very distinct, with an average difference of 28
ms, and 114 ms at most. This shows that the overhead of the applications that implement this
data flow is very significant on the MEC/OBU platform CPU, and optimization techniques
should be implemented.

73

Aggregating the previous downlink message-by-message approach by 1000 millisecond
time windows, it’s verified that on average 30 CAM and 10 CPM messages are forwarded
from the broker to the OBU at every time aggregation, averaging a downlink throughput of
165 Bytes/second for CAMs and 84 Bytes/second for CPMs. Figures 5.34 and 5.35 illustrate
the aggregated metrics, including the vehicle speed data.

Figure 5.34: Single PLMN: Downlink, aggregated by 1000 miliseconds, applications and network
latency (blue and orange, respectively), 5G RSRP (red), and vehicle speed (black) for
CAM messages.

Figure 5.35: Single PLMN: Downlink, aggregated by 1000 miliseconds, applications and network
latency (blue and orange, respectively), 5G RSRP (red), and vehicle speed (black) for
CPM messages.

74

Inter PLMN Scenario

Different flows for each type of message are now defined in the presence of a handover event.
These are illustrated in figures 5.36 (before the handover) and 5.37 (after the handover),
where the numbers represented the order. These tests were performed at the border between
Portugal and Spain, on the A3 highway.

Figure 5.36: CPM and CAM messages flow in the inter PLMN scenario, before then handover event.

75

Figure 5.37: CPM and CAM messages flow in the inter PLMN scenario, after then handover event.

These tests were performed earlier in development, where only applications and access
level logging were available, therefore no network layer latencies are provided in the results.
Figures 5.38 and 5.39 illustrate the end-to-end delay application level latency and signals
strength for both CAM and CPM messages, where the PDR was equal to 99.9%. The handover
event is identified using the access layer logs, searching for a change in the Mobile Country
Code (MCC) and Mobile Network Code (MNC) values.

Figure 5.38: Inter PLMN: End-to-end, message-by-message, applications level latency (blue), 5G
RSRP (red), and LTE RSRP (green) for CAM messages.

76

Figure 5.39: Inter PLMN: End-to-end, message-by-message, applications level latency (blue), 5G
RSRP (red), and LTE RSRP (green) for CPM messages.

Aggregating the previous results by 1000 millisecond time windows, it’s verified that on
average 10 CAMs and 10 CPM messages are forwarded in an end-to-end flow direction, every
time window. This results in a throughput of 74 Bytes/second for CPM and 52 Bytes/second
for CAMs. Figures 5.40 and 5.41 illustrate the aggregated metrics, including the vehicle speed
data.

Figure 5.40: Inter PLMN: End-to-end, aggregated by 1000 miliseconds, applications latency values
(blue) values, 5G RSRP (red), LTE RSRP (green) and vehicle speed (black) for CAM
messages.

77

Figure 5.41: Inter PLMN: End-to-end, aggregated by 1000 miliseconds, applications latency values
(blue) values, 5G RSRP (red), LTE RSRP (green) and vehicle speed (black) for CPM
messages.

5.5 Results Discussion

CAN Data Extraction

The developed algorithm for CAN IDs identification proved to be mostly successful, providing
satisfying results that seem to correctly match the data from different sources, with the
exception of the engine load parameter that had the lowest pearson correlation factor, with
slight deviations being apparent when comparing both graphs. Identification with algorithms
previously developed also demonstrated to be very inconsistent and time demanding, with
different vehicles providing very different results. Furthermore, a 100% guarantee that these
values actually correspond to the correlated parameters is impossible to affirm, because of the
intrinsic nature of reverse engineering. This issue could be mitigated through the addition of
more external sensors to add redundancy to the data, but ultimately, to work with a ground
truth for these parameters a CAN DBC would be needed, supplied directly by manufacturers,
which they currently are very reticent to provide because of the lack of authentication or
encryption in the bus, to not encourage car hacking. Another realistic solution would be the
natural evolution of the CAN protocol, that could provide authentication mechanisms and
standardized CAN IDs, or through the OBD protocol implementing more PIDs.

Without a ground truth list of CAN IDs, identification through reverse-engineering proves
to be unreliable, time consuming and unusable to achieve absolute certainty. Nonetheless,
the usefulness of this data in the context of road security is undeniable, and manufactur-
ers/standardization organizations should be encouraged by proof-of-concept works like this, in
order to evolve the protocols and standards used in vehicular networks, to provide easy and
safe ways to access relevant parameters that can be utilized to form a better road environment.

78

Vehicular Sensor Data

Even just with data collected through the standardized OBD-II PIDs, the value of extracting
sensor data from a connected car is clear.

Meteorological data such as temperature and barometric pressure could be used to improve
the current RWM based on stationary RWS by using the inherent mobility of the vehicles,
enabling the identification of areas where ice is more probable to be form (through temperature
values), as well as zones where forest fires could be more prone to occur (many researches
have been done correlating differences in atmospheric pressure to the flammability of different
materials [115]).

This data can also be valuable to other drivers and connected cars through the broker
or ITS-G5, in order to detect anomalies in the traffic such as congestions, dangerous drivers,
mismatches between the vehicles speed and their wheels speed (that could mean hydroplaning)
or inadequate driving that causes high engine load values, directly influencing fuel consump-
tion. This enables the notification in near real-time about important and dangerous events,
consequently improving the road environment.

Furthermore, this data could also be used by authorities, to identify zones more sensible
to traffic congestion, accidents and where drivers don’t respect the speed limits, indicating
the need of reinforcing the security mechanisms in these zones. Additionally, statistical data
about road population is very valuable to marketing companies and can be used as selling
points to different services.

Finally, the framework developed allows to easily scale this and add more parameters
through external sensors, adding the possibility of collecting other valuable data such as
luminosity, humidity, noise levels and air quality.

Logging

The logging mechanism proves to be vital in the context of C-ITS development, enabling
the debugging of the different stations through the interpretation of data from the different
abstraction layers.

It allows to study and analyse the different cellular technologies in the context of C-ITS
and CCAM, to verify timing restrictions and to test the behaviour of the network in different
conditions, with and without the influence of events such as handovers or traffic congestion.

The results themselves demonstrate the 5G technology capabilities, that provide low
network delays that satisfy the CCAM timing requirements, at least in a single PLMN
scenario. More testing is necessary in the multi PLMN scenario that includes network level
logging, to understand if it the high delays are related to the handover event or to the
applications overhead.

In spite of the tests being based on use cases not directly related to vehicular sensor data
dissemination, they were modeled using the same standardized messages used in a C-ITS
environment that can also benefit from the sensor data to include in their body. Therefore,
the logging methods can be directly imported in order to fit other related use cases.

79

CHAPTER 6
Conclusion and Future Work

6.1 Conclusion

This work studies the identification and extraction of raw CAN and OBD-II messages trans-
mitted within the vehicle communication networks. A solution to enrich the current RWM
and the ITS environment was designed, implemented and tested, consisting of a device to be
connected to the OBD-II port of the vehicles, an OBU and various cloud services.

This work was developed due to the incentive of providing a more secure road environment,
the primary objective being the implementation of a reliable vehicular sensor extraction
framework, capable of disseminating valuable data to relevant stakeholders, with appropriate
methods to assert its requirements. Several steps were defined to achieve this objective, starting
from the study of the concepts involved with this dissertation, a review of the state-of-the-art,
the design of the system architecture, and finally its implementation and testing.

The results demonstrate the limitations of the reverse-engineering methods to acquire
parameters from the CAN bus without ground truth bases. Nonetheless, the value and
importance of vehicular sensor data is made clear in the result analysis that specify how the
ITS environment benefits from the sensor data collection and dissemination to other vehicles
and the cloud.

It is concluded that a well founded and useful proof-of-work is provided, that extracts and
disseminates vehicular sensor data, while also including logging methods capable of asserting
the restrictions set up by the standards, bringing a contribute to the area [116].

6.2 Future Work

During the development of this work, improvements to the overall architecture of the system
and implementation were identified, to improve future increments on this work. These include
acquiring a CAN DBC for a vehicle in order to work with a ground truth set of parameters,
adding more external sensors to the OBU in order to add redundancy and to enrich the data
collected, and most important, the development of a mobile application for drivers, that
condensates the relevant sensor data and notifies users about important events.

80

Bibliography

[1] European Automobile Manufacturers Association, “Vehicles in use Europe 2022,” ACEA, European
Union, 2022, p. 21. [Online]. Available: https://www.acea.auto/files/ACEA-report-vehicles-in-
use-europe-2022.pdf.

[2] ——, “The Automobile Industry Pocket Guide,” ACEA, 2020, p. 88. [Online]. Available: https:
//www.acea.be/uploads/publications/ACEA_Pocket_Guide_2020-2021.pdf.

[3] Eurostat, “Transport statistics at regional level,” European Union, 2020, p. 17. [Online]. Avail-
able: https://ec.europa.eu/eurostat/statistics- explained/index.php?title=Transport_
statistics_at_regional_level#Road_transport_and_accidents.

[4] W. H. Organization, “Global status report on road safety,” World Health Organization, 2018, p. 403.
[Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-
eng.pdf.

[5] A. Christodoulou, P. Christidis, and J. R. Centre, “Measuring congestion in European cities,” 2020, p. 31.
[Online]. Available: https://op.europa.eu/en/publication-detail/-/publication/e590d815-
9b08-11ea-9d2d-01aa75ed71a1/language-en/format-PDF/source-178542437.

[6] A. Kaźmierczak, A. E. Envirnment, Mitigation, E. T. C. f. A. P. Change, and Climate, “Unequal
exposure and unequal impacts: social vulnerability to air pollution, noise and extreme temperatures
in Europe,” 2019, p. 97. doi: 10.2800/324183. [Online]. Available: https://www.eea.europa.eu/
publications/unequal-exposure-and-unequal-impacts.

[7] Obd-ii background, Accessed: January 2020. [Online]. Available: http://www.obdii.com/background.
html.

[8] E. Comission, “A European strategy on Cooperative Intelligent Transport Systems, a milestone
towards cooperative, connected and automated mobility,” 2016. [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%5C%3A52016DC0766.

[9] 5g-mobix, https://www.5g-mobix.com/, Accessed: 2022-06-14.

[10] R. B. GmbH, “Can specification, version 2.0,” 1991.

[11] Canbus: The central networking system of vehicles, Accessed: December 2019, Jun. 2019. [Online].
Available: https://premioinc.com/blogs/blog/can-bus-the-central-networking-system-of-
vehicles.

[12] Controller area network (can bus) protocol, Accessed: May 2022, 2022. [Online]. Available: https:
//www.kvaser.com/can-protocol-tutorial/.

[13] Can bus explained - a simple intro [2022], Accessed: May 2022, 2022. [Online]. Available: https:
//www.csselectronics.com/pages/can-bus-simple-intro-tutorial.

[14] “Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical signalling,”
International Organization for Standardization, Standard, Dec. 2015.

[15] “Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unit,”
International Organization for Standardization, Standard, Dec. 2016.

[16] “Road vehicles — Controller area network (CAN) — Part 3: Low-speed, fault-tolerant, medium-
dependent interface,” International Organization for Standardization, Standard, Jun. 2016.

81

[17] Understanding microchip’s can module bit timing, Accessed: May 2022, 2001. [Online]. Available:
https://ww1.microchip.com/downloads/en/Appnotes/00754.pdf.

[18] Controller area network physical layer requirements, Accessed: May 2022, Jan. 2008. [Online]. Available:
https://www.ti.com/lit/an/slla270/slla270.pdf?ts=1653330451251.

[19] Can physical layer and termination guide, Accessed: May 2022, 2020. [Online]. Available: https:
//www.ni.com/pt-pt/innovations/white-papers/09/can-physical-layer-and-termination-
guide.html.

[20] Introduction to the controller area network (can), Accessed: May 2022, 2016. [Online]. Available:
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf.

[21] I. Jennions, “Evaluation of can bus security challenges,” Sensors (Basel), Apr. 20, 2020.

[22] Can fd explained - a simple intro (2020), Accessed: November 2020. [Online]. Available: https :
//www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro/language/en.

[23] Can fd - the basic idea, Accessed: November 2020. [Online]. Available: https://www.can-cia.org/can-
knowledge/can/can-fd/.

[24] Controller area network (can) and flexible data-rate (can fd), Accessed: November 2020. [Online].
Available: https://www.kvaser.com/about-can/can-fd/.

[25] Can xl: Next step in can evolution, Accessed: November 2020. [Online]. Available: https://www.bosch-
semiconductors.com/news/t-newsdetailpage-4.html.

[26] Can xl: Bridging the bitrate gap between can fd and ethernet, Accessed: November 2020. [Online].
Available: https://www.kvaser.com/can-xl-bridging-the-bitrate-gap-between-can-fd-and-
ethernet.

[27] Introduction to the lin bus, Accessed: May 2022. [Online]. Available: https://www.kvaser.com/about-
can/can-standards/linbus/.

[28] Lin bus explained - a simple intro [2022], Accessed: May 2022, 2022. [Online]. Available: https:
//www.csselectronics.com/pages/lin-bus-protocol-intro-basics.

[29] Local interconnect network, Accessed: May 2022, 2014. [Online]. Available: https : / / www .
sciencedirect.com/topics/computer-science/local-interconnect-network.

[30] What is obd? understanding on-board diagnostics | noregon, Accessed: May 2022. [Online]. Available:
https://www.noregon.com/what-is-obd/.

[31] ". Miller", Obd1 vs obd2: What nobody told you before, Accessed: May 2022, Nov. 2021. [Online].
Available: https://www.obdadvisor.com/difference-obd1-obd2-scanners/.

[32] “Road vehicles — Communication between vehicle and external equipment for emissions-related
diagnostics — Part 3: Diagnostic connector and related electrical circuits: Specification and use,”
International Organization for Standardization, Standard, Apr. 2016.

[33] “Road vehicles — Communication between vehicle and external equipment for emissions-related diag-
nostics — Part 5: Emissions-related diagnostic services,” International Organization for Standardization,
Standard, Aug. 2015.

[34] Obd2 explained - a simple intro (2020), Accessed: October 2020, 2020. [Online]. Available: https:
//www.csselectronics.com/screen/page/simple-intro-obd2-explained/.

[35] Z. L. Haohuang Wen Qi Alfred Chen, “Plug-n-pwned: Comprehensive vulnerability analysis of obd-ii
dongles as a new over-the-air attack surface in automotive iot,” Oct. 4, 2021.

[36] Bluetooth vs. bluetooth low energy: What’s the difference? Accessed: May 2022, 2021. [Online]. Available:
https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-energy.

[37] Bluetooth vs. bluetooth low energy: What’s the difference? Accessed: May 2022, Mar. 2019. [Online].
Available: https://www.centare.com/blog/what_is_bluetooth_low_energy/.

[38] “Bluetooth Core Specification Version 5.3,” SIG Bluetooth, Tech. Rep., Jul. 2022, Accessed: July 2020.

82

[39] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low energy: An emerging
low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[40] Introduction to bluetooth low energy (ble) | argenox, Accessed: May 2022. [Online]. Available: https:
//www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-energy-
v4-0/.

[41] Bluetooth® low energy (ble) physical layer, Accessed: May 2022. [Online]. Available: https : / /
microchipdeveloper.com/wireless:ble-phy-layer.

[42] Ble link layer roles and states, Accessed: May 2022, 2021. [Online]. Available: https : / /
microchipdeveloper.com/wireless:ble-link-layer-roles-states.

[43] Bluetooth® low energy packet types, Accessed: May 2022, 2021. [Online]. Available: https : / /
microchipdeveloper.com/wireless:ble-link-layer-packet-types.

[44] Ble protocol stack — host controller interface (hci), Accessed: May 2022, Sep. 2019. [Online]. Avail-
able: https : / / medium . com / @pcng / ble - protocol - stack - host - controller - interface - hci -
44dd5697bd8.

[45] Logical link control and adaptation layer protocol (l2cap), Accessed: May 2022. [Online]. Available:
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_
guide/html/ble-stack-3.x/l2cap.html.

[46] What is ble attribute protocol (att)? Accessed: May 2022. [Online]. Available: https : / / www .
carrentalgateway.com/glossary/attribute-protocol/.

[47] Gap | introduction to bluetooth low energy, Accessed: May 2022. [Online]. Available: https://learn.
adafruit.com/introduction-to-bluetooth-low-energy/gap.

[48] Gatt | introduction to bluetooth low energy, Accessed: May 2022. [Online]. Available: https://learn.
adafruit.com/introduction-to-bluetooth-low-energy/gatt.

[49] M. Cäsar, T. Pawelke, J. Steffan, and G. Terhorst, “A survey on bluetooth low energy security and
privacy,” Computer Networks, Mar. 14, 2022.

[50] W. S. Jeon, M. H. Dwijaksara, and D. G. Jeong, “Performance analysis of neighbor discovery process in
bluetooth low-energy networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1865–
1871, 2017.

[51] W. Bronzi, R. Frank, G. Castignani, and T. Engel, “Bluetooth low energy performance and robustness
analysis for inter-vehicular communications,” Ad Hoc Networks, vol. 37, pp. 76–86, 2016.

[52] J. Wannstrom, High Speed Packet data Access. [Online]. Available: https : / / www . 3gpp . org /
technologies/keywords-acronyms/99-hspa (visited on 04/05/2021).

[53] 3GPP, “Security architecture and procedures for 5G System,” 3rd Generation Partnership Project
(3GPP), TS 33.501, 2020. [Online]. Available: https : / / portal . 3gpp . org / desktopmodules /
Specifications/SpecificationDetails.aspx?specificationId=3169.

[54] ——, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN),” 3rd Generation
Partnership Project (3GPP), TR 25.913, 2006. [Online]. Available: http://www.3gpp.org/ftp/Specs/
html-info/25913.htm.

[55] ETSI, 4G - Long Term Evolution | LTE Standards. [Online]. Available: https://www.etsi.org/
technologies/mobile/4G (visited on 04/05/2021).

[56] C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications.
Chennai: John Wiley & Sons Ltd, 2014, p. 488. [Online]. Available: https://ieeexplore.ieee.org/
servlet/opac?bknumber=8039851.

[57] M. Nohrborg, LTE Overview. [Online]. Available: https://www.3gpp.org/technologies/keywords-
acronyms/98-lte (visited on 04/05/2021).

[58] A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE, 1st. USA: Prentice Hall
Press, 2010, isbn: 0137033117. [Online]. Available: https://dl.acm.org/doi/book/10.5555/1941366.

83

[59] 3GPP, ITU-R Confers IMT-Advanced (4G) Status to 3GPP LTE, 2010. [Online]. Available: https:
//www.3gpp.org/news- events/1319- ITU- R-Confers- IMT- Advanced- 4G- Status-to- 3GPP- LTE
(visited on 04/05/2021).

[60] ——, “Release description; Release 15,” 3rd Generation Partnership Project (3GPP), TR 21.915, 2018.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/21915.htm.

[61] Accessed: May 2022. [Online]. Available: https://www.3gpp.org/release-16.

[62] Accessed: May 2022. [Online]. Available: https://www.3gpp.org/release-17.

[63] Accessed: May 2022. [Online]. Available: https://www.3gpp.org/release18.

[64] Mqtt version 5.0, Mar. 7, 2019.

[65] M. Pawar, Mqtt protocol overview - everything you need to know, Accessed: May 2022. [Online].
Available: https://www.velotio.com/engineering-blog/mqtt-protocol-overview.

[66] ETSI, “EN 302 665 - V1.1.1 - Intelligent Transport Systems (ITS); Communications Architecture,”
Tech. Rep., 2010, p. 44.

[67] ——, “EN 302 636-3 - V1.2.1 - Intelligent Transport Systems (ITS); Vehicular Communications;
GeoNetworking; Part 3: Network Architecture,” Tech. Rep., 2014.

[68] ——, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications;
Definitions,” Tech. Rep., 2009.

[69] ——, “EN 302 637-2 - V1.4.1 - Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service,” Tech. Rep., 2019.

[70] ——, “EN 302 637-3 - V1.2.1 - Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service,”
Tech. Rep., 2014.

[71] ——, “TR 103 562 - V2.1.1 - Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Analysis of the Collective Perception Service (CPS); Release 2,” Tech. Rep., 2019.

[72] ——, “EN 302 663 - V1.3.1 - Intelligent Transport Systems (ITS); ITS-G5 Access layer specification
for Intelligent Transport Systems operating in the 5 GHz frequency band,” Tech. Rep., 2019.

[73] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International Standard for Wireless Access
in Vehicular Environments,” in VTC Spring 2008 - IEEE Vehicular Technology Conference, 2008,
pp. 2036–2040. doi: 10.1109/VETECS.2008.458.

[74] IEEE, “IEEE Standard for Telecommunications and Information Exchange Between Systems -
LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and physical
layer (PHY) specifications: High Speed Physical Layer in the 5 GHz band,” IEEE Std 802.11a-1999,
pp. 1–102, 1999. doi: 10.1109/IEEESTD.1999.90606.

[75] ——, “IEEE Standard for Information technology–Local and metropolitan area networks–Specific
requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 8: Medium Access Control (MAC) Quality of Service,” IEEE Std 802.11e-
2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003), pp. 1–212, 2005. doi: 10.1109/
IEEESTD.2005.97890.

[76] J. Almeida, J. Ferreira, and A. Oliveira, “Development of an ITS-G5 station, from the physical to
the MAC layer,” in Intelligent Transportation Systems From Good Practices to Standards, 2016, isbn:
978-1-4987-2186-8. [Online]. Available: http://hdl.handle.net/10773/21887.

[77] H. M. Song and H. K. Kim, “Discovering can specification using on-board diagnostics,” IEEE Design
& Test, 2020.

[78] D. Frassinelli, S. Park, and S. Nürnberger, “I Know Where You Parked Last Summer : Automated
Reverse Engineering and Privacy Analysis of Modern Cars,” IEEE Xplore, 2020. doi: 10.1109/SP40000.
2020.00081. [Online]. Available: https://ieeexplore.ieee.org/document/9152789.

84

[79] A. Buscemi, I. Turcanu, G. Castignani, R. Crunelle, and T. Engel, “CANMatch: A Fully Automated
Tool for CAN Bus Reverse Engineering Based on Frame Matching,” IEEE Xplore, pp. 12 358–12 373,
2021. [Online]. Available: https://ieeexplore.ieee.org/document/9599500.

[80] R. Correia, “Cooperative in-vehicle sensing of adverse road-weather conditions,” M.S. thesis, Universi-
dade de Aveiro, 2021.

[81] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Sensor Technologies for Intelligent Trans-
portation Systems,” sensors, 2018. doi: 10.3390/s18041212. [Online]. Available: https://www.mdpi.
com/1424-8220/18/4/1212.

[82] T. Bogaerts, S. Watelet, C. Thoen, et al., “Enhancement of road weather services using vehicle
sensor data,” IEEE Xplore, 2022. doi: 10 . 1109 / CCNC49033 . 2022 . 9700658. [Online]. Available:
https://ieeexplore.ieee.org/document/9700658.

[83] T. Bogaerts, S. Watelet, N. De Bruyne, et al., “Leveraging Artificial Intelligence and Fleet Sensor
Data towards a Higher Resolution Road Weather Model,” sensors, 2022. doi: 10.3390/s22072732.
[Online]. Available: https://www.mdpi.com/1424-8220/22/7/2732.

[84] G. Velez, E. Bonetto, D. Brevi, et al., “5g features and standards for vehicle data exploitation,” 2022.
[Online]. Available: https://www.researchgate.net/publication/359936950_5G_Features_and_
Standards_for_Vehicle_Data_Exploitation.

[85] ETSI, “ETSI TS 133 501 V15.4.0 - 5G; Security architecture and procedures for 5G System (3GPP
TS 33.501 version 15.4.0 Release 15),” 2019.

[86] A. L. Marques, “Device magement in the scot platform,” M.S. thesis, Universidade de Aveiro, 2016.

[87] labapart, Gattlib, https://github.com/labapart/gattlib, 2022.

[88] bluez, Bluez, https://github.com/bluez/bluez, 2022.

[89] GNOME, Glib, https://gitlab.gnome.org/GNOME/glib, 2022.

[90] Mobile Broadband Interface Model v1.0. [Online]. Available: https : / / www . usb . org / document -
library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement (visited
on 09/28/2021).

[91] MBIM-NETWORK man page. [Online]. Available: https : / / www . freedesktop . org / software /
libmbim/man/latest/mbim-network.1.html (visited on 06/11/2022).

[92] MBIMCLI man page. [Online]. Available: https://www.freedesktop.org/software/libmbim/man/
latest/mbimcli.1.html (visited on 06/11/2022).

[93] M. D. Correia, “Roadside infrastructure to support cooperative intelligent transportation systems,”
M.S. thesis, Universidade de Aveiro, 2021.

[94] E. Vieira, J. Almeida, J. Ferreira, T. Dias, J. Ribeiro, and L. Moura, “Roadside and Cloud Architecture
for C-ITS Services,” The Intitution of Engineering and Technology, 2015.

[95] archlinux, Linux, https://github.com/archlinux/linux/tree/v5.13.13-arch1, 2022.

[96] SVN man page. [Online]. Available: https://linux.die.net/man/1/svn (visited on 06/11/2022).

[97] makepkg. [Online]. Available: https : / / archlinux . org / pacman / makepkg . 8 . html (visited on
06/11/2022).

[98] mkinitcpio. [Online]. Available: https : / / man . archlinux . org / man / mkinitcpio . 8 (visited on
06/11/2022).

[99] GNU GRUB - GNU Project. [Online]. Available: https://www.gnu.org/software/grub/ (visited on
06/11/2022).

[100] systemd, Systemd, https://github.com/systemd/systemd, 2022.

[101] gpsd, Gpsd, https://gitlab.com/gpsd/gpsd, 2022.

85

[102] eclipse, Mosquitto, https://github.com/eclipse/mosquitto, 2022.

[103] curl, Curl, https://github.com/curl/curl, 2022.

[104] certbot, Certbot, https://github.com/certbot/certbot, 2022.

[105] openssl, Openssl, https://github.com/openssl/openssl, 2022.

[106] Pasmo api, https://pasmo.es.av.it.pt/docs/, 2022.

[107] postgres, Postgres, https://github.com/postgres/postgres, 2022.

[108] pallets, Flask, https://github.com/pallets/flask, 2022.

[109] nginx, Nginx, https://github.com/nginx/nginx, 2022.

[110] D. Merkel, “Docker: Lightweight linux containers for consistent development and deployment,” Linux
journal, vol. 2014, no. 239, p. 2, 2014.

[111] “X.680 : Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic
notation,” International Telecommunications Union, Standard, Feb. 2021.

[112] wireshark, Wireshark, https://github.com/wireshark/wireshark, 2022.

[113] Canbus obd ecu simulator mobydic1610, Accessed: June 2022. [Online]. Available: https://www.
ozenelektronik.com/canbus-obd-ecu-simulator-p.html.

[114] thomasnordquist, Mqtt-explorer, https://github.com/thomasnordquist/MQTT-Explorer, 2022.

[115] C. Kuang, L. Yuanzhou, S. Zhu, and J. Li, “Influence of different low air pressure on combustion
characteristics of ethanol pool fires,” ScienceDirect, 2013.

[116] S. Hosseini, M. Jooriah, D. Rocha, et al., “CCAM Service Continuity in a Cross-Border MEC Federation
Scenario,” Frontiers, 2022.

86

