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Introduction
Network coding theory provides a pragmatic instrument to
disseminate information (packets) over networks where there
may be many information sources and possibly many receivers.
From a mathematical point of view, these packets can be mod-
elled by columns of matrices over a finite field Fq and during
the transmission, these columns are linearly combined at each
node of the network. To achieve reliable communication over
this channel, rank-metric codes are typically employed.
Nevertheless, network coding techniques for streaming are
fundamentally different from the classical ones. To be opti-
mised they must operate under low-latency, sequential encod-
ing and decoding constraints, and as such they must inherently
have a convolutional structure. That is the reason why most of
the proposed schemes for this scenario employ convolutional
codes in different ways [7, 5, 4, 1].

Rank metric convolutional codes
Rank metric convolutional codes over Fqm were first introduce
in [7] for unitmemory codes and for unrestricted memory in
[4, 1]. These are convolutional codes defined over an ex-
tension field Fqm and equipped with a rank-type metric, and
as such, are referred to as (n, k, δ)-rank metric convolutional
codes (over Fqm) if have length n, dimension k and degree δ.
Later, a wider definition of convolutional codes over Fq (in-
stead of over Fqm) was proposed in [6].
A rank-metric convolutional code C ⊆ Fn×mq is the image of
an homomorphism φ : Fq[D]k → Fq[D]n×m. It is written
φ = ψ ◦ γ as a composition of a monomorphism γ and an
isomorphism ψ:

φ :Fq[D]k
γ−→Fq[D]nm

ψ−→ Fq[D]n×m

u(D) 7→ v(D) = u(D)G(D) 7→ V (D)
(1)

where G(D) ∈ Fk×nmq is a full row rank polynomial matrix,
called encoder of C. If the encoder G(D) is in row reduced
form [3] the sum of the row degrees attains its minimum among
all possible encoders. This value is usually denoted by δ and
called the degree of C. A rank metric convolutional code C of
degree δ, defined as in (1) is called a (n×m, k, δ)-rank metric
convolutional code.
The largest row degree over one, and therefore all, reduced en-
coders of C is called the memory of C and denoted by µ. If the
memory is considered instead of the degree, a convolutional
code with rate k/n and memory µ is referred to as an (n, k, µ)
convolutional code [4].

“Linear block codes”
Rank-metric convolutional codes can also be considered as lin-
ear spaces over the extension field Fn

qM
:

φ :FqM [D]k
γ−→FqM [D]n

ϕn−→ Fq[D]n×M

u(D) 7→ v(D) = u(D)G(D) 7→ V (D)

where G′(D) =
∑
i=0GiD

i ∈ Fk×n
qM

and G0 is full row rank.
In this case they consider ϕn′, as a natural bijection between
FqM and FMq .

Singleton bound
The j-th sum-rank column distance of C is:

d
j
SR(C) = min

x[0,j]∈C

j∑
t=0

rank(ϕn(x[0,j]))

where ϕn : Fn
qM

→ Fn×Mq is the bijective mapping which
allows to use the rank based metric instead of the Hamming
metric. This column distance is upper-bounded by:

d
j
SR(C) ≤ (n− k)(j + 1) + 1.

The codes which achieves this bound are named Maximum
Sum Rank codes (MSR).

Channel problem
The network channel considered here is the rank deficiency
channel which is a simplification of more general network
channel and can be seem as the analogue of the erasure chan-
nel in the context of networks, see [4] for more details. In this
channel, at each shot the destination node observes yt = vtA

∗
t ,

where At ∈ Fn×ρtq and ρt = rank(A∗
t ) is the channel ma-

trix at time t, and is known to the receiver [2]. Communica-
tion over a window [t, t +W − 1] of W shots is described us-
ing y[t,t+W−1] = v[t,t+W−1]A

∗
[t,t+W−1]

, where A∗
[t,t+W−1]

=

diag(A∗
t , . . . , A

∗
t+W−1) is a block diagonal channel matrix as

described in [4].

u = (10 01 11) u(D) = (1 +D2, D +D2)

G(D) =

(
1 0 D 0 D2 0 0 1 0 D 0 D2 D2 D2 1 0 D 0

0 1 0 D 0 D2 D2 D2 1 0 D 0 0 D2 D2 1 0 D

)

V (D) =

 1 +D2 D +D2 D D2 D2 0

0 1 +D2 D +D2 D D2 D2

D2 D2 1 +D2 D +D2 D D2



A∗
0 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

; A∗
1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

; A∗
2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



X0 =

 1 0 0
0 1 0
0 0 1

; X1 =

 0 1 1 0
0 0 1 1
0 0 0 1

; X2 =

 1 1 0 1 1 0
0 1 1 0 1 1
1 1 1 1 0 1



u0 = (10); u1 = (01); u2 = (11)

u(D
)G
(D

)

V
(D

)A
∗[0,2]

XEX(GEX2 A∗
[0,2]

)−1

Decoding rank deficiencies
Theorem 1 Let C be a (n × m, k, δ) be a rank-metric con-
volutional code used over the window [0,W − 1]. For 0 ≤
t ≤ W − 1, let A∗

t ∈ Fn×ρtq be full-rank matrices and
A∗
[0,W−1]

= diag(A∗
0, . . . , A

∗
W−1) be a channel matrix. The

following statements are true:

1. If dSR(W − 1) > nW −
∑W−1
t=0 ρt, then u0 is always recov-

erable by time W − 1.

2. If dSR(W − 1) ≤ nW −
∑W−1
t=0 ρt, then there exists at least

one channel packet sequence and channel matrix for which
u0 is not recoverable by time W − 1.

As a consequence of the proof of this theorem it is possible to
see that for the total recover of the information is enough find
the row reduced echelon form of the matrix GEXW−1A

∗
[0,W−1]

.

Optimal constructions
There exists two optimal constructions for maximum sum-rank
metric profile codes. On one hand in [4] the authors construct
the encoder G(D) as a submatrix of a superregular (all its sub-
matrices are non-singular) Toeplitz matrix. This construction
holds the bounds for j-th sum-rank column distance due to the
field size requiered which is FMq for M ≥ qn(µ+2)−1 where µ
is the memory of the code.
On the other hand, the construction given in [6] its based on
the companion matrix of an irreducible polynomial over the
base field Fq. Nevertheless, its optimality lays in the condition
that m ≥ σ + k which means that the size of the matrices in-
creases with the size of the message and the degree of the code.
Note that the greater is the window we consider the greater the
degree of the code needs to be.
Actually, we are working on new constructions which holds
these bounds and are close to them.
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