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and Kati Hyvärinen1

1Finnish Red Cross Blood Service, Helsinki, Finland; and 2Transplantation and Liver Surgery, Helsinki University Hospital and

University of Helsinki, Helsinki, Finland
Introduction: The genomic mismatch level between donor and recipient may be associated with the risk of

rejection and graft survival. We determined the association of genome-level matching with acute rejection

in deceased-donor kidney transplantation.

Methods: The study cohort consists of 1025 recipient-donor pairs transplanted in a single center from 2007

to 2017 in Helsinki. The associations between the sums of whole-genome missense variant mismatches

and missense mismatches in transmembrane, secretory, and kidney-related proteins, with acute rejection

were estimated using Cox model. In addition, we analyzed 40 deletion-tagging variants using Cox model.

Results: The association analysis between mismatch sums of kidney-related proteins and acute rejection

resulted in an unadjusted hazard ratio (HR) of 1.15 (95% confidence interval [CI], 1.01–1.30; P ¼ 0.029) and

adjusted HR of 1.13 (95% CI, 0.99–1.28; P ¼ 0.071). In deletion analysis, a mismatch in rs7542235 genotype

GG tagging a homozygous deletion at the complement factor H-related (CFHR), proteins locus, predis-

posed to acute rejection with an unadjusted HR of 3.10 (95% CI, 1.53–6.29; P ¼ 0.002) and adjusted HR of

2.97 (95% CI, 1.46–6.05; P ¼ 0.003).

Conclusion: In conclusion, analyses of genome-level mismatches may be useful tools in prediction of

transplantation outcome. The relative importance differs between populations, because we found evi-

dence for CFHR deletion but could not replicate the finding of previously reported LIMS1 deletion.
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D
espite a good survival rate of kidney transplants
and effective immunosuppressive treatments, up

to 10% of recipients worldwide suffer from acute
rejection in which the recipient’s immune system rec-
ognizes nonself antigens in the allograft and elicits
alloimmune reaction.1

The histocompatibility matching for transplantation
in most centers relies on 3 major criteria, namely ABO-
compatibility, donor-recipient matching at the human
leukocyte antigen (HLA) genes, and a cross-matching
test to evaluate the preformed antibodies against
donor HLA molecules. In genetic terms, transplantation
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and matching can be regarded as a multifactorial trait
in which the matching of HLA and ABO is known to be
a critical but clearly not a sufficient factor to fully
characterize the risk of alloimmune response.

In recent years, genome-wide association studies
that search novel genetic factors for complications of
kidney transplantation have been performed.2-7 A few
genetic associations have been reported3,7 but replica-
tion of findings has proven to be difficult. By far the
largest genome-wide association studies, including
2094 kidney transplant-pairs with replication in 5866
pairs, found no genome-level significant association
with graft survival or acute rejection.5

An alternative approach to genome-wide association
studies is to search at thewhole genome level formatching
of genes or genetic variation that would, in addition to
HLA and ABO matching, be important in predicting
immunological complications after transplantation. This
kind of whole genome-level histocompatibility matching
Kidney International Reports (2022) 7, 2484–2494
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Table 1. Characteristics of the study population
Characteristic All recipients Rejection No rejection P valuea

Age (median, range) 57 (18–79) 56 (21–77) 57 (18–79) 0.258c

Sex, n (%) 0.394d

Male 703 (69) 142 (71) 561 (68)

Female 322 (31) 58 (29) 265 (32)

Rejection, n (%) 199 (19) 199 (100)

T cell-mediated, n (%) 178 (17) 178 (89)

Antibody-mediated, n (%) 21 (3) 21 (11)

Primary diagnosis, n (%)

Polycystic kidney disease 202 (20) 42 (21) 160 (19)

Diabetic nephropathy with type I diabetes 150 (15) 31 (16) 119 (14)

IgA nephropathy 106 (10) 18 (9) 88 (11)

Chronic kidney disease, unspecified 105 (10) 21 (11) 84 (10)

Diabetic nephropathy with type II diabetes 84 (8) 16 (8) 68 (8)

Other 378 (37) 71 (35) 307 (38)

Median (IQR)

Follow-up time, mo 37 (18–63) 35 (16–59) 38 (18–63) 0.087c

PRA I > 0, %b 22 (5–55) 17 (2–58) 23 (5–54) 0.353c

PRA II > 0, %b 27 (12–60) 45 (17–77) 26 (12–50) 0.074c

Cold ischemia, h 20 (17–23) 20 (17–23) 20 (17–23) 0.300e

HLA eplet mismatch sum, n 27 (19–36) 31 (23–39) 26 (18–35) <0.001c

HLA I eplet mismatch sum, n 11 (7–15) 12 (8–16) 11 (7–15) 0.031c

HLA II eplet mismatch sum, n 16 (7–24) 19 (12–27) 15 (6–23) <0.001c

HLA, human leukocyte antigen; IgA, Immunoglobulin A; IQR, interquartile range; PRA, panel-reactive antibody.
aThe significance of variation was calculated between rejection-group and nonrejection-group.
bThe medians of PRA values are calculated only from patients with PRAI > 0 and PRAII > 0
cThe Mann–Whitney U-test.
dThe Pearson chi-square test
eThe t-test
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has produced some promising results in hematopoietic
stem cell transplantation8,9 and lately in kidney trans-
plantation.10-14

We investigated the association between acute
rejection and genome-level matching among kidney
transplant donor-recipient pairs. We analyzed a retro-
spective, single-center cohort of 1025 pairs of Finland.
The results indicate that mismatches in deletions and
kidney-related proteins may be novel histocompatibil-
ity factors associated with acute rejection.

METHODS

The study follows the STREGA recommendations
(STrengthening the REporting of Genetic Association
Studies) in order to enhance the transparency of the
report.15

Study Cohort and Design

The characteristics of recipients are presented in Table 1
and in the Supplementary Material. The flow of study
cohort is described in Figure 1. A total of 1025 adult
kidney transplant recipients (>18 years old) who
received a first kidney transplantation during 2007 to
2017 in a single transplant center, at the Helsinki Uni-
versity Hospital, Helsinki, Finland, and 730 HLA-
matched adult deceased donors were included in this
study. Of the transplanted kidneys, 295 were partner
Kidney International Reports (2022) 7, 2484–2494
kidneys from 1 donor to 2 recipients. The primary
outcome examined was biopsy-proven acute rejection
based on the Banff classification,16 and included both
antibody-mediated and T-cell-mediated rejections.16 The
borderline rejections were also included in this study.

DNA samples from recipients and donors were
extracted from whole blood samples at the time of
histocompatibility testing for transplantation at Finnish
Red Cross Blood Service, Helsinki, Finland. At organ
allocation, the donor-recipient pairs aimed to match the
low-resolution level at the HLA-A, HLA-B and HLA-
DRB1 loci, with the DRB1 locus being the most
important. All transplantations were negative for
complement-dependent cytotoxicity crossmatch test.

The clinical data of recipients and donors were
extracted from the Finnish Transplant Registry, which
is a national follow-up registry obliged by law.
Genotyping and Imputation

Genotyping was performed at the Finnish Institute of
Molecular Medicine, Helsinki, Finland using Infinium
Global Screening array-24 v2.0 with multidisease drop-
in (Illumina).

Before imputation, genotyping chip data in GRCh37
build was lifted over to GRCh38/hg38 build following a
protocol version 2.17 The postliftover genotype data
were imputed using a Finnish SISu v3 reference panel
2485



Figure 1. Flow of recipients. The enrolled recipients were $18 years of age and received the first kidney from deceased donor between 2007
and 2017. ID, identification detail.
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consisting of high-coverage (read depth 25–30x) whole
genome sequence (WGS) data from THL Biobank co-
horts (N ¼ 1768) (http://sisuproject.fi/). Genotype-
wise, sample-wise, and variant-wise quality control
filtering procedures for the SISu reference panel were
applied by an iterative manner on the high-coverage
WGS (hcWGS) data using the Hail framework
(https://github.com/hail-is/hail) v0.1. The imputation
procedure followed the genotype imputation pipeline
version 2.18 The flow of genetic variants after imputa-
tion is presented in Figure 2. After imputation,
32,321,074 variants were available for quality control
procedures (Supplementary Material).

In addition to the clinical low-resolution HLA
typing of the individual samples, HLA type was
imputed to high resolution using HIBAG v1.0.3 with
the Finnish HLA reference for HLA-A, HLA-B, HLA-C,
HLA-DRB1, HLA-DPB1, HLA-DQA1, and HLA-DQB1
gene alleles.19

Genome-wide Mismatch Analyses

We carried out a replication analysis of a recently re-
ported mismatch study by Reindl-Schwaighofer et al.12

The HLA eplet mismatch was calculated based on
imputed high resolution HLA genotypes using HLA-
Matchmaker (http://www.epitopes.net/).20

Detailed Method for variant selection is provided in
the Supplementary Material. Briefly, the online tool
Ensemble Variant Effect Predictor release 103 (https://
www.ensembl.org/Homo_sapiens/Tools/VEP) was
used for functional annotation of observed and
imputed variants.21 The flow of genetic variants is
summarized in Figure 2. Transcripts for transmembrane
2486
and secreted proteins, transmembrane proteins, and
kidney-related proteins were retrieved from UniProt
(https://www.uniprot.org/).22

The variant mismatch was defined as the donor
carrying an allele that was not present in the recipient.
We calculated the sum of missense variant mismatches
across the genome between donor and recipient for
transmembrane and secreted proteins, transmembrane
proteins and kidney-related proteins using R v3.6.2. In
addition, we calculated the overall missense mismatch
sum. Because of the adjustment for HLA eplet
mismatch, the variants in the major histocompatibility
complex region (28,510,120–33,480,577) on chromo-
some 6 and on sex chromosomes were excluded from
the present study.

We evaluated the associationbetweenmissense variant
mismatch in transmembrane and secretory proteins, and
graft loss using Cox proportional hazards model. We
analyzed themismatch sumboth as a continuous variable,
and also by dividing the sum into quartiles. The models
were adjusted with additional covariates of recipient and
donor sex, recipient and donor age, cold ischemia time,
and HLA I (HLA-A, HLA-B, HLA-C) and HLA II (HLA-
DRB1, HLA-DQA1, HLA-DQB1 and HLA-DPB1) eplet
mismatch. Because of low amount of graft loss events
observed in our data, we also performed the analyses
using acute rejection endpoint. We evaluated the associ-
ation of missense variant mismatch with acute rejection
using logistic regression with recipient and donor sex,
recipient and donor age, cold ischemia time, panel-
reactive antibody (PRA) PRA I, PRA II, HLA I, and
HLA II eplet mismatch as covariates. The missense
mismatch sum was also tested in a univariate model that
Kidney International Reports (2022) 7, 2484–2494
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Figure 2. Flow of genetic variants. HLA, human leukocyte antigen; MHC, major histocompatibility complex; QC, quality control.
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was not adjusted for additional covariates. Cox propor-
tional hazards model was utilized to analyze time-to-
acute-rejection with recipient and donor sex, recipient
and donor age, cold ischemia time, PRA I, PRA II, and
HLA I, and HLA II eplet mismatch as covariates. Two
patients were excluded because of missing follow-up
data. Recipients were divided into quartiles based on
their mismatch sum, and the relationship of each quartile
with time-to-acute-rejection was evaluated with Kaplan-
Meier curves and tested with both Cox proportional
hazards and logistic regression models.

Deletion Analysis

Steers et al.13 reported a significant association with
allograft rejection in the LIMS1 gene deletion.We carried
out a replication study with 40 deletion-tagging variants
that were available in our dataset (Supplementary
Table S1). The tagging variants analyzed had a global
minor allele frequency of >10% and were all in strong
linkage disequilibrium with the deletions.13
Kidney International Reports (2022) 7, 2484–2494
The dependent variable was time-to-acute-
rejection, defined from the date of first transplant
to the date of rejection event. We used Kaplan-Meier
survival curves and Cox proportional hazards models
to calculate the estimates for both the recipient-
donor pairs and recipients only. In the recipient-
donor analysis (collision model), the risk group was
defined when a recipient who was homozygous for a
deletion-tagging variant received a kidney from a
donor who was either nonhomozygous or homozy-
gous for the reference variant. The mismatch
status was used as an independent variable
(Supplementary Table S1). In the Cox proportional
hazards model, the other covariates were recipient
and donor sex, recipient and donor age, cold
ischemia time, as well as HLA I and HLA II eplet
mismatch. Two patients were excluded because of
missing follow-up data. We conducted a Bonferroni
correction threshold for statistical significance (level
of 0.05/40, or 1.25x10�3).
2487
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We calculated the mismatch sum of all homozygous
deletions in donor-recipient pairs among the 40
deletion-tagging variants and evaluated the association
of mismatch sum to time-to-acute-rejection with
Kaplan-Meier and Cox proportional hazards models.
The sum of all homozygous deletions in recipient-only
data was assessed. All the associations were evaluated
with logistic regression.
Whole Genome Sequencing

Detailed information about the WGS is provided in the
Supplementary Material (Supplementary Table S2).
Briefly, to validate the deletions in complement factor
H (CFH) region, WGS was performed on 3 recipients
who are homozygous for the deletion-tagging variant
rs7542235.
Detection of CFH and CFH Antibodies

For determination of CFH and to assess de novo anti-
body formation, blood serum samples were analyzed
with enzyme-linked immunosorbent assays. Details are
provided in the Supplementary Material
(Supplementary Table S3).
Other Statistical Analyses

Characteristics of recipients were non-normally
distributed and thus described by medians and
ranges, medians and interquartile ranges (IQRs) for
continuous variables, and frequencies and percentages
for binary variables (Table 1). The significance of
variation between characteristics in the 2 cohorts
(rejection and nonrejection) was analyzed using the
nonparametric Mann–Whitney U-test for non-normally
distributed data (recipient age, follow-up time, PRA I
and II, HLA eplet mismatch, HLA I eplet mismatch, and
HLA II eplet mismatch), Pearson’s chi-square test for
categorical data (recipient sex), or t-test for normally
distributed data (cold ischemia). P values <0.05 were
considered statistically significant.

We assessed the association of clinical covariates
with acute rejection using a logistic regression model
(Supplementary Table S4). P values <0.05 were
considered statistically significant.

Statistical tests were carried out in R v3.6.2 using the
R function glm (package stats) for logistic regression
and survival packages (survival, survminer) for sur-
vival analyses.

Because we had only a few relevant cases in enzyme-
linked immunosorbent assay analyses to compare the
differences between pretransplantation and post-
transplantation serum samples, we did not perform any
statistical tests.
2488
RESULTS

Analysis of Characteristics and Covariates

The clinical, laboratory, and demographic characteris-
tics are shown in Table 1. A total of 199 rejection
events were observed in the present cohort of 1025
recipients. Of these, 178 were T-cell-mediated and 21
were antibody-mediated rejections. The overall median
follow-up time was 37 months (IQR 16–59 months) and
the median follow-up time to rejection was 35 months
(IQR 16–59 months). The overall HLA eplet mismatch
and HLA II eplet mismatch sums were significantly
different between the rejection and nonrejection
groups (P < 0.001).

Donor sex, donor age, recipient age, PRA II, and
mismatches in HLA II between donor and recipient
emerged from the logistic regression model as signifi-
cant predictors of acute rejection (Supplementary
Table S4). Female donors were associated with an
increased risk of acute rejection, as well as older do-
nors, younger recipients, and an increase in PRA II
value and HLA II mismatch sum.
Whole-genome Mismatch Analyses

After postimputation filtering and exclusion of major
histocompatibility complex regions, sex chromosomes
and nonmissense variants, 29,854 amino acid changing
missense variants were available for analysis at the
whole genome level. Of these amino acid differences,
10,313 were located in transmembrane or secretory
proteins, 7792 in transmembrane proteins and 3787 in
kidney-related proteins (Figure 2).

The median number of amino acid level mismatches
between donor and recipient in transmembrane and
secretory proteins was 1765 (IQR 1724–1812). For the
transmembrane proteins, the median mismatch sum
was 1334 (IQR 1292–1671), and for kidney-related
proteins, it was 605 (IQR 585–627). The overall
genome-wide missense variant mismatch sum was 4935
(IQR 4861–5012).

No evidence for the association of missense variant
mismatch in transmembrane and secretory proteins
with time-to-graft loss was found with adjusted HR of
1.00 (95% CI, 1.00–1.01, P ¼ 0.3) (Supplementary
Table S5). We also did not find an association when
dividing the mismatch sum into quartiles with adjusted
HR of 0.96 (95% CI, 0.77–1.19, P ¼ 0.7)
(Supplementary Table S6). No evidence for a whole-
genome-level association of missense variants with
acute rejection was found in either the Cox propor-
tional hazards or logistic regression model
(Supplementary Tables S7–S8). We performed an
identical missense mismatch study of transmembrane
and secretory proteins as reported by Reindl-
Kidney International Reports (2022) 7, 2484–2494
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Schwaighofer et al.,12 and analyzed missense mismatch
of kidney-related proteins. Our results showed that
increasing mismatch sum in kidney-related proteins
increased the risk for acute rejection with an unad-
justed HR of 1.15 (95% CI, 1.01–1.30, P ¼ 0.029)
(Figure 3a) and adjusted HR of 1.13 (95% CI, 0.99–1.28;
P ¼ 0.071) (Supplementary Table S9) when dividing
the mismatch sum into quartiles.

We found no statistically significant association be-
tween the missense mismatch sum of transmembrane
and secretory proteins and time-to-acute-rejection in
the Cox proportional hazards model (Supplementary
Table S10) or in the logistic regression model
(Supplementary Table S11). The missense mismatch
sums of transmembrane or kidney-related proteins
were not significant predictors of time-to-acute-
rejection or acute rejection outcome in our data
(Supplementary Tables S12–S15).

In the Kaplan-Meier and Cox proportional hazards
model analyses of the quartiles of mismatch sum, we
found no statistically significant associations between
the transmembrane and secretory proteins, trans-
membrane proteins or in all missense variants and acute
rejection (Supplementary Figures S1–S3).
Deletion Analysis

In total, 40 of the deletion-tagging variants analyzed by
Steers et al.13 were available in the present dataset
(Supplementary Table S1), and they were tested in the
donor-recipient mismatch analysis. A mismatch refers
to cases in which a recipient who is homozygous for a
deletion-tagging variant received a graft from a donor
with a nonhomozygous or homozygous nondeletion
genotype.

The rs7542235 genotype GG has been reported to tag
for deletions in CFHR proteins 1–3.23,24 We observed
that a deletion-tagging mismatch in rs7542235 was
significantly associated with a higher risk for rejection
than the no mismatch status with unadjusted HR of
3.10 (95% CI, 1.53–6.29; P ¼ 0.002) and adjusted HR of
2.97 (95% CI, 1.46–6.05; P ¼ 0.003) (Table 2). The
number of recipients with rs7542235 genotype GG in
the rejection group was 8 (4%) and the number in the
nonrejection group was 8 (1%). None of the donors
were homozygous for the deletion-tagging variant. The
Kaplan-Meier plot of the association of the rs7542235-
tagged deletion mismatch on rejection-free graft sur-
vival is shown in Figure 3b. The statistical significance
of the association, however, failed to pass the
Bonferroni-corrected threshold of 0.00125. The same
results were observed in recipient-only data. No other
deletion-tagging variants showed statistically signifi-
cant association with these outcomes.
Kidney International Reports (2022) 7, 2484–2494
Steers et al.13 reported a significant association with
allograft rejection when recipients had LIMS1 gene
deletion. We carried out a replication study in both
recipient-donor and recipient-only settings but could
not find evidence for the association of LIMS1 deletion
or other deletion-tagging variants when using the
Kaplan-Meier curve and Cox proportional hazards
model (Supplementary Tables S16–S17).

The median number of all homozygous deletions in
donor-recipient pairs was 3 (IQR 2–4, range 0–9), and
in recipient-only data, it was 4 (IQR 3–5, range 0–10).
We did not find a significant association between the
deletion sum and acute rejection between donor-
recipient pairs or among recipients (Supplementary
Figures S4–S5, Supplementary Tables S18–S21).

Whole Genome Sequencing

WGS confirmed that each of the 3 rs7542235 GG re-
cipients had homozygous deletions of different sizes at
the CFHR1 region, and 2 of them also had a homozy-
gous deletion completely or partly at the CFHR3 locus
(Figure S6).

Detection of CFH and anti-CFH Antibodies

The results are presented in Supplementary Results
(Supplementary Tables S22–S23). All serum samples
showed normal levels of CFH. We were not able to find
evidence for anti-CFH antibody formation between
pretransplantation and post-transplantation serum
samples.

DISCUSSION

The results of the present study indicate that genetic
donor-recipient mismatches due to homozygous gene
deletions in patients and amino acid changing genetic
mismatches in kidney-related proteins may predispose
to acute rejection. As similar results have been indicated
by a few other recent studies,10-14 these mismatches are
potential histocompatibility factors in kidney trans-
plantation and merit large systematic studies. The pre-
sent study was conducted in a relatively large single
center and single population cohort of 1025 kidney
transplantation recipient-donor pairs, thereby reducing
the impact of confounding factors. In the study, we
investigated to what extent differences or matching
between donor-recipient pairs (i) at the overall genome
level, (ii) in graft-expressed proteins, and (iii) in com-
mon gene deletions were associated with the increased
risk for acute rejection. Modern genome tools enable us
to expand the analysis of all genetic variation between
transplant pairs and address the role of non-HLA vari-
ation. In principle, we can assume that any immuno-
genic protein-level difference found in donors and
missing in recipients can lead to alloimmune reactions
2489



Figure 3. The effect of quartiles of missense variant mismatch sum coding for kidney-related proteins and rs7542235 mismatch on rejection-free
graft survival in recipient-donor pairs. (a) The effect of quartiles of missense variant mismatch sum coding for kidney-related proteins on
rejection-free graft survival. The quartile 1 (Q1) represents the lowest number of mismatches between recipient and donor, quartile (continued)
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and increase the risk of, for example, rejection. There is
indeed emerging evidence that genetic differences be-
tween recipient and donor, in for example, graft-
expressed or cell surface-expressed proteins or even at
the overall genomic level, associate with the risk of
transplantation complications such as acute rejection or
long-term graft loss.10-14

Reindl-Schwaighofer et al.12 reported a statistically
significant association in unadjusted Cox proportional
hazards model between a transmembrane and secre-
tory nonsynonymous donor-recipient mismatch sum
and time-to-10-years and death censored graft loss in a
cohort of 477 transplant pairs. We tested graft loss but
could not replicate the findings of Reindl-
Schwaighofer et al.12 Instead, results showed that
increasing mismatch sum in kidney-related proteins
was associated with time-to-acute-rejection when the
sum is divided into quartiles. The proteins expressed
in the kidney might be exposed to the surface of the
allograft in stressful conditions, such as delayed graft
function, infections, and cold ischemia, and could
therefore be recognized as foreign. The endpoint used
is not identical to that of Reindl-Schwaighofer et al.12

but may reflect a similar long-term effect because the
acute rejection has been associated with a decrease in
long-term survival. The study of Mesnard et al.10 also
found an association between long-term outcome and
overall genetic mismatch score. It is plausible that the
overall alloantigenic load of the donor graft is associ-
ated with longterm rather than acute effects more
readily handled by medication.

Steers et al.13 investigated the association of com-
mon deletion-tagging variants and kidney allograft
rejection. The researchers hypothesized, along with
the concept introduced by McCarroll et al.8 in the
hematopoietic stem cell transplantation setting, that a
recipient whose genome lacks a kidney-related gene
product due to a gene deletion should raise alloim-
mune reaction to graft from a donor whose genome
carries the functional gene, hence expressing the
protein. Steers et al.13 found that kidney recipients
with a homozygous LIMS1 gene deletion had a
significantly higher risk of rejection when the donor
had at least 1 functional copy of the same gene. In the
present study cohort, we were not able to confirm the
effect of the LIMS1 deletion. We instead found an
association between an acute rejection and CFHR1–3-
deletion-tagging variant. rs7542235 GG-homozygotes
Figure 3. (continued) 4 (Q4) the highest number of mismatches. Unadju
rs7542235 mismatch on rejection-free graft survival in recipient-donor pairs
deletion-tagging allele G received a transplant from a donor with AG or AA
the light blue curve represents the mismatch status. An event (acute re
censored data (end of follow-up time). Unadjusted HR with CI shown. CI,
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are assumed to be homozygotes for deletion of these
genes. We confirmed the tagging by genomic
sequencing; interestingly, the deletions were not
identical in size and encompassed different genes. The
homozygous deletion in the CFHR locus was associ-
ated with a decreasing probability of rejection-free
graft survival in recipient-donor pairs, albeit we
must note that the actual numbers of cases were low.
The same finding was observed in recipient-only data
as well, most likely because it is unlikely that an
unrelated organ donor would have the same homo-
zygous deletion. In fact, if deletions indeed prove to
be novel risk markers for transplantation complica-
tions as now indicated by a few studies, including the
present study,8,13 it may be possible to estimate the
complication risk due to gene deletions directly from
patient genome data before transplantation if unre-
lated donors are used.

To further study the effect of CFHR1-locus deletion
on the protein level and its possible alloantigenic role,
we performed anti-CFH antibody enzyme-linked
immunosorbent assay for pretransplantation and post-
transplantation serum samples of 5 deletion homozy-
gotes. In this small set of samples available, we could
not find evidence for anti-CFH formation post trans-
plantation. We had no tools to investigate whether
antibody responses were raised against other proteins
expressed by the genes located in the deleted CFHR1
locus. Previous studies have shown that anti-CFH
antibody formation is associated with CFHR1 and
CFHR3 deletions,25-27 and later is has been suggested
that the deletion of CFHR1 alone could be involved in
anti-CFH antibody formation.26

CFH is a control protein of the complement system,
inhibiting the alternative pathway of complement
activation. Depending on the individual CFHR genes,
it has been associated with a number of diseases,
including atypical hemolytic uremic syndrome, C3
glomerulopathies, IgA nephropathy, age related mac-
ular degeneration, and systemic lupus erythemato-
sus.25-29 The functions of CFHR1 and CFHR3 are still
unclear, but these 2 proteins have been suggested to
be complement regulators as well.28 It has been pro-
posed that complement activity is determined by a
homeostatic balance between CFHR1, CFHR3 and
CFH.29 The present finding of the deletion may be
related to both primary kidney disease and outcome of
transplantation.
sted HR with CI shown. (b) The effect of deletion-tagging variant
. In recipient-donor analysis the recipient who was homozygous for a
genotype. The orange curve represents the no mismatch status and
jection) occurs each time the curve drops. The tick marks indicate
confidence interval; HR, hazard ratio; MM, mismatch.
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Table 2. Cox proportional hazards model on the association of
rs7542235 mismatch to time to acute rejection
Covariate Hazard ratio (95% CI) P value

rs7542235 mismatch 2.97 (1.46–6.05) 0.003

Recipient age 0.98 (0.97–0.99) 0.001

Donor age 1.03 (1.01–1.04) <0.001

Recipient sex 0.91 (0.67–1.24) 0.561

Donor sex 2.00 (1.50–2.67) <0.001

Cold ischemia 1.00 (1.00–1.00) 0.102

HLA I eplet mismatch 1.01 (0.99–1.04) 0.396

HLA II eplet mismatch 1.03 (1.02–1.04) <0.001

CI, confidence interval; HLA, human leukocyte antigen.
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There are limitations in the present study. All acute
rejections in this study were biopsy- confirmed, and
borderline rejections were included only if the patient
received treatment for rejection (with pulse steroid).
Detailed information of the Banff grades of the rejections
were unfortunately not available for the purpose of this
study, which is a limitation in the data. Our study cohort
included 295 partner-kidneys from 1 donor to 2 recipients
which was not considered nonindependently in the ge-
netic analysis. The overall coverage of genetic variants in
the missense mismatch analyses was lower in our data
than that of Reindl-Schwaighofer et al.12 We also had a
limited amount of graft loss cases in our data. The sig-
nificance of the kidney-related mismatch analysis was lost
after adjusting the data with additional covariates. The P
value of our findings in the deletion mismatch study did
not achieve the Bonferroni-corrected level of significance.
The Bonferroni correction, however, can be very con-
servative when several tests are included. The ideal
control group for a deletion mismatch would be those
patients who were deletion homozygous and received a
deletion-matched graft. Unfortunately, such cases are low
in number or not found at all. There are also differences
in gene deletion frequencies between populations. The
frequency of risk rs7542235 genotype GG in the present
study cohort was 1.6%. We had access to only a few
pretransplantation and post-transplantation samples; a
prospective collection of serum samples from deletion
homozygotes should be performed.

In summary, we found potential evidence for asso-
ciation between the mismatches in gene deletion and
increasing mismatch sum in kidney-related proteins
and acute rejection. Nevertheless, to find valid genetic
associations, larger, prospective collaborative and
meta-analysis studies should be performed to obtain
sufficient power.
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