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Abstract
Background Metformin has been used for the treatment of type 2 diabetes for over 60 years; however, its mechanism of 
pharmacological action is not fully clear. Different hypotheses exist regarding metformin distribution and redistribution 
mechanisms between plasma and erythrocytes/red blood cells (RBCs).
Objective We aimed to test the hypothesis that the metformin distribution between plasma and RBC occurs via concentration 
difference-driven passive transport and estimated transport rate coefficient values based on metformin concentration time 
series in plasma and RBCs from in vivo studies.
Methods An ordinary differential equation (ODE) system with two compartments was used to describe diffusion-based 
passive transport between plasma and RBCs. Metformin concentration time series in plasma and RBCs of 35 individuals 
were used for metformin transport parametrization. Plasma concentration has been approximated by biexponential decline.
Results A single passive transport coefficient, k = 0.044 ± 0.014  (h–1), can be applied, describing the uptake and release 
transport rate versus the linear equation v = k × (Mpl − MRBC), where Mpl is the metformin concentration in plasma and  MRBC 
is the metformin concentration in RBCs.
Conclusions Our research suggests that passive transport can explain metformin distribution dynamics between plasma and 
RBCs because transport speed is proportional to the metformin concentration difference and independent of the transport 
direction. Concentration difference-driven passive transport can explain the mechanism of faster metformin distribution to 
RBCs the first few hours after administration, and faster release and domination of the redistribution transport rate after 
metformin concentration in plasma becomes smaller than in RBCs.

Key Points 

The objective was to evaluate the metformin distribution 
mechanisms between plasma and RBC by mathematical 
modeling and estimate transport rate coefficient based on 
in vivo metformin concentration time-series in human 
plasma and RBC.

The partitioning and repartitioning between RBC and 
plasma is modelled as passive transport with the same 
transport rate coefficient describing influx and outflux, 
supporting the assumption of diffusion being the main 
process ensuring metformin transportation between these 
compartments.
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1 Introduction

Metformin is a first-line oral antidiabetic medication that has 
been widely used to treat type 2 diabetes for over 60 years. 
Despite the long clinical experience, its pharmacological 
mechanisms of action are not fully understood. The mecha-
nisms underlying metformin action appear to be complex 
and involve both insulin-sensitive and noninsulin-sensitive 
tissues. While the most classical effect of metformin is the 
reduction of hyperglycemia by inhibition of hepatic gluco-
neogenesis, the contribution of mechanisms in other tissues, 
such as an increase in glucose uptake in skeletal muscle, 
increase in insulin sensitivity in adipose tissue, and glucose 
utilization in gut enterocytes, have been demonstrated [1].

Metformin is a small molecule (molecular weight 165 Da) 
that is not metabolized and is highly hydrophilic. It is of a basic 
nature and, under physiological pH, is almost fully ionized. 
Metformin also has negligible protein binding [2]; however, 
it has a comparably high volume of distribution, i.e. above 
200 L after a single oral dose [3]. Metformin is known to be 
transported across cellular membranes by using active trans-
porters, i.e. PMAT, OCT1, OCT2, OCT3, and MATE1 [4], 
that explain the observed distribution volume. It is rapidly 
excreted in urine, with plasma elimination ranging from 2 to 
6 h. Nonetheless, terminal elimination of the drug is slow, 
with a fraction of < 5% being eliminated and with a half-life 
of between 9 and 17 h [5], suggesting the existence of a deep 
compartment [6]. The published data suggest that metformin 
accumulates in a deep compartment formed of red blood cells 
(RBCs) [7, 8] and a deep tissue compartment, most likely gas-
trointestinal tissues [9, 10].

Given the hydrophilic nature of metformin, it has been 
assumed that it cannot cross the phospholipid bilayer via dif-
fusion [4]. At the same time, metformin enters the RBC where 
relevant transporters are not expressed, suggesting a marginal 
transport via diffusion [7, 8, 11, 12]. The maximal metformin 
concentration in RBCs is reached later than in plasma and 
is considerably lower [8], confirming that the transport to 
RBCs is not intensive. The measurement of metformin con-
centrations in major deep compartments of metformin action 
is clinically unavailable and is currently predicted by some 
mathematical models [13–15].

RBCs could be used to gain insight into metformin distri-
bution and accumulation in the rest of the body in cases of 
chronic metformin therapy, as the terminal half-life of met-
formin in plasma and urine is very similar to the terminal half-
life in RBCs [7, 8]. Metformin has a direct pharmacodynamic 
effect on RBCs in patients with type 2 diabetes as it increases 
noninsulin-dependent glucose uptake and storage of glycogen 
under conditions of hyperglycemia [16].

An interesting pharmacokinetic-related peculiarity of RBCs 
is that plasma is the only metformin carrier interacting with 

RBCs, both in uptake and release, and the concentrations in 
both plasma and RBCs are experimentally determined in vivo. 
The absence of transport proteins in RBC membranes enables 
assessment of the transport without proteins in vivo. This also 
allows estimation of the membrane transport impact in other 
tissues. Various authors have described the pharmacokinetic 
parameters of metformin distribution in RBCs [7, 8, 12]. A 
few in vitro and in vivo studies have aimed to describe the met-
formin distribution between plasma and RBCs [7, 8, 12, 17, 
18]; however, based on our knowledge, a mechanistic model-
based [19] estimation of the metformin transport mechanism 
and its parameters based on in vivo data has not been carried 
out.

Considering that no active transporters are expressed in 
RBCs, and plasma membrane permeability should be equal 
in both directions, we hypothesized that concentration dif-
ference-driven passive transport can explain the distribution 
of metformin between plasma and RBCs. Mechanistic math-
ematical models with diffusion-based passive transport kinetic 
equations have been built and parametrized using metformin 
concentration time series in plasma and RBCs from in vivo 
studies.

2  Materials and Methods

2.1  Experimental Data

Metformin concentration-time courses in plasma and RBCs 
were used [20–22] following a single peroral 500 mg dose 
of metformin, administered under fed conditions. Thirty-five 
nondiabetic volunteers were included in this study (Table 1). 
All participants signed informed consent and the study was 
approved by the institutional Ethics Committee (PSCUH, 
Nr. 3000610-18L). To be eligible for this study, subjects 
confirmed they were not using any medications other than 
vitamins. The liver enzyme levels of participants (alanine 
aminotransferase, g-glutamyltransferase) were less than 
double the respective normal value, and no participants had 
renal failure (mean serum creatinine 75.6 ± 13.8 mmol/L). 
Before inclusion in this study, women were asked to provide 
a urine sample to confirm a negative pregnancy test. Venous 
blood samples were taken just prior to administration and 

Table 1  Characteristics of study participants

 BMI body mass index, SD standard deviation

Male [n (%)] 15 (42.8)
Female [n (%)] 20 (57.2)
Mean age ± SD, years 26.71 ± 5.97
Mean BMI ± SD, kg/m2 23.61 ± 3.64
Mean serum creatinine ±SD, mmol/L 75.65 ± 13.81
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at 1, 2, 3, 6, 10, and 24 h postdose. Metformin concentra-
tion time series in plasma, and RBCs of the 35 nondiabetic 
individuals (Online Resource 1) were used for metformin 
transport parametrization.

2.2  Mathematical Model

A mathematical model was built to test the hypothesis 
regarding passive transport determining the distribution and 
redistribution of metformin between plasma and RBCs. Dif-
fusion-based passive transport occurs by random processes 
through the lipid bilayer membrane from the side with the 
larger concentration to the side with the lower concentration, 
and can switch when the concentration proportion changes 
to the opposite [23]. The driving force of diffusion (simple 
or facilitated) is the concentration difference (transmem-
brane concentration gradient), tending to equalize the con-
centration of molecules on both sides of the membrane [24]. 
It is essential that the rate of diffusion is directly and linearly 
proportional to the concentration difference.

The proposed model is based on Fick’s Law of diffusion, 
which describes the time course of the transfer of a solute 
between two compartments that are separated by a mem-
brane [25]. The rate of diffusion-based passive transport 
from plasma to RBCs (vin) and the rate from RBCs to plasma 
(vout) can be calculated as shown in Eqs. 1 and 2 [24]:

and

where D is the diffusion coefficient, a is the membrane area, 
P is the lipid/water partition coefficient of metformin, M is 
the membrane thickness, Mpl is the metformin concentra-
tion in plasma, and MRBC is the metformin concentration 
in RBCs.

In the proposed model, the constants in Eqs. 1 and 2, 
i.e. diffusion coefficient (D), membrane area (a), lipid/water 
partition coefficient (P), and membrane thickness (m), are 
expressed by the diffusion transport rate coefficient k:

In the model, we assume that independent transport rate 
coefficients may be needed to describe uptake (kin) and 
release (kout) of metformin, and we therefore implemented 
transport rate equations in the model as follows (Eqs. 4 and 
5):

(1)vin =

D × a × P ×Mpl

m
,

(2)vout =
D × a × P ×MRBC

m
,

(3)k =
D × a × P

m
.

(4)vin = kin ×Mpl,

and

A special case where k = kin = kout was applied in the 
modeling experiments to test whether a single diffusion 
transport rate coefficient can explain experimental results. 
The summary transport rate, versus including transport in 
both directions, can then be expressed as follows (Eq. 6):

The mathematical model utilizes the fact that RBCs can 
exchange metformin with plasma only and that metformin 
concentrations in both compartments are measured. The 
transport between plasma and RBCs is described as a two-
compartment model (Fig. 1) [26].

The metformin concentration in plasma (Mpl) is approxi-
mated by a biexponential decline (Eq. 7) [27]:

where A is the y-intercept of the distribution curve, c is the 
first-order distribution rate constant, B is the y-intercept of 
the elimination curve, d is the first-order elimination rate 
constant, and t represents time.

In the model, we introduced A = B to ensure that the 
plasma concentration approximation function has 0 value 
when the metformin dose has been received at t = 0. The 
metformin concentration in RBCs (MRBC) is a dependent 
variable determined by reactions. The values of diffusion 
coefficients and biexponential decline parameters are identi-
fied by parameter estimation fitting model simulations to the 
experimental data.

An ordinary differential equation (ODE) system was 
used to describe the diffusion-based passive transport rate 
between plasma and RBCs using the two rate equations (4) 
and (5). Two models for each of the 35 patients have been 
developed and parametrized during parameter estimation: 
(1) independent transport coefficients (kin and kout) for uptake 
and release; and (2) single coefficient k used for transport in 
both directions (uptake and release coefficients are equal).

(5)vout = kout ×MRBC.s

(6)v = k ×
(

Mpl −MRBC

)

.

(7)Mpl = A × e
−c×t

−B × e
−d×t,

Fig. 1  Two-compartment model of metformin transport between 
plasma and RBCs with absorption (vin) and release (vout) fluxes. kin 
transport rate coefficient to RBCs from plasma  (h−1), kout transport 
rate coefficient from RBCs to plasma  (h−1), Mpl metformin concentra-
tion in plasma (ng/mL), MRBC metformin concentration in RBCs (ng/
mL), RBC red blood cells
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The volume of the RBC compartments was fixed in the 
model for all 35 individuals, at a value corresponding to a 
body weight of 70 kg for humans, with 2198 mL of RBCs 
[28]. The size of the plasma compartment was not defined 
because the plasma concentration was fixed by biexponen-
tial decline (Eq. 7) and approximation of experimental data. 
Time to reach maximum concentration (Tmax) and maximum 
concentration (Cmax) values were determined from model 
simulations.

COPASI software [29] was used for mathematical mod-
eling and parameter estimation. The fitness of experimental 
data with model simulations was measured using the mean 
square error (MSE) value calculated by COPASI. ConvAn 
[30] was used to select the most appropriate optimization 
method, and a modification of the COPASI wrapper Spac-
eScanner [31] was applied for parallel optimization runs. 
Sample models describing the average experimental curve 
with a single (Biomodels ID: MODEL2103170001) and 
independent (Biomodels ID: MODEL2103170002) diffu-
sion transport rate coefficient in COPASI format (Online 
Resource 2) and SBML format (Online Resource 3) were 
deposited in the BioModels database [32].

3  Results

3.1  Single Diffusion Transport Rate Coefficient 
k‑Value versus the Independent kin and kout

Parameter estimations to match the model simulations 
with experimental results were performed using (1) inde-
pendent kin and kout values, and (2) a single coefficient K 

(corresponds to k = kin = kout). Both cases were applied 
to the metformin concentration-time courses, and on the 
average time course, of 35 individuals.

The single transport rate coefficient of the average 
concentration-time  course data from 35 experimental 
measurements was kave = 0.044  h–1 (Fig. 2a), which is 
equal to the average value of all individual single coef-
ficients (k = 0.044 ± 0.014  h–1). Furthermore, the esti-
mated independent transport rate coefficients for the aver-
age curve were kin/ave = 0.044  h–1 and kout/ave = 0.039  h–1 
(Fig. 2b). At the same time, the average values of the 
estimated transport rate coefficients for individuals were 
kin = 0.044 ± 0.012   h–1 and kout = 0.043 ± 0.013   h–1 
(Online Resource 4). Figure 2 demonstrates that a single 
coefficient can describe experimental results equally well 
compared with two independent coefficients.

The estimated coefficients for individual curves are 
highly variable between individuals (Fig. 3), reflecting 
the known high variability of metformin pharmacokinetics 
among individuals. In our experimental data (see Online 
Resource 1), there are big differences in individual con-
centration-time course data for the metformin concentra-
tions in plasma and RBCs. The coefficients of individuals 
have a wide kin/kout ratio (ranging from 0.45 to 2.56). In 14 
cases, kout is larger than  kin, and, in 21 cases, it is the oppo-
site, while their average values are very similar (0.044 and 
0.043). Remarkably, individuals’ k-values (Fig. 3) were 
larger than kin if kin > kout, and smaller than kin if kin < kout. 
In other words, kin values were between kout and k-values 
in all cases except for one individual (No. 19 in Fig. 3). 
There was a very high correlation (0.99) between k and kin, 
while the k correlation with kout was smaller and negative 

Fig. 2  Parameter estimation results of the average curve. Dots show 
experimental values while lines represent the model simulation. a 
Single k-value (kave  =  0.044  h–1, mean square error  =  286); and b 

independent kin and kout values (kin/ave = 0.044 and kout/ave = 0.039  h–1, 
mean square error = 273). RBCs red blood cells
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(− 0.41), which might be explained by a tendency to sat-
isfy experimental data on the uptake phase of metformin 
because, in the first 6 h, there were five experimental data 
points where the MSE was calculated, while there were 

only two measurements (at 10 and 24 h) for the elimina-
tion phase.

The Cmax and time to reach Cmax (Tmax) (Fig. 4) were 
also very different among individuals, leading to larger dif-
ferences between the model simulations and experimental 

Fig. 3  Diffusion coefficient k, 
kin and kout values per individual 
(average values are represented 
by lines). The average values of 
k and kin were identical.

Fig. 4  Tmax and Cmax of individ-
ual plasma curves. Tmax time to 
reach maximum concentration, 
Cmax maximum concentration
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data, expressed as the MSE (see Online Resource 4). A faster 
Tmax correlates with a higher k-value. The MSE average 
value for a single diffusion coefficient (1522 ± 1761) was 
larger than the value of independent diffusion coefficients 
(1026 ± 1321).

The differences between the best (Fig. 5) and worst 
(Fig. 6) MSE values for individual experimental data for 
parameter estimation results were large. The case with the 
smallest MSE (Fig. 5) demonstrated a very good fit, partly 
because the experimental results for plasma and RBC data 
fit the biexponential decline very well; however, it was 

different for individual No. 31 (Fig. 6), where plasma and 
RBC concentrations did not correspond to the expected 
biexponential curve. In both extreme cases, the model with 
a single coefficient performed similar (Figs. 5a and 6a) 
to the model with two independent coefficients (Figs. 5b 
and 6b). 

3.2  Correlation of Model Parameters

The correlation between k, kin, and kout is described in 
Sect. 3.1. Correlation of the single diffusion transport rate 

Fig. 5  Parameter estimation results of the best-fit, individual 
16. The dots show the experimental values, while the lines rep-
resent the model simulation. a Single k-value (k  =  0.040, mean 

square error  =  67); b different kin and kout values (kin  =  0.040 and 
kout = 0.038, mean square error = 65)

Fig. 6  Parameter estimation results of the worst-fit, individual 31. 
The dots show the experimental values, while the lines represent 
model simulation. a Single k-value (k  =  0.058  h–1, mean square 

error  =  9244); b different kin and kout values (kin  =  0.055  h–1 and 
kout = 0.031  h–1, mean square error = 6271).
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coefficient (k) of tested individuals using other parameters 
was tested using experimental and modeling results. There 
was a weak negative correlation of − 0.35 with the Tmax of 
metformin concentration in plasma, indicating that individu-
als with a smaller Tmax in plasma are likely to have a larger 
k-value, enabling them to reach maximum concentration 
faster. No correlation (− 0.071) of k was found with the 
Cmax of metformin concentration in plasma.

When analyzing individual cases of two transport rate 
coefficients, kin and kout, several interesting correlations were 
found. The low correlation between kin and kout of −0.30 
agrees with the wide-ranging kin/kout ratio. A strong positive 
correlation (0.67) between kout and Tmax suggests that a later 
maximum point leads to faster discharge of metformin, ena-
bled by a larger kout. A weak negative correlation (− 0.29) 
was found between kout and Cmax, while  kin had a weaker 
correlation with both Tmax (− 0.26) and Cmax (− 0.12).

The kin/kout ratio characterizes the dominance of the  kin 
coefficient over the kout coefficient. The ratio equals one if 
both coefficients are the same, and is larger than 1 if kin is 
bigger than kout. The correlation between the kin/kout ratio and 
Tmax was − 0.51, indicating that a faster and higher maxi-
mum would need larger kin values relative to kout. Surpris-
ingly, a low correlation (0.10) had a kin/kout ratio with Cmax.

4  Discussion

4.1  Single versus Independent Diffusion 
Coefficients

The current study suggests that a single passive transport 
rate coefficient is sufficient for the description of metformin 
exchange between plasma and RBCs, even in the case of 
large individual variation in the concentration dynamics of 
metformin in plasma (Fig. 4 and Online Resource 1). The 
introduction of independent coefficients (kin and kout) does 
not radically improve the fitness (Figs. 2, 5, and 6). The 
similarity of the average values of kin and kout (0.044  h–1 
and 0.043  h–1, respectively) underlines that the transport rate 
coefficients are the same in both directions despite the wide 
distribution of kout (Fig. 3) and low correlation with k. In 
the case of a smaller number of involved individuals, the 
average values might not be that close. The very high cor-
relation between k and kin, and weak correlation with kout, 
might be explained by the fact that five experimental data 
points were measured in the first 3 h, when the impact of kin 
is dominating, and just two data points were measured after 
6 h. This stimulates  kin to be similar to k in determining the 
correctness of the first data points, leaving kout to compen-
sate deviations from the experimental data after 6 h, with 
low correlation to k.

The fact that the transport rate is proportional to the 
concentration, and the same coefficient can be used in both 
directions, supports the hypothesis that passive transport is 
the dominant mode of metformin exchange between plasma 
and RBC, and the influence of active transport processes 
is negligible because, in the case of active transport, the 
transport rate coefficients should be (1) nonlinear and (2) 
stronger in one of the directions. Our research cannot deter-
mine if passive transport is carried out by simple diffusion 
or facilitated diffusion. This is in line with earlier published 
research suggesting that transport between plasma and RBCs 
occurs exceptionally via passive transport (diffusion) only as 
the metformin-specific transporters are not expressed on the 
RBC surface [4, 8], contradicting alternative assumptions 
that metformin’s hydrophilic nature is not suitable for cross-
ing the lipid bilayer via diffusion [4]. It could be speculated 
that the unique properties of metformin as a small molecule 
(165 Da), and the high ionization level at physiological pH, 
favors its entry and release from the RBCs through concen-
tration-driven mechanisms such as diffusion mechanisms 
relayed on aqueous channels [33], therefore the permeabil-
ity of metformin should be equal in both directions [34, 35]. 
Based on these theoretical assumptions, we could conclude 
that our results do not contradict the previously established 
physiochemical properties of metformin and are in line with 
mentioned theoretical assumptions.

It has been previously observed that the metformin repar-
titioning rate (we assume that the metformin transport rate 
is meant here) from RBCs into plasma was two- to even 
fivefold faster than distribution from plasma into the RBCs 
[17, 18], however the mechanistic process behind this phe-
nomenon has not been provided. In other research, it has 
been presumed that the pH difference between plasma and 
RBCs could cause the slower repartitioning from RBCs due 
to the electronegative membrane potential and ion-trapping 
effect of metformin into the RBC due to its basic properties 
[36–38], thus challenging the observations described by Xie 
et al. [18]. In the current study, the use of independent coef-
ficients to describe uptake (kin) and release (kout) allowed 
faster uptake or release of metformin but did not improve 
the fit to experimental data. Therefore, it could be assumed 
that the in vivo ion-trapping effect has no or negligible effect 
on metformin repartitioning from the RBCs. According to 
the model simulations, the proportions between incoming 
and outgoing metformin transport rates constantly change 
(Fig. 7). A single transport rate coefficient (k = kin = kout) 
does not mean the same incoming and outgoing flux of 
metformin because the influx and outflux (formulas 1 and 
2) are proportional to the metformin concentration. As a 
consequence, the resulting flux is proportional to the con-
centration difference on both sides of the RBC membrane. 
The concentration in plasma is greatest immediately after 
administration of the dose, leading to a much faster influx 
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than outflux at the uptake phase and the opposite at the elim-
ination phase, where plasma concentration is smaller than in 
RBCs (Fig. 7). Therefore, the statement mentioned earlier 
regarding the repartitioning rate being two- to fivefold faster 
[18] is true, starting from about the 12th hour (Fig. 7), and 
wrong before that time. However, the difference in transport 
flux rates is due to the difference in concentrations, while the 
diffusion transport rate coefficient stays the same.

Another interesting aspect of metformin exchange 
between plasma and RBCs is the contradiction between the 
involvement of concentrations equalizing passive transport 
and the fact that in long-term use, the mean concentration 
values in plasma and RBCs do not become equal as deter-
mined experimentally [12] and by mathematical modeling 
[13]. This contradiction can be explained by the heavy time-
dependence of the concentration in plasma, leading to very 
fast metformin transport to RBCs during the first hours after 
dose administration, followed by long and slow transport 
from RBCs, both following the concentration gradient. The 
effects of both processes are not equal, causing differences 
in the mean values of metformin concentrations in plasma 
and RBCs.

4.2  Passive Transport Coefficient Values

Both the measurement accuracy and approximation accu-
racy can influence the estimated diffusion coefficient val-
ues. The proposed single diffusion transport rate coeffi-
cient k = 0.044 ± 0.014  h–1 can differ between studies to 
some extent. We have applied our model to published data 
from other studies.

The dynamics of metformin concentrations in plasma 
in model simulations are in line with the study by Robert 

and colleagues, where a single peroral dose of metformin 
850 mg was administered, which is similar to that reported 
in the current study. The concentration ratio switches over 
in favor of RBCs in a time-dependent manner approxi-
mately 8–16 h after administration [7, 8], while in our 
experimental data and simulations of the average curve, 
this occurs at 11.5 h. It has been found that the Cmax and 
elimination half-life  (t½) differ between RBCs and plasma 
(300 vs. 1700 ng/mL and 23.4 vs. 2.7 h, respectively) [8], 
and correspond with our results, where the Cmax and t½ 
in RBCs and plasma for the average curve (Fig. 2) were 
140 and 617 ng/mL and 33 and 7.5 h, respectively. The 
transport rate coefficient estimated for an average concen-
tration-time curve of a single peroral dose of metformin 
850 mg according to Fig. 1 in the study by Robert and 
colleagues was 0.039  h–1, which is close to the k-value 
reported in this current study.

Lalau et al. [39] reported on the lactic acidosis and extre-
mal metformin accumulation in a patient treated with met-
formin. Metformin concentrations in the blood reached 130-
fold concentrations (80,000 ng/mL) after administration of 
850 mg twice daily [12, 39], compared with those observed 
in this current study. The transport rate coefficient estimated 
in our model was 0.025  h–1, which is within the range of 
coefficients estimated from individual patients (Fig. 3).

The calculated transport rate coefficient values of 
0.044 ± 0.014  h–1 from our study data, 0.039  h–1 from the 
data reported by Robert and colleagues [8], and 0.025  h–1 
reported by Lalau and Lacroix [12] fall within the values 
observed among the individuals involved in the current study 
(Fig. 3).

Fig. 7  Dynamics of concentrations in a plasma and RBCs, and b influx (blue), outflux (red), and summary flux (green) to RBCs in the case of 
the average curve with a single coefficient. RBCs red blood cells
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5  Conclusions

It is possible to describe the partitioning and repartition-
ing between RBCs and plasma using a single transport rate 
coefficient, supporting the assumption that diffusion was the 
main process ensuring metformin transportation between 
RBCs and plasma. A single transport rate coefficient for 
both transport directions does not contradict the different 
metformin transport rates to and from RBCs because the 
transport rate is proportional to the concentration difference. 
After dose administration, the metformin concentration in 
plasma is larger than in RBCs, thus ensuring faster partition-
ing into RBCs, while, after concentration equilibrium, the 
concentration in RBCs is higher and repartitioning becomes 
faster.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40262- 021- 01058-2.
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