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Approximation algorithms for confidence bands

for time series

Nikolaj Tatti[0000−0002−2087−5360]

University of Helsinki, Finland, nikolaj.tatti@helsinki.fi

Abstract. Confidence intervals are a standard technique for analyzing
data. When applied to time series, confidence intervals are computed
for each time point separately. Alternatively, we can compute confidence
bands, where we are required to find the smallest area enveloping k time
series, where k is a user parameter. Confidence bands can be then used
to detect abnormal time series, not just individual observations within
the time series. We will show that despite being an NP-hard problem
it is possible to find optimal confidence band for some k. We do this
by considering a different problem: discovering regularized bands, where
we minimize the envelope area minus the number of included time se-
ries weighted by a parameter α. Unlike normal confidence bands we can
solve the problem exactly by using a minimum cut. By varying α we
can obtain solutions for various k. If we have a constraint k for which
we cannot find appropriate α, we demonstrate a simple algorithm that
yields O(√n) approximation guarantee by connecting the problem to a
minimum k-union problem. This connection also implies that we cannot

approximate the problem better than O
(

n1/4
)

under some (mild) as-

sumptions. Finally, we consider a variant where instead of minimizing
the area we minimize the maximum width. Here, we demonstrate a sim-
ple 2-approximation algorithm and show that we cannot achieve better
approximation guarantee.

1 Introduction

Confidence intervals are a common tool to summarize the underlying distribu-
tion, and to indicate outlier behaviour. In this paper we will study the problem
of computing confidence intervals for time series.

Korpela et al. [11] proposed a notion for computing confidence intervals:
instead of computing point-wise confidence intervals, the authors propose com-
puting confidence bands. More formally, given n time series T , we are asked
to find k time series U ⊆ T that minimize the envelope area, that is, the sum
∑

i (maxt∈U t(i)) − (mint∈U t(i)). The benefit, as argued by Korpela et al. [11],
of using confidence bands instead of point-wise confidence intervals is better
family-wise error control: if we were to use point-wise intervals we can only say
that a time series at some fixed point is an outlier and require a correction for
multiple testing (such as Bonferroni correction) if we want to state with a certain
probability that the whole time series is normal.

http://arxiv.org/abs/2112.06225v1
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In this paper we investigate the approximation algorithms for finding con-
fidence bands. While Korpela et al. [11] proved that finding the optimal con-
fidence band is an NP-hard problem, they did not provide any approximation
algorithms nor any inapproximability results.

We will first show that despite being an NP-hard problem, we can solve the
problem for some k. We do this by considering a different problem, where instead
of having a hard constraint we have an objective function that prefers selecting
time series as long as they do not increase the envelope area too much. The
objective depends on the parameter α, larger values of α allow more increase
in the envelope area. We will show that this problem can be solved exactly in
polynomial time and that each α correspond to a certain value of k. We will
show that there are at most n+1 of such bands, and that we can discover all of
them in polynomial time by varying α.

Next, we provide a simple algorithm for approximating confidence bands by
connecting the problem to the weighted k-MinUnion problem. We will provide
a variant of an algorithm by Chlamtáč et al. [2] that yields

√
n+1 guarantee. We

also argue that—under certain conjecture—we cannot approximate the problem
better than O

(

n1/4
)

.
Finally, we consider a variant of the problem where instead of minimizing

the envelope area, we minimize the width of the envelope, that is, we mini-
mize the maximum difference between the envelope boundaries. We show that
a simple algorithm can achieve 2-approximation. This approximation provides
interesting contrast to the inapproximability results when minimizing the enve-
lope area. Surprisingly this guarantee is tight: we will also show that the there
is no polynomial-time algorithm with smaller guarantee unless P = NP.

The remainder of the paper is organized as follows. We define the optimiza-
tion problems formally in Section 2. We solve the regularized band problem
in Section 3, approximate minimization of envelope area in Section 4, and ap-
proximate minimization of envelope width in Section 5. Section 6 is devoted to
the related work. We present our experiments in Section 7 and conclude with
discussion in Section 8.

2 Preliminaries and problem definitions

Assume that we are given time series T with each time series f : D → Rmapping
from domain D to a real number. We will often write n = |T | to be the number
of given time series, and m = |D| to mean the size of the domain.

Given a set of time series T , we define the upper and lower envelopes as

ub(T, i) = max
t∈T

t(i) and ℓb(T, i) = min
t∈T

t(i) .

Our main goal is to find k time series that minimize the envelope area.

Problem 1 (SumBand). Given a set of n time series T = (t1, . . . , tn), an integer
k ≤ n, and a time series x ∈ T find k time series U ⊆ T containing x minimizing

s1 (U) =
∑

i

ub(U, i)− ℓb(U, i) .
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We will refer to U as confidence bands.
Note that the we also require that we must specify at least one sequence

x ∈ T that must be included in the input whereas the original definition of the
problem given by Korpela et al. [11] did not require specifying x. As we will
see later, this requirement simplifies the computational problem. On the other
hand, if we do not have x at hand, then we can either test every t ∈ T as x, or
we can use the mean or the median of T . We will use the latter option as it does
not increase the computational complexity and at the same time is a reasonable
assumption. Note that in this case most likely x /∈ T , so we define T ′ = T ∪{x},
increase k′ = k + 1, and solve SumBand for T ′ and k′ instead.

We can easily show that the area function s1 (·) is a submodular function for
all non-empty subsets, that is,

s1 (U ∪ {t})− s1 (U) ≤ s1 (W ∪ {t})− s1 (W ) ,

where U ⊇ W 6= ∅. In other words, adding t to a larger set U increases the cost
less than adding t to W .

We also consider a variant of SumBand where instead of minimizing the
area of the envelope, we will minimize the maximum width.

Problem 2 ( InfBand). Given a set of n time series T = (t1, . . . , tn), an integer
k ≤ n, and a time series x ∈ T , find k time series U ⊆ T containing x minimizing

s∞(U) = max
i

ub(U, i)− ℓb(U, i) .

We will show that we can 2-approximate InfBand and that the ratio is tight.
Finally, we consider a regularized version of SumBand, where instead of

requiring that the set has a minimum size k, we add a term −α|U | into the
objective function. In other words, we will favor larger sets as long as the area
s1 (U) does not increase too much.

Problem 3 (RegBand). Given a set of n time series T = (t1, . . . , tn), a number
α > 0, and a time series x ∈ T , find a subset U ⊆ T containing x minimizing

sreg(U ;α) = s1 (U)− α|U | .

In case of ties, use |U | as a tie-breaker, preferring larger values.

We refer to the solutions of RegBand as regularized bands. It turns out
that RegBand can be solved in polynomial time. Moreover, the solutions we
obtain from RegBand will be useful for approximating SumBand.

3 Regularized bands

In this section we will list useful properties of of RegBand, show how can we
solve RegBand in polynomial time for a single α, and finally demonstrate how
we can discover all regularized bands by varying α.
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3.1 Properties of regularized bands

Our first observation is that the output of RegBand also solves SumBand for
certain size constraints.

Proposition 1. Assume time series T and α > 0. Let U be a solution to
RegBand(α). Then U is also a solution for SumBand with k = |U |.

The proof of this proposition is trivial and is omitted.
Our next observation is that the solutions to RegBand form a chain.

Proposition 2. Assume time series T and 0 < α < β. Let V be a solution to
RegBand(T, α) and let U be a solution to RegBand(T, β). Then V ⊆ U .

Proof. Assume otherwise. Let W = V \ U . Due to the optimality of V ,

0 ≥ sreg(V ;α)− sreg(V ∩ U ;α) = s1 (V )− s1 (V ∩ U)− α|W | .

Since s1 is a submodular function, we have

s1 (V )− s1 (V ∩ U) = s1 (W ∪ (V ∩ U))− s1 (V ∩ U) ≥ s1 (W ∪ U)− s1 (U) .

Combining these inequalities leads to

0 ≥ s1 (W ∪ U)− s1 (U)− α|W |
≥ s1 (W ∪ U)− s1 (U)− β|W |
= sreg(W ∪ U ;β)− sreg(U ;β) ,

which contradicts the optimality of U . ⊓⊔

This property is particularly useful as it allows clean visualization: the en-
velopes resulting from different values of α will not intersect. Moreover, it allows
us to stored all regularized bands by simply storing, per each time series, the
index of the largest confidence band containing the time series.

Interestingly, this result does not hold for SumBand.

Example 1. Consider 4 constant time series t1 = 0, t2 = −1 and t3 = t4 = 2.
Set the seed time series x = t1. Then the solution for SumBand with k = 2 is
{t1, t2} and the solution SumBand with k = 3 is {t1, t3, t4}.

3.2 Computing regularized band for a single α

Our next step is to solve RegBand in polynomial time. Note that since s1 (·)
is submodular, then so is sreg(·). Minimizing submodular function is solvable in
polynomial-time [15]. Solving RegBand using a generic solver for minimizing
submodular functions is slow, so instead we will solve the problem by reducing it
to a minimum cut problem. In such a problem, we are given a weighted directed
graph G = (V,E,W ), two nodes, say θ, η ∈ V , and ask to partition V into X∪Y
such that θ ∈ X and η ∈ Y minimizing the total weight of edges from X to Y .
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In order to define G we need several definitions. Assume we are given n time
series T , a real number α and a seed time series x ∈ T . Let m be the size of
the domain. For i ∈ [m], we define pi = {tj(i) | j ∈ [n]} to be the set (with no
duplicates) sorted, smallest values first. In other words, pij is the jth smallest
distinct observed value in T at i. Let P be the collection of all pi.

We also define cij to be the number of time series at i smaller than or equal
to pij , that is, cij = |{ℓ ∈ [n] | tℓ(i) ≤ pij}|. We also write ci0 = 0.

We are now ready to define our graph. We define a weighted directed graph
G = (V,E,W ) as follows. The nodes V have three sets A, B, and C. The set
A has |P | nodes, a node aij ∈ A corresponding to each entry pij ∈ P . The set
B = {bj} has n nodes, and the set C has two nodes, θ and η. Here, θ acts as a
source node and η acts as a terminal node.

The edges and the weights are as follows: For each aij ∈ A such that pij >
x(i), we add an edge (ai(j−1), aij) with the weight

w(ai(j−1), aij) = n− ci(j−1) +
m

α
(pi(j−1) − x(i)) .

For each aij ∈ A such that pij < x(i), we add an edge (ai(j+1), aij) with the
weight

w(ai(j+1), aij) = cij +
m

α
(x(i)− pi(j+1)) .

For each aij ∈ A such that pij = x(i), we add an edge (θ, aij) with the weight
∞. For each i ∈ [m] and ℓ = |pi|, we add two edges (aiℓ, η) and (ai1, η) with the
weights

w(aiℓ, η) =
m

α
(piℓ − x(i)) and w(ai1, η) =

m

α
(x(i)− pi1) .

In addition, for each i ∈ [m], ℓ ∈ [n], let j be such that pij = tℓ(i) and define
two edges (aij , bℓ) and (bℓ, aij) with the weights,

w(aij , bℓ) = 1 w(bℓ, aij) = ∞ .

Our next proposition states the minimum cut of G also minimizes RegBand.

Proposition 3. Let X,Y be a (θ, η)-cut of G with the optimal cost. Define
f(i) = minj {pij | aij ∈ X} and g(i) = maxj {pij | aij ∈ X}.

Then the cost of the cut is equal to

nm−m|{j | bj ∈ X}|+ m

α

∑

i

g(i)− f(i) .

Moreover, if bℓ ∈ X, then g(i) ≤ bℓ(i) ≤ f(i), for all i.

Proof. The last claim follows immediately as otherwise there is a cross-edge with
infinite cost making the cut suboptimal.

Define u(i) = argminj {pij | aij ∈ X} and v(i) = argmaxj {pij | aij ∈ X} to
be the indices yielding f and g. Define also

di = |{j | u(i) ≤ tj(i) ≤ v(i)}| = civ(i) − ci(u(i)−1)
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to be the number of time series between u(i) and v(i) at i.
Note that aij ∈ X whenever u(i) ≤ j ≤ v(j) as otherwise we can move aij

to X and decrease the cost.
The cut consists of the cross-edges originating from aiv(i) and aiu(i), and

cross-edges between A and B. The cost of the former is equal to

∑

i

n− civ(i) +m
piv(i) − x(i)

α
+ ci(u(i)−1) +m

x(i)− piu(i)
α

= nm+
∑ m

α
(g(i)− f(i))−

∑

i

di

while the cost of the latter is
∑

i

|{j | aij ∈ X, bj /∈ X}| =
∑

i

|{j | u(i) ≤ tj(i) ≤ v(i) ∈ X, bj /∈ X}|

=
∑

i

di − |{j | u(i) ≤ tj(i) ≤ v(i) ∈ X, bj ∈ X}|

=
∑

i

di −m|{j | bj ∈ X}| .

Combining the two equations proves the claim. ⊓⊔

Corollary 1. Let U ′ be the solution to RegBand(α). Let (X,Y ) be a minimum
(θ, η)-cut of G. Set U = {tℓ | bℓ ∈ X}. Then sreg(U ;α) = sreg(U

′;α).

Proof. Proposition 3 states that the cost of the minimum cut is nm+m
α sreg(U ;α).

Construct a cut (X ′, Y ′) from U ′ by setting X ′ to be the nodes from A and
B that correspond to the time series U ′. The proof of Proposition 3 now states
that the cut is equal to nm+ m

α sreg(U
′;α).

The optimality of (X,Y ) proves the claim. ⊓⊔

We may encounter a pathological case, where we have multiple cuts with the
same optimal cost. RegBand requires that in such case we use largest solution.
This can be enforced by modifying the weights: first scale the weights so that
they are all multiples of nm+ 1, then add 1 to the weight of each (θ, αij). The
cut with the modified graph yields the largest band with the optimal cost.

The constructed graph G has O(nm) nodes and O(nm) edges. Consequently,
we can compute the minimum cut in O

(

(nm)2
)

time [13]. In practice, solving
minimum cut is much faster.

3.3 Computing all regularized bands

Now that we have a method for solving RegBand(α) for a fixed α, we would
like to find solutions for all α. Note that Proposition 2 states that we can have
at most n+ 1 different bands.

We can enumerate the bands with the divide-and-conquer approach given
in Algorithm 1. Here, we are given two, already discovered, regularized bands
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Algorithm 1: EnumReg(U, V ) finds all regularized bands between U
and V

1 γ ← s1 (V )−s1 (U)
|V |−|U|

− ∆
n2

;

2 W ← solution to RegBand(γ);
3 if U 6= W then

4 report W ;
5 EnumReg(U,W ); EnumReg(W,V );

U ( V , and we try to find a middle band W with U ( W ( V . If W exists, we
recurse on both sides. To enumerate all bands, we start with EnumReg({x} , V ).

The following proposition proves the correctness of the algorithm: during
each split we will always find a new band if such exist.

Proposition 4. Assume time series T with n time series. Let {Ui} be all the
possible regularized confidence bands ordered using inclusion. Define

∆ = min {|t(i)− u(i)| | t, u ∈ T, i, t(i) 6= u(i)} .

Let i < j be two integers and define

γ =
s1 (Uj)− s1 (Ui)

|Uj | − |Ui|
− ∆

n2
.

Let Uℓ be the solution for RegBand(γ). Then i ≤ ℓ < j. If j > i+1, then i < ℓ,
otherwise ℓ = i.

For simplicity, let us define f(x, y) =
s1 (Uy)−s1 (Ux)

|Uy|−|Ux|
.

In order to prove the result we need the following technical lemma.

Lemma 1. Assume time series T with n time series. Let {Ui} be all the possible
regularized confidence bands ordered using inclusion. Let α > 0. Let Ui be the
solution for RegBand(α). Then f(i− 1, i) ≤ α < f(i, i+ 1).

Proof. Due to the optimality of Ui,

s1 (Ui)− α|Ui| = sreg(Ui;α) < s1 (Ui+1)− α|Ui+1| .

Solving for α gives us the right-hand side of the claim. Similarly,

s1 (Ui)− α|Ui| = sreg(Ui;α) ≤ s1 (Ui−1)− α|Ui−1| .

Solving for α gives us the left-hand side of the claim. ⊓⊔

Proof (of Proposition 4). It is straightforward to see that Lemma 1 implies that
f(a, b) ≤ f(x, y) for a ≤ x and b ≤ y. Moreover, the equality holds only if x = a
and y = b, in other cases f(a, b) + ∆

n2 ≤ f(x, y).
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If ℓ ≥ j, then Lemma 1 states that f(i, j) ≤ f(ℓ−1, ℓ) ≤ γ, which contradicts
the definition of γ. Thus ℓ < j.

Since f(i, j)−f(i−1, i) ≥ ∆
n2 , we have f(i−1, i) ≤ γ. If ℓ < i, then Lemma 1

states that γ < f(i− 1, i), which is a contradiction. Thus, ℓ ≥ i.
If j = i+ 1, then immediately ℓ = i.
Assume that j > i+1. Since f(i, j)−f(i, i+1)≥ ∆

n2 , we have f(i, i+1) ≤ γ.
If ℓ = i, then according to Lemma 1 γ < f(i, i + 1), which is a contradiction.
Thus, ℓ > i. ⊓⊔

Lemma 1 reveals an illuminating property of regularized bands, namely each
band minimizes the ratio of additional envelope area and the number of new
time series.

Proposition 5. Let U be a regularized band. Define g(X) = s1 (X)−s1 (U)
|X|−|U| . Let

V ) U be the adjacent regularized band. Then g(V ) = minX)U g(X).

Proof. Let O = argminX)U g(X), and set β = g(O). We will prove that g(V ) ≤
β. Let W = RegBand(β). Let α be the parameter for which U = RegBand(α).
Assume that α ≥ β. We can rewrite the equality β = g(O) as

0 = sreg(O;β) − sreg(U ;β) ≥ sreg(O;α)− sreg(U ;α) ,

which violates the optimality of U . Thus α < β. Proposition 2 states that U ⊆
W . Moreover, due to submodularity,

sreg(O ∪W ;β)− sreg(W ;β) ≤ sreg(O ∪ U ;β)− sreg(U ;β) = 0,

which due to the optimality ofW implies that O ⊆ W . ThusW 6= U and V ⊆ W .
Lemma 1, possibly applied multiple times, shows that g(V ) ≤ g(W ) ≤ β. ⊓⊔

Proposition 2 states that there are at most n + 1 bands. Queries done by
EnumReg yield the same band at most twice. Thus, EnumReg performs at
most O(n) queries, yielding computational complexity of O

(

n3m2
)

. In practice,
EnumReg is faster: the number of bands is significantly smaller than n and the
minimum cut solver scales significantly better than O

(

n2m2
)

. Moreover, we can
further improve the performance with the following observation: Proposition 2
states that when processing EnumReg(U, V ), the bands will be between U and
V . Hence, we can ignore the time series that are outside V , and we can safely
replace U with its envelope ℓb(U) and ub(U).1

4 Discovering confidence bands minimizing s1

In this section, we will study SumBand. Korpela et al. [11] showed that the
problem is NP-hard. We will argue that we can approximate the problem and
establish a (likely) lower bound for the approximation guarantee.

1 We need to make sure that the envelope is always selected. This can be done by
connecting θ to the envelope with edges of infinite weight.
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Algorithm 2: FindSum(T, k, x), approximates SumBand

1 {Bi} ← EnumReg({x} , T );
2 j ← largest index for which |Bj | ≤ k;
3 if |Bj | ≤ k −√n then W ← Bj+1 \Bj else W ← T \ Bj ;
4 U ← Bj ;
5 greedily add k − |U | entries from W to U , minimizing s1 at each step;
6 return U ;

As a starting point, note that SumBand is an instance of k-MinUnion,
weighted minimum k-union problem. In k-MinUnion we are given n sets over a
universe with weighted points, and ask to select k sets minimizing the weighted
union. In our case, the universe is the set P described in Section 3, the weights
are the distances between adjacent points, and a set consists of all the points
between a time series and x.

The unweighted k-MinUnion problem has several approximation algorithms:
a simple algorithm achieving O(

√
n) guarantee by Chlamtáč et al. [2] and an

algorithm achieving lower approximation guarantee of O
(

n1/4
)

by Chlamtáč
et al. [3]. We will use the former algorithm due to its simplicity and the fact that
it can be easily adopted to handle weights.

The pseudo-code for the algorithm is given in Algorithm 2. The algorithm
first looks for the largest possible regularized band, say Bj , whose size at most
k. The remaining time series are then selected greedily from a set of candidates
W . The set W depends on how many additional time series is needed: if we need
at most

√
n additional time series, we set W to be the remaining time series

T \Bj, otherwise we select the time series from the next regularized band, that
is, we set W = Bj+1 \Bj .

Proposition 6. FindSum yields
√
n+ 1 approximation guarantee.

Proof. Let O be the optimal solution for SumBand(k), and let r = s1 (O). Let
U be the output of FindSum. Assume that Bj 6= O, as otherwise we are done.
We split the proof in two cases.

First, assume that |Bj | ≤ k−√
n. Since s1 is submodular we have s1 (O ∪Bj)−

s1 (Bj) ≤ s1 (O) − s1 ({x}) = r, leading to

s1 (Bj+1)− s1 (Bj)

|Bj+1| − |Bj |
≤ s1 (O ∪Bj)− s1 (Bj)

|O ∪Bj | − |Bj |
≤ r

k − |Bj |
≤ r√

n
,

where the first inequality is due to Proposition 5. Rearranging the terms gives
us

s1 (Bj+1)− s1 (Bj) ≤
r(|Bj+1| − |Bj |)√

n
≤ r

n√
n
= r

√
n .

Finally,

s1 (U) = s1 (Bj) + (s1 (U)− s1 (Bj))

≤ s1 (Bj) + (s1 (Bj+1)− s1 (Bj)) ≤ s1 (Bj) + r
√
n ≤ r(1 +

√
n),
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where the last inequality is implied by Proposition 1 and the fact that |Bj | ≤ k.
Assume that |Bj | > k − √

n, and let q = k − |Bj |. Note that q <
√
n. Let

c1, . . . , cq be the additional time series added to U . Write Ui = Bj ∪{c1, . . . , ci}.
Let c′i be the closest time series to x outside Ui−1. Note that s1 ({x, c′i}) −

s1 ({x}) = s1 ({x, c′i}) ≤ r for i = 1, . . . , q as otherwise r has to be larger. In
addition, Proposition 1 and |Bj | ≤ k imply that s1 (Bj) ≤ r. Consequently,

s1 (Uq) = s1 (Bj) +

q
∑

i=1

s1 (Ui)− s1 (Ui−1)

≤ s1 (Bj) +

q
∑

i=1

s1 ({x, c′i})− s1 ({x}) ≤ (1 +
√
n)r,

where the first inequality is due to the submodularity of s1 . ⊓⊔

FindSum resembles greatly the algorithm given by Chlamtáč et al. [2] but
has few technical differences: we select Bj as our starting point whereas the
algorithm by Chlamtáč et al. [2] constructs the starting set by iteratively finding
and adding sets with the smallest average area, s1 (X) /|X |, that is, solving the
problem given in Proposition 5.2 Such sets can be found with a linear program.
Proposition 5 implies that both approaches result in the same set Bj but our
approach is faster.3 Moreover, this modification allows us to prove a tighter
approximation guarantee: the authors prove that their algorithm yields 2

√
n

guarantee whereas we show that we can achieve
√
n+1 guarantee. Additionally,

we select additional time series iteratively by selecting those time series that
result in the smallest increase of the current area, whereas the original algorithm
would simply select time series that are closest to {x}.

Chlamtáč et al. [3] argued that under some mild but technical conjecture
there is no polynomial-time algorithm that can approximate k-MinUnion better
than O

(

n1/4
)

. Next we will show that we can reduce k-MinUnion to SumBand

while preserving approximation.

Proposition 7. If there is an f(n)-approximation polynomial-time algorithm
for SumBand, then there is an f(n + 1)-approximation polynomial-time algo-
rithm for k-MinUnion.

Proof. Assume that we are given an instance of k-MinUnion with n sets S =
(S1, . . . , Sn). Let D =

⋃

i Si be the union of all Si.
Define T containing n + 1 time series over the domain D. The first n time

series correspond to the sets Si, that is, given i ∈ D, we set tj(i) = 1 if i ∈ Sj ,
and 0 otherwise. The remaining single time series, named x, is set to be 0.

2 The original algorithm is described using set/graph terminology but we use our
terminology to describe the differences.

3 The computational complexity of the state-of-the-art linear program solver is
O
(

(nm)2.37 log(nm/δ)
)

, where δ is the relative accuracy [4]. We may need to solve
O(n) such problems, leading to a total time of O

(

n(nm)2.37 log(nm/δ)
)

.
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Assume that we have an algorithm estimating SumBand(T, x, k+1), and let
U be the output of this algorithm. Note that since x ∈ U , we have ℓb(U, i) = 0.

Let V be the subset of S corresponding to the non-zero time series in U . Let
C =

⋃

S∈V S be the union of sets in V . Since ℓb(U, i) = 0, and ub(U, i) = 1 if
and only if i ∈ C, we have s1 (U) = |C|. ⊓⊔

The above result implies that unless the conjecture suggested by Chlamtáč
et al. [3] is false, we cannot approximate SumBand better than O

(

n1/4
)

. This
proposition holds even if we replace s1 (·) with an ℓpp norm,

∑

i |t(i)− u(i)|p,
where 1 ≤ p < ∞, or any norm that reduces to hamming distance if t is a binary
sequence and u is 0. Interestingly, we will show in the next section that we can
achieve a tighter approximation if we use s∞.

5 Discovering confidence bands minimizing s∞

In this section we consider the problem InfBand. Namely, we will show that a
straightforward algorithm 2-approximates the problem, and more interestingly
we show that the guarantee is tight.

The algorithm for InfBand(T, x, k) is simple: we select k time series that
are closest to x according to the norm ‖t(i)− x(i)‖∞ = maxi |t(i)− x(i)|. We
will refer to this algorithm as FindInf.

It turns out that this simple algorithm yields 2-approximation guarantee.

Proposition 8. FindInf yields 2-approximation for InfBand.

Proof. Let U be the optimal solution for InfBand. Let V be the result produced
by FindInf. Define c = maxt∈V ‖t− x‖∞. Then

c = max
t∈V

‖t− x‖∞ ≤ max
t∈U

‖u− x‖∞ ≤ s∞(U) ,

where the first inequality holds since V contains the closest time series and the
second inequality holds since x ∈ U .

Let i be the index such that s∞(V ) = ub(V, i)− ℓb(V, i). Then

s∞(V ) = ub(V, i)− ℓb(V, i) = (ub(V, i)− t(i)) + (t(i)− ℓb(V, i)) ≤ 2c .

Thus, s∞(V ) ≤ 2c ≤ 2s∞(U), proving the claim. ⊓⊔

While FindInf is trivial, surprisingly it achieves the best possible approxi-
mation guarantee for a polynomial-time algorithm.

Proposition 9. There is no polynomial-time algorithm for InfBand that yields
α < 2 approximation guarantee unless P = NP.

Proof. To prove the claim we will show that we can solve k-Clique in polynomial
time if we can α-approximate InfBand with α < 2. Since k-Clique is an NP-
complete problem, this is a contradiction unless P = NP.
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The goal of k-Clique is given a graph G = (V,E) with n nodes and m edges
to detect whether there is a k-clique, a fully connected subgraph with k nodes,
in G. We can safely assume that G has no nodes that are fully-connected.

Fix an order for nodes V = (v1, . . . , vn) and let F be all the edges that are
not in E, that is, F = {(vx, vy) | (vx, vy) /∈ E, x < y}.

Next, we will define an instance of InfBand. The set of time series T =
(t1, . . . , tn)∪{x} consists of n time series ti corresponding to the node vi, and a
single time series x which we will use a seed. We set the domain to be F . Each
time series ti maps an element of e = (vx, vy) ∈ F to an integer,

ti(e) = 1, if i = x, ti(e) = −1, if i = y, ti(e) = 0, otherwise .

We also set x = 0. First note that since ti(e) is an integer between −1 and 1,
the score s∞(U) is either 0, 1, or 2 for any U ⊆ T .

Since we do not have any fully-connected nodes in G, there is no non-zero ti
in T . Since x ∈ U for any solution of InfBand, then s∞(U) = 0 implies |U | = 1.

Let W ⊆ V be a subset of nodes, and let U be the corresponding time series.
We claim that s∞(U) = 1 if and only if W is a clique. To prove the claim,
first observe that if vi, vj ∈ W such that e = (vi, vj) ∈ F , then ti(e) = 1 and
tj(e) = −1, thus s∞(U) = 2. On the other hand, if W is a clique, then for every
ti, tj ∈ U and e ∈ F such that ti(e) 6= 0, we have tj(e) = 0 since otherwise
(vi, vj) /∈ E. Thus, s∞(U) = 1 if and only if W is a clique.

Let O be the solution for InfBand(T, k+ 1, x). Note that s∞(O) = 1 if and
only if G has a k-clique, and s∞(O) = 2 otherwise.

Let S be the output of α-approximation algorithm. Since k > 1, we know
that s∞(O) is either 1 or 2. If s∞(O) = 2, then s∞(S) = 2. If s∞(O) = 1, then
s∞(S) ≤ αs∞(O) < 2× 1. Thus, s∞(S) = 1. In summary, s∞(O) = s∞(S).

We have shown that s∞(S) = 1 if and only if G has a k-clique. This allows
us to detect k-clique in G in polynomial time proving our claim. ⊓⊔

6 Related work

Confidence bands are envelopes for which confidence intervals of individual
points hold simultaneously. Davison and Hinkley [5], Mandel and Betensky [12]
proposed a non-parametric approach for finding simultaneous confidence inter-
vals. Here, time series are ordered based on its maximum value, and α-confidence
intervals are obtained by removing α/2 portions from each tail. Note that unlike
SumBand and InfBand this definition is not symmetric: if we flip the sign of
time series we may get a different interval.

There is a strong parallel between finding regularized bands and finding dense
subgraphs. Proposition 5 states that the inner-most regularized band has the
smallest average envelope area, or alternatively it has the highest ratio of time
series per envelope area. A related graph-theoretical concept is a dense subgraph,
a subgraph H of a given subgraph G with the largest ratio |E(H)|/|V (H)|. The
method proposed by Goldberg [7] for finding dense subgraphs in polynomial
time is based on maximizing |E(H)| − α|V (H)| and selecting α to be as small
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as possible without having an empty solution. Moreover, Tatti [16] extended the
notion of dense subgraphs to density-friendly core decomposition, which essen-
tially consists of the subgraphs minimizing |E(H)| − α|V (H)| for various values
of α, the algorithm for finding the decomposition is similar to the algorithm for
enumerating all regularized bands. In addition, Tsourakakis [17] extended the
notion of dense subgraphs to triangle-density and hypergraphs, and also used
minimum cut to find the solutions. As pointed out in Section 4 is that we can
view time series as sets of points in P . In fact, the minimum cut used in Sec-
tion 3 share some similarities with the minimum cut proposed by Tsourakakis
[17]. Finally, the algorithm proposed by Korpela et al. [11] to find confidence
bands resembles the algorithm by Charikar [1] for approximating the densest
subgraph: in the former we delete the time series that reduce the envelope area
the most while in the latter we delete vertices that have the smallest degree.

We assume that we are given a seed time series x. If such series is not given
then we need to test every t ∈ T as a seed. If we consider a special case of
k = 2, then the problem of finding regularized band reduces to the closest
pair problem: find two time series with the smallest distance: a well-studied
problem in computational geometry. A classic approach by Dietzfelbinger et al.
[6], Khuller and Matias [10], Rabin [14] allows to solve the closest pair problem
in O(n) time but the analysis treats the size of the domain, m, as a constant;
otherwise, the computational complexity has an exponential factor in m and can
be only used for very small values of m. For large values of m, Indyk et al. [9]
proposed an algorithm for solving the closest pair problem minimizing s1 (·) in
O
(

n2.687
)

time and minimizing s∞(·) in O
(

n2.687 log∆
)

time, where ∆ is the
width of the envelope of the whole data.

7 Experimental evaluation

In this section we describe our experimental evaluation.

We implemented EnumReg and FindSum using C++ and used a laptop
with Intel Core i5 (2.3GHz) to conduct our experiments.4 As a baseline we used
the algorithm by Korpela et al. [11], which we will call Peel. We implemented
Peel also with C++, and modified it to make sure that the seed time series
x is always included. Finally, we implemented FindInf with Python. In all
algorithms we used the median as the seed time series.

Datasets: We used 4 real-world datasets as benchmark datasets. The first
dataset, Milan, consists of monthly averages of maximum daily temperatures
in Milan between the years 1763–2007.5 The second dataset, Power, consists of
hourly power consumption (variable global active power) of a single house-
hold over almost 4 years, a single time series representing a day.6 Our last 2
datasets ECG-normal and ECG-pvc are heart beat data [8]. We used MLII

4 The code is available at https://version.helsinki.fi/DACS
5 https://www.ncdc.noaa.gov/
6 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

https://version.helsinki.fi/DACS
https://www.ncdc.noaa.gov/
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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Table 1: Basic characteristics of the datasets and performance measures of the
algorithms. Here, n stands for the number of time series,m stands for the domain
size, |B1| is the size of the smallest non-trivial regularized band, |B| is the number
of regularized bands, and time is the required time to execute EnumReg in
seconds. The scores s1 for the algorithms FindSum, FindInf, and Peel are
normalized with the envelope area of the whole data and multiplied by 100.

s1 for k = ⌊0.9n⌋ s1 for k = ⌊0.95n⌋
Dataset n m |B1| |B| Time Sum Peel Inf Sum Peel Inf

Milan 245 12 209 17 0.03 70.34 72.49 74.1 75.31 76.99 78.45
Power 1 417 24 1 102 56 3.68 70.94 72.83 77.06 78.89 81.17 82.31
ECG-normal 1 507 253 1 289 72 39.44 51.72 52 72.97 57.22 57.51 73.15
ECG-pvc 520 253 484 19 6.67 80.28 80.02 91.97 83.84 83.92 95.69

Table 2: Scores s∞ of discovered confidence bands. The scores are normalized
with the envelope width of the whole data and multiplied by 100.

s∞ for k = ⌊0.9n⌋ s∞ for k = ⌊0.95n⌋
Dataset Sum Peel Inf Sum Peel Inf

Milan 72.54 79.78 67.35 78.04 79.78 73.95
Power 79.08 82.16 73.13 82.16 98.71 79.08
ECG-normal 64.78 64.78 54.81 65.64 64.78 57.39
ECG-pvc 93.24 93.24 66.41 93.24 93.24 81.9
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Inf

0 50 100 150 200 250

−2

0

2

Fig. 1: Envelopes for ECG-normal (left) and ECG-pvc (right) and k = ⌊0.9n⌋.

data of a single patient (id 106) from the MIT-BIH arrhythmia database,7 and
split the measurements into normal beats (ECG-normal) and abnormal beats
with premature ventricular contraction (ECG-pvc). Each time series represent
measurements between −300ms and 400ms around each beat. The sizes of the
datasets are given in Table 1.

Results: First let us consider EnumReg. From the results given Table 1
we see that the number of distinct regularized bands |B| is low: about 4%–7%
of n, the number of time series. Having so few bands in practice reduces the
computational cost of EnumReg since the algorithm tests at most 2|B| values
7 https://physionet.org/content/mitdb/1.0.0/

https://physionet.org/content/mitdb/1.0.0/
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of α Interestingly, the smallest non-trivial band B1 is typically large, containing
about 70%–90% of the time series. Note that Proposition 5 states that B1 has the
smallest ratio of s1 (B1) /|B1|. For our benchmark datasets, B1 is large suggesting
that most time series are equally far away from the median while the remaining
the time series exhibit outlier behaviour.

The algorithms are fast for our datasets: Table 1 show that EnumReg re-
quires at most 40 seconds. Additional steps required by FindSum are negligible,
completing in less than a second. The baseline algorithm is also fast, requiring
less than a second to complete.

Let us now compare FindSum against Peel. We compared the obtained ar-
eas by both algorithms with k = ⌊0.9n⌋ and k = ⌊0.95n⌋. We see from the results
in Table 1, that FindSum performs slightly better than Peel. The improvement
in score is modest, 1%–2%. We conjecture that in practice Peel is close to the
optimal, so any improvements are subtle. Interestingly, enough Peel performs
better than FindSum for ECG-pvc and γ = 0.1. The reason for this is that
the inner band B1 contains more than 90% of the time series. In such a case
FindSum will reduce to a simple greedy method, starting from {x}. Additional
testing revealed that Peel outperforms FindSum when k ≤ |B1| about 50%–
90%, depending on the dataset, suggesting that whenever k ≤ |B1| it is probably
better to run both algorithms and select the better envelope.

Next let us compare FindInf against the other methods. The results in
Tables 1–2 show that FindInf yields inferior s1 scores but superior s∞ scores.
This is expected as FindInf optimizes s∞ while FindSum and Peel optimize
s1 . The differences are further highlighted in the envelopes for ECG datasets
shown in Figure 1: FindInf yields larger envelopes but provides a tighter bound
under the peak (R wave).

8 Concluding remarks

In this paper we consider the approximation algorithms for discovering con-
fidence bands. Namely, we proposed a practical algorithm that approximates
SumBand with a guarantee of O

(

n1/2
)

. We also argued that the lower bound

for the guarantee is most likely O
(

n1/4
)

. In addition, we showed that we can 2-
approximate InfBand, a variant of SumBand problem, with a simple algorithm
and that the guarantee is tight.

Our experiments showed that FindSum outperforms the original baseline
method for large values of k, that is, as long as k is larger than the smallest
regularized band. Our experiments suggest that this condition usually holds, if
we are interested, say in, 90%–95% confidence.

Interesting future line of work is to study the case for time series with multiple
modes, that is, a case where instead of a single seed time series, we are given a
set of time series, and we are asked to find confidence bands around each seed.
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