

https://helda.helsinki.fi

Sulphonamide inhibition studies of the beta-carbonic anhydrase GsaCA beta present in the salmon platyhelminth parasite Gyrodactylus salaris

Aspatwar, Ashok

2023-12-31

Aspatwar, A, Bonardi, A, Aisala, H, Zueva, K, Primmer, CR, Lumme, J, Parkkila, S & Supuran, CT 2023, 'Sulphonamide inhibition studies of the beta-carbonic anhydrase GsaCA beta present in the salmon platyhelminth parasite Gyrodactylus salaris', Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 38, no. 1. https://doi.org/10.1080/14756366.2023.2167988

http://hdl.handle.net/10138/354587 https://doi.org/10.1080/14756366.2023.2167988

cc_by publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

BRIEF REPORT

Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite Gyrodactylus salaris

Ashok Aspatwar^a , Alessandro Bonardi^b, Heidi Aisala^c, Ksenia Zueva^d, Craig R Primmer^{e,f} , Jaakko Lumme^c, Seppo Parkkila^{a,g} and Claudiu T. Supuran^b

^aFaculty of Medicine and Health Technology, Tampere University, Tampere, Finland; ^bDepartment of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy; ^cEcology and Genetics, University of Oulu, Oulu, Finland; ^dDepartment of Biology, University of Turku, Turku, Finland; ^eInstitute of Biotechnology, University of Helsinki, Helsinki, Finland; fOrganismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland; Finland; Tampere University Hospital, Tampere, Finland

ABSTRACT

A β -class carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Monogenean platyhelminth Gyrodactylus salaris, a fish parasite, GsaCA β , has been investigated for its inhibitory effects with a panel of sulphonamides and sulfamates, some of which in clinical use. Several effective GsaCA β inhibitors were identified, belonging to simple heterocyclic sulphonamides, the deacetylated precursors of acetazolamide and methazolamide (K_1 sof 81.9–139.7 nM). Many other simple benezene sulphonamides and clinically used agents, such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, benzolamide, sulthiame and hydrochlorothiazide showed inhibition constants $<1 \,\mu M$. The least effective GsaCA β inhibitors were 4,6disubstituted-1,3-benzene disulfonamides, with $\textit{K}_{\text{I}}\text{S}$ in the range of 16.9–24.8 μM . Although no potent GsaCA β -selective inhibitors were detected so far, this preliminary investigation may be helpful for better understanding the inhibition profile of this parasite enzyme and for the potential development of more effective and eventually parasite-selective inhibitors.

ARTICLE HISTORY

Received 7 December 2022 Revised 5 January 2023 Accepted 9 January 2023

KEYWORDS

Carbonic anhydrase; Gyrodactylus salaris; kinetics; sulphonamide inhibitors; sulfamate

Introduction

We have recently reported the cloning and characterisation of a β-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the genome of *Gyrodactylus salaris*, GsaCA β^1 , a platyhelminth (flatworm) parasite attacking various fish species^{2,3}. The Atlantic salmon (Salmo salar) is particularly sensitive to this parasite, which produced catastrophic losses in fish farms in Scandinavian countries and elsewhere, starting with the 1970s³⁻⁵. By releasing proteolytic enzymes, the parasite attaches on the fish gills, fins or skin inducing the formation of wounds, which favour the emergence of infections, with debilitation and eventual death of the infected animals 5,6 . There are no effective drugs for the treatment of this parasitic disease, although a variety of inorganic salts, synthetic compounds/drugs (e.g., praziquantel, levamisole, mebendazole and toltrazuril) and other approaches (manual removal of the worms) have been investigated, with rather unsuccessful results⁷. Furthermore, many of these compounds/drugs induce serious host toxicity, raising thus significant human health concerns if such fish is to be consumed⁷. Thus, as for other platyhelminth parasites producing infection in vertebrates including humans, such as Schistosoma haematobium⁸ or Schistosoma mansoni^{9–11} there is a stringent need of alternative drug targets and efficient compounds to treat these infections.

CAs are well known drug targets for the management of human diseases^{12–15}, with their inhibitors acting as diuretics¹⁶,

antiepileptics¹⁷, antiglaucoma¹⁸, antiobesity¹⁹ and antitumor agents²⁰. In the last decade, CAs from pathogens started to be considered as possible targets for the development of antiinfectives, for the management of diseases provoked by bacteria²¹, fungi²², protozoa²³ and worms^{10,11,24}. In the previous work¹ we have shown that $GsaCA\beta$ has a significant catalytic activity for the physiologic, CO₂ hydration reaction, with a k_{cat} of $1.1 \times 10^5 \text{ s}^{-1}$ and a k_{cat}/K_m of 7.58 \times 10⁶ M⁻¹ \times s⁻¹. Furthermore, inorganic anions, a well-known class of CA inhibitors (CAIs)^{14,15} inhibit the enzyme in the millimolar range, as for other α - and β -CAs investigated for their interaction with such modulators of activity¹⁴. Among the investigated such inhibitors, sulfamide (K_I of 81 μ M) and sulphamic acid (K_I of 6.2 μ M) showed the most efficient inhibitory action¹. Both of them incorporate the SO₂NH₂ moiety found in the most investigated class of CAIs, the aromatic/heterocyclic sulphonamides and their isosteres (sulfamates, sulfamides) 14,15 . Thus in this work we report GsaCA β inhibition studies with a panel of such compounds, many of which are clinically used drugs (Figure 1).

Materials and methods

Chemistry

Compounds 1-24 and AAZ-HCT were commercially available, highest purity reagents from Sigma-Aldrich (Milan, Italy) or were synthesised as previously reported²⁵.

CONTACT Ashok Aspatwar 🔯 ashok.aspatwar@tuni.fi 🔁 Faculty of Medicine and Health Technology, Tampere University, Via Ugo Schiff 6, Tampere, 50019, Finland; Claudiu T. Supuran 🔯 claudiu.supuran@unifi.it 💼 Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy

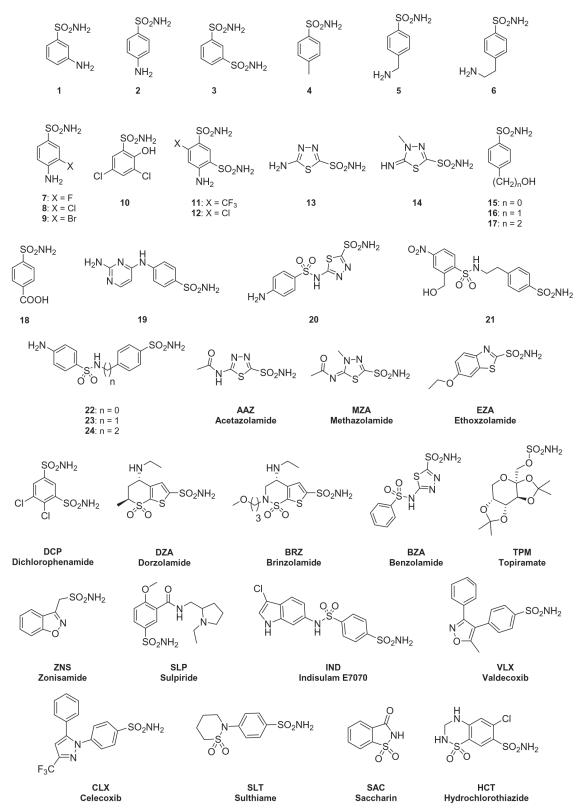


Figure 1. Sulphonamides/sulfamates 1-24 and AAZ-HCT investigated as inhibitors in the present study.

Production of β -CA recombinant protein

Protein production was carried out according to the previously reported protocol¹.

Ca activity and inhibition measurements

An Applied Photophysics stopped-flow instrument has been used for assaying the CA catalysed ${\rm CO_2}$ hydration activity²⁶. Phenol red

at a concentration of 0.2 mM was used as pH indicator, working at the absorbance maximum of 557 nm, with 10 mM TRIS (pH 8.3) as buffer, and in the presence of 10 mM NaClO₄ for maintaining constant the ionic strength, following the initial rates of the CA-catalysed CO₂ hydration reaction for a period of 10-100 s. The CO₂ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5-10% of the reaction have been used for determining the initial velocity. The uncatalyzed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitors (10-20 mM) were prepared in distilled-deionized water and dilutions up to 0.01 µM were done thereafter with the assay buffer. Inhibitor and enzyme solutions were preincubated together for 15 min at room temperature prior to assay, in order to allow for the formation of the enzyme-inhibitor complex. The inhibition constants were obtained by non-linear least-squares methods using PRISM 3 and the Cheng-Prusoff equation, whereas the kinetic parameters for the uninhibited enzymes from Lineweaver-Burk plots, as reported earlier^{27,28}, and represent the mean from at least three different determinations. GsaCA β concentration in the assay system was of 11.9 nM.

Results and discussion

GsaCA β shows catalytic properties for the physiologic reaction similar to those of the slow human isoform hCA I, being however slightly less effective as a catalyst compared to hCA I (Table 1). On the other hand, it should be stressed that many CAs are among the most effective catalysts known in nature 14,15, and even this level of activity is in fact quite significant.

We have investigated the inhibition profile of GsaCA β with a panel of sulphonamides and sulfamates (Figure 1) known to effectively inhibit many classes of CAs, with some of these derivatives being clinically used drugs for decades, in the treatment of a multitude of diseases, as shown in the introduction. The names of the relevant drugs are reported in Figure 1, and as mentioned above, they are used as diuretics, antiglaucoma drugs, antiepileptics or for the management of other disorders connected with CA activity disbalances 14,15 . The GsaCA β inhibition data with these compounds, as well as those for hCA I and II (for comparison reasons), are shown in Table 2.

As seen from Table 2, where the inhibition data of the human α -class isoforms hCA I and II were also included for comparison, all investigated sulphonamides/sulfamates inhibited GsaCA β , with inhibition constants raging between 81.9 nM and 24.8 μM. The following structure-activity relationship (SAR) should be noted regarding the inhibition data of Table 2:

The most effective GsaCA β inhibitors were compounds 13 and 14, the deacetylated precursors of acetazolamide and methazolamide, which showed K₁ values of 81.9–139.7 nM,

Table 1. Kinetic parameters for the CO_2 hydration reaction catalysed by α - and B-class CA enzymes: the human cytosolic isozymes hCA I and II (α -class) at $20\,^{\circ}\text{C}$ and pH 7.5 in $10\,\text{mM}$ HEPES buffer, and GsaCA β (measured at $20\,^{\circ}\text{C}$, pH 8.3 in 20 mM TRIS buffer and $10\,\text{mM}$ NaClO₄) are shown. Inhibition data with the clinically used sulphonamide acetazolamide are also presented.

Isozyme	Activity level	k_{cat} (s ⁻¹)	$\frac{k_{\text{cat}}/K_m}{(M^{-1} \times s^{-1})}$	K _I (acetazolamide) (nM)
hCA I ^a	Moderate	2.0×10^{5}	5.0×10^{7}	250
hCA II ^a	Very high	1.4×10^{6}	1.5×10^{8}	12
$GsaCA\beta^{b}$	Low-moderate	1.1×10^{5}	7.58×10^{6}	460.5

^aFrom ref. [12,15]; ^bFrom ref. [1].

- which is 5.1-5.6 times a better inhibitory activity compared to the clinically used derivatives AAZ and MZA (Table 2). As seen in Table 2, these precursors are less effective as hCA I and II inhibitors compared to the acetylated derivatives used
- A rather large number of derivatives, such as 1-3, 7, 15-20, 2-24, AAZ, MZA, EZA, DZA, BZA, SLT and HCT, showed less effective inhibition, but anyhow with $K_{l}s < 1000\,\text{nM}$. The SAR is rather difficult to rationalise in this case as these compounds belong to very heterogeneous classes of sulphonamides, both aromatic (benzene sulphonamides) and heterocyclic derivatives. However, it seems that rather simple and elongated scaffolds lead to effective inhibition whereas the inclusion of bulkier substituents (e.g. in 21 compared to 22-24, or BRZ compared to DZA) is detrimental for the inhibitory activity.
- Compounds showing low micromolar inhibition of GsaCA β were 4-6, 8-10, 21, DCP, BRZ, TPM, ZNS, SLP; IND, VLX, **CLX** and **SAC.** These compounds had K_1 s in the range of 1.63–9.1 μ M. As above, they belong to a large number of diverse chemotypes in order to draw a rationalisation of their SAR. Saccharin, also being a medium potency inhibitor, is

Table 2. Inhibition of β -CA from G. salaris and human isoforms hCA I and hCA II with sulphonamides 1-24 and the clinically used drugs AAZ-HCT, by a stopped-flow assay²⁶

	<i>К,</i> (nM) ^a			
Inhibitor	hCA I	hCA II	GsaCAβ	
1	28,000	300	522.8	
2	25,000	240	589.2	
3	79	8	388.8	
4	78,500	320	3115	
5	25,000	170	2144	
6	21,000	160	7790	
7	8300	60	854.4	
8	9800	110	7266	
9	6500	40	8879	
10	7300	54	9103	
11	5800	63	16900	
12	8400	75	24820	
13	8600	60	81.9	
14	9300	19	139.7	
15	5500	80	419.8	
16	9500	94	616.1	
17	21,000	125	917.4	
18	164	46	687.6	
19	109	33	489.1	
20	6	2	631.8	
21	69	11	5839	
22	164	46	765.9	
23	109	33	653.2	
24	95	30	382.2	
AAZ	250	12	460.5	
MZA	50	14	721.7	
EZA	25	8	545.9	
DCP	1200	38	3261	
DZA	50,000	9	399.1	
BRZ	45,000	3	5063	
BZA	15	9	716.3	
TPM	250	10	8558	
ZNS	56	35	8576	
SLP	1200	40	7288	
IND	31	15	7423	
VLX	54,000	43	3892	
CLX	50,000	21	4621	
SLT	374	9	877.1	
SAC	18,540	5959	1635	
HCT	328	290	776.8	

^aMean from three different assays. Errors (data not shown) were in the range of ± 10% of the reported data.

- among the most selective ones for inhibiting ${\sf GsaCA}\beta$ over the human isoforms (Table 2).
- iv. 4,6-disubstituted-1,3-benzene disulfonamides **11** and **12** were the least effective GsaCA β inhibitors, with K_l s in the range of 16.9–24.8 μ M (Table 2).
- v. The inhibition profile of $GsaCA\beta$ and hCA I/II are very different, obviously due to the fact that they belong to diverse genetic CA families. Unfortunately, no $GsaCA\beta$ -selective inhibitors (over the hCAs investigated here) were detected so far.

Conclusions

The Monogenean platyhelminth Gyrodactylus salaris, a fish parasite of salmon and other economically relevant aquaculture fish species, encodes for a β -class CA, GsaCA β , which has been investigated here for its inhibition profile with sulphonamides/ sulfamates, as a possible antiparasitic drug target. We identified several effective GsaCA β inhibitors, belonging to simple heterocyclic sulphonamide derivatives, the deacetylated precursors of acetazolamide and methazolamide, which showed K₁ values of 81.9 – 139.7 nM. Many other simple benezenesulfonamides and clinically used agents, such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, benzolamide, sulthiame and hydrochlorothiazide showed inhibition constants $<1 \,\mu\text{M}$. The least effective GsaCA β inhibitors were 4,6-disubstituted-1,3-benzene disulfonamides, with K_i s in the range of $16.9 - 24.8 \,\mu\text{M}$. Although no GsaCA β -selective inhibitors were detected so far, this preliminary investigation may be helpful for better understanding the SAR for inhibition of this parasite enzyme and for the potential development of more effective and eventually parasite-selective inhibitors.

Disclosure statement

CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding

This research was financed by the Italian Ministry for Education and Science (MIUR), grant PRIN: rot. 2017XYBP2R; Ente Cassa di Risparmio di Firenze (ECRF), grant CRF2020.1395 (to CTS); Academy of Finland (to SP); Jane & Aatos Erkko Foundation (to SP); Finnish Cultural Foundation (AA), and Tampere Tuberculosis Foundation (AA).

ORCID

References

- 1. Aspatwar A, Barker H, Aisala H, et al. Cloning, purification, kinetic and anion inhibition studies of a recombinant β -carbonic anhydrase from the Atlantic salmon parasite platyhelminth *Gyrodactylus salaris*. J Enzyme Inhib Med Chem 2022; 37:1577–86.
- Paladini G, Shinn AP, Taylor NGH, et al. Geographical distribution of *Gyrodactylus salaris* Malmberg, 1957 (Monogenea, Gyrodactylidae). Parasit Vectors 2021;14:34.
- Zueva KJ, Lumme J, Veselov AE, et al. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar Genomics 2018;39:26–38.
- Hansen H, Cojocaru CD, Mo TA. Infections with Gyrodactylus spp. (Monogenea) in Romanian fish farms: Gyrodactylus salaris Malmberg, 1957 extends its range. Parasit Vectors 2016; 9:444.
- Ramírez R, Bakke TA, Harris PD. Same barcode, different biology: differential patterns of infectivity, specificity and pathogenicity in two almost identical parasite strains. Int J Parasitol 2014;44:543–9.
- Hopkins C. Introduced marine organisms in Norwegian waters, including Svalbard. Parasites and diseases. In: Leppakoski E, Gollasch S, Olenin S, eds. Invasive aquatic species of Europe. Distribution, impacts and management. Dordrecht: Springer Netherlands; 2002:13–25.
- (a) Schelkle B, Shinn AP, Peeler E, et al. Treatment of gyrodactylid infections in fish. Dis Aquat Organ 2009;86:65–75.
 (b) Soleng A, Poléo AB, Alstad NE, et al. Aqueous aluminium eliminates *Gyrodactylus salaris* (Platyhelminthes, Monogenea) infections in Atlantic salmon. Parasitology 1999;119 (Pt 1): 19–25.
 (c) Schmahl G. The chemotherapy of monogeneans which parasitize fish: a review. Folia Parasitol (Praha) 1991; 38:97–106.
- (a) Feldmeier H, Chitsulo L. Therapeutic and operational profiles of metrifonate and praziquantel in Schistosoma haematobium infection. Arzneimittelforschung 1999;49:557–65. (b) Kramer CV, Zhang F, Sinclair D, et al. Drugs for treating urinary schistosomiasis. Cochrane Database Syst Rev 2014;2014: CD000053
- (a) Skelly PJ, Nation CS, Da'Dara AA. Schistosoma mansoni and the purinergic halo. Trends Parasitol 2022;38:1080–8. (b) Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022;236:106676. (c) Nation CS, Da'Dara AA, Skelly PJ. NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022;479:1165–80. (d) Acharya S, Da'dara AA, Skelly PJ. Schistosome immunomodulators. PLoS Pathog 2021;17: e1010064
- 10. (a) Da'dara AA, Angeli A, Ferraroni M, et al. Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Commun Biol 2019;2:333. (b) Angeli A, Pinteala M, Maier SS, et al. Sulfonamide inhibition studies of an α-carbonic anhydrase from Schistosoma mansoni, a platyhelminth parasite responsible for schistosomiasis. Int J Mol Sci 2020;21:1842. (c) Angeli A, Ferraroni M, Da'dara AA, et al. Structural insights into Schistosoma mansoni Carbonic Anhydrase (SmCA) inhibition by selenoureido-substituted benzenesulfonamides. J Med Chem 2021;64:10418–28.
- 11. (a) Ferraroni M, Angeli A, Carradori S, et al. Inhibition of *Schistosoma mansoni* carbonic anhydrase by the antiparasitic drug clorsulon: X-ray crystallographic and in vitro studies. Acta Crystallogr D Struct Biol 2022;78(Pt 3):321–7. (b) Angeli

- A, Ferraroni M, Carta F, et al. Development of praziquantel sulphonamide derivatives as antischistosomal J Enzyme Inhib Med Chem 2022;37:1479–94.
- Aspatwar A, Tolvanen MEE, Barker H, et al. Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology. Physiol Rev 2022;102:1327-83.
- Hooper PL, Swenson ER, Johnson RJ. Carbonic anhydrase inhibitors for the treatment of high-altitude hypoxemia. Am J Med 2019;132:e799-800.
- Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021;36:561-80.
- Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168-81.
- (a) Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond)) 2021;135:1233-49. (b) Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018;28:709-12. (c) Supuran CT. Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin Ther Pat 2018;28:713-21. (d) Ferraroni M, Angeli A, Pinteala M, et al. Sulfonamide diuretic azosemide as an efficient carbonic anhydrase inhibitor. J Mol Struct 2022;1268: 133672.
- 17. (a) Mishra CB, Kumari S, Angeli A, et al. Discovery of potent carbonic anhydrase inhibitors as effective anticonvulsant agents: drug design, synthesis, and in vitro and in vivo investigations. J Med Chem 2021;64:3100-14. (b) Mishra CB, Kumari S, Angeli A, et al. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: design, synthesis, in vitro and in vivo appraisal. Eur J Med Chem 2018;156:430-43. (c) Shukralla AA, Dolan E, Delanty N. Acetazolamide: old drug, new evidence? Epilepsia Open 2022;7:378-92. (d) Ciccone L, Cerri C, Nencetti S, et al. Carbonic anhydrase inhibitors and epilepsy: state of the art and future perspectives. Molecules 2021;26:6380.
- (a) Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem 2021;36:1702-14. (b) Mincione F, Nocentini A, Supuran CT. Advances in the discovery of novel agents for the treatment of glaucoma. Expert Opin Drug Discov 2021;16:1209-25. (c) Bonardi A, Nocentini A, Bua S, et al. Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: improving ligand/isoform matching and selectivity of action. J Med Chem 2020;63:7422-44.
- (a) Supuran CT. Anti-obesity carbonic anhydrase inhibitors: challenges and opportunities. J Enzyme Inhib Med Chem 2022;37:2478-88. (b) Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 2020;40:2485-565. (c) Muñoz W, Lamm A, Poppers D, et al. Acetazolamide promotes decreased consumption of carbonated drinks and weight loss. Oxf Med Case Reports 2018;2018:omy081. (d) Supuran CT. Carbonic anhydrases and metabolism. Metabolites 2018; 8:25.
- (a) Angeli A, Carta F, Nocentini A, et al. Carbonic anhydrase 20. inhibitors targeting metabolism and tumor microenvironment. Metabolites 2020;10:412. (b) McDonald PC, Chafe SC, Supuran CT, et al. Cancer therapeutic targeting of hypoxia

- induced carbonic anhydrase IX: from bench to bedside. Cancers (Basel) 2022;14:3297. (c) Chafe SC, Vizeacoumar FS, Venkateswaran G, et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv 2021;7:eabj0364. (d) Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018;27:963-70. (e) Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021;30:1197-208.
- 21. (a) Angeli A, Urbański LJ, Capasso C, et al. Activation studies with amino acids and amines of a β -carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri previously annotated as Staphylococcus aureus (SauBCA) carbonic anhydrase. J Enzyme Inhib Med Chem 2022;37:2786-92. (b) An W, Holly KJ, Nocentini A, et al. Structure-activity relationship studies for inhibitors for vancomycin-resistant Enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem 2022;37:1838-44. (c) Giovannuzzi S, Hewitt CS, Nocentini A, et al. Coumarins effectively inhibit bacterial α -carbonic anhydrases. J Enzyme Inhib Med Chem 2022;37:333-8. (d) Abutaleb NS, Elhassanny AEM, Nocentini A, et al. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzyme Inhib Med Chem 2022;37:51-61. (e) Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem 2021;13:1619-22. (f) Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis 2021;7: 1969-84. (g) De Luca V, Giovannuzzi S, Supuran CT, et al. May sulfonamide inhibitors of carbonic anhydrases from Mammaliicoccus sciuri Prevent antimicrobial resistance due to gene transfer to other harmful Staphylococci? Int J Mol Sci 2022;23:13827. (h) Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020;30:963-82.
- 22. (a) Angeli A, Velluzzi A, Selleri S, et al. Seleno containing compounds as potent and selective antifungal agents. ACS Infect Dis 2022;8:1905-19. (b) De Luca V, Angeli A, Mazzone V, et al. Heterologous expression and biochemical characterisation of the recombinant β -carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen malassezia pachydermatis. J Enzyme Inhib Med Chem 2022;37:62-8. (c) Supuran CT, Capasso C. A highlight on the inhibition of fungal carbonic anhydrases as drug targets for the antifungal armamentarium. Int J Mol Sci 2021;22:4324.
- (a) Bonardi A, Parkkila S, Supuran CT. Inhibition studies of the protozoan α-carbonic anhydrase from *Trypanosoma cruzi* with phenols. J Enzyme Inhib Med Chem 2022; 37:2417-22. (b) Urbański LJ, Angeli A, Mykuliak VV, et al. Biochemical and structural characterization of beta-carbonic anhydrase from the parasite *Trichomonas vaginalis*. J Mol Med (Berl) 2022;100:115-24. (c) Syrjänen L, Vermelho AB, Rodrigues IDA, et al. Cloning, characterization, and inhibition studies of a β -carbonic anhydrase from *Leishmania donovani* chagasi, the protozoan parasite responsible for leishmaniasis. J Med Chem 2013;56:7372-81. (d) Pal DS, Mondal DK, Datta R. Identification of metal dithiocarbamates as a novel class of antileishmanial agents. Antimicrob Agents Chemother 2015; 59:2144-52. (e) Pal DS, Abbasi M, Mondal DK, et al. Interplay

- between a cytosolic and a cell surface carbonic anhydrase in pH homeostasis and acid tolerance of Leishmania. J Cell Sci 2017;130:754–66. (f) Reungprapavut S, Krungkrai SR, Krungkrai J. *Plasmodium falciparum* carbonic anhydrase is a possible target for malaria chemotherapy. J Enzyme Inhib Med Chem 2004;19:249–56. (g) Krungkrai J, Krungkrai SR, Supuran CT. Carbonic anhydrase inhibitors: inhibition of *Plasmodium falciparum* carbonic anhydrase with aromatic/heterocyclic sulfonamides-*in vitro* and *in vivo* studies. Bioorg Med Chem Lett 2008;18:5466–71.
- 24. (a) Zolfaghari Emameh R, Kuuslahti M, Vullo D, et al. Ascaris lumbricoides β carbonic anhydrase: a potential target enzyme for treatment of ascariasis. Parasit Vectors 2015;8: 479. (b) Zolfaghari Emameh R, Barker H, Hytönen VP, et al. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasit Vectors 2014;7:403. (c) Zolfaghari Emameh R, Syrjänen L, Barker H, et al. Drosophila melanogaster: a model organism for controlling Dipteran vectors and pests. J Enzyme Inhib Med Chem 2015;30:505–13.
- 25. (a) Abbate F, Winum JY, Potter BV, et al. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with EMATE, a dual inhibitor of carbonic anhydrases and steroid sulfatase. Bioorg Med Chem Lett

- 2004;14:231–4. (b) Supuran CT, Clare BW. Carbonic anhydrase inhibitors. Part 57. Quantum chemical QSAR of a group of 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. Eur J Med Chem 1999; 34:41–50. (c) Gieling RG, Babur M, Mamnani L, et al. Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J Med Chem 2012;55:5591–600.
- Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem1971;246:2561–73.
- (a) Nishimori I, Minakuchi T, Morimoto K, et al. Carbonic anhydrase inhibitors: DNA cloning and inhibition studies of the alpha-carbonic anhydrase from Helicobacter pylori, a new target for developing sulfonamide and sulfamate gastric drugs. J Med Chem 2006;49:2117–26. (b) Zimmerman SA, Ferry JG, Supuran CT. Inhibition of the archaeal betaclass (Cab) and gamma-class (Cam) carbonic anhydrases. Curr Top Med Chem 2007;7:901–8.
- (a) Sarikaya SB, Gülçin I, Supuran CT. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Des 2010;75: 515–20. (b) Supuran CT. Carbonic anhydrase inhibitors from marine natural products. Mar Drugs. 2022;20:721.