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Abstract 

Urban travel exposes people to a range of environmental qualities with significant health and wellbeing impacts. Nev-
ertheless, the understanding of travel-related environmental exposure has remained limited. Here, we present a novel 
approach for population-level assessment of multiple environmental exposure for active travel. It enables analyses 
of (1) urban scale exposure variation, (2) alternative routes’ potential to improve exposure levels per exposure type, 
and (3) by combining multiple exposures. We demonstrate the approach’s feasibility by analysing cyclists’ air pollu-
tion, noise, and greenery exposure in Helsinki, Finland. We apply an in-house developed route-planning and exposure 
assessment software and integrate to the analysis 3.1 million cycling trips from the local bike-sharing system. We 
show that especially noise exposure from cycling exceeds healthy thresholds, but that cyclists can influence their 
exposure by route choice. The proposed approach enables planners and individual citizens to identify (un)healthy 
travel environments from the exposure perspective, and to compare areas in respect to how well their environmental 
quality supports active travel. Transferable open tools and data further support the implementation of the approach 
in other cities.

Keywords Environmental exposure, Active travel, Route choice, Air pollution, Noise, Greenery

Introduction
Environmental exposures are linked with diverse health 
and wellbeing impacts that shape liveability in urban 
areas [1–3]. Air pollution resulting from human activity is 
the single largest environmental health risk, with around 
400 000 premature deaths per year in Europe [4] and 91% 
of the global population lack access to clean air [5]. Other 
exposures such as noise [6], heat [7], toxic chemicals [8], 

or heavy metals [9] also have significant negative health 
impacts in urban areas. In contrast, some other daily 
exposures can support human health and well-being. 
Urban greenery, meaning urban parks, forests, and street 
trees, has been linked to positive impacts through vari-
ous pathways including reducing the harm of negative 
exposures, restoring mental capacities, and encouraging 
physical activity [10]. One of the main sources of daily 
exposure is everyday travel, which exposes people to 
multiple and dynamic environmental variables [11]. On 
a strategical level, access to safe, healthy, and sustainable 
urban transport is recognised among the UN’s Sustain-
able Development Goals [12] and is a key goal for urban 
and transportation planning [13]. However, mounting 
evidence from real life shows that we are still far from 
the strategic goals as the burdens of negative exposures 
and the opportunities for health-supporting positive 
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exposures resulting from travel are unequally distributed 
between areas, demographic groups, and travel modes [2, 
14–16].

Travel-related environmental exposures are especially 
relevant in the active travel context. Walking and cycling 
have well-known health benefits resulting from physi-
cal activity [e.g. 17], but those who walk or cycle are also 
more directly in contact with their surrounding environ-
ment and might therefore receive a higher exposure dose 
than those who use motorised modes of travel [18, 19]. 
Urban and transportation planning now recognises active 
travel as a key component in urban areas for improving 
the health of urban residents, arranging human mobility 
efficiently within limited urban street space, mitigating 
the environmental burden of transport and respond-
ing to climate change [20]. There is also more awareness 
among planners of  the negative health impacts of envi-
ronmental exposure, and consequently a growing need 
to identify areas in which exposures exceed safe levels for 
health [20]. The travel environment quality is particularly 
important for encouraging more active travel, as people 
are likelier to walk and cycle in environments that are 
attractive, pleasant, and safe [21–23]. Ensuring access to 
these environments helps to reduce the determinants of 
socio-spatial health inequalities [2].

Currently, the understanding of environmental expo-
sures during travel, the linkages between multiple and 
cumulative exposures, and their health and well-being 
impacts is still inadequate [11]. A large body of literature 
has examined environmental exposures from the residen-
tial perspective, but less attention has been directed to 
the exposure during daily travelling, even if it contributes 
a significant proportion of typical daily exposure [24–26]. 
It is documented that ignoring exposure from travel may 
lead to both over- and underestimations in exposure 
assessments, depending on contextual aspects [24, 26]. 
The knowledge gap in travel-related exposure assess-
ment is a result of several conceptual and methodological 
challenges. In this study, we focus on two methodologi-
cal challenges, which are identified by previous literature. 
These are the questions how to extrapolate travel-related 
exposure measures to the population level that is relevant 
for spatial planning [16, 27] and how to assess the asso-
ciations between multiple travel-related exposures at this 
level [28–30].

Extrapolation of travel-related exposure measures to 
the level of populations requires representative mobil-
ity data. They should show realised travel behaviour of 
people over a sufficiently long period and broadly cover 
different parts of the urban fabric to represent mobility 

structures. While many exposure studies have used for 
example GPS tracks [e.g. 19, 31, 32] or travel surveys 
[24, e.g. 33] for capturing mobility patterns, these types 
of datasets are rarely available with such spatio-tem-
poral coverage, which is needed for population-level 
analyses. In this respect, the rapid emergence and pop-
ularity of bike-sharing systems in many cities has pro-
vided new opportunities. These systems typically cover 
large territories of their cities and serve most of the 
year, producing as a by-product spatially representative 
mobility data on cycling for population-level assess-
ments [34, 35]. Similarly, advances in the collection of 
environmental data have provided potential to focus on 
less studied exposure types, for example on greenery 
and noise levels [36, 37]. Improved access to environ-
mental data has also provided opportunities to evalu-
ate how different travel-related exposure types might 
amplify or balance the impacts of each other [38]. In 
addition, the development of environmentally sensitive 
route-planning tools has supported population-level 
and multiple exposure assessments from travel by ena-
bling researchers to assess the individual exposure load 
from certain routes and compare them with alterna-
tively chosen routes [39–41].

Drawing from these advances, in this study, we pre-
sent a novel approach for population-level assessment 
of multiple environmental exposure from active travel. 
Our approach enables to (1) reveal the spatial distri-
bution of air pollution, noise, and greenery exposure 
based on realised cycling behaviour data at urban scale; 
(2) compare the potential to improve the exposure 
load by using alternative route choice, and (3) compare 
the spatial similarity of exposure-optimised routes to 
understand whether alternative route choice can yield 
multiple exposure benefits. These elements have sig-
nificant value for spatial planners, individual citizens 
and researchers as they help them to understand and 
mitigate negative health impacts from travel with indi-
vidual and collective action and to prioritise develop-
ment needs. The approach also helps to assess how well 
the environmental quality in different neighbourhoods 
supports active travel and to connect this information 
with realised travel behaviours of people. Transferable 
open tools and data employed by the approach further 
support the implementation in other cities. We demon-
strate the feasibility of the approach in Helsinki using 
an in-house developed Green Paths Software [42]. 
Finally, we discuss the implications of the findings and 
the applicability of the approach and outline steps for 
future research.



Page 3 of 21Willberg et al. International Journal of Health Geographics            (2023) 22:5  

Background
Air pollution and cycling
A large body of literature has examined the connec-
tions between air pollution exposure and cycling. Most 
studies focus on particulate pollutants such as  PM10, 
 PM2.5, UFP, PNC1 and Black Carbon, but exposure to 
gas pollutants such as Carbon and Nitrogen Oxides 
and Volatile Organic Compounds has also been studied 
[30]. In comparison to other travel modes, cyclists have 
consistently been found to inhale larger doses of pollut-
ants, as summarised by several reviews [30, 43–45]. The 
larger inhaled dose is largely a result of increased inha-
lation during cycling and longer trip times, since evi-
dence does not typically suggest higher exposure levels 
for cyclists. Many studies have found cyclists to be 
subjected to lower exposure levels, [43, 44] while a few 
studies have found that cyclists are subjected to simi-
lar exposure levels [19] or higher levels [46] of exposure 
to air pollution compared to motorised modes. How-
ever, significant methodological variations in exposure 
assessment and the heterogeneity of travel settings 
between the studies in the field still limit generalisable 
conclusions [43]. Results on short-term health impacts 
on pulmonary functions, cardiac functions, inflamma-
tion, and stress resulting from air pollution exposure 
remain mixed regardless of the study setting [47–50]. 
The studies examining long-term impacts often aim to 
estimate the net impact of air pollution exposure from 
cycling on mortality or morbidity [51, e.g. 52]. These 
studies generally agree that despite air pollution expo-
sure posing a significant health risk, the net benefits of 
cycling to health almost always outweigh the negative 
impacts of air pollution [3, 17, 51]. In relation to route 
choice, cyclists are keen on avoiding the most polluted 
cycling routes by choosing a less polluted route option, 
but there are differences between cyclist groups [53–
55]. Nevertheless, air pollution does not seem to have 
an impact on cycling frequency [33]. However, the per-
ception of air pollution exposure might differ from the 
measured dose with cyclists underestimating their real-
ised exposure [56, 57].

Noise and cycling
Despite the overall health effects of noise, exposure 
to noise during cycling has remained an understud-
ied topic [30]. Studies from Delhi, Montreal and from 
eleven Dutch cities found that the cyclists were exposed 
to excessive noise in these cities [58–60]. In one study, 
noise exposure of cycling was found to be the highest 
along major roads and downtown [31]. Compared to 

other travel modes, cyclists were found to be exposed 
to higher noise levels in some studies [61, 62]. However, 
due to the variety of methodologies and ways to meas-
ure noise exposure and travel details, as well as the small 
number of studies on noise exposure and cycling, strong 
conclusions cannot be drawn [30]. Noise does not seem 
to be a major obstacle to the overall propensity to cycling 
[30], but it has been found to have an impact on route 
choice. Cyclists in Germany and Austria were willing 
to travel on routes that were 6.4% longer to avoid traf-
fic impacts, including noise pollution [54]. Routes away 
from the traffic noise was also the most significant moti-
vator for the respondents in Vancouver, increasing the 
likelihood of cycling [63]. Cyclists may also perceive their 
noise exposure to be significantly lower than is measured 
[56, 57], but there are individual differences in the per-
ception of noise [64]. Understanding how noise exposure 
from cycling influences health and well-being in the short 
term has remained extremely limited. Buregeya et al. [49] 
found an association between the noise exposure and an 
increased heart rate, but the association became insig-
nificant when  PM2.5 was introduced to the model. At the 
population and city-level impact assessments, the bene-
fits of cycling have clearly outweighed the negative effects 
of noise from cycling trips [3, see the reviews by 17].

Greenery and cycling
Studies focusing on the linkages of greenery and cycling 
have mostly examined them from the perspective of 
cycling propensity and behaviour. The majority of studies 
find greenery to increase odds of cycling. In Barcelona, 
the amount of greenery near the study participants’ home 
or work location was positively associated with the com-
mute by cycling [65]. Cycling propensity was also posi-
tively correlated with eye-level greenery in Hong Kong, 
but not with the bird-eye view greenery [66] highlighting 
the impact of the greenery measurement techniques. A 
study from Milwaukee found a consistent positive asso-
ciation between the street tree cover and the levels of 
active travel with walking and cycling combined [67]. A 
comparison study from multiple European cities found 
that the residents of neighbourhoods with more trees 
were more likely to cycle for transport [21]. In Beijing, 
travel satisfaction of cyclists was positively correlated 
with the level of travel environment greenery [32]. How-
ever, the number of urban parks in a city was not linked 
with the cycling levels in an international study that 
included fourteen cities from ten countries [68]. In route 
choice, greenery seems to play a role for cyclists. Some 
cyclists from the study population in Seattle favoured 
routes with street trees in a GPS-based study [69]. Sim-
ilarly in Graz, cyclists were found to prefer routes with 
green and aquatic areas over the shortest possible routes 

1 Particulate Matter (PM), Ultrafine Particles (UFP), Particle Number Con-
centration (PNC).
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[70] while in Berlin, respondents consistently preferred 
routes with higher levels of greenery [71]. The presence 
of greenery has also been found to connect with longer 
travel time [72]. Compared to studies focusing on travel 
behavioural connections of greenery and cycling, the 
presence of travel-related greenery during cycling and 
its physiological and mental impacts have received mini-
mal attention. Focusing on the impacts of travel-related 
greenery, Cherrie et al. [73] and Zhang et al. [74], found 
a positive impact between the activity space exposure to 
green space and mental health in Edinburgh and Guang-
zhou respectively.

Multiple exposures and cycling
Only a handful of studies have investigated simultane-
ous exposures in the cycling context, mostly from the 
perspective of air pollution and noise. While most stud-
ies have suggested moderate to weak positive correlation 
between air pollution and noise exposure on bicycle trips 
[59–61, 75], some studies have found stronger positive 
connections [76]. The variety of evidence likely stems 
from contextual, behavioural and meteorological con-
ditions as well as a multitude of exposure measurement 
techniques [77]. To add complexity, cyclists’ perception 
may vary depending on the exposure. Ueberham et  al. 
[56] studied cyclists’ perception to PNC,2 noise, and heat 
exposure in Leipzig and found that cyclists underesti-
mated their PNC and noise exposure while heat exposure 
was estimated realistically. Marquart et al. [78] found in 
Berlin that green, blue and aesthetical landscapes con-
tributed positively to perceptions of air pollution and 
noise exposure. This multifaceted complexity in study-
ing multiple exposures and the difficulty of establish-
ing causal relations has likely contributed to the lack of 
studies focusing on the health and well-being outcomes. 
However, an interesting non-cycling specific study was 
carried out by Roberts and Helbich [79] who focused on 
the relationship between multiple environmental expo-
sures and depression symptoms along the participants’ 
residential location and daily mobility path. They found 
that exposure to green space near the residential address 
and along the mobility path was associated with a reduc-
tion in depressive symptoms, while blue space, noise, and 
air pollution had no association.

Data and methods
Data
Mobility
We used bike-sharing trip data from the local system to 
understand cyclists’ mobility in Helsinki, the capital of 
Finland. In a city with the population around of 630,000 

inhabitants, the bike-sharing system has been actively 
used [34]. The system had 242 docking stations in 2019 
and the area covered two-thirds of the city (see the exam-
ple bikes and a station in Fig. 1). The data provided by the 
local system operator (Helsinki Region Transport—HRT) 
included all 3.1 million cycle trips by 61,300 distinct 
users between April and October 2019. Considering the 
number of trips and the wide spatial coverage of docking 
stations, we considered the bike-sharing system to be a 
spatially representative proxy for all cycling activity in the 
system area. The spatial distribution of bike-sharing trips 
is shown in Appendix A. The data variables included the 
origin and the return station and the start and the end 
time of each trip. To add the spatial context to the trips, 
we used another dataset provided by Helsinki Region 
Transport, which included the coordinate information of 
the bike-sharing system docking stations.

Exposure
For the air quality data, we used an annual average Air 
Quality Index (AQI) raster layer (spatial resolution 
13 × 13 m) from Helsinki [80]. AQI is a composite index 
reaching from 1 to 5 (1 = good, 5 = very poor) and cov-
ering the concentrations of SO2, NO2, PM10, PM2.5, 
O3, CO and TRS,3 and which provides an overall char-
acterisation of the actual air quality in the Helsinki Met-
ropolitan Area. The Finnish Meteorological Institute 
(FMI) collects the raw data for the index at an hourly 
level through its monitoring network. The raw data is 
then coupled with the FMI-ENFUSER air quality model, 
which fuses historical measurement data, meteorological 

Fig. 1 Example bikes of the Helsinki bike-sharing system. Photo by 
the authors

2 Particle Number Concentration (PNC).

3 Sulphur dioxide (SO2), Nitrogen oxide (NO2), Particulate matter (PM), 
Ozone (03), Carbon monoxide (CO), Total reduced sulphur compounds 
(TRS).
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data, and GIS data on the environment to accurately rep-
resent air quality variation over the urban space and at 
fine scale [81].

The AQI index is health oriented. The values of each 
pollutant are compared to their class threshold values 
and the index at each hour is determined by the high-
est class, i.e., the worst performing concentrate [80]. 
With this, the AQI overcomes the challenge of using 
many individual pollutant variables while keeping health 
impacts relevant. In the annual data layer, the hourly AQI 
index values had been aggregated to represent the yearly 
average values. The Helsinki Region Environmental Ser-
vices, who is the developer and maintainer of the data 
together with the Finnish National Institute of Health 
and Welfare, provided the annual data.

The noise data consisted of a vector layer of averaged 
day, evening, and nighttime A-weighted equivalent con-
tinuous sound pressure level (Lden) decibel values (dB) 
from road and rail traffic collected at 10 × 10  m spatial 
resolution. The data was provided by the Finnish Envi-
ronment Institute [82] from 2017, and it had been col-
lected in accordance with the EU Environmental Noise 
Directive 2002/49/EC.

The greenery data consisted of a Green View Index 
(GVI) layer for Helsinki developed by Toikka et al. [83]. 
The GVI layer modelled for the street network indicates 
the proportion of green vegetation visible at each street 
segment (from 0 to 1). The greenery values are based on 
Google Street View panoramas collected between 2009 
and 2017 and sampled from every 20  m maximum dis-
tance, from which the street level greenery had been 
obtained with the MIT Treepedia deep learning algo-
rithm [84]. The approach on obtaining GVI values from 
street view imagery was first proposed by Li et  al. [85]. 
In areas where the street view images had not been avail-
able, the index had been supplemented with the regional 
land cover data from 2018 (HSY 2021) having the infor-
mation of over two meters tall trees in the area. Exam-
ple images of various GVI index classes from Helsinki are 
provided in Toikka [86]. The spatial distribution of AQI, 
average noise, and GVI in the study area are shown in 
Appendix B.

Methodology
To demonstrate the feasibility of our approach, we car-
ried out an exposure assessment in Helsinki, Finland (see 
the flowchart in Fig. 2). We used an in-house developed 
Green Paths Software, which finds exposure-optimal 
routes and provides information on exposure levels in 
Helsinki for walking and cycling based on air quality, 
noise, and greenery data [42]. To carry out the analysis at 
the population-level, we integrated spatially representa-
tive data on cycling to the software by using 3.1 million 

trips from the local bike-sharing system from 2019 and 
analysed the variation of three types of exposure both 
separately and together.

Exposure routing
Green Paths software [42] is a routing and exposure 
assessment tool. It is an open-source tool that has been 
built as a prototype for demonstrating path finding 
equipped with rich exposure metrics between selected 
origin–destination pairs. The software uses external 
exposure data on air quality, noise, and greenery (as 
described in 3.1) and applies least-cost routing with Dijk-
stra’s algorithm for route search. It uses OpenStreetMap 
walking and cycling street network data from the Hel-
sinki region with the pre-calculated exposure cost attrib-
utes that are assigned to the network edges. To support 
environmentally sensitive routing, the software applies an 
environmental impedance function (EIF) to the routing 
algorithm, which by default is based on travel distance. 
The EIF enables the calculation of exposure-adjusted cost 
values [Eq. (1)]

where Ce  is the total (composite) cost of the edge, Ct is 
the base cost of the edge that is proportional to travel 
distance, ce is an environmental cost coefficient and s  is 
an arbitrary sensitivity coefficient for assigning applica-
ble weight(s) for the environmental cost component. The 
additional environmental cost is thus proportional to the 
value of the environmental variable and travel distance. 
The dynamic sensitivity coefficient s determines how 
much weight is given to the environmental cost coeffi-
cient, and this way enables the software to find multiple 
alternative routes for a single origin–destination pair. 
For route finding, the software provides an application-
programming interface (API) where a user can input ori-
gin–destination pairs for routing requests and receive 
the shortest route and multiple alternative routes as the 
response that improve the trip exposure. Prior to finding 
routes, the application finds the nearest edges and nodes 
to the user-defined origin and destination locations. The 
complete technical documentation of the software can be 
found from Helle et al. [42].

Using the Green Paths API, we determined the short-
est and three exposure-optimal routes for all the pos-
sible bike-sharing origin–destination pairs in Helsinki 
(n = 58,322). The shortest path routing is a standard 
approach in transport studies, and the shortest routes 
provided a standardised basis against which to com-
pare the exposure-optimal routes. The exposure-optimal 
routing, on the other hand, provided a way to inte-
grate environmental variables into route optimization. 
The exposure-optimal routes were identified for the 

(1)Ce = Ct + Ct ∗ ce ∗ s
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origin–destination pairs by optimising air quality, noise, 
and greenery separately. The exposure-optimal route was 
defined as the route with the highest exposure reduction 
(air quality and noise) or increase (greenery) compared 
to the shortest route. For each exposure type and origin–
destination pair, we carried out the routings with eleven 
sensitivity coefficients [0.1, 0.5, 1, 2, 5, 10, 100, 1000, 
10,000, 100,000, and 1,000,000] since the varying spatial 
variation of the air quality, noise, and greenery required 
both smaller and higher sensitivity values. Because the 
different sensitivity coefficients resulted in multiple alter-
native routes for each exposure type, we compared the 

alternative routes against each other using their compos-
ite route cost, and with each exposure type selected the 
route with the lowest cumulative cost as the exposure-
optimal route [see Eq. (1)]. The examination of the rout-
ing results confirmed that none of the exposure-optimal 
routes for any origin–destination pair had used the high-
est sensitivity coefficient, implying that we had found the 
optimal route for every pair. In the route selection, we 
applied a condition for the maximum detour distance for 
exposure-optimal routes, which was set to 15% based on 
Pritchard et al. [87]. These authors concluded that most 
studies on the route choice of cyclists have found that 

Fig. 2 Flow chart of the analytical process
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cyclists are on average willing to make 10–20% detours 
compared to the shortest route. Therefore, the exposure-
optimal routes for all the comparative analyses between 
the shortest and the exposure-optimal routes were 
selected among the routes with less than a 15% detour.

Route and trip analyses
After identifying the shortest and the exposure-optimal 
routes for every origin–destination pair, we weighted the 
pairs with the bike-sharing system trip data to integrate 
information on realised cycling flows to the analyses. To 
map the spatial variation of exposures measured with 
AQI, noise, and GVI values, we created Voronoi poly-
gons of the bike-sharing docking stations to identify the 
probable catchment area of each station and aggregated 
the exposure values to the polygons. Each Voronoi poly-
gon represents the area from which the given station in 
the middle of the polygon is closer than any other sta-
tion measured by Euclidean distance. We aggregated 
the average AQI, noise, and GVI exposure of all the trips 
based on the departure station to the polygons. Next, we 
compared the average exposure of the shortest and each 
exposure-optimal route and analysed the differences. We 
mapped the distribution of exposure values of all shortest 
and exposure-optimal routes and divided the exposure 
values into classes to measure the potential to improve 
exposure with a route choice in bike-sharing trips. We 
also analysed the distribution of the detour distances of 
the exposure-optimal routes to understand the distance 
trade-off in exposure improvement.

To understand the linkages of the AQI, noise, and GVI 
values in the bike-sharing routes, we further compared 

the spatial overlap of the exposure-optimal routes. With 
each origin–destination pair, we created a small buffer 
(5  m) for the shortest and the exposure-optimal route. 
Then, by overlaying the route buffer polygons, we calcu-
lated the proportion of the common route area between 
each exposure pair (AQI-noise, AQI-GVI, noise-GVI). 
Finally, we statistically analysed the linear correlation 
(Pearson) of the average AQI, noise, and GVI values 
along the bike-sharing routes to understand the relation 
of the exposure values at the route level. The data pro-
cessing and the analytical workflow was carried out in 
Python 3.7 and the map visualisations in QGIS 3.14.

Results
Spatio‑temporal distribution of exposures in bike‑sharing 
trips
We found cycling trips in the study area to have good 
air quality (mean 1.91 AQI) (Table  1) with the mean 
value being below 2.0 AQI, which is the threshold for 
‘good air quality’ [80]. However, the cyclists are exposed 
to high noise (mean 65.5 dB) and encounter low green-
ery (mean 0.17 GVI, i.e., 17% of visible greenery) dur-
ing their cycling. On almost all  the routes, the average 
noise exceeds the EEA 55 dB threshold for high daytime 
environmental noise [6]. Within the 15% detour dis-
tance threshold, an air-quality-optimal route is available 
for only 26.2% of the cycling trips, while a noise-optimal 
route is available for 78.3% and a greenery-optimal route 
for 47.4% of the trips. The results also demonstrate the 
value of including realised bike-sharing trip information 
in the analyses. For all the exposure types, the exposure 
improvement brought by the optimal route choice is 

Table 1 Descriptive exposure statistics (non-trip-weighted and trip-weighted) of bike-sharing trips in 2019 in Helsinki

AQI air quality index, GVI green view index

*Under 2.0 is the threshold for good air quality by national and EU standards [80]

**Over 55 dB 2.0 is the EEA threshold for high daytime noise [6]

Route Bike‑sharing routes (non‑trip‑weighted) Mean exposure change of the 
optimal route (when available) 
compared to the shortest 
route

Mean 
distance 
(m)

Mean 
additional 
distance 
(m)

Mean  AQI* Mean 
noise 
(dB)**

Mean GVI Share of routes where 
exposure‑optimal route is 
available within 15% detour 
distance

Shortest 1.91 66.6 0.22 N/A N/A 6211 N/A

AQI-optimal 1.89 64.1 0.22 54.3 − 0.02 (AQI) 6268 57

Noise-optimal 1.88 58.2 0.24 94.9 − 8.3 (dB) 6825 614

GVI-optimal 1.89 63.5 0.29 84.2 0.08 (GVI) 6547 336

Bike-sharing routes (trip-weighted)

Shortest 1.91 65.5 0.17 N/A N/A 2067 N/A

AQI-optimal 1.90 64.0 0.18 26.2 − 0.01 (AQI) 2083 17

Noise-optimal 1.89 59.8 0.18 78.3 − 5.4 (dB) 2224 157

GVI-optimal 1.91 64.7 0.19 47.4 0.03 (GVI) 2116 50
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lower when origin–destination pairs are trip-weighted 
instead of considering all the routes having equal impor-
tance. For greenery, the effect is the most significant, 
since the average trip-weighted exposure is 10 percent-
age points lower compared to the non-trip-weighted 
exposure.

Figure 3 and the related difference maps (Appendix 3) 
show the spatial variation of air pollution, noise, and 
greenery exposure of the departing cycling trips over 
the study area. The values are aggregated to the catch-
ment areas of the bike-sharing system docking stations. 
Throughout the area, air pollution exposure along the 
shortest routes and along the exposure-optimal routes 
has little variation (AQI varies on shortest routes from 
1.83 to 1.97, on exposure-optimal routes from 1.83 to 
1.94 AQI). Compared to air pollution, spatial variation 
of noise exposure is more evident (from 51.3 to 72.3 dB) 
with the highest noise exposure concentrations along 
the shortest routes located in central Helsinki. For the 
exposure optimal paths, the noise exposure is similarly 

distributed as it is along the shortest routes, but with 
consistently lower average noise values (from 49.9 to 
67.6  dB). The greenery exposure, varying from 0.05 to 
0.41 GVI along the shortest routes, is higher when start-
ing the trip from the northern and eastern parts of the 
study area, while departing from the urban core results 
consistently in low green exposure (less than 0.2 GVI). 
The spatial variation of greenery exposure for the expo-
sure-optimal routes is similar to the shortest routes (from 
0.06 to 0.46 GVI) with an exception occurring in the 
northern and eastern parts of the study area. These routes 
not only have a higher greenery exposure on the shortest 
routes, but also possess higher potential for increasing 
greenery exposure on GVI-optimal route choice.

Potential for exposure improvement with a route choice
The potential for improving environmental exposure 
whilst cycling in Helsinki is largest for noise reduction 
(Fig. 4). The impact of route choice for exposure improve-
ment shows significant potential for noise reductions, 

Fig. 3 Spatial variation of average trip exposure to air pollution, noise, and greenery aggregated to the bike-sharing station catchment areas. 
Catchment area represents the area, in which the given station is closer than any other station measured by Euclidean distance. The maps on the 
left side show the variation for the shortest routes, the maps on the right side show the spatial variation for the exposure-optimal routes over the 
study area. The black dots on the map show the locations of bike-sharing docking stations
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with non-trip-weighted exposure decreasing noise an 
average of −  8.3  dB. The average non-trip-weighted 
potential for exposure improvement is also relatively 
large for greenery, being eight percentage points (0.08 
GVI). However, when the routes are weighted by the 
number of cycling trips, the potential for both noise 
reduction and greenery increase is smaller (−  5.4  dB 
and 0.03 GVI). For noise, the potential is still substantial. 
Route choice does little to improve either the trip or non-
trip-weighted air pollution exposure, with an average 
decrease of only − 0.01 and − 0.02 AQI respectively. The 
trip-level statistics on the potential of route choice to var-
ious exposure classes add to these findings (Appendix 4). 
Of the selected AQI classes, the change in time spent in 
the “AQI > 2” class appears largest, but is still small with 
an average decrease of only 0.6 min/trip, which is 4.3% of 
the average trip time. For noise exposure, the improve-
ment potential is larger. The exposure optimal path 
reduces the noise exposure most to the “noise > 65  dB” 
class, which cyclists can decrease − 3.1 min/trip on aver-
age, which is 23.4% of the typical trip duration. For visible 
greenery, the average improvement potential is moderate 
with the largest increase of 1.1 min/trip to the “GVI > 0.2” 
class (i.e.,> 20% of visible greenery), which is 7.4% of the 
total trip time.

To understand the potential of route choice in expo-
sure improvement better, we analysed the detour dis-
tances between the shortest and the exposure-optimal 
routes and especially in relation to the 15% detour dis-
tance threshold that we used in the comparative analyses 
between the route options. Figure  5 shows that cyclists 
can reach the maximal air quality improvement in almost 
all origin–destination pairs (99.9%), both non-trip-
weighted and trip-weighted, with no more than a 15% 
detour distance. However, as described earlier, the poten-
tial for AQI reductions is generally small in cycling trips 
in Helsinki and the proportion also includes those routes 
for which there is no alternative exposure-optimised 
route. The distribution of the detour distance for visible 
greenery is similar to air quality. In most origin–destina-
tion pairs (80.5%), cyclists can reach the maximal green-
ery increase within the 15% distance threshold limit and 
the proportion is even higher when the routes are trip-
weighted by the cycling trips realised (96.0%). For noise 
exposure, the distribution is different. The route with the 
maximum noise reduction is available within the 15% 
detour distance threshold only in 16.9% of the non-trip-
weighted, and in 37.0% of the trip-weighted origin–desti-
nation pairs. In longer detour distances, the curve begins 
to bend, implying that additional exposure gains of longer 
routes become smaller.

Fig. 4 The distribution of air pollution, noise, and greenery exposure values for all bike-sharing system routes along the shortest and the 
exposure-optimal route. Non-trip-weighted distributions are shown on the left and trip-weighted on the right
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Similarity of the exposure‑optimal routes
We further analysed the similarity of the exposure opti-
mal cycling routes, both in terms of the shared route 
proportion and the correlation of exposure values. A 
few general trends can be observed in relation to the 
spatial similarity of the routes (Fig. 6). First, few areas in 
the study area, located in the Eastern Helsinki, consist-
ently have a high proportion of the shared route between 
the air quality, noise, and greenery-optimal routes. This 
means that mostly in these areas it is possible to opti-
mise all three exposures at once during cycling trips. In 
other words, in most parts of the study area, cyclists who 
want to improve their exposure must choose whether 
to emphasise air quality, noise, or greenery exposure. 
As the air quality exposure is more or less equal across 
the study area, the emphasis is more relevant in choos-
ing routes that optimise noise or greenery. Secondly, air 
quality and greenery-optimal routes are more like each 
other compared to noise-optimal routes. On average, air-
quality-optimal routes have 55.8% of the route distance 
in common with the greenery-optimal routes and 40.7% 
for the noise-optimal routes. When the origin–destina-
tion pairs are trip-weighted, the common share increases 
to 72.8% and 56.4% with greenery and noise, respectively. 
However, a significant reason for the higher commonal-
ity of air quality and greenery-optimal routes is the lack 

of alternative routes for these exposures (Appendix  5). 
This means that in many OD-pairs, there are few alterna-
tives to the shortest route within the 15% detour distance 
threshold to improve the air quality and greenery expo-
sure, while more alternatives exist for noise.

The linear correlations between the route exposure 
values indicate logical connections between the selected 
exposures. Along the shortest routes the correlation 
between the AQI and noise values is positive and strong 
(R = 0.75) whereas between the AQI and GVI values, and 
the noise and GVI values the correlation is negative and 
less strong (R = − 0.46 and − 0.41, respectively) (Fig. 7). 
This means that when the air pollution increases, noise 
also increases, while the amount of visible greenery 
decreases. For the air-quality-optimal routes, the con-
nection stays similar, as the correlation with the noise 
values is positive and strong (R = 0.69) and negative and 
less strong with the greenery values (R = − 0.56). For the 
noise-optimal routes, the correlation between the noise 
and AQI values is strong and positive (R = 0.71) and 
between the noise and GVI values moderate and nega-
tive (R = −  0.39). For the greenery-optimal routes, the 
correlation of GVI with the AQI and noise values is nota-
bly stronger compared to the shortest routes (R = − 0.68 
and R = − 0.67 respectively), which further points to the 
direction that greenery increases connect with lower 

Fig. 5 The distribution of detour distances (%) of the exposure-optimal routes compared to the shortest routes for all bike-sharing system origin–
destination pairs. On the left, the charts show the distribution for non-trip-weighted routes, in the middle, the distribution for the trip-weighted 
routes is shown, and on the right, the improvements in average route exposures are plotted against the proportional detour distances. The bars 
display the detour distance distribution of all alternative exposure routes without any distance threshold, while the black dotted lines display the 
15% detour distance threshold that we used in the comparative analyses in this study
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noise and air pollution in Helsinki. The shapes of the 
regression plots indicate that while noise and air pollu-
tion increase together linearly, average greenery plateaus 
at levels around 0.15 GVI (i.e., 15% of visible greenery) 
even if noise pollution or air pollution increase. At the 
other end of the greenery distribution, the decrease of 

the air pollution and noise levels seems to plateau when 
GVI reaches 0.4. 

Discussion
The increased availability of spatial data and the emer-
gence of tools for environmentally-sensitive route plan-
ning have provided new opportunities for exposure 

Fig. 6 Average proportion of shared route between air quality, noise, and greenery-optimal routes (trip-weighted) over the study area. The 
common shares by route are aggregated to the bike-sharing station catchment areas
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research and urban studies. As demonstrated by this 
study, the integration of these data and tools enables 
researchers and planners to carry out population-level 
analyses on the spatio-temporal distribution of various 
types of environmental exposure and to identify areas 
where travellers’ exposure exceeds safe levels. This has 
a significant value for the efforts to mitigate large nega-
tive health impacts of daily travel, promote active travel, 
and provide equal access to healthy travel infrastructure 
in cities. The value of our approach is also underlined 
by the increased understanding how travel satisfaction 
and attractiveness of travel environments play a key role 
in travel decisions [23, 88]. Conceptually, approaches 
like ours are a step towards giving a greater emphasis to 
the positive utility of travel as well as to the restorative 
qualities of the travel environment. Only more recently, 
has there been a growing interest toward these factors 
in transportation research and planning, in which the 
endeavour for travel time minimisation has typically pre-
vailed [89–92]. Our approach also directs more attention 
to natural environment qualities as contributors of good 
travel environments as most walkability and bikeability 
studies have been more focused on the impact of built 
environment [e.g. 21, 93, 94].

The findings of our Helsinki case study show that 
the noise exposure of cyclists in Helsinki significantly 
exceeds the official guidelines throughout the study area. 
This is in line with the previous literature, which found 

cyclists to be exposed to excessive noise levels in large 
cities [59, 60]. For the air pollution exposure, the average 
levels in almost all our routes were within the good air 
quality category. The air quality levels likely illustrate the 
characteristics of Helsinki, which is among the least pol-
luted cities in Europe [95]. While similar guidelines for 
the urban greenery are currently lacking, MIT Treepedia 
[96] provides a greenery comparison of 31 selected global 
cities contextualising our values. In the comparison, the 
greenery levels vary from 0.09 to 0.36 GVI, with the aver-
age being 0.20 GVI, which places the average greenery of 
cycling trips in our study (0.17 GVI) at the lower end of 
the spectrum.

These results also demonstrate the need to include data 
on realised travel behaviour to exposure measures. With 
each of the three exposure types, the potential to improve 
exposure load with alternative route choice appears 
smaller in Helsinki when the routes are weighted by real-
ised mobility data. In our study area, especially greenery 
exposure is a good example of this. While Helsinki as a 
whole is situated at the upper end in the international 
greenery comparison (median 0.32 GVI, Toikka [86]), the 
greenery is mostly located outside the urban core. Since 
the majority of bike sharing trips that we used as a proxy 
for cycling occur in the urban core areas, these cyclists 
encounter low greenery despite the higher total greenery 
in the city. While there is some uncertainty in how well 
the bike-sharing trips represent overall cycling patterns, 

Fig. 7 The relationship between air pollution, noise, and greenery values for bike-sharing system routes. On the left, the relationship along the 
shortest routes is displayed and on the right the relationship along the exposure-optimal routes. The exposure values are aggregated to the mean 
over the x-axis, and the 95% confidence interval is displayed as a line. In addition, the Pearson correlation coefficient is shown
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these systems provide useful data on realised travel 
behaviour for active travel-oriented exposure assess-
ments. This is because of their ubiquity in cities, typically 
large coverage areas, good temporal coverage, and popu-
larity among citizens [34].

In respect of the impacts of alternative route choice, 
we show that it can be an effective way for cyclists to 
improve their travel-related exposure with a modest 
increase in travel distance. However, the importance 
of route choice significantly varies both spatially and by 
exposure type. In our study area, the exposure-optimal 
routes provided considerable potential for noise reduc-
tion for cyclists, but only a little for improved air pol-
lution or greenery exposure. While our result might be 
sensitive to the local context, they follow previous stud-
ies that have found route choice to be a functional way to 
mitigate air pollution and noise exposure while walking 
or cycling [97, 98]. Obviously, environmental exposure is 
only one of the many factors that cyclists’ may want to 
optimise in their route-choices. Previous literature has 
extensively studied important built environment fac-
tors behind route choices [e.g. 21]. However, the impact 
of natural environment factors is less studied. Integrat-
ing such variables into walkability and bikeability indices 
holds potential for further understanding, which kind of 
urban travel environments attract walking and cycling.

Our results on the interlinkages between the three 
exposure types revealed that trip-level air pollution and 
noise exposure seem to follow each other in Helsinki 
while greenery exposure is negatively, but less strongly, 
correlated with the other two exposure types on cycling 
trips. Some previous studies have found similar evidence 
on the relation of air pollution and noise [60, 76], but also 
that even high noise or air pollution exposure can be per-
ceived positively near green or aesthetic landscapes [78]. 
Capturing these types of spatial linkages between multi-
ple exposures can help in understanding the co-existence 
and mutual dependence of various environmental quali-
ties, being a step toward assessing their cumulative health 
impacts, which are currently little known [11].

There are some limitations in the proposed analytical 
approach. Firstly, in the absence of real route information, 
we modelled the use of the shortest routes by cyclists. 
We acknowledge that individual differences in route 
preferences exist, which adds spatial uncertainty to the 
results. However, the shortest path routing is a standard 
approach in transport modelling. The modelled shortest 
routes provided a standardised basis for the comparative 
route analysis, showing the true effect of informed route 
choice in exposure optimisation. Secondly, common to 
the environmental exposure studies, a lack of temporal 
data is another source of uncertainty. We used the best 
available annual average layers on each exposure, but the 

annual layers might flatten daily, monthly, and seasonal 
variation, thus affecting our results. For example, the 
air quality levels may be higher in the springtime due to 
higher levels of road dust, or the noise levels might have 
significant hourly variations. Furthermore, the green-
ery levels only describe the situation during the time of 
the year when the trees have leaves and weather at the 
time of street-view image collection might influence the 
greenery values. However, as our approach is intended to 
model aggregate patterns and spatial variation in travel-
related exposure over a long period of time and at popu-
lation level, the impact of these temporal fluctuations is 
likely weaker. Thirdly, we created the catchment areas 
for the bike-sharing stations using Euclidean distance, 
not network distance. While this adds some uncertainty, 
the benefit of this approach was its lightness, which sup-
ports the applicability to other contexts. Euclidean and 
network catchments also have typically high mutual cor-
relation [99]. Finally, a robust understanding of the health 
and wellbeing impacts of various greenery levels encoun-
tered during travel and measured with GVI is still mostly 
lacking from existing literature, which limits our conclu-
sions on the importance of cyclists’ greenery exposure.

To advance the research field further, there is a need 
for more detailed exposure measures to improve the 
exposure estimates and the sensitivity of route plan-
ning tools. Low-cost portable exposure sensors could 
provide spatially and temporally more precise informa-
tion on the variation of air quality and noise levels, for 
example inside the street canyons and over the course 
of the day [100]. In addition, there is a need to advance 
open data practises for better availability of compara-
ble mobility and environmental data. This would also 
facilitate the inclusion of less studied exposure types 
such as greenery or heat to exposure assessments, as 
well as comparative analyses between cities. For exam-
ple, in our study area, more health-relevant pollut-
ants could be added to the AQI [101]. Better exposure 
measures for their part would facilitate research on the 
health and wellbeing outcomes related to travel-related 
exposures. Currently, few studies have linked the expo-
sure estimates to measured health outcomes [11]. 
Further research on the importance of route choice is 
also needed. It could help to understand short-term 
and long-term health impacts of environmentally 
favourable routes in various contexts, but also to gain 
information on which exposures different travellers 
prefer to avoid or to increase if given the choice and 
the necessary exposure information. Finally, it is cru-
cial to advance understanding on the equity of travel-
related exposure between areas and socio-demographic 
groups. Our study demonstrates how the travel-related 
exposure of cycling trips may significantly vary over the 
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urban area. Linking this information to socio-economic 
information is needed to support planning for the pro-
vision of equitable access to healthy travel environ-
ments for everyone.

Conclusions
This study provides an analysis framework to measure 
multiple forms of environmental exposure during cycling 
at population-level. The proposed approach provides 
a novel contribution to the environmental exposure lit-
erature. Specifically, it contributes to understanding 

of urban scale variation and linkages of multiple expo-
sures, as well as the potential of route choice in improv-
ing travel-related exposure of cycling. Since cycling and 
walking often use the same networks, the approach may 
be applicable to active travel more broadly, which high-
lights its value. Reliance on open sources tools and data 
also increases transferability to other cities. In all, the 
analysis framework supports cities in their efforts to miti-
gate the negative health effects of travel while increasing 
the share of active travel.

Appendix 1

See Fig. 8

Fig. 8 The count of departing bike-sharing trips by the bike-sharing docking station catchment area in 2019 in Helsinki. The catchment areas are 
delineated with Voronoi polygons
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Appendix 2

See Fig. 9

Fig. 9 The distribution of Air Quality Index (AQI), noise and Green View Index (GVI) values over the study area
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Appendix 3

See Fig. 10

Fig. 10 The spatial variation in opportunities to improve air quality, noise, and greenery exposure with a route choice in cycling trips. The values, 
which are aggregated to the bike-sharing station catchment areas, represent the average difference (trip-weighted) in air quality, noise, and 
greenery exposure between the shortest route and the exposure-optimal route. The black dots on the map show the locations of bike-sharing 
stations
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Appendix 5

See Fig. 11

Abbreviations
API  Application programming interface
AQI  Air quality index
CO  Carbon monoxide
EEA  European Environmental Agency
EIF  Environmental impedance function
FMI  Finnish Meteorological Institute
GVI  Green view index
GPS  Global positioning system
Lden  The A-weighted, Leq (equivalent noise level) over a whole day
NO2  Nitrogen oxide
O3  Ozone
PM2.5  Fine particulate matter with a diameter of 2.5 µm (μm) or less
PM10  Coarse particulate matter with a diameter of 10 µm (μm) or less
PNC  Particle number concentration (PNC)
SO2  Sulphur dioxide
TRS  Total reduced sulphur compounds
UFP  Ultrafine particles (UFP)
UN  United Nations
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