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Motor Imagery Classification for Brain
Computer Interface Using Deep
Convolutional Neural Networks

and Mixup Augmentation
Haider Alwasiti and Mohd Zuki Yusoff , Member, IEEE

Abstract—Goal: Building a DL model that can be trained
on small EEG training set of a single subject presents an
interesting challenge that this work is trying to address.
In particular, this study is trying to avoid the need for
long EEG data collection sessions, and without combin-
ing multiple subjects training datasets, which has a detri-
mental effect on the classification performance due to the
inter-individual variability among subjects. Methods: A cus-
tomized Convolutional Neural Network with mixup augmen-
tation was trained with ∼120 EEG trials for only one subject
per model. Results: Modified ResNet18 and DenseNet121
models with mixup augmentation achieved 0.920 (95% Con-
fidence Interval: 0.908, 0.933) and 0.933 (95% Confidence
Interval: 0.922, 0.945) classification accuracy, respectively.
Conclusions: We show that the designed classifiers re-
sulted in a higher classification performance in comparison
to other DL classifiers of previous studies on the same
dataset, despite the limited training dataset used in this
work.

Index Terms—EEG, deep learning, BCI, stockwell
transform.

Impact Statement—Mixup augmentation with modified
Convolutional Neural Networks could be trained with ∼120
EEG trials for only one subject per model, effectively miti-
gating the inter-individual variability of brain computer in-
terface classification.
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I. INTRODUCTION

A FTER the invention of the Electroencephalogram by Hans
Berger in 1924 [9], the interest in using the electrical

brain signals (EEG) for control has been very popular for many
decades. However, in the last three decades, the research proved
that communication and control using brain waves is possible.
EEG can be modulated by the thinking process [6], [38], which
has been leveraged for brain computer interface applications
(BCI) [5], [15]. With motor imagery BCI, by the imagination of
the movement, the system is able to detect that imaginary pro-
cess [38]. However, robust and highly accurate BCI systems are
yet to be developed, due to the extremely weak and noisy brain
waves that are correlated with the different thinking process of
the human brain [7].

Recently, deep learning (DL) has been attempted to classify
MI-BCI signals. DL classifiers, in comparison to the traditional
shallow ML classifiers, are less affected by the curse of di-
mensionality. Tabar et al. [35] proposed a CNN with stacked
auto-encoders (SAEs) that has been trained on time-frequency
maps from Short Time Fourier Transform (STFT) of EEG sig-
nals. They reported 0.75 average classification accuracy on nine
subjects with a training time of 0.3 h. Schirrmeister et al. [32]
trained two-layers shallow CNN classifier, five-layers deep CNN
and a 31-layers ResNet. The shallow CNN achieved higher per-
formance (mean classification accuracy 0.74) by a few percents
over the deep CNN methods on a public dataset with frequency
range of 0–38 Hz. An improvement in the classification accuracy
has been achieved by combining the BCI Competition IV-2a
public dataset with their own dataset (frequency: 0–125 Hz; 20
subjects; 1000 trials per subject) to reach 0.84 average accuracy
with 1 h training time. Despite that EEG shows 1/f power
spectrum distribution, which makes it difficult to have a good
SNR for frequencies more than 60 Hz, the study showed that
gamma waves (40–125 Hz) were encoding useful information
for MI-BCI and effectively enhanced the classification perfor-
mance, since physiologically, 60 to 100 Hz EEG frequency band
is known to be increased in amplitude with movement execution
and is correlated with movement-related information [12], [16],
[29].

Therefore, employing gamma wave features can potentially
enhance the classification accuracy. However, only recently, with
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the advent of deep learning methods, gamma waves have been
incorporated more frequently. This is likely due to the tradeoff
between the potentially small classification improvement due to
gamma wave features utilization, and the detrimental effect of
increasing the number of features without increasing the training
dataset size. Therefore, since classical ML models are more sus-
ceptible to the curse of dimensionality, avoiding the gamma wave
features resulted in better performance. However, DL models
could mitigate the increase in feature space dimensionality even
without increasing the training size.

Our contributions in this work are the development of the
first, to our knowledge, CNN classifier that is able to converge
and classify EEG signals with a small number of training
samples for only single subject per model, effectively solv-
ing the issue of inter-individual variability of MI-BCI EEG.
Mixup augmentation has been utilized for the first time for
MI-BCI classification. Others have attempted this task using
CNNs, but needed substantially larger training dataset in com-
parison to what could be achieved in this work, in part be-
cause the augmentation techniques that are commonly used
with CNNs are not applicable to EEG spectrograms. We show
that with mixup augmentation, we can counteract the lim-
ited dataset issue, without sacrificing the performance of the
classifier.

II. MATERIALS AND METHODS

A. Data Preprocessing

The EEG signal of each user was segmented into 5 seconds
epochs. Each epoch begins one second before starting the im-
agery event trial and lasts for four seconds. Fig. 1 demonstrates
a plot with 22 epochs of the C3 channel of subject 22. In
Fig. 1(a), the upper panel demonstrates the amplitude plot for
all the epochs. The color bar indicates the EEG amplitude of the
signal recorded in C3, y-axis stands for the epochs/trials, x-axis
for the time in seconds. The lower panel shows the mean over
trials (bold signal) and the gray shadow is the standard deviation
over trials. The dotted line remarks the onset of the event where
the target shown on the screen. Fig. 1(b) shows the average
PSD a single epoch for the time segment 0 to 4 s, and Fig. 1(b)
demonstrates the average PSD of the same epoch for the time
segment −1 to 0 s (the baseline segment). Common average
reference spatial filter has been applied to the raw EEG signals,
where the average of all channels montage was subtracted from
the EEG channel of interest.

Each epoch was converted into 64 spectrograms, which are
showing the time-frequency representation of the EEG power
over time for the frequency range of (2–78 Hz; y-log scaled) for
each EEG channel. To increase the signal to noise ratio, we have
adopted a baseline correction for all trials. Basically, this was a
spectral subtraction method that is commonly used for reducing
background noise in speech signals [11]. The stationary noise
was estimated from 1 s period baseline before the beginning of
the imagery movement. The spectral power plot was normalized
by the logratio referred baseline method, where the power spec-
trum was divided by the baseline mean power and taking the log
of the result.

Fig. 1. C3 channel’s plots of the subject 22. (a) Upper panel: Am-
plitude plot for all epochs. The color bar indicates the EEG amplitude,
y-axis stands for the epochs, x-axis for the time in seconds. Lower
panel: the bold signal is the mean over trials and the gray shadow is
the standard deviation over trials. The dotted line remarks the onset of
the event where the target shown on the screen. (b) Average PSD of a
single epoch for the time segment 0 to 4 s. (c) Average PSD of the same
epoch for the time segment −1 to 0 s (the baseline segment).

Stockwell Transform has been shown, in a previous study, as
an effective EEG preprocessing method for MI-BCI classifica-
tion [4], [5]. The discrete time Stockwell Transform is expressed
as follows: Let f = mΔF , α = pΔF and t = nΔT , where f is
the frequency, t is the time, N is the total samples count, ΔF

is the sampling frequency, α is the Gaussian window width and
ΔT is the sampling interval, then:

Sx(nΔT ,mΔF ) =

N−1∑

p=0

X[(p+m)ΔF ] e
−π p2

m2 e
j2pn
N (1)

The Gaussian window width α of the Stockwell Transform
controls the tradeoff for the spectral and temporal resolution,
and empirically we found that a width of 0.6 had the best perfor-
mance for this study. Fig. 2 demonstrates a sample of a Stockwell
Transform plot. The frequency axis has been log-transformed
to put more weight on the mu (8–12 Hz) and the beta rhythms
(18–25 Hz) which are physiologically correlated with movement
or imagination to move the limbs [21].

B. Convolutional Neural Network

A modified ResNet18 model was used for this project.
Other model architectures have been attempted. However,
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Fig. 2. EEG channel C3 log freq-scaled Stockwell power spectrogram
of 1 trial (left hand).

only DenseNet121 performed better than ResNet18. The
DenseNet121 model has been modified similarly, reaching a
total number of 11,164,547 parameters. Both models performed
better with transfer learning from ImageNet pretrained weights;
therefore, all reported results used pretrained weights. The ar-
chitecture of the DenseNet121 model is demonstrated in Fig. 3.

The network is optimizing the DataLoss function in each
iteration of the training. Therefore, in each iteration the training
takes a small step to modify the weights of the CNN encoders
in a way that decreases the loss. We have observed that a small
part of the gradients during training will diverge, and clipping
gradients into 0.1 helped to improve the accuracy. An optimum
weight decay has been found by grid search and 0.1 yielded the
best value for both CNN models. Weight decay is considered
as one type of L2 regularization method which has been used
to enhance generalization performance of neural networks and
decrease overfitting [18]. With this regularization term, the loss
function is expressed by:

Loss(w, x) = DataLoss(w, x) +
1

2
c ‖w‖2 (2)

where x is the mini-batch, w is the model weights and c is
the weight decay constant. During gradient descent, the model
weights were updated in each iteration by:

w := w(1− κc)− κ
dLoss(w, x)

dw
(3)

where 1
2 c ‖w‖2 is the L2 penalty term and κ is the learning

rate. Therefore, the weight decay is encouraging all the model
weights to be scaled down and proportionally decaying toward
zero. However, recently with the common use of Batch Normal-
ization in DL models [17], the effect of weight decay on training
CNN models when used with Batch Normalization is poorly
understood [40]. Batch Normalization is counteracting the effect
of scaling down model’s weights since the Batch Normalization
is generally making its output invariant to the scaling effect of the
previous layer’s output. Nevertheless, it is still used as a useful
trick to decrease overfitting and improving model’s accuracy.
It is speculated that instead of the L2 regularization effect, its

Fig. 3. Modified DenseNet121 model architecture.

action when used with BN is more likely on preventing the
decay of effective learning rate over time. Also, by maintaining
a higher effective learning rate over time, it leads to better
generalization [40].

One of the main challenges in training the models was the lim-
ited dataset. DL models typically need a large amount of data for
training. Data augmentation is commonly used to expand small
and medium-sized datasets. It is a synthetic process that creates
more data items by combining or changing the characteristics
of the existing data items to encourage the classifier to correlate
the unchanged characteristics with the trained classes and ignore
those randomly changing characteristics in the dataset. For im-
age data classification problems, this is performed by randomly
rotating the image items, random light changes, random Gaus-
sian blurring (to emulate lens effects), random resizing, random
cropping, or copping out and other visual effects [25]. For audio
spectrograms, typically random noise or echo is mixed with
data items to emulate different environments, filtering or pitch
shifting [30], [34]. However, for EEG spectrograms, all these
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augmentation methods are not useful, not even those typically
used for audio spectrograms since the EEG background noise
cannot be easily replicated to be mixed with the EEG signal.
Furthermore, the inter or intra individual variation of the EEG
signals is highly stochastic and unpredictable. Therefore, we
have adopted mixup augmentation, a powerful augmentation
technique that alleviates all the limitations of the common
augmentation methods. Mixup augmentation implemented at
training time to generate augmented images by assigning a
random weight λ for the 2 data items to be mixed up.

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj (4)

where (xi, yi) and (xj , yj) are 2 randomly chosen items
from the training dataset, and λ ∼ Beta(σ, σ) for λ ∈ [0, 1],
σ ∈ (0, inf). We have chosen σ = 0.4 like what has been sug-
gested in [20], to follow Beta distribution. Following this Beta
distribution means that there is a high probability that λ is close
to either 0 or 1, which means most of the mixed up image comes
from one of the 2 data samples.

III. RESULTS

A. Performance of the Classifiers

The training time needed for training each model was more
than 10 hours. In order to check as much as possible on refine-
ments, the first 10 subjects have been combined and used for
fast experimentations to estimate the refinements’ improvement
on validation accuracy. Later, after checking all the refinements,
the test accuracy of both models were estimated on the entire
dataset of 109 subjects and reported as the average accuracy of
109 subjects, by one subject per model method, on the best col-
lection of refinements and model design.This approach worked
as a protection against overfitting by holding out a substantial
portion of the dataset during the experiments of refinement and
parameter tuning.

By using Mixup augmentation, the model’s accuracy im-
proved from 0.74 to 0.83. With 0.1 weight decay, the accu-
racy improved further in comparison to the model refinements
without using any weight decay, resulting in 0.85 accuracy.
Moreover, stacking the spectrograms and eliminating the back-
ground resulted in 0.88. Finally, to test the models by using
only one subject per model on the entire dataset, the classifier
could achieve 0.920 (95% CI 0.908, 0.933) and 0.933 (95%
CI 0.922, 0.945) average classification accuracy with ResNet18
and DenseNet121 models, respectively. This is clearly showing
that the model could mitigate the inter-individual variability
and could achieve higher classification performance despite the
smaller dataset. The normalized confusion matrices of both
models are plotted in Fig. 4.

B. Ablation Study

Table I shows the refinements that have been carried out
throughout the experiments. Each refinement has been added
to the previous model settings. If the refinement improved the

Fig. 4. Normalized confusion matrix of ResNet18 and DenseNet121
models.

performance, it was used in all following steps. If the refine-
ment effect was detrimental, the refinement was dropped and
we proceeded to apply the following refinement to the best
previous model settings. Finally, the highest classification ac-
curacy was achieved by having the following: DenseNet121
with a customized head, mixup augmentation, 1 subject per
model, frequency range 2–78 Hz, Adam optimizer, concatenated
spectrograms, WD 0.1 and gradient clipping 0.1.

C. Performance Comparison

Fig. 5 shows the performance of both ResNet18 and
DenseNet121 models on the entire 109 subjects. DenseNet121
model could classify more subjects with perfect accu-
racy. However, a statistical two-sample t-test between both
model’s performance showed no significant difference (p-
value > 0.05). Table II shows the estimation of the difference
of means and the descriptive statistics of the two prediction
samples.
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TABLE I
REFINEMENTS STACKING AND THEIR EFFECT ON CLASSIFICATION
ACCURACY. THE REFINEMENT WAS DROPPED, WHENEVER THE

CLASSICIFICATION WAS NOT IMPROVED, AND THE NEXT REFINEMENT WAS
ADDED TO THE BEST PREVIOUS MODEL

Fig. 5. Histogram of the classification accuracy of ResNet18 and
DenseNet121 models.

TABLE II
TWO-SAMPLE T-TEST AND CONFIDENCE INTERVAL (CI) FOR RESNET18 AND

DENSENET121 MODELS ACCURACY

Furthermore, Fig. 6 shows the comparison of DenseNet121
and ResNet18 performance on each subject. The graph shows
multiple subjects where ResNet18 outperformed DenseNet121
model’s performance, despite that the overall performance of
DenseNet121 was better. The cubic polynomial fit in the figures
does not refer to any trend, since the x-axis is the subject number,
which is a nominal variable and there is no intrinsic ordering.

Fig. 6. DenseNet121 and ResNet18 performance with cubic poly-
nomial fit with subjects sorted in descending order according to
DenseNet121 performance for clarity.

Nevertheless, the fit makes it clear that the performance of
DenseNet121 was strongly correlated with the performance of
ResNet18.

The Pearson correlation between both models is considered
a high degree correlation (ρ = 0.735) [24]. Moreover, the sta-
tistical significance test of the Pearson correlation between
DenseNet121 and DML performance was estimated as highly
significant (p < 0.001). The strong correlation is suggesting
that the two models were classifying the EEG signals in a
similar approach. This is further supported by the statistical
insignificance of the two-sample t-test for the difference of
means as shown in Table II. In light of these findings, ensem-
bling between DenseNet121 and RenseNet18 classifiers can be
considered for future work, since there were multiple subjects
where the ResNet18 classifier was performing better, despite
that the average accuracy of all subjects with DenseNet121
classifier was higher. Furthermore, the correlation study be-
tween DenseNet121 and ResNet18 demonstrates that there were
consistently low performing subjects, which may support the
previous studies that reported 10-30% of healthy subjects were
not able to modulate their EEG for BCI control [1], [2], [3], [10],
[22], [23], [27], [28], [31], [33], [37].

IV. DISCUSSION

EEG channels that are mostly associated with motor imagery
in EEG studies are usually C3, C4, and Cz. Some studies
also chose to add other central EEG channels such as FC3,
FC4, C5, C6, CCP3, and CCP4 [26], [39]. Feature selection
to decrease the number of features used for training a model
is important in traditional ML methods due to the curse of
dimensionality [13]. In particular, Hughes Phenomenon shows
that when the number of features increases after a certain point,
the performance of the model’s classification decreases provided
that the dataset size is fixed. Hence, most BCI research selected
only the most correlated frequency range and EEG channels.
DL models are less affected by the curse of dimensionality. Few
theories show how neural networks in general and deep learning,
in particular, are more immune to larger feature space [14].
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Manifold hypothesis and Sparse coding theory suggest that the
high dimensional feature space manifold actually sits on top
of lower-dimensional feature space embedded in the higher
dimensional manifold. Hence, DL neural networks are good
at exploiting the pattern in the high dimensional feature space
and reducing it to a lower-dimensional manifold. This made it
possible for DL models to use more features than most of the
previous classical machine learning BCI studies; hence all the
64 EEG channels and more frequency range spectrums have
been included. In our experiments, including only 15 central
EEG channel spectrograms either with the same resolution of
the spectrogram images or with twice higher resolution resulted
in 0.12 less accuracy and 0.11 respectively in comparison to
including all the 64 channels. The improvement of accuracy
shows clearly that the CNN models have trained useful features
outside the traditional features that are used for BCI. These
findings have been supported by several neurophysiological
studies that reported the involvement of brain regions other than
the regions covered by the central EEG channels [8], [19], [36].

The evidence to date demonstrates that the adaptation of
CNS to control BCI using direct output from the cerebral cor-
tex is indeed possible, albeit imperfect. BCI systems are less
smooth, less accurate, and with more trial-to-trial variability.
While robust BCI systems are desirable, it does not need to be
perfectly reliable to attain wide adoption. There are few medical
conditions like locked-in syndrome or other types of physical
disabilities, where imperfect BCI is still helpful to enable them
to attain some control in certain environments.

V. CONCLUSION

In this study, we propose a novel approach to classify MI-EEG
signals using Stockwell Transform, two custom CNN classifiers
and mixup augmentation trained on small training sets of only
one subject per model, despite that DL models typically need a
large amount of data for training. Building a DL model that
can be trained on an extremely small EEG training set of a
single subject presents an interesting challenge that this work
is trying to address since neither long EEG session recording
from a single user is feasible due to user fatigue, nor collect-
ing EEG dataset from multiple users is desirable due to the
inter-individual variability that leads to decrease of classification
performance.

Stockwell Transform has been employed to preprocess EEG
epochs due to its advantage in comparison to the other common
EEG preprocessing methods with its implicit phase-normalized
frequency bands. This renders the transformed EEG signals
in the frequency domain distortion-free, which yields a better
representation of the EEG features in the frequency domain.

Moreover, mixup augmentation has been utilized for the first
time in BCI EEG classification. It has a unique approach of aug-
menting the dataset in a way that is more suitable for EEG signals
in comparison to the other common augmentation methods. This
is due to the inter and intra individual variations of the EEG
signals which are highly stochastic and unpredictable that hinder
the current commonly used augmentation methods to mimic
such variability. We showed that mixup augmentation used with

CNN models enhanced the performance of the classification
significantly, suggesting that this augmentation technique is an
important tool to be introduced for EEG classification methods.

Thus, the methods and findings described in this study are
a first step to encourage the utilization of mixup augmenta-
tion and Stockwell Transform preprocessing methods in BCI
applications or in any other EEG signal classification problem
in general, especially when the training samples are extremely
limited.

SUPPLEMENTARY MATERIALS

Additional figure and more details are included in supplemen-
tary materials. There is an elaboration on the current literature
and details of the methods along with an extensive discussion of
the results.
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