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Abstract—Individuals, restaurant owners and health organi-
zations are all interested in accurate information about food
intake, but collecting the information in sufficiently automated
way remains a practical challenge. In controlled environments,
such as lunch line restaurants, the food intake can be estimated
by measuring the portions upon purchase and separately mon-
itoring the food waste, but even this requires often complicated
setups such as repeated weighing of the plate after every meal
component. In this work we explore the feasibility of using a
combination of ceiling-mounted cameras and computer vision for
estimating both the types and weights of individual food items the
customers are taking in a lunch line restaurant. We describe the
imaging system and weighing-based sensing for obtaining ground
truth training data, and develop and evaluate deep learning
models for the computer vision tasks. We demonstrate high
accuracy especially in meal type identification and hence validate
the feasibility of the approach. We release the annotated dataset
for further development of improved methods.

Index Terms—self-serve lunch line, cafeteria, multispectral

I. INTRODUCTION

Monitoring nutritional intake is important for both food
intake studies and nutritional assessment and guidance work.
However, current methods are laborious and subjective, limit-
ing clinical inference and counselling capabilities [1]. Recent
advances in automatic image-based food estimation have not
yet been applied to long-term care facilities limiting nutritional
assessment and counselling [2]. Here, we describe a novel
tool for accurately estimating food intakes and dietary studies
knowing that besides public health organizations food intake
accurately can be important for customers and the restaurants.
Interested customers may want to track the nutritional values
of their food portions, such as vitamins and minerals, carbo-
hydrates, proteins and fats. The restaurants want to minimize
food waste, develop data-driven food production control, and
offer health data as a service to the customers. The restaurants
also want to predict customer behavior and to monitor how
well the food they serve fills dietary recommendations pro-
vided by public officials. Similarly, public health organizations
need accurate data about consumption statistics to better un-
derstand the behavior of individuals and their choices, required

also as basis for developing recommendations for improving
health and well-being at the population level.

Obtaining data about food intake is, however, extremely
difficult in practice. In nutritional research slow and laborious
data collection methods consisting of manual weight measure-
ments, self-reporting questionnaires, and 24h dietary recall
methods are used [3]. These techniques require high level
of commitment, and consequently are not feasible solutions
for the information needs of ordinary citizens or restaurant
owners. Furthermore, misreporting and under-reporting are
common in dietary assessment [4]–[6]. Making information
on food intake available for restaurant owners and consumers
requires considerably more automated means, where the effort
required from the individual is minimized.

The best systems for estimating food intake are today
based on weighing individual portions to allow measuring
nutritional values and food intake, such as the service in use
in the Flavoria test restaurant in Finland [7]. In self-service
lunch restaurants, where the customer compiles the meal by
selecting free amounts of individual food items available, this
process is still tedious and unreliable since the plate needs to
be measured several times (after each food item) to obtain
information about individual food items and the customer
needs to pay attention to measuring the weight properly. In this
work we investigate the possibility of adding a more automatic
camera-based system to complement (and possibly eventually
replace) the one based on weighing, using computer vision for
detecting meal types and weights from automatically captured
images while using the weighing-based system for obtaining
the ground truth labels for training the computer vision model.

There is broad range of research on computer vision meth-
ods for food identification [8]–[12] using different kinds of
imaging setups from mobile phones to multi-camera setups,
but studies on practical systems remain limited. The closest
work is im2calories [13] that studied calorie prediction in
lunch restaurants where portions can be assumed to be of
fixed form, weight and calorie content (e.g. burger in a fast
food restaurant), so that predicted food items can directly be
mapped to weights and calorie content based on a static menu.
Compared to the previous research, our main contribution is
considering learning tasks where the plate content is more
diverse due to the customer deciding the specific food items978-1-6654-6694-3/22/$31.00 ©2022 IEEE
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Food item True Pred.
American salad 58 41
pickled cucumber slice 29 34
rice 125 136
chicken leg 227 232
grated carrot 77 0
carrot-cabbage 0 45
tomato-onion 32 0
tomato 0 58

Fig. 1. Example image of a lunch plate imaged with the system, true weights
(in grams) and weight predictions provided by the computer vision model
(ResNet101+Menu). While the model confuses some visually highly similar
classes (indicated by the two colored pairs of lines), these mistakes would be
largely insignificant for the customer because the nutritional content of the
confused classes (e.g. ’grated carrot’ and ’carrot-cabbage’) is also similar.

and their amounts, and especially in providing labeled ground
truth information for the weights of all items.

We collect ground truth data using the existing system in
the restaurant’s lunch line, while imaging the portions (at the
end of the lunch line) with RGB cameras. We then train deep
neural network for (a) identifying which foods the user has
on their plate, and (b) estimating their weights. We solve the
estimation tasks using a convolutional neural network built
on the ResNet architecture [14] and study alternative ways
of accounting for the daily menu (a list of items available
during each day). We achieve high accuracy in recognizing
individual food items and demonstrate that also the weights
of the items can be estimated to a degree despite using
simple 2D imaging with heavy occlusion. An example input
image and predictions are shown in Figure 1, illustrating the
complexity of the vision problem and the accuracy of the
predictions. We make the dataset, consisting of roughly 1,700
images along with corresponding 7,890 separate food weight
annotations, publicly available to encourage others to develop
the computational methods further.

II. BACKGROUND AND PREVIOUS WORK

The study was conducted in the Flavoria research restaurant.
The restaurant includes multiple sensors and scales from tray
identification to individual meal identification throughout the
lunch line. The customer can also input additional data, such
as drink contents via a mobile application, which links the
customer and the meal trays together for a continuous view on,
for example, nutritional values and biowaste amounts. Finally,
the restaurant’s biowaste stations can be used to infer the
discarded food based on the previously measured food content
identified by the customer’s meal tray [7], and preliminary
studies on using imaging for that have been conducted [15].

Computer vision offers a natural approach for analysis of
food images, and several studies primarily using deep learning
methods have been conducted; see [16] for a recent overview.
However, all of the existing approaches have shortcomings,
especially in the sense that they consider simplified problem
instances and the solutions are not directly applicable for open-
ended lunch restaurant lines. The previous approaches either

• use ground truths approximated by human experts instead
of measured ones, with the ground truth describing only
the total energy content of the whole plate [8];

• focus on addressing challenges caused by low-cost imag-
ing (mobile and wearable cameras in bad lighting) [10];

• require fiducial markers such as QR codes, fingers or rice
grains to estimate scale [17] [12]; or

• laboriously manually crop the images to get separate
foods, and food items are pre-weighted by the staff [12].

Data availability is a severe challenge. Even the largest
relevant data sets are small and simplified, such as the 96 im-
age data of approximately 850 separate foods of pre-weighted
portions used by [12], or the dataset of approximately 9,000
RGB-D images by [8] made up of only 60 different plates of
food and the ground truths of only the total energy content
of the plate. Larger food image datasets exist, such as the
data of approximately 12,000 images by Myers et al. [13]
that provides segmentation masks for every separate food on
the plates, but they do not provide any data about weights
or calories. Similarly, the Food-101 data [18] with more than
100,000 images only contains class information.

III. METHODS

A. Problem formulation

Our task is to estimate all of the food types and their weights
based on a single RGB image of the whole plate, and for
training this model we have information on all types and their
weights obtained by weighing the plate after each type. In
addition, we have information about the daily menu, the subset
of items available on the day the plate was imaged.

We use deep neural networks for solving the identification
and weight estimation problems. Given the collection of N
pairs of images Xn and ground truth vectors yn, we train
a neural network ŷ = f(X,w) parameterized by w to
approximate y for new images X . The images X are in our
case tensors of (3 × 512 × 512) whereas the outcomes are
C-dimensional vectors where C is the number of food items
(130 in our experiments). For classification y is a binary vector,
whereas for weight prediction it is a real vector.

a) Identification: The problem for food identification is
an instance of multi-label classification; the output vector
y indicates presence of all possible food categories, so that
multiple labels can be simultaneously present. We solve this
using a network that outputs C values, one for each class,
with logistic function mapping the outputs to probability of
presence of that class. The model is trained using weighted
binary cross entropy (BCE) summing the loss

−
C∑

c=1

1

Nc
BCE(yc, logistic(zc))

over individual data points. Here Nc is the number of instances
of that class, yc is the true label (binary indicator for the
cth class) and zc is the output of the network before the
final logistic transformation. The classes are weighted with
inverse frequency 1

Nc
to encourage the model to pay attention



to all classes for our somewhat imbalanced data; without this
weighting the overall accuracy would be substantially lower
due to the network focusing on the most frequent classes.

b) Weight estimation: The weights are predicted for all
food items separately, so that y ∈ RC

+ has weights for all of
them. The model is trained by minimizing mean absolute error
(again summer over individual data points)

C∑
c=1

∥yc − zc∥

where yk are now the ground truth weights. We directly
train for absolute error instead of the more commonly used
mean square error since we want to emphasize accuracy for
typical portions rather than penalising heavily predictions for
untypical portions with very low or high weight.

B. Network architecture

1) ResNet architecture: We address both tasks with the
same basic neural network architecture, changing only the
final layers and loss to match the specific task, as explained
above. Our network uses ResNet [14] as the backbone archi-
tecture, as one of the most popular architectures for computer
vision problems. The ResNet architecture makes it easier to
train deeper convolutional networks by implementing residual
learning. Models building on ResNet have also been previously
used in food imaging tasks [11], [16], [19], [20].

The backbone consists of either 51 or 101 convolutional
layers where the layers are organized as residual blocks
chained one after each other. Each residual block consists of a
convolutional layer followed up by a ReLU (Rectified Linear
Unit) activation function max(0, x), followed by a second
convolutional layer and another ReLU activation. Finally the
output of the second ReLU is summed together with the origi-
nal input of the residual block. This summation of the outputs
with the inputs facilitates residual learning in the residual
blocks, since each block can either implement the identity
function f(x) = x + 0 simply by passing the original input
as is, or apply some transformation f(x) = x + g(x) where
g(x) is some non-zero non-linear function implemented by the
two convolutional layers and ReLUs. In addition, Batch Nor-
malization [21] is applied after each convolutional layer and
before the ReLU activation function as in the original ResNet
implementation. The backbone outputs a 2048×W

32×
H
32 tensor

where W and H are the spatial width and height dimensions
of the original input. This tensor is flattened to a vector of
2048 elements by taking the mean over the spatial dimensions
for each channel, and then passed through two fully connected
layers added after the backbone. The final output of the model
is again a vector of 2048 elements.

2) Accounting for the daily menu: The total number of food
items (classes) considered in this work is fairly high, 130 after
filtering out classes with under 10 images, especially relative to
the amount of training examples (1,700). The number of food
items available during a specific day, however, is considerably
smaller, on average around 11 for the filtered data. To account

for the menu information already during training, we consider
two alternative ways of using the information.

The first method, called MenuConcat, concatenates the
menu information as a C-element binary vector m encoding
the presence of each item in the menu with the hidden state
of the network, before the final fully connected layers. This
simple encoding provides the network information about the
available items, but does it in somewhat naive manner.

The second method, called MenuProd, is designed to
directly incorporate binary side information about the menu
into any convolutional later. We denote by F the number of
channels in a convolutional layer of the ResNet architecture.
We then introduce a learnable C ×F matrix W and compute
a menu weighting vector

p = mW ∈ R1×F

to obtain scalar weights representing the relative importance
of the different channels for this particular menu. We weight
the channels with these weights, before passing them forward
to successive layers. This way of accounting for the menu has
the advantage that the menu information can directly zero out
feature channels (by multiplication with zero) that are only
needed for prediction of items not currently available. The
menu information could in principle be applied to any layer
in the convolutional architecture, but based on preliminary
experimentation we only apply it on the final layer.

We also evaluate the model without accounting for the
menu, calling it NoMenu, keeping the two fully connected
layers after the backbone ResNet for this model as well.

C. Training

We use stochastic gradient descent for optimization, with
learning rate of 0.01 for food classification and for 1.00 for
weight estimation, chosen based on preliminary experimen-
tation. Both models are trained for 4,000 epochs and use a
validation set for selecting the best performing intermediate
model. For classification we use the ’Micro F1’ metric and
for weight prediction the ’True items’ metric as the validation
criterion; see Section IV-D for details on the metrics.

We use two common computer vision techniques to improve
the accuracy: pre-training and data augmentation. The model
is pre-trained with images from the ImageNet data [22] to
improve learning of the convolutional filters. Our own data
is then augmented by rotating each image by a random
degree, and by horizontally flipping each image with a 0.5
probability. These transformations are applied independently
on each image on each epoch, to maximize the total variation
seen during training. The validation and test is performed only
on the original images, without augmentation.

IV. DATA

A. Data collection

Our data was collected from volunteer customers in the
Flavoria research restaurant at Finland, during approximately
five weeks. The data consists of (a) the images X of plates
taken at the end of the self-service line and (b) ground truth



Fig. 2. Camera system used for imaging the plates.

information y obtained by weighing the plate after each food
item picked up by the customer. The physical lunch line
stations consist of RFID readers and weighing sensors along
with customer displays to show lunch and weighing info. Trays
are equipped with RFID tags for tracking.

For data collection we define a lunch line session, which
stores information from each person’s unique visit. The session
can include, for example, meal types and weighings or waste
data. Session data is collected/networked to a central server for
storage from the physical devices in the lunch line. A session
begins when a tray is first identified by any of the weighing
systems in the lunch line. The session is set to expire at about
45 minutes after last identified action, so that trays can be
reused after washing by any new customer. Waste points in
the lunch line [7] expire the session almost immediately as
we assume the customer will take a new tray or leaves the
restaurant. Each used lunch component station adds weight
information to the session along with what food component
was in the station, set by the restaurant staff.

The plates were imaged with cameras mounted over the cash
register area. We used separate RGB and infrared (IR) cameras
illustrated in Figure 2, and pair of CCTV IR (840nm) emitters
at a distance to avoid plate reflections. The IR and RGB
cameras were spaced as near each other as physically possible.
The plate was illuminated by existing LED-strips with some
natural daylight coming through the windows. Despite imaging
with both RGB and IR cameras, we eventually used only the
RGB images for analysis since the information provided by the
IR camera did not seem useful in preliminary experimentation,
due to reasons explained in Section VI.

B. Preprocessing

The processing pipeline from raw measurements to the
model inputs is shown in Figure 3. The weighing data and
images are first paired based on temporal proximity, by
comparing the image acquisition time with the session time
stamps. The image data is then processed by extracting the
plates. We use Hough circle transform to find the plates that
are of near identical size due to constant imaging distance. The
image is then automatically cropped to a rectangle the sides
of which are the same length as the diameter of the plate,
and the resulting corner’s pixels outside the circular plates
are zeroed out as can be seen in the black corner areas in
Figure 3. Images for which the plate could not be identified
were discarded. All of the images were then manually checked

Cash register
pictures

Prediction

Training

Plate identification & cropping

Meal composition data from weighing 
     sensors in the lunch line

Fig. 3. Process flowchart. We gather images using the setup in Figure 2
and weights using existing series of scales. We automatically extract the plate
from the original image containing the whole tray, and train the computer
vision models only on the plate images. Privacy-related verification and data
removal steps are not visualized here.

for any credit cards or other personal information, with images
containing those removed from the dataset.

The weighing process is manual and error-prone, and hence
the ground truth weights were processed to reduce the errors.
All measurements below 9 grams were rounded to zero due to
likely being erroneous readings. In addition, for each food item
separately we computed the mean and standard deviation of
weights and replaced the weights of individual measurements
exceeding the mean by more than two standard deviations
with the mean. This was done do correct for failed readings
where the customer is e.g. leaning to the scale. Figure 4 shows
how the true weights are fairly concentrated around the mean
and hence this preprocessing step is unlikely to influence real
readings significantly. While training the models we further
normalized the weights of individual items with the median
weights of each class to standardize them, but the results are
evaluated for the real weights.

The weight measurements for customers who had not iden-
tified themselves using the Flavoria app [7] were deemed to
be too untrustworthy/noisy to be included automatically, and
so they were only used for building the validation set by hand
picking good quality photos with seemingly valid weights.
Finally, food classes present in fewer than 10 images in the
training dataset were completely discarded as there would not
be enough information to learn a reasonable model for them.

C. Dataset

The dataset FlavoriaFoodWeight1700 is made publicly
available at https://doi.org/10.5281/zenodo.5850856 to encour-
age follow-up research and for validating the results. Some
meal names have been translated to English compared to
the the ones used in our results for easier data validation.

https://doi.org/10.5281/zenodo.5850856
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Fig. 4. Illustration of weight distributions and preprocessing. For some foods
(hawaiian steak) the weights are concentrated on a narrow range, whereas
for free-form foods (paella) the distribution is broader. Weights exceeding the
mean by more than two standard deviations were assumed erroneous.

The non-cropped raw dataset (but with sensitive pictures
removed/censored) is available on request, and for some
validation and test samples we also have segmentation masks
(not used in this study).

D. Learning setup and evaluation

Data for customers who used app identification is randomly
split into a development and a test set, and the development set
was further split into training and validation data. We use 1,716
images for training, and 104 and 193 for validation and testing,
respectively. Some of the trays were photographed twice, both
when the tray entered the checkout area and when the customer
checked in with their personal QR code. For these cases both
images were put in the same side of the development/test split.

We evaluate classification using F1-score, the harmonic
mean of precision and recall. F1-score is more descriptive than
accuracy, since prediction of a vector of zeroes (no food items)
would here have very high accuracy due to average plate only
having on average four food items out of the 130 possible ones.
We use both macro and micro averages of F1, corresponding
to average F1 over all classes and average over the F1 for the
combination of all problems pooled together.

The weight prediction is evaluated using mean absolute
error and compared against the baselines of (a) predicting the
median weight of each food type (estimated from the training
data) and (b) predicting all weights to be zero. The former
is a strong baseline that for some food items (e.g. a sausage)
is accurate due to their uniform weight, whereas the latter
provides a simple yardstick as the error becomes the median
weight itself. We evaluate the metric in three different ways
to investigate the behavior of the model in more detail:

• All: Error for all 130 classes
• Menu: Error for the items appearing in the daily menu
• True items: Error for the true items on the plate

Note that median weight predictions evaluated only for the
true items is extremely strong baseline that relies on oracle
providing information on the items present.

TABLE I
CLASSIFICATION RESULTS

Model name Macro F1 Micro F1
ResNet50 + MenuProd 0.874 0.871
ResNet50 + MenuConcat 0.888 0.881
ResNet50 + NoMenu 0.890 0.870
ResNet101 + MenuProd 0.907 0.881
ResNet101 + MenuConcat 0.902 0.886
ResNet101 + NoMenu 0.897 0.879
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Fig. 5. Number of samples per class and the corresponding F1 score for each
class for test set using the ResNet101 + Menu classification model.

V. RESULTS

A. Food recognition

We evaluate six model variants for solving the classification
task, combining two ResNet backbones and three ways of
accounting for the daily menu (one of which ignores it)
described in Section III-B. The results are reported in Table I.
The deeper model, ResNet101, outperforms the more shallow
model, ResNet50, and incorporating the menu information
improves the accuracy. Figure 5 illustrates the results on the
level of individual food items, showing that for many of the
classes we reach essentially perfect accuracy. For some of the
smaller classes, however, the accuracy remains lower.

B. Weight Estimation

Table II shows the results for weight prediction, again
for the six different network architectures. In addition, the
test set errors are illustrated at the level of individual food
items in Figure 6. We also evaluated an additional model
variant that first predicts the items using the classifier model
and then outputs median weight for each predicted class,
which provides the best overall accuracy when measuring
accuracy over all 130 food items. For the more relevant metrics
measuring accuracy over the items in the daily menu or the
ones the customer had on the plate, the direct weight prediction
using the deeper ResNet with MenuProd is the best.

The differences between the model variants are, however,
small, and they all solve the problem approximately as well for
practical purposes. We reach approximately 15g error per food
item over all items available in the menu, which is dramatic
reduction from the baselines of 36g (zero prediction) and 84g
(median prediction). Even when evaluating the accuracy only
on the items the customer took (True items) the accuracy



TABLE II
WEIGHT ESTIMATION RESULTS

Proposed models
Model name All Menu True items
ResNet50 + MenuProd 1.32 14.83 25.85
ResNet50 + MenuConcat 1.49 15.11 26.47
ResNet50 + NoMenu 1.60 15.22 28.477
ResNet101 + MenuProd 1.306 14.708 24.750
ResNet101 + MenuConcat 1.497 15.215 25.865
ResNet101 + NoMenu 1.579 14.742 26.873
Classifier + MenuProd + median 1.285 14.745 25.781

Baselines
Zero prediction 3.164 36.451 93.071
Median prediction 7.263 83.667 23.329
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Fig. 6. Weight prediction errors by ResNet101 + MenuProd for individual
classses, with two alternative scalings and baselines indicated by dashed lines.
The top plot shows prediction errors divided by median weight of each class,
and the line refers to error that matches the median weight. The bottom plot
normalizes the errors with the standard deviation of each class, and the line
indicates error made by naive mean predictor.

is close to the strong oracle that knows in advance which items
the customer took and predicts their median weight, which is
strong indication of accuracy.

VI. DISCUSSION

The proposed neural network architecture achieved high
accuracy in estimating presence of individual food items,
and in particular has F1 score above 0.65 for all but two
classes. The performance is likely already sufficient for partial
automation of food category identification and the accuracy
could be increased further by collecting a larger training
data, or by merging classes with high visual similarity and
nutritional content (see Figure 1 for an example).

We can also predict weights of individual food items rela-
tively well, but conditional on already knowing which items

are on the plate the result is similar to simple mean prediction.
This can be explained by two reasons: (1) For many of the food
items, the weights are fairly closely concentrated as illustrated
in Figure 4 and hence it is difficult to outperform the mean
prediction, and (2) The task of estimating the weight from 2D
image is fundamentally ill-posed due to severe occlusion, and
has only been solved in earlier works by either using depth-
based imaging or simplified learning problems with fixed-
weight food items as discussed in Chapter II.

The results reported here are for RGB images alone, and
hence provide information about the practical value of the
imaging configuration that is easiest to set up. We also
experimented with infrared imaging as shown in Figure 2, but
terminated the data collection after observing the additional
data source did not provide useful information in our setup.
Even though infra-red imaging is likely to be useful in
identification of food items, as suggested e.g. by [23], our
technical setup aiming for simplicity of deployment was too
limited. We used regular Raspberry Pi high-quality camera
with the infrared filter removed, but the camera sensor was not
very sensitive in the infrared areas of interest. In addition, our
low-cost off-the-shelf LED CCTV illuminator was relatively
weak and likely did not provide sufficient IR illumination.
Better lighting and cameras should be used to produce a more
definitive answer on whether the models can be improved by
incorporating the infrared spectrum.

VII. CONCLUSION

We described an automated imaging platform and computer
vision method for collecting information about food intake
in lunch restaurants. We described the system for acquiring
and preprocessing the images, as well as the ground truth
information for training the models by weighing the plates
after picking up each individual food item. We also described
a deep neural network model for estimating both the types
of different food items and their weights on individual plates.
This model reaches 90% F1 score (averaged over classes) in a
multi-label classification task of detecting the food items, and
many of the misclassifications are between classes of similar
appearance and nutritional content. The model is also able to
estimate the weights to a degree, but the accuracy would not
yet be sufficient for monitoring individual food intake in detail.

We release the data for public development and evaluation
of better computer vision solutions for both tasks.
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