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MOTIVATION Samples are increasingly being examined at the single-cell level in biological and clinical
research. A growing and powerful set of approaches to do so involve image-based phenotyping using ma-
chine-learning algorithms. Improving the accuracy of cell classification in suchmethods is of utmost impor-
tance and an ongoing goal in the field. Here, we address this need by developing an approach that takes into
account the surrounding environment of a cell of interest and utilizes a fisheye-like transformation, along
with the deep-learning algorithm, to improve accuracy of cell classification in both cell culture and tis-
sue-based images.
SUMMARY
Incorporating information about the surroundings can have a significant impact on successfully determining
the class of an object. This is of particular interest when determining the phenotypes of cells, for example, in
the context of high-throughput screens. We hypothesized that an ideal approach would consider the fully
featured view of the cell of interest, include its neighboring microenvironment, and give lesser weight to cells
that are far from the cell of interest. To satisfy these criteria, we present an approach with a transformation
similar to those characteristic of fisheye cameras. Using this transformation with proper settings, we could
significantly increase the accuracy of single-cell phenotyping, both in the case of cell culture and tissue-
based microscopy images, and we present improved results on a dataset containing images of wild animals.
INTRODUCTION

All living entities adjust to their environment, manifested as visu-

ally observable morphological differences both at the macro-

and microscales. Therefore, incorporating microenvironmental

information into object classification may have an enormous

impact on the accuracy of evaluation.1 This phenomenon

may be of particular interest when the phenotypes of cells are

determined.

The modern technological advancements in microscopy,

sequential hybridization,2,3 and mass spectrometry4 have paved

the way to evaluate cellular structures at high spatial and tempo-

ral resolution. These measurements generate large datasets;

hence, automated computational methods are required to obtain

objective information from these images.5,6 Utilizing the inherent

potentials of automated image analysis offers several advan-
Cell Report
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tages: it eliminates operator bias, provides quantitative data,

and identifies visual characteristics that would otherwise go

undetected.7–9

Various computer vision and classical machine-learning tech-

niques have been used10 to support researchers with tasks like

image exploration (e.g., to find changes in cell structure in an

imaging-based drug screen11), image classification (e.g., to

determine the distribution of different proteins within cells12),

image segmentation (e.g., identifying single cells in images13),

or object tracking.14 Despite the acknowledged capabilities of

these techniques, deep-learning-based analyses often perform

more efficiently in recognizing biological patterns based on the

pixels of images.15,16

Deep learning has yielded fascinating results in solving

biology-related issues.17 The phenotype of a cell is determined

by various cellular processes and factors (including the
s Methods 2, 100339, December 19, 2022 ª 2022 The Author(s). 1
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stochasticity of gene expression, as well as a variety of pro-

teomes andmetabolomes4) that result in a particular morpholog-

ical arrangement. Deep learning has enabled the exploration of

factors like replicative age, organelle inheritance, and response

to stress.18 It has been demonstrated to perform comparably

to human pathologists upon classifying whole-slide images

into two categories of cancerous and normal lung tissues (it

was even able to predict the ten most commonly mutated

genes).19 Another frequent challenge in cell biology lies in iden-

tifying various proteins and determining their locations within

the cells. Numerous models have been developed20,21 to

automatically identify subcellular localization patterns, based

on the Human Protein Atlas,22 which contains acquisitions of

12,003 human proteins at the single-cell level.

Single-cell heterogeneity within cell populations is also influ-

enced by the cell’s microenvironment.23,24 Several studies

have demonstrated that the peculiarities of cellular neighbor-

hood can be exceptionally relevant when investigating the col-

lective organization of cells in a variety of settings. Snijder et al.

have reported that in a cell culture context, one may predict

the burden of viral infection at the single-cell level solely based

on each cell’s microenvironment.24 In a study of competitive

interactions between wild-type Madin-Darby canine kidney

(MDCK) cells and cells depleted of the polarity protein scribble,

Bove et al. found that the probability of cell division is signifi-

cantly higher for MDCK cells when their neighborhood is mostly

populated by scribble cells.25 Several other examples of the

importance of cellular neighborhood are also published in litera-

ture. For instance, neighboring epidermal stem cells affect each

other (differentiation of a single stem cell is followed by division of

a direct neighbor);26 ligand-producing hair cell precursors in the

inner ear are smaller than their neighbors.27

In a previous study, our group has also concluded that incor-

porating the features of the microenvironment of cells improves

phenotype classification in high content screens.1 In that study,

we extracted commonly used cell-based features for every

segmented cell. The center of mass was measured for each

segmented area and was used as a reference point for distance

calculation. We used two different approaches to define cellular

neighborhoods: the K-nearest neighbors (KNN) and the

N-distance methods (Figure 1A). Neighborhood features were

derived from the mean, median, SD minimum, and maximum

statistics of the previously calculated cellular features. Then,

we used these neighborhood features to classify cells, and

we got the best result using the multi-layer perceptron classi-

fier. Based on these findings, we hypothesized that it is worth

using environmental data for deep-learning phenotypic

profiling.

Recently, fisheye cameras have received significant interest

from both technical professionals and the public in general.

Fisheye lenses are ultra-wide-angle lenses capable of taking

wide panoramic or hemispheric images; however, they incor-

porate a significant optical distortion into the process. Fisheye

lenses utilize specific mapping (stereographic, equidistant,

equisolid angle, orthogonal), which provides the images a

characteristic convex non-rectilinear appearance.28 These

specific lenses have a wide range of applications due to their

ability to provide rich visual information, including the genera-
2 Cell Reports Methods 2, 100339, December 19, 2022
tion of augmented or virtual reality,29 improving the perfor-

mance of intelligent robot vision systems,30 and simplifying

the complexity of surveillance systems.31 Various correction

models have been proposed to rectify the distortion of fisheye

lenses.32–34

In this report, we introduce a way of representing images to

deep-learning-based image classification networks. The basic

idea is the following: the original image includes the object of in-

terest (which is located in the middle of the image), as well as its

microenvironment of a pre-defined range. The images are then

transformed by a fisheye-like spatial sampling method that

collects more pixels from the close proximity of the object of

interest, and the resolution decreases for larger proximity (Fig-

ure 1D). Our results indicate that the proposed transformation

highly outperforms classical machine-learning methods and

deep-learning-based classifiers benchmarked on cell cultures,

scans of cancerous tissues, and real-life images. We remark

that our fisheye transform method provides improved classifica-

tion accuracy, as demonstrated by higher accuracy scores on

several test datasets, compared with relying on feeding the

network with multi-scale images in parallel (i.e., an image pyra-

mid). Also, the presented fisheye transformation has the advan-

tage that it can be incorporated into the network as a layer,35

although technically it is more resource intensive when large

images are fed into the network.

RESULTS

We evaluated the performance of a fisheye-like sampling on

several image datasets (Figure 2), aiming to improve classifica-

tion accuracy by deep-learning-based image classification net-

works. We compared two convolutional neural-network-based

classifiers using ResNet50 and InceptionV3 backbones, as well

as the relevance of the extent of neighborhood and the focal

distance of fisheye transformation. We benchmarked what

combination of these parameters produce the best results.

The baselines we compared our method with were also calcu-

lated with ResNet50 and InceptionV3 models. In the case of the

cell culture and tissue section datasets, the input images were

generated as follows: based on the center of the cells, we crop-

ped out 1923 192 pixel-sized images around them, then resized

these images to 224 3 224 to meet the requirement of the

models. For the iWildCam dataset, we cropped out the inside

of the bounding boxes that were drawn around the animals,

then resized these to 2243 224 pixel images. For benchmarking,

we have not used the fisheye transformation. For the statistical

analysis of the classification accuracy results, two-sample t tests

were performed (STAR Methods).

Based on previous studies in cellular biology, we expected

that taking the cell’s microenvironment into consideration im-

proves the performance of deep-learning classification. To

test this hypothesis, we have introduced a fisheye transforma-

tion, as this kind of distortion considers more pixels from the

direct neighborhood of the object of interest than from the re-

gion beyond that (Figure 1D). We also hypothesized that there

should be an optimal neighborhood range and focal distance

combination with respect to deep-learning-based classification

accuracy.



Figure 1. Phenotypic classification and fisheye transformation

(A) Neighborhoodwith classical machine learning. The K-nearest neighbors (KNN) andN-distancemethods, illustrated in a schematic figure and in real cell culture

and tissue section scenarios (K = 5, cell culture: n = 19.51 mm, tissue sections: n = 13.5 mm).

(B) Schematic figure of phenotypic classification with deep learning.

(C) Illustration of the optical parameters for the fisheye transformation.

(D) The difference between classical and fisheye pixel sampling: in the classic case, we select pixels evenly, while in the case of fisheye, sampling is dense near

the object of interest and less dense as the distance from the object increases.

(E) Examples of the fisheye transformation.
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Increased classification accuracy on images of cell
cultures
In case of the MCF-7 breast cancer cell database, an environ-

mental range of 45–724 pixels (17.56–282.54 mm) was defined.

For comparison, the average nuclei size in this dataset is 37

pixels (14.44 mm). Validation results indicate that applying the

fisheye transformation improves the accuracy of both (Resnet50

and InceptionV3) classifiers (Figure 3A). The best performance

was achieved when we applied a window size of 543 pixels

(211.91 mm) with a focal length of 130 arbitrary units (where 1

unit corresponds to the size of a pixel), using the ResNet50

model. In this case, accuracy reached 91.38%, which is 7% bet-

ter than that achieved when using deep learning only (84.31%).

The highest classification accuracy achieved with fisheye distor-

tion also outperformed our previous results with classical ma-

chine-learning approaches,1 where the maximum accuracy

was 90.80%with the support vectormachine classifier. Although

the deep-learning baseline was higher for InceptionV3 (85.85%)
than for ResNet50, the best result we could achieve with

InceptionV3 using distorted images was only 89.33%.

Looking at the fisheye-transformed images, it is reasonable to

wonder whether we can achieve similarly high results by using

only the nuclei to train our deep-learning network. In the case

of the MCF-7 dataset, we did nuclei and cytoplasm segmenta-

tion (as described in STARMethods). To demonstrate that the in-

crease in classification accuracy is due to the inclusion of the

environment and the fisheye transformation, we ran calculations

on images showing only the nucleus or the nucleus and cyto-

plasm of the cell. We used the same ResNet50 deep-learning

network as before for the baseline and fisheye calculations (we

have gotten the best results with this network). The results

show the same tendency that we expected: that the classifica-

tion accuracy is lowest when the network sees only the nuclei

and is best when we use the fisheye-transformed images and

the network sees the cell’s microenvironment (see Figures S5

and S6).
Cell Reports Methods 2, 100339, December 19, 2022 3



Figure 2. Distinguished classes

(A) Cells of nine different phenotype classes identified in the MCF-7 high-content-screening dataset.

(B) Eight phenotypic classes in the UBC tissue image dataset.

(C) Ten phenotypic classes in the LC tissue image dataset.

(D) The ten most common animal species in the iWildCam2020 dataset.
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Fisheye transformation has a major impact on
phenotyping tissue sections
In the case of the urinary bladder cancer (UBC) tissue image da-

taset, we also collected neighborhood information for a 45 to 724

window size (12.15–195.48 mm), where the average nuclei size

was 32 pixels (8.64 mm), while for the lung cancer dataset, we

used a range of 45–362 pixels (17.55–141.18 mm) with an

average nuclei size of 39 pixels (15.21 mm). For both datasets,

we were able to achieve higher classification accuracy on the

fisheye-transformed images than with traditional deep learning,

irrespective of whether we used ResNet50 or InceptionV3.

For the UBC dataset, we had previous results using neighbor-

hood features with classical machine learning.1 Then, the

maximum of classification accuracy reached 93.37% with

multi-layer perception (MLP) calculations. In our current study,

the best performance reached 98.14%, appearing at a window

size of 272 pixels with 150 arbitrary unit focal length using

ResNet50 (Figure 3B). Without using the distorted images, clas-

sification accuracy was only 94.41%. Using InceptionV3, both

the deep-learning baseline (93.24%) and the highest accuracy

achieved on fisheye-distorted images (97.65%) were less favor-

able than those yielded with ResNet50.

The lung cancer dataset is the only exception where

InceptionV3 performed slightly better than ResNet50 (Figure 3C).

With ResNet50, the highest classification accuracy was 99.36%,
4 Cell Reports Methods 2, 100339, December 19, 2022
while InceptionV3 yielded a maximum of 99.46% upon incorpo-

rating the neighborhood feature with a 272 pixel range and using

170 arbitrary units as focal distance. This is more than 2% better

than the results yielded with InceptionV3 on undistorted images

(accuracy: 97.25%).

Fisheye transformation outperforms image pyramids
In order to benchmark our proposed fisheye transformation

against classical multi-scale approaches, we tested the pheno-

typic classification accuracy on UBC and lung cancer (LC) data-

sets using an image pyramid as an input to the networks. For this

purpose, we fed the ResNet50 networks with images of varying

(1/1, 1/2, 1/4) scales in parallel. Accuracy reached 97.9% and

99.1% for the UBC and LC datasets, respectively, indicating

that applying the image pyramid approach yields better results

than traditional deep learning but performs less favorably

compared with the fisheye-distorted solution.

Improved accuracy in the case of the iWildCam2020
dataset
We investigated whether the inclusion of the environment of real

scenes can improve classification results. The dataset included

photos of animals taken from fixed camera positions. Because

of the perspective, the animals could appear either very small

or large in the images. To handle this sort of discrepancy, we



Figure 3. Comparison of the performance

of deep-learning networks (ResNet50,

InceptionV3) upon considering different

neighborhood distances

(A) Classification accuracies for the MCF-7 cell

culture dataset using ResNet50 (left) and

InceptionV3 (right).

(B) Classification accuracies for the UBC tissue

image dataset.

(C) Classification accuracies for the LC tissue da-

taset.

(D) Classification accuracies for the iWildCam2020

dataset. Green lines indicate the baseline yielded

with deep learning upon using the original (undis-

torted) images, while black lines indicate the re-

sults achieved on fisheye-distorted images with

different f (focal distance) values (the values are

measured in arbitrary units).
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considered the size of the bounding boxes around the animals as

references instead of using fixed pixel distances. The baselines

for classification accuracy with traditional deep learning were

95.3% and 95.22% upon using ResNet50 and InceptionV3,

respectively. In the case of the fisheye-transformed images,

classification accuracy reached 95.48% with ResNet50 when

2.53 the size of bounding boxes was considered as the neigh-

borhood feature and focal length was set to 150 units.

DISCUSSION

Here, we present a method combining fisheye transformation

with deep learning, an extension to our previous model, incorpo-

rating the information obtained from the cellular microenviron-

ment in phenotypic classification. We demonstrated on MCF-7

cell culture and UBC datasets that our method outperforms the

approach of using classical machine learning with single-cell
Cell Report
and neighborhood features. Our results

were compared with the accuracies ob-

tained with deep learning (ResNet50 and

InceptionV3), where the inputs for the net

were non-fisheye-transformed images.

For all four datasets we used (a cell culture,

two tissue sections, and a dataset contain-

ing images of animals), training with

fisheye-transformed images resulted in

significantly higher accuracies (Figure 4).

Though our method is robust, it is easy

and fast to use. Furthermore, the fisheye-

distortion approach is generally applicable

to any kind of image data, where the envi-

ronment has an influential role, as demon-

strated by applying this method on the

iWildCam2020 dataset.

The highest improvement in accuracy

appeared when we applied our method

on tissue section images. Generally,micro-

environmental differences are visible in tis-

sue histology studies. These are obvious
manifestations of the cooperation and interdependence of

different cells, which are also characterized histoanatomically.

For example, the robust adjacency information of endothelial

cells is the presence of a lumen on one side of them or the pres-

ence of well-known restricted cell types, such as connective

tissue cells and smooth muscle cells, on the other side.

In the case of cell cultures, we also achieved an improvement

in phenotyping accuracy. The explanation relies on two factors.

Firstly, homogeneous-looking areas do not consist of molecu-

larly completely identical cells.24 This is captured by the fisheye

transformation similarly as described in case of cancer tissues.

Secondly, in homogeneous cellular regions, the neighborhood

may provide a statistically more stable and, consequently,

more powerful basis for decision.

We observed minor improvement in accuracy in the case of

iWildCam data. A possible explanation is that during the

recording of this dataset, fixed positioned cameras were used.
s Methods 2, 100339, December 19, 2022 5



Figure 4. The effect of combining the fisheye

transformation with deep learning

(A) Prediction examples and confusion matrices

based on ResNet50 models in the cell culture da-

taset. Original image (left), prediction and confusion

matrix using the model built on standard images

(middle), and prediction and confusion matrix using

the model built on fisheye-transformed images,

window size: 543 pixels, focal length: 130 arbitrary

units (a.u.) (right). In the second and fourth images,

we show with different colors the predicted phe-

notypes, and in the third and fifth images, we show if

the prediction was true (green) or false (red).

(B) Prediction examples and confusion matrices of

the best deep-learning performance (ResNet50) in

the UBC tissue dataset. Original image (left), pre-

diction and confusion matrix using traditional deep

learning (middle), and considering the cellular

neighborhood with fisheye transformation, window

size: 272 pixels, focal length: 150 a.u. (right).

(C) Prediction examples and confusion matrices

based on InceptionV3 models in the LC tissue da-

taset. Original image (left), prediction and confusion

matrix using the model built on undistorted images

(middle), and prediction and confusion matrix using

the combination of deep-learning and fisheye-dis-

torted images, window size: 272 pixels, focal length:

170 a.u. (right).
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Because of this, depending on whether the animals are posi-

tioned near or far from the camera, one can see larger, smaller,

or no surroundings. Therefore, even by increasing the window

size, it may occur that we do not gain more information about

the environment.

In conclusion, we show that the incorporation of the microenvi-

ronment into machine-based decisions can improve the task of

classifying single cells into phenotypic classes. This confirms the

fact that cellular structures are not arbitrarily organized and that

it is beneficial to take these macro structures into consideration.

Wealso show that using a non-uniform samplingof the original im-

age data for deep-learning training and inference is feasible and

can further improve accuracy. A potential extension to the pre-

sentedapproachcould rely on the introductionof data transformer
6 Cell Reports Methods 2, 100339, December 19, 2022
layers thatarecapableof learningnon-linear

spatial sampling functions.

Limitations of the study
In this work, we used transfer learning

with two pre-trained networks. Because

deep-learning systems learn gradually,

they require huge amounts of data to

train them. Creating a training set can

be challenging as less data are available

for rare phenotypes, making it difficult to

obtain the amount of data needed to run

the model correctly. Another limitation of

our approach is that the proposed trans-

formation is not integrated into the deep-

learning network, so it implies an extra

pre-processing step. During the deep-
learning process, basic data augmentation has a seminal

role in improving accuracy. And though it is possible to use

standard geometry transformations (such as reflection, rota-

tion, and scaling), it has a limitation, as any other transforma-

tion that spatially moves the cell of interest away from the

center cannot be easily applied because that would have con-

sequences to the fisheye transformation.
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mez-Huélamo, C., and del Egido, J. (2019). Real-time semantic segmen-
8 Cell Reports Methods 2, 100339, December 19, 2022
tation for fisheye urban driving images based on ERFNet. Sensors 19.

https://doi.org/10.3390/s19030503.

31. Tseng, D., Chen, C., and Tseng, C. (2017). Automatic detection and

tracking in multi-fisheye cameras surveillance system. Int. J. Comput.

Elect. Eng. 9, 370–383. https://doi.org/10.17706/ijcee.2017.9.1.370-383.

32. Li, T., Tong, G., Tang, H., Li, B., and Chen, B. (2020). FisheyeDet: a self-

study and contour-based object detector in fisheye images. IEEE Access

8, 71739–71751. https://doi.org/10.1109/ACCESS.2020.2987868.

33. Silberstein, S., Levi, D., Kogan, V., and Gazit, R. (2014). Vision-based

pedestrian detection for rear-view cameras. In 2014 IEEE Intelligent Vehi-

cles Symposium Proceedings (IEEE), pp. 853–860. https://doi.org/10.

1109/IVS.2014.6856399.

34. Bertozzi, M., Castangia, L., Cattani, S., Prioletti, A., and Versari, P. (2015).

360� detection and tracking algorithm of both pedestrian and vehicle using

fisheye images. In 2015 IEEE Intelligent Vehicles Symposium (IV) (IEEE),

pp. 132–137. https://doi.org/10.1109/IVS.2015.7225675.

35. Jaderberg, M., Simonyan, K., Zisserman, A., and kavukcuoglu, koray

(2015). Spatial transformer networks. In Advances in Neural Information

Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and

R. Garnett, eds. (Curran Associates, Inc.).

36. Caie, P.D., Walls, R.E., Ingleston-Orme, A., Daya, S., Houslay, T., Eagle,

R., Roberts, M.E., and Carragher, N.O. (2010). High-content phenotypic

profiling of drug response signatures across distinct cancer cells. Mol.

Cancer Ther. 9, 1913–1926.

37. Piccinini, F., Balassa, T., Szkalisity, A., Molnar, C., Paavolainen, L., Kujala,

K., Buzas, K., Sarazova, M., Pietiainen, V., Kutay, U., et al. (2017).

Advanced cell classifier: user-friendly machine-learning-based software

for discovering phenotypes in high-content imaging data. Cell Syst. 4,

651–655.e5. https://doi.org/10.1016/j.cels.2017.05.012.

38. Mund, A., Coscia, F., Hollandi, R., Kovács, F., Kriston, A., Brunner, A.-D.,
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d All original code is publicly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in the paper is available from the lead contact upon request.

images 21259416.v1
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Urinary bladder cancer and lung cancer tissue sections
We used images of urinary bladder cancer (UBC) and lung cancer (LC) tissues as test datasets (Figures 2B and 2C). The images were

acquired of patient derived samples obtained from University of Szeged (approval authorisation number: 5127, registration number:

17/2022-SZTE). For the bladder cancer dataset, the samples obtained from3patients (sex and gender identity/age/stage of cancer of

the subjects respectively: female/71/stage 2, male/65/stage 3, male/73/stage 2). For the lung cancer dataset, the samples obtained

from4patients (sex andgender identity/age/histological observationsof the subjects respectively: female/75/primary pulmonarymul-

tinodular invasive papillary adenocarcinoma, female/65/primary lung origin, acinar predominant adenocarcinoma, female/74/primary

lung origin, invasive adenocarcinoma, acinaris predominant, male/76/primary lung origin, invasive solid adenocarcinoma).
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The slides of urinary and lung cancer tissues were stained with hematoxylin-eosin (HE) in standard histopathological procedures.

Formalin-fixed and paraffin-embedded tissue sections were cut into 4 mm thick slices, and were stained using a Tissue-Tek DRS

2000E-D2 Slide Stainer (Sakura Finetek Japan) according to the manufacturer’s instructions. Using the AxioVision SE64Rel.4.9.1.1

(Carl ZeissMeditecAG,Germany)software, imageswerecapturedwithanAxio ImagerZ.1 (CarlZeissMeditecAG,Germany)microscope

equipped with an EC Plan-NEOFLUOAR 20x/0.5NA lens. All procedures were performed with the approval of the University of Szeged.

METHOD DETAILS

Processing of datasets
We used a publicly available breast cancer cell line (MCF-7) dataset, available online at the Broad Bioimage Benchmark Collection.36

Using this dataset Piccinini and colleagues37 published a single-cell phenotypic annotation method which we have adopted in our

study. Nine phenotypic classes (i.e. abundant, rounded, elongated, multinucleated, bundled microtubule, peripheral cytoskeleton,

punctate actin foci, decreased cell size and fragmented nucleus) and a debris class were identified (Figure 2A), and approximately

1,500 cells were labelled.

For the analysis of the bladder cancer tissue dataset, containing 38 images, we used the annotation presented in our previous

neighbourhood study.1 We distinguished eight phenotypic classes (cancer cell, lumen cell, endothelial cell, stroma cell, fibroblast-

fibrocyte, lymphocyte-plasma cell, smooth muscle cell and lipocyte), and labelled 1,200 cells. For the lung cancer dataset, we

differentiated 10 phenotypic classes (blood cell, cancer cell, cartilage, endothelial cell, epithelium, fibroblast-fibrocyte, gland,

lymphocyte-plasma cell, muscle cell and stroma cell), and labelled 5,000 cells.

The iWildCam 2020 dataset is derived from the iWildCam 2020 competition organised by Kaggle. It consists of 217,959 images,

where 267 classes were distinguished, containing a highly unbalanced number of entities, were defined. Figure 2D displays the 10

classes that contain most of the elements (excluding the ‘empty’ class, where no animals are visible in the image).

Segmentation
CellProfiler 2.2.0 was used to segment images from the high-content-screening dataset of drug-treated MCF-7 samples. The adap-

tive Otsumethodwas used to detect nuclei. Cells smaller than 5 mmand nuclei contacting the borders of the images were eliminated.

Adaptive thresholding was used to extract the cytoplasm of cells, using watershed separation based on the nuclei as seed points.

For the segmentation of the tissue datasets and for the annotation of the MCF-7, UBC and LC datasets we used an image analysis

and machine learning software named BIAS,38 which was developed by Single-Cell Technologies Ltd. (Szeged, Hungary).

The SLIC superpixel segmentation technique39 was employed to segment urinary bladder cancer and lung cancer section images.

We set 35 pixel as superpixel size, and forced connectivity between superpixels when a superpixel included less than 25 pixels. We

have previously demonstrated that this superpixel size works best to represent the cellular structure of tissues.1

During the annotation process of these three (MCF-7, urinary bladder and lung cancer) datasets, we saved the x-y coordinates of

the centre of the nuclei/superpixels, and used these coordinates as inputs for the deep learning-based fisheye transformation.

For the iWildCam dataset, the organisers of the competition provided a general animal detection model called MegaDetector

(https://github.com/microsoft/CameraTraps/blob/master/megadetector.md), along with an annotation file that contained one label

per image. When more than one animal were visible in the image, we selected only the detection with the highest accuracy, and gave

the label to it. MegaDetector works with bounding boxes. In the present study, we used the x-y coordinates of the centre of the

bounding boxes as inputs for the fisheye transformation.

Fisheye transformation
Several types of ultra-wide angle lenses are available, and all are associated with a significant visual distortion. In our study we

evaluated an algorithm that artificially reproduces the same kind of distortion which is inherent in images taken with ultra-wide

angle lenses. We analysed the relevance of neighbourhood features to determine the most optimal distance to be considered for

the highest accuracy of classification.
e2 Cell Reports Methods 2, 100339, December 19, 2022
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In fisheye transformation, the position of the projection of a given real world point can be determined from the angle of the incident

ray. This can be calculated using a mapping function:

r = mðf ; qÞ;
where f is the focal length. For a given f we can reformulate the above equation as

r = mfðqÞ:
Themapping function is an inherent function to fisheye lenses. It defines the position of the object from the centre of the image (r) as

a function of the focal distance (f) and the angle from the optical axis (q). The functions in wide-angle lens cameras include the

following:

- Rectilinear:
r = f tan q

- Fisheye
- Equidistant
r = fq
- Equisolid angle
r = 2f sin
q

2

- Stereographic
r = 2f tan
q

2

- Orthographic
r = f sin q

All of these functions are invertible:

q = m� 1
f ðrÞ:

The following relation is also valid for q:

tanq =
p

d
;

where d is the distance between point p and the centre of the lens, measured along the axis of the lens. In our case the object points

are the pixels of an image, and d is constant across the whole image.

In image transformation tasks the transformation function is usually given as an inverse mapping, which provides the source po-

sition of each output pixel, in this case, the value of p for each output position r. From the equations above, p can be calculated as

follows:

p = d,tanm� 1
f ðrÞ :

This equation contains two free parameters: d and f. The value of d appears as a scalar multiplier, hence it affects magnification

only. The value of f affects both the scale and the magnitude of distortion. However, in our case we endeavoured to change the

strength of the fisheye effect of the transformation only, leaving the scale of the selected area unaffected. In order to achieve the
Cell Reports Methods 2, 100339, December 19, 2022 e3
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desired effect, it is possible to connect the value of d to the value of f in such a way that it unaffects scaling.
Let’s mark the size of the selected area with a. We wish to keep the position of the corner points intact while applying the fisheye

distortion. In this case an equation is introduced as follows:

tanqmax =
a

2d
;

where qmax is the angle of the incoming ray from the borders of the selected area. As for the border points are expected to be trans-

formed into themselves,

qmax = m� 1
f

�a
2

�

is also valid. Combining these two equations gives

d =
a

2tan m� 1
f

�
a
2

� :

It is evident that the last equation is determined by f as a modifiable parameter (when the value of a is fixed). Thus, the final form of

the equation for the fisheye transformation is

p =
a

2
,
tan m� 1

f ðrÞ
tan m� 1

f

�
s
2

� :

As an easy-to-read interpretation, we normalise the value of q to the range of [0, 1], and then rescale it to the range
�
0;a2

�
.

Note that in the calculations above it is assumed that the selected area of interest is in the middle of the image. However, with a

simple translation, the calculations are valid for any arbitrary image positions.

The first parameter we optimised was the range around our object-of-interest (in an optical manner, this is object height, later

referred as ‘window size’, see Figure 1C). For the MCF-7, UBC and LC datasets, as we have mentioned before, we saved the x-y

coordinates of the centre of the nuclei/superpixels and then we used the selected pixel range for the fisheye transformation based

on these points. In case of the iWildCam dataset, we cropped out areas of interest from the original images for our fisheye transfor-

mation in four different sizes. We took the size of the original bounding box andmultiplied it with 1.0, 1.5, 2.0 and 2.5. When wemulti-

plied the original size with 1.0, we cropped the images with the same size for the baseline images and for the fisheye-transformation.

In all of the other cases, we took a bigger size of the environment into account.

The second modifiable parameter was focal distance, which essentially defines the strength of the distortion. Contrary to our orig-

inal neighbourhood idea,1 information acquisition was not cell-based, but pixel-based (Figures 1A and 1D). The third parameter was

the mapping function, which originally (in cameras) is responsible for transforming a part of a spherical object to a 2D plane. In the

present study we chose the ‘equidistant’ function -as it is one of the most popular mapping functions used in cameras - to test our

hypothesis on the significance of neighbourhood regarding classification accuracy. In all cases we set the object distance (the dis-

tance between the original image and the lenses) in a way to eliminate scaling due to fisheye distortion. For more examples of the

transformed images, see Figures S1–S4.

Deep learning-based object classification
For image classification we usedMatlab R2019b and its Deep Learning Toolbox (version 13.0). This toolbox provides a framework to

design or implement networks, pre-trained models, and apps. Two networks pre-trained on ImageNet, ResNet50 and InceptionV3

were utilised for transfer learning. Our decision for the models (i.e. using ResNet50 and InceptionV3), was based on the accuracy,

speed and size of the networks. Particular attention was paid to avoid that an annotated cell is included in the training dataset

and appears in a validation image as a neighbour afterwards. Thus, to prevent a potentially positive influence of evaluation, both

theMCF-7 and UBC datasets were processed with pre-defined train and validation folders at the image level, instead of the cell level.
e4 Cell Reports Methods 2, 100339, December 19, 2022
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For the LC and iWildCam datasets this was not an issue, as these were created to contain only one annotated object per image. The

latter two datasets were randomised and split, thus 80%was used for training and 20%was used for validation.We used only images

not previously seen by the network for validation. Three independent trials were run for each dataset.

Data augmentation has a seminal role in improving accuracy. We applied the following standard geometry transformations on our

training datasets: reflection in the left-right and a top-bottom directions, rotation, horizontal and vertical scaling. It is important to

mention that we have not used any transformation that spatially moves the cell-of-interest away from the centre of the image because

that would have consequences to the fisheye transformation.

The deep-learning parameters used: MiniBatchSize: 64, MaxEpochs: 100, InitialLearnRate: 3e-4, LearnRateDropFactor: 0.3,

LearnRateDropPeriod: 50, Shuffle: every epoch.

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance tests
As a statistical procedure, two-sample t-test was performed, we considered the result significant at p < 0.05. For detailed results see

Table S1.

MCF-7
Our best result (accuracy: 91.38%) for this dataset with the fisheye-transformation appears with a window size of 543 pixels with a

focal length of 130 arbitrary units whenwe used ResNet50.We compare this result to a baseline, wherewe usedResNet50 (accuracy:

84.31%). For the baseline we cropped out images around the cells’ centre with 1923 192 pixel diameter (so in this case, we haven’t

performed fisheye transformation on the original images). Deep learning calculations were run 5–5 times on both the baseline and the

fisheye transformed data. At the 0.05 level, the 7.07% difference in accuracy is significant.

Urinary bladder cancer
Our best result (accuracy: 98.14%)for this dataset with the fisheye-transformation appears with a window size of 272 pixels with a

focal length of 150 arbitrary units whenwe used ResNet50.We compare this result to a baseline, wherewe usedResNet50 (accuracy:

94.41%). For the baseline we cropped out images around the cells’ centre with 1923 192 pixel diameter (so in this case, we haven’t

performed fisheye transformation on the original images). Deep learning calculations were run 5–5 times on both the baseline and the

fisheye transformed data. At the 0.05 level, the 3.83% difference in accuracy is significant.

Lung cancer
Our best result (accuracy: 99.46%)for this dataset with the fisheye-transformation appears with a window size of 272 pixels with a

focal length of 170 arbitrary units when we used inceptionV3. We compare this result to a baseline, where we used inceptionV3 (ac-

curacy: 97.25%). For the baseline we cropped out images around the cells’ centre with 1923 192 pixel diameter (so in this case, we

haven’t performed fisheye transformation on the original images). Deep learning calculations were run 5–5 times on both the baseline

and the fisheye transformed data. At the 0.05 level, the 2.21% difference in accuracy is significant.

iWildCam2020
Our best result (accuracy: 95.48%)for this dataset with the fisheye-transformation appears when 2.53 the size of bounding boxes

were considered as the neighbourhood feature and focal length was set to 150 units and we used ResNet50. We compare this result

to a baseline, where we used ResNet50 (accuracy: 95.3%). For the baseline we cropped out images with different dimensions based

on the bounding boxes provided by the Kaggle organisers (so in this case, we haven’t performed fisheye transformation on the im-

ages). Deep learning calculations were run 5–5 times on both the baseline and the fisheye transformed data. At the 0.05 level, the

0.18% difference in accuracy is significant.
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