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Abstract

Molecular simulations of biological membranes and proxies thereof are entering a

new era characterized by several key aspects. Progress starts with the realization that

1



the outcome of the simulations can be only as good as the underlying force field and we

actually need to know precisely how good or bad the results are. Therefore, standard-

ized procedures for data quality evaluation are being established and will be applied to

biomembrane simulations available in the literature. This provides the necessary basis

and impetus for new force field development. Here, we propose to systematically build

up physically well-justified models which effectively account for electronic polariza-

tion effects for all components of the biomembrane systems in aqueous environments.

Such a massive task can only be achieved within a reasonable timescale by applying

automated parameterization tools.

Introduction

Classical molecular dynamics (MD) simulations of biomembranes are nowadays increasingly

used in various applications, ranging from molecular cell biology to lipid nanoparticle for-

mulations for vaccines.1–6 Such applications are expected to increase further because MD

simulations are becoming more accessible to a wider audience thanks to tools streamlin-

ing the simulation workflow, such as CHARMM-GUI7 and Schrödinger-Maestro combined

with Desmond,8 and impressive performance of widely available GPU-computing hardware.

At the same time, software and hardware development enable experts in the field to push

the limits of MD simulations towards increasingly complex and large systems, such as cell

membrane mimics9 and virus particles.10

In both of these lines of development, it is increasingly important to understand the

consequences arising from the approximations in the classical potential functions, i.e., force

field, and simulation algorithms used in MD simulations. The new wave of users, consisting

of practitioners with varying experience on methodological details, are often unaware of these

limitations. At the same time, increasing the size, time scale, and complexity of the simulated

systems may lead to the multiplication or cancellation of errors in the physical description

of the systems. Furthermore, with the growing impact of MD simulations in biomedical and
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other applications, the potentially incorrect or misleading results will have increasingly severe

consequences. Therefore, improving the MD methodology and the protocols to evaluate the

quality of MD simulations is becoming more and more important.

Contrary to ther fields, there are no currently generally accepted standards when it comes

to MD. In the field of structural biology, the Protein Data Bank (PDB) defines the quality

measures for protein structures determined with different experimental techniques and en-

ables access to vast amount of data for experts to evaluate the quality of each structure by

themselves.11–14 For intrinsically disordered proteins, belonging to the same class of unstruc-

tured molecules as lipids, such a databank is emerging,15 but universal quality measures for

conformational ensembles determined with different methods, including MD simulations,16,17

are yet to be defined. While importance of such databanks for MD simulations is widely rec-

ognized18–25 and different kinds of approaches are emerging,25–32 generally accepted protocols

and best practices are still under active development.

At the same time, accumulating evidence on simulation artefacts arising from force fields

(the sets of functions that approximate the physical interactions between atoms in MD sim-

ulations) raises the need for more accurate parameters and improved description of physics,

particularly for lipids and disordered proteins.16,33–38 Due to the semi-empirical nature of

MD simulation force fields, a consistent parameterization represents a daunting task, often

requiring simultaneous refinement of almost all interactions within a force field. To this end,

several fully or semi-automatic approaches for force field parameterization are emerging.39–43

Here, we discuss current issues and ongoing activities in evaluating and improving biomolec-

ular MD simulations with quality-evaluated databanks and automated force field develop-

ment approaches. We focus on systems where atomic resolution description of lipid mem-

branes, and lipid interactions with other molecules, play a major role. Coarse grained sim-

ulations and other biomolecular systems are left outside the scope of this perspective.
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Current issues in lipid membrane MD simulation quality

Controversies in lipid membrane simulations

Dozens of force fields and combinations thereof are available for simulating lipid membranes

and their interactions with other molecules, such as proteins, drugs, and ions.9,44 Even

though the quality of force fields has been widely evaluated against experimental data during

parameterization and in separate comparison studies,33–37,44 defining unambiguously their

overall quality still remains unclear, and several controversial results are reported for each in

the literature, as exemplified in Table 1. Because universal quality measures for membrane

simulations are not available, it is difficult to estimate, even for an expert, the reliability

of a certain MD simulation result or to select the best force field for a specific application.

Therefore, lipid membrane MD simulations in their current state have to be used with great

care to avoid misinterpreting experimental data or even launching questionable research

directions inspired by artificial MD results.

As evident from Table 1, many controversies can be traced to interactions between lipids

and other molecules including water. These disagreements are not surprising from the histor-

ical perspective, because early development of lipid bilayer simulations focused on correctly

capturing membrane phase and area per lipid, which depend mainly on acyl chain proper-

ties,56,69 while the glycerol backbone and headgroup and their interactions with ions and

other molecules have gained attention only more recently.33,34,38,45–48,70 Consequently, the

hydrophobic acyl chain regions are commonly described quite well by MD simulations, while

force fields struggle to correctly capture behaviour of the hydrophilic regions of membranes.35

In particular, the interactions between charged water-soluble species and membranes have

been challenging for MD simulations. Canonical force fields tend to predict stronger binding

of sodium and calcium to membranes than experiments,34,48 yet this can be improved by

including electronic polarization via the electronic continuum correction (ECC)34,45–47 or by

an ad hoc increase of the effective separation between specific atoms (NBFIX).48–50 Also,
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Table 1: Examples of controversial MD simulation results reported in the literature. PC
= phosphatidylcholine. ECC = electronic continuum correction. NBFIX = increasing the
effective separation between specific atoms.48–50 PS = phosphatidylserine. JM-A = the N-
terminal portion of the juxtamembrane segments. EGF = epidermal growth factor. MC3 =
dilinoleylmethyl-4-dimethylaminobutyrate.

Issue Controversy Proposed solutions

Cation binding to
zwitterionic mem-
brane

Strong binding of Na+ and Ca2+ ions to zwitterionic
PC lipid headgroups observed in most force fields do
not agree with NMR or other experimental data.34

Ion binding in force fields with ECC is
more realistic.45–47 NBFIX parameters
between specific atoms have been intro-
duced in CHARMM force field.48–50

Lipid-headgroup–
cholesterol interac-
tions

Direct interactions between cholesterol and lipid
headgroups are observed in simulations with the
Berger/Höltje force field combination,51 while
CHARMM36 predicts only weak preference for the
nearest lipid headgroups to locate over cholesterol.52

NMR data agrees better with
CHARMM36, suggesting that head-
groups are rotating more freely in the
cholesterol-containing membranes,53

probably due to a less dense headgroup
region.

Calcium binding po-
sition in PS lipid
headgroup

CHARMM36 with NBFIX parameters48,49 suggests
that Ca2+ ions interact only with the carboxylate
group of PS lipids.54 Without NBFIX the same force
field indicates a significant binding affinity also to
the phosphate region.55 Berger lipid force field56,57

suggests substantial binding also to the carbonyls in
the acyl chains.58

In Amber-based force field with ECC,
which has the most realistic ion bind-
ing behaviour when compared with
NMR experiments, Ca2+ binds approx-
imately twice as likely to the carboxy-
late than to the phosphate moiety of
PS, and binding only to acyl chain car-
bonyls is almost negligible.46

Langmuir monolayer
simulations

Lipid monolayer can remain stable in a non-physical
negative-surface-pressure state, and porates at too
low area per lipid values.59,60

Water model with the correct surface
tension and a sufficiently large periodic
box are required to simulate lipid mono-
layers and quantitatively reproduce the
surface pressure–area isotherms.61,62

Lipid–protein inter-
actions

In simulations combining an Amber-based protein
force field and CHARMM lipids, the kinase domain
and JM-A fragments of EGF receptor interact only
with the negatively charged PS headgroups,63 while
in simulations with an OPLS-based force field they
interact also with neutral membranes.64

Unresolved

Melting temperature
of single-component
lipid bilayers

Overestimated melting temperatures for single-
component lipid bilayers have been reported,36 while
good agreement with experiments are found in other
studies.65

Unresolved

Serotonin binding in
different membrane
phases

Serotonin binds preferentially to disordered phase in
simulations and acyl chain order parameters of or-
dered phase are not affected, while its signal orig-
inates mostly from ordered state in NMR experi-
ments.66,67

Unresolved

Accumulation of the
ionizable MC3-lipids

Ionizable MC3-lipids, used in lipid-nanoparticle for-
mulations for vaccines, accumulate in the bilayer cen-
ter when the CHARMM36 force field is used,6 while
Slipids shows almost no accumulation.68

Unresolved
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lipid–protein interactions depend on force field parameters,71–75 which is particularly evident

for charged residues37,76 and their interactions with lipid headgroups.75,77 While sodium and

calcium ion binding to membranes with various compositions have been quantitatively eval-

uated using lipid headgroup order parameter data,34,38,47 such comparison is not available for

proteins or amino acids interacting with membranes. The evaluation of lipid–protein interac-

tions has focused on comparing hydrophobicity scales,37,76,78 NMR data71,79 or crystallized

lipid–protein complexes.80 While hydrophobicity scales are often qualitatively reproduced

by MD simulations, and proteins are usually oriented reasonably in membranes in these

studies, charged residues often appear as outliers or potential sources of discrepancies with

experiments.37,71,76,78,79 Also, the partitioning of small neutral molecules seems to agree with

experiments qualitatively,81 but experimental data is more scarce for charged molecules, and

a systematic comparison of MD simulations with experiments is not available.82

In conclusion, we see that many controversial results from MD simulations originate from

the description of polar and charged molecules or molecular groups, including water, and

particularly their interactions with lipids. Therefore, we focus in the following on the effects

of water models and electronic polarizability on interactions involving lipids. Other force

field inaccuracies and issues related to simulation methodology, such as insufficient sampling

or algorithms, are left for other accounts.

Water models

As water plays at least an indirect role in all biological processes, much effort has been put

to describe water properties in atomistic MD simulations accurately, and available parame-

ters to model water have improved significantly over the years.83 However, using the most

realistic water model in biomolecular MD simulations is often not straightforward due to

the semi-empirical nature of force fields: The change of water model would, in principle,

require reparameterization of the complete force field. The change of the water model with-

out such reparameterization compromises the consistency of parameters. Therefore, early
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Figure 1: A) NMR spin relaxation times calculated from simulations of HpTonB-92 C-
terminal domain using Amber ff99SB-ILDN force field with different water models compared
with the experimental data. The results with TIP3P are off from experiments due to too fast
rotational diffusion caused by the underestimated water viscosity, while results with TIP4P
are close to experiments. Figure adapted from Ref. 85. B) Surface pressure-area isotherms
of DPPC lipid monolayer from CHARMM36 simulations with different water models and
long-range Lennard-Jones treatments compared with experimental data.62 Simulations with
TIP3P based water models suffer from artefacts arising from underestimated surface tension,
such as negative surface pressures and pore formation at too low areas, while simulations
with better water models give almost quantitative agreement with experiments.60–62 Figure
adapted from Ref. 62.

water models, such as TIP3P and its derivatives,84 are still widely used in biomolecular MD

simulations despite their known inaccuracies.

The most notable shortcomings of water models (leading to known artefacts in biomolec-

ular MD simulations, demonstrated in Fig. 1) are the underestimated surface tension and

viscosity, as well as the dielectric constant (see Fig. 1 and the next section for a detailed dis-

cussion on the proper treatment of the dielectric response). Underestimated surface tension

leads to incorrect phase behaviour and opening of pores at too low areas per molecule in lipid

monolayer simulations.60–62 Too low viscosity leads to overestimated rotational dynamics of
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proteins as follows from comparison between simulations and experiments. The incorrect

overall rotational diffusion can be corrected during analysis for folded proteins but not for

disordered proteins or other biomolecules.17,85 Furthermore, incorrect bulk water properties

usually imply inaccuracies in interactions between water molecules, which are likely to cause

other problems in biomolecular simulations. Indeed, the commonly observed over-compact

ensembles of disordered proteins have been related to inaccuracies in water models.86,87

In applications where the water viscosity or surface tension are critical, the optimal solu-

tion is to use a more advanced water model,17,61,62 which without careful reparameterization,

however, could lead to inconsistencies with other parameters. In practise, such inconsisten-

cies are observed to be less severe than issues arising from incorrect water properties.61,62,85

In conclusion, we are convinced that using modern water models with correct surface ten-

sion, viscosity, dielectric response, and other physical properties is a must for future MD

simulations of biomolecules.

Lack of electronic polarizability

A general problem pertinent to the vast majority of membrane simulations is the lack of elec-

tronic polarizability effects. Indeed, standard force fields employed in membrane simulations

are non-polarizable, meaning that atomic charges are fixed. This does not reflect reality

where charged, or polar objects (i.e., ions or polar molecules) can polarize neighbouring

molecules and thus effectively change their charge distributions, which if not considered re-

sults in several artifacts listed in Table 1. Explicitly polarizable force fields88–90 aim at fixing

this problem. However, they have not been widely employed in biomembrane simulations yet.

In general, the limited use of explicitly polarizable force fields may be traced back to several

factors. They include issues concerning their accurate parameterization (potentially leading

to failures in reproducing experimental data; see below for more discussion), instability of

the iterative algorithm (the so-called polarization catastrophe91), the need for specialized,

not always user friendly software, and significantly increased computational costs.
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Recently, a simple approach for including electronic polarization in a mean-field way in

classical non-polarizable force fields has been suggested.80,92 Within this method, denoted

as the electronic continuum correction (ECC), electronic polarization effects are accounted

for by scaling the charged groups by the inverse square root of the high-frequency dielectric

constant of the surrounding medium, i.e., by the inverse of its refractive index. Note that

the high-frequency dielectric constants of the relevant biomembrane distinct environments—

aqueous solutions, membranes, and protein interiors—have values around 2, being very sim-

ilar to each other (unlike the total dielectric constants), which renders this essentially con-

tinuous approach applicable. In principle, charge scaling should be equivalent to immersing

the whole system into a dielectric continuum with a dielectric constant of about 2. However,

since our charge scaling is based on previously parameterized non-polarizable force fields, it

has turned out to be prudent to scale only the charges of ions and ionic groups and not,

e.g., of polar molecules like water. In other words, some degree of charge scaling may have

been already included implicitly in the original force field when fitting it to experimental

data. Note that partial charges are not experimental observables and, therefore, their values

depend to some extent on the particular procedure adopted for their derivation. Also, the

dielectric properties of common water models may not be entirely consistent with the ECC

approach in the sense that their dielectric constants are larger than the experimental low-

frequency value. Therefore, scaling factors lying anywhere between the inverse square root

of the high-frequency dielectric constant and unity have been suggested.80

In the context of phospholipid membrane modelling, one of the key experimental manifes-

tations of the deficiency of standard non-polarizable force fields is the grossly overestimated

binding of biologically important cations such as sodium and calcium to lipid headgroups.

This overbinding is true for membranes formed from both zwitterionic and anionic lipids,

as exemplified by the a much larger effect of these cations on the lipid headgroup order

parameters in the simulations than obtained from NMR measurements.34,38 We have shown

that charge scaling via the ECC approach fixes this problem in a physically well-justified way
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and brings the simulation results in a quantitative agreement with experiments. This grossly

improved agreement is demonstrated for membranes containing PC, PS and PG lipids by

plotting the dependence of the lipid headgroup order parameters on the aqueous salt concen-

tration for sodium and calcium chloride.45–47 The comparison to experiment of the results

from ECC vs. standard non-polarizable force fields clearly shows the dramatic improvement

charge scaling brings to the description of cation–headgroup interactions. The overestimated

interaction between charged species within non-polarizable force fields has far-reaching con-

sequences in biomembranes, since transmembrane proteins,93 the glycocalyx,94 and other

species that interact with the membrane95 are rich in charged groups. All these issues are

due to by wrong electrostatics, and we showed that charge scaling can to a large extent fix

that.80

In the future, we plan to revisit the ECC force field development for biomolecules, starting

the work from scratch, i.e., building up de novo a charge-scaled force field for water, ions,

amino acids (and the corresponding peptides and proteins), phospholipids, nucleic acids,

sugars, and other biologically relevant molecules. In this way, we will no longer be subject

to potential overscaling due to reliance on existing force fields and inconsistent dielectric

responses of water models. The challenge of building, from scratch, a new force field for

biomembranes that is ECC-compatible would have been unsurmountable just a few years

back. Developing a new force field is still a monumental task involving several research

groups and countless iteration rounds, where mistakes are corrected. In fact, there is still a

lot of manual work involved that justifies why all well-known force fields used to simulate

biomembranes started their development more than two decades ago. Nevertheless, the

constant increase of available computational power and the surge of computational techniques

that potentially allow considerable automatization of such tasks (e.g., machine learning,96 see

below) make present day the right moment to attempt such an endeavor. If successful in our

goal, we will eventually provide to the community an accurate force field that accounts for

electronic polarizability in a mean-field charge scaling way such that it is fully equivalent to
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immersing the system into a dielectric continuum with the high-frequency dielectric constant.

Current status of quality-evaluated databanks and au-

tomated force field development

Quality-evaluated databanks

The importance of sharing MD simulation data following the FAIR principles97 has been

widely recognized,18–25 and databanks are emerging.25–32 The relevance of quality evaluation

of simulation trajectories in databanks regarding technical details of simulations and accuracy

of the underlying physical description of the system (force field) has become evident19,23,26

and such quality evaluation has in some cases also been implemented.26,28 However, straight-

forward quality comparisons between individual simulations or force fields within these data-

banks remain challenging.

The quality of lipid bilayer simulations has been quite extensively evaluated under var-

ious conditions,33–38,44,47,65,98–100 yet determining unambiguously the overall accuracies of

different force fields remains still unclear, as exemplified in Table 1. Within the NMRlipids

Project (nmrlipids.blogspot.fi), we have used the open collaboration approach, inspired

by the Polymath Project101 and open-source software development, to find lipid force fields

that would correctly capture the lipid conformational ensembles and ion binding to mem-

branes.33–35,38,47 So far, we have used the data collected through the open collaboration to

evaluate against NMR data the lipid headgroup conformational ensembles and ion binding

affinities to membranes in the most commonly used force fields,33,34,38,47 and to propose the

inverse conformational selection model for lipid–protein interactions.47 We are currently us-

ing the NMRlipids open collaboration approach and the data collected during the project to

build an openly accessible databank of lipid bilayer simulations (github.com/NMRlipids/

Databank). The NMRlipids Databank will conduct by default automatic evaluations of sim-
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Figure 2: Evaluation of conformational dynamics of lipid from the preliminary NMRlipids
Databank102 against the effective correlation time of C–H bond rotation, τe, determined
using spin-relaxation data.103 Figure adapted from Ref. 102.

ulation trajectory qualities against NMR and X-ray scattering data, and enable arbitrary

user-defined automatic analyses over the vast sets of MD simulation data.

As an example application of using the NMRlipids Databank to evaluate conformational

dynamics of a large set of simulation data, Fig. 2 shows the effective rotational correlation

times of lipid C–H bond vectors, τe, calculated from all simulations in a preliminary version of

the databank:102 Only Slipids and CHARMM36 force fields are in line with the experimental

data, predicting conformational timescales below 5 ns for all lipid segments. Other tested

force fields exhibit significantly slower dynamics in the glycerol backbone and headgroup

regions, but such discrepancies are not observed in the acyl chain region. This provides

further support for the results from the NMRlipids Project indicating that CHARMM36

gives the most realistic description for the lipid headgroup region, while all force fields

capture acyl chain region properties with reasonable accuracy.33,35,38,47

Another application of the NMRlipids Databank is exemplified in Fig. 3, which shows the

area per lipid calculated from all POPC:POPS mixture simulations currently available in the

NMRlipids Databank. The area per lipid relates to the lateral density and is commonly used

to characterize membrane properties. Most force fields predict a decreased area per lipid
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logarithm of the average probability of the acyl chain CH2-group order parameters to reside
within experimental error in a simulation, thereby decreasing with increasing simulation
quality. For reference, the values extracted from the experimental X-ray scattering data
using the scattering density profile (SDP) model are shown in black.104,105

(i.e., tighter membrane packing) with an increasing amount of charged POPS lipids in the

membrane, yet the slope of the decrease depends on the force field parameters (Fig. 3). Since

the area per lipid is not a directly measurable quantity in experiments, we quality-evaluate

the results using the acyl chain order parameters. These depend on the membrane order,

thereby being a good proxy for the area per lipid.35,106 As all force fields predict acyl chain

order parameters of pure POPC bilayers with reasonable accuracy, we focused on evaluating

the quality of POPS acyl chain order parameters. The qualities of POPS simulations are

ranked on the right-hand side of Fig. 3 based on C–H bond order parameters of the CH2

groups in the sn-1 acyl chain of POPS. The quality of POPS simulations systematically de-

creases with decreasing area per lipid—from the GROMOS-CKP simulation with the largest

area per lipid to the Berger simulation with the smallest area per lipid and the worst agree-

ment with experiment. The quality evaluation based on acyl chain order parameters agrees

with the comparison of area per lipid values extracted from X-ray scattering experiments
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using the SDP model104,105 (Fig. 3). The force field dependent counterion binding affini-

ties can explain the differences in the simulated POPS lipid bilayer areas: The bound ions

screen the electrostatic repulsion between charged PS headgroups, thus leading to decreas-

ing area per lipid with increasing binding affinity.38 In conclusion, all force fields seem to

overestimate to varying extent the counter ion binding affinity to POPS lipids, except for the

GROMOS-CKP simulations. However, GROMOS-CKP predicts an unexpected minimum

of area per lipid for a mixed PC:PS system, which cannot be verified with the currently

available experimental data.

These examples demonstrate the power of the NMRlipids Databank in navigating the

complex landscape of current lipid MD simulation quality. Notably, none of the current

force fields overpasses others in all aspects of quality. For example, CHARMM36 force

field best captured the conformational dynamics of lipids (Fig. 2) and the main differences

between PC, PE, PG, and PS lipid headgroups, although not all order parameters were

within the experimental accuracy.47 At the same time, CHARMM36 is not the best option

for applications where the packing of membranes containing PS lipids is relevant (Fig. 3).

Consequently, the most reliable force field for a specific research question must be separately

selected. Without automatic quality evaluation enabled by the NMRlipids Databank or a

similar resource, performing such evaluation separately for each application would become

an overwhelming task.

As exemplified here and in previous studies, already the current version of the NMRlipids

Databank helps to resolve issues with contradicting simulation results related, for example,

to lipid conformational ensembles, dynamics, membrane packing and ion binding. However,

more robust methods and experimental data are still needed for the evaluation of drug and

amino acid binding to membranes, which is related to many known controversies listed in

Table 1. Some NMR data from lipid headgroup order parameters are also available for such

systems,107 but quantitative comparison with simulations is more complicated for molecules

with higher binding affinity. Furthermore, publicly available tools and quality measures en-
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abling quantitative evaluation of MD simulations of other biomolecular systems than lipid

bilayers, such as sugars or proteins, are not yet generally available—but there is certainly

ongoing work towards providing them.16,17,108,109 The flexible design of the NMRlipids Data-

bank enables also inclusion of other systems than lipid bilayers in the future.

Automated force field development

As discussed in the above sections, several significant simulation artefacts arise from fun-

damental issues in force field parameters, such as the lack of electronic polarizability or

inaccuracies in water models. Correcting such issues is highly non-trivial because it re-

quires systematic force field reparameterization. Building a new force field or extensively

re-calibrating an existing one, is a daunting task owing to its sheer size (thousands of parame-

ters); complexity (non-linear parameter dependencies with significant cross-correlations); the

lock-in effect arising from the requirement of consistency with the decades of effort already

invested in a particular force field; and the fact that such parameterization work is tradi-

tionally done by hand. Consequently, advances are made slowly, with efforts geared towards

small yet important parts of the force fields with fewer target parameters, such as water

models.87,110,111

Recently, however, the rise of machine learning (ML) has made the automated building

of predictive models with an extensive amount of parameters a common day practise. This

widely lauded development—along with the ever-increasing computational resources and the

growing availability of high-fidelity target data from experiments and from increasingly real-

istic ab initio calculations—seems to have significantly increased interest also in automated

force field development. The promise is that high-throughput approaches would revolution-

ize force field development, making the currently unavoidable extensive human involvement

and especially the incremental hand-tuning obsolete.

Automated force field development can be roughly divided into (1) approaches where

a machine learning algorithm,96,112 such as a neural network113–116 or a kernel-based ap-
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proach117 acts as the force field, predicting the forces for a specific configuration of molecules

(black-box potentials), and (2) approaches where automated optimization algorithms (in-

cluding ML tools118) are used to find better parameters for existing force field functions40–43,119

(gray-box potentials). Quality-evaluated open access databanks of MD trajectories can aid

both of these approaches, as they guide the choice of optimization targets (by pinpointing

the typical failures of existing MD force fields), establish quality standards, and can even

provide training data for ML methods in force field parameterization.

(1) Black-box potentials. Typically these methods rely on the bottom-up approach,

where a ML algorithm is trained with QM data of small molecules to extract a description

of immediate environments of atoms, and to predict the atom-wise energies and forces.

Such an algorithm is free from the shackles of the fixed functional forms of the classical force

fields and is also intrinsically polarizable. However, it is somewhat limited in describing long-

range interactions that cannot be cut off, such as electrostatics. Perhaps the most prominent

examples have been those using neural networks, pioneered by Behler and Parrinello,113 after

which several architectures, such as ANI114,115 and SchNet116 have emerged.

Although such ML algorithms can be well-scalable to larger molecules120 so far no truly

large-scale or complex (involving many molecular species) simulation has been conducted.

Therefore, it is difficult to assess whether black-box potentials can accurately produce com-

plex biomolecular simulation data in line with experiments, even though they do predict

the potential energy surfaces, forces, and vibrational spectra with precision comparable to

their training data for small molecules. They might suffer from a similar drawback that

the classical force fields optimized using similar QM-based bottom-up approaches seem to

have, i.e., not correctly probing the intermolecular interactions. Although subject to the

same limitations in the types of systems (transferability and generalizability) and the level

of theory used in generating the QM data for the training,121 black-box potentials do not

have the same flexibility for empirical error correction (e.g., by partial re-calibration to new

experimental data) as classical force fields.
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The computational cost of black-box potentials currently lies between those of ab initio

and classical force fields.112,121,122 This does not include the computational cost of training

the black box, or creating the QM training data set, the size of which depends on the ML

approach of choice. The cost associated with training data can be alleviated by exploiting

or creating curated, open-access databanks and by using strategies, such as active learning,

to sample the training data efficiently.115

(2) Gray-box potentials. There are two standard strategies for parameterizing a clas-

sical force field functions for MD simulations, either by 1) computing the function parameters

from highly accurate QM calculations for (as large as possible) molecules and molecular frag-

ments and piecing the model together bottom-up; or 2) optimizing the function parameters

for molecules or multi-molecule systems directly against target experimental data.

In most of the currently used force fields, these two strategies have been used in conjunc-

tion with one another, usually by obtaining the starting point from QM calculations and

then re-adjusting some parameters targeting experimental data. While force fields calibrated

with this approach during the last decades have reached impressive performance, they also

have severe flaws, as outlined in the sections above. The ever growing need for more accu-

rate force fields and more realistic description of the underlying physics such as electronic

polarization is a strong incentive to speed up the parameterization process using automated

approaches.

Note that the force field function parameters are traditionally thought to have a physical

meaning, even when looked at individually (say, a dihedral stiffness or an atom size). When

it comes to automated optimization of many parameters simultaneously, however, it can be

argued that the physical meaning of individual parameters is blurred, and thus it make only

limited sense to make such individual interpretations. Only the collection of parameters as

a whole, to the extent they reproduce the targeted behaviour of the simulated system, has

such a physical meaning.123 To emphasize this point, we call such automatically optimized

force fields here gray-box potentials.
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Automated force field calibration has been done since the late 1990’s124 but has thus

far mostly remained in the realm of small molecules; that said, also force fields for com-

plex unstructured biomolecules, such as lipids, have been developed using automated ap-

proaches.43,125,126 Gradient-based minimizations,41,43,127,128 gradient-free methods such as

Simplex129–131 and evolutionary algorithms,39,40,42,119,131 surrogate or metamodel strategies,39,111,132,133

and their various combinations have been used for this purpose (Table 2). In addition to

the extreme complexity of the underlying optimization problem, one of the main hurdles

preventing such automated approaches seems to be the computational cost arising from the

fact that the optimization loop requires running MD simulations on (possibly thousands) of

force field candidates. This cost can be alleviated, for example, by thermodynamic reweigh-

ing of cached MD trajectories.43,134 However, it appears that in some cases the gain from

reweighing is smaller than the cost of trying the reweighing with insufficient data,135 and

that the reweighing only works reliably with minimal perturbations.

At the same time, the swarm of (possibly thousands) of force field candidates created

as a side product of the optimisation loop is not just computational waste but high-quality

raw material that can be upcycled to train machine learning algorithms (such as a neural

network), to act as a surrogate for the costly MD simulation in probing the optimization

landscape,39,42,133 or to create an expert (machine learning) model that directly predicts force

field parameters from experimental data. Additionally, the major speed up by the next gen-

eration supercomputing architectures136 may accelerate further automated parameterization

procedures.

The increased automatization of force field parameter development with reduced human

involvement underscores the importance of the quality and proper interpretation of target

data. Optimal experimental target data have high accuracy and direct connection with

simulations. Instead, data requiring approximate models to connect to physical properties

should be relegated to an inferior role despite being easier for humans to interpret. For

example, for lipid bilayers, the intuitively intelligible area per lipid can be determined only
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Table 2: Automated force field calibration studies. Complex biomolecular systems high-
lighted with light blue. ReaXFF = Reactive force field. EA = Evolutionary Algorithm. GM
= Gradient-based Minimization. PSO = Particle Swarm Optimization. LS-SVR = Least-
squares support-vector regression EXP = Experiments. QM = Quantum Mechanics. BI =
Bayesian inference. SS = Systematic search. NN = Neural network. RW = Reweighting.

authors year system method target

Gray-box potentials

Hunger et al.124 1998 Mo(CO)3 compounds EA EXP
Norrby and Liljefors137 1998 Ethane GM QM + EXP
Wang and Kollman40 2001 Small organic molecules EA + SS QM
Mostaghim et al.138 2004 Small organic molecules EA + PSO QM

Tafipolsky and Schmid139 2009 Metal organic frameworks EA QM
Liu et al.140 2011 Protein LS-SVR EXP

Handley and Deeth141 2011 Iron amide EA QM
Li and Hartke142 2013 ReaXFF for azobenzene EA QM
Dittner et al.143 2015 ReaXFF for SiOH EA EXP

Gao et al.144 2015 (CD)Benzene EA QM
Betz and Walker145 2015 Small organic molecules EA QM
McKiernan et al.125 2016 DPPC lipid GM EXP

Zahariev et al.119 2017 Phosphine oxides EA + Simplex QM
Wang et al.146 2017 Proteins GM QM
Dutta et al.111 2018 Water BI MD

Messerly et al.134 2018 Small hydrocarbons Surrogate + RW MD
Cesari et al.128 2019 RNA GM + RW EXP

Oliveira et al.147 2020 Haloalkanes GM + RW EXP
Krishnamoorthy et al.148 2020 2H-MoSe2 EA QM

Oliveira and Hünenberger149 2021 Organic molecules GM + RW EXP
Yu et al.43,126 2021 Lipids GM + RW EXP
Yang et al.150 2021 ZrS2 EA QM

Boothroyd et al.135 2021 Organic molecules GM + RW EXP
Wang et al.118 2021 Small organic molecules NN + RW QM
Befort et al.133 2021 Hydrofluorocarbons Surrogate QM + MD

Black-box potentials

Morawietz and Behler151 2013 Water NN QM
Smith et al.152 2017 Organic molecules NN QM

Thaler and Zvadlav153 2021 Diamond NN+RW EXP+QM
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indirectly from experiments, and with relatively low accuracy. In contrast, the C–H bond

order parameters from NMR have a more direct connection with experiments and higher

accuracy, thereby being better quantities to evaluate MD simulation quality.35 However,

care must be taken also when using order parameters as target data. For example, the

lack of information on their sign or forking (two C–H bonds at the same carbon having

different order parameters) can misguide the fitting algorithm to incorrect values, leading to

significant deviation of the conformational ensemble from experiment, see Fig. 4. A similar

situation may also appear if interfaces with incorrect surface pressures are used as fitting

targets.62 Nevertheless, the game-changing advantage of automated parameter optimization

in such cases is the ease of repeating the fitting procedure with better target parameters

when they become available.

Notably, even after carefully considering the various aspects of target data and fitting

algorithms, one should be aware that fitting may not lead to a unique solution and that

overfitting, e.g., by ignoring the inherent data uncertainty, targeting only one type of data,

or severely overweighting one measurable, may lead to an incorrect ensemble being produced

by the gray-box force field. Nevertheless, a force field that reproduces the high-quality exper-

imental data with a robust connection to simulations has a higher likelihood of representing

the correct, underlying physical behaviour.

In conclusion, the black-box ML potentials and the automated parameterization of clas-

sical force fields to create gray-box potentials are promising tools for improving MD models,

e.g., by introducing more accurate water models and including electronic polarization ef-

fects, improve thus their consistency with experiments, thus paving the way toward more

realistic MD simulations of membranes and other biomolecular systems. However, although

black-box ML potentials can reach QM-like precision, and methods like gradient-based opti-

mization have consistently shown their advantages in improving the classical force fields, no

single approach has yet emerged as clearly superior to tackle this task. For this to happen,

practitioners need to keep pushing the applications towards larger and more complex sys-
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Figure 4: (top) Headgroup and glycerol backbone C–H bond order parameters from
standard CHARMM36 parameters are close to experiments, while the polarizable Drude-
CHARMM predicts forking (inequivalent order parameters SCH for the two C–H bonds
in the same carbon) for the headgroup α and β carbons. (bottom) Both force fields
are close to experiments without the information on the signs and forking, probably be-
cause the average of absolute values over hydrogens attached to the same carbon were
used as target parameters in the fitting procedure for the polarizable Drude-CHARMM.88

C–H bonds are labelled as in Fig. 3. Data is taken from the NMRlipids VI project
(github.com/NMRlipids/NMRlipidsVIpolarizableFFs).
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tems. Considering this, we expect that the full potential of these approaches and the most

successful methodologies of complex biomolecules will only be revealed in the coming years.

Future perspectives

We are confident that a new era of biological membrane simulations is just about to emerge.

It will be characterized by computational data with quantitative relation to existing experi-

ments and providing high fidelity predictions thanks to the following key features: (i) Force

fields will be developed systematically based on physically well-justified models, including

accurate representation of the aqueous solvent and an effective account for electronic polar-

ization, (ii) Force field development will employ automated parameterization tools making

the whole procedure much more efficient and thus feasible within a reasonable timescale,

and (iii) A standard procedure for quality evaluation will be established and performed for

published simulation data. All these features will benefit from the creation of databanks of

MD simulations where quality control against experiments is enforced.
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dynamics in partially disordered proteins. Phys. Chem. Chem. Phys. 2020, 22, 21185–

21196.

24



(18) Feig, M.; Abdullah, M.; Johnsson, L.; Pettitt, B. Large scale distributed data repos-

itory: design of a molecular dynamics trajectory database. Future Generation Com-

puter Systems 1999, 16, 101–110.

(19) Tai, K.; Murdock, S.; Wu, B.; Ng, M. H.; Johnston, S.; Fangohr, H.; Cox, S. J.; Jef-

freys, P.; Essex, J. W.; P. Sansom, M. S. BioSimGrid: towards a worldwide repository

for biomolecular simulations. Org. Biomol. Chem. 2004, 2, 3219–3221.

(20) Silva, C. G.; Ostropytskyy, V.; Loureiro-Ferreira, N.; Berrar, D.; Swain, M.; Dub-

itzky, W.; Brito, R. M. M. P-found: The Protein Folding and Unfolding Simulation

Repository. 2006 IEEE Symposium on Computational Intelligence and Bioinformatics

and Computational Biology. 2006; pp 1–8.

(21) Abraham, M. et al. Sharing Data from Molecular Simulations. Journal of Chemical

Information and Modeling 2019, 59, 4093–4099.

(22) Hildebrand, P. W.; Rose, A. S.; Tiemann, J. K. Bringing Molecular Dynamics Simu-

lation Data into View. Trends in Biochemical Sciences 2019, 44, 902–913.

(23) Hospital, A.; Battistini, F.; Soliva, R.; Gelṕı, J. L.; Orozco, M. Surviving the deluge
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