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Abstract—As smartphones have become indispensable personal
devices, the number of smartphone users has increased dramat-
ically over the last decade. These personal devices, which are
supported by a variety of smartphone apps, allow people to
access Internet services in a convenient and ubiquitous manner.
App developers and service providers can collect fine-grained
app usage traces, revealing connections between users, apps, and
smartphones. We present a comprehensive review of the most
recent research on smartphone app usage analysis in this survey.
Our survey summarizes advanced technologies and key patterns
in smartphone app usage behaviors, all of which have significant
implications for all relevant stakeholders, including academia and
industry. We begin by describing four data collection methods:
surveys, monitoring apps, network operators, and app stores, as
well as nine publicly available app usage datasets. We then sys-
tematically summarize the related studies of app usage analysis
in three domains: app domain, user domain, and smartphone
domain. We make a detailed taxonomy of the problem studied,
the datasets used, the methods used, and the significant results
obtained in each domain. Finally, we discuss future directions in
this exciting field by highlighting research challenges.
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I. INTRODUCTION

PEOPLE can now use their smartphone apps to access a
variety of Internet services, including instant messaging

(e.g., WhatsApp, WeChat), online socializing (e.g., Twitter,
Weibo), electronic commerce (e.g., Amazon, Taobao), and
online payment (e.g., PayPal, Alipay). These services have
become an important part of the infrastructure of the mod-
ern information society, making smartphone apps a necessity
in daily life [1]–[3]. According to a report from Statista [4],
the number of apps available in Google Play, the official app
store of Android, has increased exponentially from 16,000 in
December 2009 to 2,893,806 in July 2021. The app market
is expected to generate 935.2 billion US dollars in business
value by 2023 [5]. Such a vast and vital app market has
attracted developers and service providers to investigate app
usage behavior to better develop and deliver mobile apps.

Understanding app usage behaviors has significant impli-
cations for all relevant stakeholders, including smartphone
manufacturers, network operators, market intermediaries, app
developers, and end consumers [6]. To improve device
performance and extend usage time, smartphone manufac-
turers can optimize the scheduling of various smartphone
resources, such as CPU, memory, and battery power, based on
the usage patterns of specific apps [7], [8]. Based on app traffic
patterns, network operators can dynamically optimize traffic
offloading schemes and improve network services [9], [10].
Furthermore, network operators and market intermediaries can
provide personalized services, such as accurate recommenda-
tions and targeted advertisements, by profiling mobile users’
preferences and interests from their app usage behaviors. By
doing so, operators and intermediaries can improve the quality
of experience (QoE) while increasing profits [11], [12]. App
developers can better understand customer satisfaction and
market trends by analyzing app usage and profiling app pop-
ularity, which may provide excellent guidance for upgrading
existing apps and designing new apps [13].

In recent years, extensive research efforts have been invested
in understanding user behaviors using data-driven methods
based on mobile app usage data. As shown in Fig. 1, we
counted the number of papers published in the field of app
usage data analysis. We can see that this research area began
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Fig. 1. Volume of publications in the field of app usage data analysis. The
statistical values are up to Aug. 2021. The predicted value for 2021 is based
on previous years’ values.

Fig. 2. Structure of existing studies for app usage analysis.

in 2010, then grew slowly until 2012. Most notably, after
2012, there was a rapid increase in the number of publi-
cations. Overall, the volume of publications in this field is
expanding, indicating a burgeoning research field. Thus, we
aim to conduct a comprehensive literature survey in response
to significant recent progress in mobile app usage analysis.

The app usage data are collected through surveys [14], mon-
itoring apps [8], network operators [15], and app stores [16].
These data form a cross-domain and multi-view data ecosys-
tem that includes various app usage behaviors, e.g., down-
loading, installing, launching, uninstalling apps, contextual
information about app usage, e.g., time, location, traffic,
energy consumption, and information about apps, e.g., app
description, app rating, and user reviews. As a result, the
app usage data reflects the characteristics of apps, users, and
smartphones.

Existing studies for app usage data analysis fall into three
domains: app domain, user domain, and smartphone domain,
as shown in Fig. 2. From the app perspective, app domain
research aims to reveal app features from app usage data. The
research topics in this area include app ecosystem profiling,
app usage pattern discovery, and app usage prediction and rec-
ommendation. App ecosystem profiling looks into the inherent

Fig. 3. Structure of the survey article.

characteristics of mobile apps and app markets, such as app
categorization and popularity modeling. The goal of app usage
pattern discovery is to find regularities in mobile app usage
behaviors. Predicting which apps will be released and inferring
users’ preferences for undiscovered new apps are the goals of
app usage prediction and recommendation.

The goal of user domain studies is to discover the link
between user characteristics and app usage behaviors. User
profiling and user identification are two research topics in this
domain. User profiling focuses on group-level user attributes
like gender, occupation, income, and personality. User iden-
tification, focusing on the individual level, aims to identify a
user based on his or her app usage behaviors.

The smartphone domain research focuses on smartphone
characteristics, with two main areas of investigation: app
energy drain and app traffic patterns. These two areas aim
to improve smartphone performance by analyzing app energy
and traffic consumption patterns.

In this survey, we aim to answer the following questions.
How should one collect mobile app data? What are the ben-
efits and limitations of the various data collection methods?
What are the critical features of app usage datasets that have
been used in existing studies? What are the main research
topics in mobile app usage analysis? What are the most com-
mon data-driven methods used, the significant findings, and
the main results in existing studies? What are the challenges
and promising future directions in mobile app usage analysis?

To answer these questions and draw conclusions, we sys-
tematically review the recent research. Fig. 3 shows our survey
paper’s structure. In Section II, we describe and compare data
collection methods. We also present a set of public datasets
and discuss privacy and ethical issues. Section III summa-
rizes existing studies in the app domain. Section IV reviews
research efforts in the user domain. Section V reviews exist-
ing studies in the smartphone domain. We compare app usage
datasets, methods, and findings across all research topics. In
Section VI, we discuss the challenges and future research
in mobile app usage analysis. Section VII concludes the
survey.

The main contributions of this paper can be summarized as
follows.
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TABLE I
SUMMARY OF EXISTING SURVEY ARTICLES ON APP USAGE ANALYSIS

• A comprehensive survey of data collection methods used
to collect app usage data is presented, including surveys,
monitoring apps, network operators, and app stores. We
discuss data characteristics and compare the benefits and
limitations of various data collection methods. We also
gather and introduce prominent app usage datasets to the
research community for further study.

• A comprehensive review of current research in the field
of smartphone app usage data analysis is presented,
including primary research topics in the app, user,
and smartphone domains. As for each research topic,
we make a thorough comparison in terms of the
problem they studied, the datasets they used, the
methods they applied, and the significant results they
achieved.

• Advanced technologies and key findings gleaned from
app usage behaviors are thoroughly summarized, with
significant implications for all relevant stakeholders in
the research community and industries.

• The challenges and future research opportunities concern-
ing mobile app usage analysis are identified. We give a
thorough discussion of the challenges in data and meth-
ods. We also go over future research topics, such as app
evolution, context-aware app usage modeling, deep rea-
soning of app usage behaviors, linking physical activities
and app usage, and location-based services and urban
computing.

There are only a few surveys on related topics. Cao and
Lin [17] surveyed studies that looked at app usage prediction
and recommendations. Zhao et al. [11] summarized stud-
ies on user profiling based on their app usage behaviors.
Guo et al. [13] conducted a review of the literature using app
usage data gathered through crowdsourced methods. Existing
surveys are either limited to a single data source [13] or a
single small topic [11], [17]. Table I summarizes the contribu-
tions and limitations of existing survey articles on app usage
analysis. In comparison, our survey examines the state-of-the-
art studies in all app, user, and smartphone domains, as well as
the connections between them. We provide a systematic review

of existing datasets, commonly used analytical methods, and
key findings and results.

II. DATA COLLECTION AND OVERVIEW

The foundation and core parts of smartphone app usage
analysis are the real-world app usage data. We will introduce
and compare different data collection methods in this section,
and we will present a set of public datasets. We will also
discuss privacy and ethical concerns.

A. Data Collection Methods

1) Surveys: Surveys are a simple and important method
to collect information about app usage. Researchers generally
create a questionnaire based on their goals and then collect
data from the participants’ responses. In practice, researchers
should pay close attention to questionnaire design, particularly
question wording, to reduce respondent bias. The American
Association for Public Opinion Research offers some tips on
how to conduct a high-quality survey.1

There are several methods for conducting a survey, includ-
ing telephone, mail, and the Internet. In-app surveys, which
post questionnaires and collect user feedback directly inside
mobile apps, have been popular in recent years and are often
used to obtain app usage data. WhatsApp and Skype, for exam-
ple, ask users to rate the quality of their audio calls at the end
of the call. YouTube uses questionnaires to gather information
about its users’ preferences. In-app surveys require less main-
tenance than other methods such as telephone and face-to-face
surveys [18]. In-app surveys can capture a lot of data because
they can reach a large number of people lightly. However, in-
app surveys, respondents only represent one group, namely
app users, which may limit the generalizability and represen-
tativeness of the data obtained. In other words, in-app surveys
offer a mode impact, whereas different survey modes result in
different data being collected.

Surveys can collect only the coarse-grained app usage
behaviors of users, such as which app store they used and

1https://www.aapor.org/Standards-Ethics/Best-Practices.aspx
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the number of apps they downloaded per month [19], [20].
However, fine-grained app usage traces, such as when and
what apps are launched, are difficult to collect with surveys.
Participants may be hesitant to share sensitive information and
may also give socially acceptable responses to the questions
posed. As a result, there are biases in the app usage data gath-
ered through surveys. Researchers should be aware of this and
take proactive steps to mitigate biases, such as data sampling.

2) Monitoring Apps: One common data collection method
is to use monitoring apps installed on participants’ smart-
phones to record fine-grained app usage behaviors automat-
ically. Researchers can use this data collection method on a
small scale by recruiting volunteers [21] and on a large scale
by publishing monitoring apps in app stores [8]. Recruiting
volunteers can focus on a particular group of users, e.g.,
students [22] and older adults [23]. In addition, recruiting
volunteers, such as selecting involved users based on their
backgrounds and properties, can pre-control the quality of
data. Publishing in app stores can improve data quality by
filtering out noisy data and reducing bias by taking advan-
tage of a large number of active users [24]. Notably, as a
result of globalization, it is now easier to collect app usage
data from multiple countries by publishing monitoring apps
in international app stores such as Google Play and Apple
Store. The results of such an analysis will be more general
and representative.

Monitoring apps generally use an event-triggered collec-
tion scheme, which means they collect app usage data when
an event occurs. The event can be user actions [25] (e.g.,
turning on the screen, launching apps, or typing), mes-
sages received [26] (e.g., notifications, e-mails), network
requests [27], and hardware status [28] (e.g., CPU usage,
battery levels). Researchers can collect a variety of user behav-
iors and control the granularity of data collection by properly
selecting trigger events. Smartphones also have a variety of
sensors [29], such as an accelerometer, a gyroscope, and a
GPS. Monitoring apps can gather enough sensor data, such
as CPU usage, movement status, GPS location, and battery
status. This sensor data can be used to analyze app usage
by providing sensor contextual information. It is worth noting
that monitoring apps are available to obtain almost all kinds
of smartphone usage behaviors as long as the user’s consent
is obtained.

3) Network Operators: Most apps nowadays rely on the
Internet to provide their services. As a result, network opera-
tors can gather network data and deduce app usage traces from
it. Network data can be collected and extracted from multiple
network interfaces, such as from the serving gateway (SGW),
the mobility management entity (MME), the access & mobil-
ity management function (AMF), or the session management
function (SMF), as shown in Fig. 4. Deep packet inspection
and deep flow inspection are typically used to infer app usage
information from traffic flow records collected from the SGi
and N6 network interfaces [30].

This data collection method is typically used by network
operators and in large-scale measurements. The data collected
generally cover most mobile users in an entire city [31] or
a country [32]. Due to the large volume of network traffic

Fig. 4. Data-collecting points in networks. MME: Mobility Management
Entity; SGW: Serving Gateway; PGW: Packet Data Network Gateway; SGi:
Serving Gateway interface; AMF: Access & Mobility Management Function;
SMF: Session Management Function; UPF: User Plane Function.

data, network operators have to use sample strategies, col-
lecting network traffic records at regular intervals like every
hour [33] or every several minutes [34]. The datasets col-
lected by network operators typically include location data for
app usage records. The location is approximated by the GPS
location function of the associated base station.

An important step in this data collection method is to
infer app usage activity from network traffic flows. One
popular method is to use the HTTP header of network pack-
ets [35], [36]. Yao et al. [35], for example, created SAMPLE,
a systematic tool that inspects the HTTP head and uses
the destination domain and user-agent as the app identifier.
SAMPLE can automatically generate the conjunctive rules
that identify over 90% of apps with an average accuracy of
99%. However, due to security concerns, most apps now use
the HTTPS protocol to transmit packets. Some research has
focused on identifying app usage traces from encrypted data
traffic [36]–[38]. Taylor et al. [37], for example, developed
AppScanner, a system that used packets’ side information,
such as packet size, direction, and delay, to identify the
app label. AppScanner was able to correctly identify the
top 110 most popular apps with a 96% accuracy rate. Most
importantly, when collecting data from network operators,
researchers should be aware of the mode effect. This data col-
lection method cannot be used to track app usage that does
not generate network traffic.

4) App Stores: App stores have access to a variety of
app usage data. The app store, which is an app manage-
ment tool, records users’ app management behaviors, such
as downloading, updating, installing, and uninstalling apps.
User preferences and app popularity are implicitly reflected in
these management activities. Due to the user account mech-
anism, app stores can track the same user’s behaviors across
multiple devices, which is difficult to do with surveys and
network measurements. Additionally, some app stores, such as
Wandoujia,2 a free Android store in China, support the moni-
toring of smartphone sensors. As a result, app stores can still
provide sensor contextual information about app usage, such

2https://www.wandoujia.com/
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TABLE II
COMPARISON OF DIFFERENT DATA COLLECTION METHODS

as network traffic, CPU usage, memory usage, battery status.
However, because of the security concerns of iOS, iPhones
cannot support third-party app stores. Thus, this data collection
method is most concentrated on Android users.

App stores can provide various types of app metadata, such
as app name, app category, app description, app rating, and
user reviews. App metadata produces valuable information
about smartphone apps and allows the collection of user feed-
back about them. App descriptions, for example, are frequently
used to extract app functions for app categorization. For user
profiling, app categories provide semantic meanings to explain
usage activities. App ratings and user reviews are used to
model app popularity and recommend apps based on their pop-
ularity and usage experience. App metadata can be crawled
from app stores, such as Google Play and Apple Store, or
provided directly by app stores.

Table II compares the four data collection methods men-
tioned above. In terms of data collection scale, all four
approaches are capable of large-scale measurements involv-
ing tens of thousands of users, thanks to advancements in
communication and network technologies. However, surveys
and monitoring apps are limited by response rates or app
popularity, which makes it difficult to collect millions of
users. By recruiting volunteers, both surveys and monitor-
ing apps can collect small-scale datasets. It is also possible
to conduct control studies by carefully selecting participants,
which is impracticable for network operators and app stores.
Monitoring apps outperform the competition in terms of col-
lectible app usage behavior. It is difficult for surveys to collect
fine-grained usage traces because they are limited by ques-
tionnaires. Because users are directly responsible for their
responses, they may be hesitant to share sensitive information

but willing to provide socially desirable responses, resulting
in biases in the data collected. Although other methods collect
data automatically and avoid biases, network operators and app
stores are still limited to specific types of behaviors, such as
network access and app management. Monitoring apps, which
are installed on smartphones and based on event-triggered col-
lection, can be used to collect all types of app usage behaviors
by selecting different trigger events. Different data collection
methods can provide additional side information about app
usage behaviors, such as user profiles, sensor data, location,
and app metadata.

Every coin has two sides. Different collection methods have
their own set of benefits and drawbacks. In practice, we must
select data collection methods with care and precision to
answer the research question. For example, surveys, moni-
toring apps, and app stores are better choices than network
operators for investigating country and culture differences in
mobile app usage behaviors because it is difficult to conduct
worldwide data collection from network operators. App stores
and monitoring apps are also better if we want to track a
user’s usage behaviors over time because they can link the
same user based on user accounts even if the user changes
smartphones. Different collection methods can be combined at
times. For example, operator data can be used to discover app
usage patterns across millions of users and then conduct con-
trol studies on small-scale datasets collected from monitoring
apps or surveys to verify the discovered patterns.

B. Public Datasets

In this section, we present nine datasets that are pub-
licly available for further research to the research community.
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We introduce the collection method, collection period and
collection items of these datasets in detail.

1) Worldwide Survey Dataset: This dataset was conducted
through a survey methodology in 2012, collecting mobile
app usage information of 10,208 people from more than
15 countries [19]. The countries include the United States,
Canada, Mexico, the United Kingdom, Australia, France,
Germany, Italy, Spain, Brazil, Russia, India, Japan, China,
and South Korea. The collected items for mobile app usage
behaviors include the most frequently used app stores and
app categories, the reasons that lead users to find apps,
and the reasons that lead users to download and aban-
don apps. It is worth noting that this dataset only contains
usage data for app categories instead of individual apps.
The dataset includes participants’ demographics, including
age, gender, nationality, marital status, country of residence,
first language, ethnicity, education level, occupation, and
income. This dataset also collects participants’ personality
traits by using the Big-Five personality measurement. This
dataset and corresponding questionnaire are public, available
at ‘http://www0.cs.ucl.ac.uk/staff/S.Lim/app_user_survey/’.

2) Mobile Data Challenge (MDC) Dataset: The Lausanne
Data Collection Campaign (LDCC) developed a specific moni-
toring app based on Nokia platforms to implement smartphone
data collection. From October 2009 to March 2011, they
collected a longitudinal smartphone dataset from nearly 200
volunteers. The volunteers are primarily dispersed through-
out the Lake Geneva region of Switzerland. Large amounts
of smartphone data, such as app usage behaviors (launch,
foreground, close, and view), location (GPS, WLAN), motion
(accelerometer), and proximity (Bluetooth), are all recorded in
the dataset. The dataset was released to the research commu-
nity in the Mobile Data Challenge (MDC) [39] held by Nokia,
which is available at ‘https://www.idiap.ch/dataset/mdc’.

3) LiveLab Dataset: This dataset was collected through
a monitoring app called LiveLab [40]. LiveLab is an iOS
app used to gather smartphone usage data from 24 iPhone
users over the course of a year, from February 2010 to
February 2011. The dataset specifically tracks two types of
app usage behaviors: app launches and changes to the fore-
ground app. The dataset also includes contextual information
about user behaviors gathered from iPhone sensors such as
the accelerometer, GPS, battery, Bluetooth, and WiFi status. It
is important to note that this data was collected from skewed
samples; all 24 volunteers are Rice University students. This
dataset was released to the public and can be accessed via
‘http://yecl.org/livelab/traces.html’.

4) Carat Dataset: Carat [8], a monitoring app, was used
to collect this dataset. Carat applies an event-triggered collec-
tion scheme, gathering a data sample every time the battery
level changes by 1%. Each data sample contains a list of
apps used, a user-specific identifier, and a timestamp. Carat
also gathers sensor contextual data, such as battery level, bat-
tery status, mobile country code. Carat is available on both
Google Play and Apple Store, which the developers hope
will increase the number of people who participate in data
collection. In this way, they collect data from all over the
world. Carat has collected data from over 500,000 mobile

users in over 100 countries so far.3 The dataset owners made a
long-term app usage dataset available to the research commu-
nity. The top 1,000 users ranked by total time spent using
Carat from 2014 to 2018 are included in the public long-
terms app usage dataset. The user with the longest duration in
the public dataset has 18,146,042 time-series records spanning
4.65 years, and even the user with the shortest duration has
more than two years of records. The public dataset is available
at ‘https://www.cs.helsinki.fi/group/carat/data-sharing/’.

5) TalkingData: The dataset is collected using the
TalkingData Software Development Kit (SDK), which is inte-
grated into monitoring apps. This dataset contains the complete
app usage traces for over 70 thousand users from May
01, 2016, to May 07, 2016. Each app usage log includes
an anonymous user ID, timestamp, app ID, and location
information (longitude and latitude). This dataset contains
demographic information about the users involved, such as
age and gender. Researchers should be aware of the mode
effect and biases in the analysis when using this public
dataset because the users involved are mostly from main-
land China. This dataset was released in a Kaggle chal-
lenge, TalkingData Mobile User Demographics, and can be
accessed via ‘https://www.kaggle.com/c/talkingdata-mobile-
user-demographics/’.

6) PhoneStudy Dataset: The PhoneStudy smartphone
research app for Android was used to collect this data [41].
Between September 2014 and January 2018, 743 volunteers
were recruited through forums, social media, blackboards, fly-
ers, and direct recruitment. The activities of users on their
smartphones were logged in the form of time-stamped logs
of events. Those events included calls, app starts/installations,
screen de/activations, contact entries, texting, global posi-
tioning system (GPS) locations, etc. The dataset is publicly
available at ‘https://osf.io/kqjhr/’.

7) Context-Aware App Usage Dataset: This dataset was
collected by a primary Internet Service Provider (ISP) in
China [42]. The data was collected over the course of one
week in April 2016, and it covered the entire metropoli-
tan area of Shanghai, one of the world’s largest cities. The
SAMPLES [35] tool was used to identify app usage records
from network metadata, and the traffic generated by the
2,000 most popular apps was successfully recognized. Each
app usage record contains an anonymized user ID, times-
tamp, base station ID, app ID, and traffic volume. The top
1,000 active users in the app usage dataset are released to
the research community. The public dataset is available at
‘http://fi.ee.tsinghua.edu.cn/appusage/”.

8) Wandoujia Dataset: Wandoujia is a leading app store in
China [43]. The dataset was collected from over 17 million
users and recorded their app management activities, such as
downloading, updating, and uninstalling apps, from May 1 to
September 30, 2014. Wandoujia also gathered daily network
activities for each app, such as traffic volume and Wi-Fi and
cellular network connection time. A portion of this dataset
has been made available to the public. The public dataset is
available at ‘http://www.liuxuanzhe.com/appdata/’.

3http://carat.cs.helsinki.fi/.
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9) iOS Apps Dataset: This dataset [44] was extracted from
the Apple Store and covers the metadata of removed iOS apps
for a period of 1.5 years, from January 1, 2019, to April 30,
2020. There are 1,129,615 app records in total, correspond-
ing to 1,033,488 unique mobile apps. The dataset contains
app objective data such as app name and release date, app
subjective data such as app ratings and reviews, and app pop-
ularity data such as app ranking. The information is open to the
public and can be found on ‘https://github.com/LuckyFQ/iOS-
Removed-Apps-Dataset’.

In Table III, we summarize the above seven public datasets
in terms of collection method, collection area, collection date,
number of apps and users, collected items, and availability
status.

C. Privacy and Ethical Considerations

In 2018, the General Data Protection Regulation (GDPR)
became enforceable in the European Union. GDPR gives
European citizens greater control over their data and raises
awareness of privacy issues and the value of their personal
data [45]. GDPR, as a strong regulation for collecting and
processing personal data, imposes a number of requirements.
The following are the most relevant and important data col-
lection principles. First, personal data can only be collected if
the user has given consent for a specific purpose. Namely, user
consent is only used for a specific purpose. Second, the data
minimization principle limits data collection to the minimum
required to achieve the app’s purpose. Third, individuals have
the right to withdraw their consent and erase their personal
data. The GDPR has had a significant impact on how mobile
app usage data is collected. According to a recent study [46],
the number of permission items used by apps decreased signifi-
cantly after the GDPR was implemented. This finding suggests
that monitoring apps are cautious about the data they col-
lect to follow to the GDPR’s data minimization principle.
Furthermore, the data collection section is also responsible
for consent management. Many app vendors and app stores
have mechanisms in place to respond to user requests, such
as erasing data and withdrawing consent [47].

Smartphone app usage data, as a type of sensitive personal
data, must be handled with caution when it comes to ethics.
When collecting, processing, and analyzing app usage data,
researchers must adhere to the principle of Data for Good [48].
First, app usage data should be used for the greater good of
humanity and society. We should use data to improve peo-
ple’s lives, such as by improving interpersonal relationships,
providing convenient and ubiquitous services, improving user
experience. However, some dangerous and terrible things have
occurred in recent years. Cambridge Analytica, for example,
abused the data of millions of Facebook users [49]. To prevent
such things from happening again, apart from government reg-
ulations, we still need data scientists to hold themselves to
a high standard. Second, we should make good use of app
usage data. We should adhere to the principle of end-user
transparency by outlining the items collected, the purpose of
data collection, the potential privacy risk. Collection and anal-
ysis should be done in a way that protects people’s privacy. We

must also take into account the ethical decisions that developed
systems will make.

III. APP DOMAIN RESEARCH

App features such as functionality and popularity have a
significant impact on mobile app usage behavior. Many efforts
have been made in recent years to examine mobile app usage
data from the standpoint of apps by analyzing app features.
App ecosystem profiling, app usage pattern discovery, and app
usage prediction and recommendation are the three main top-
ics in app domain research, according to our careful review
of existing studies. In this section, we will summarize exist-
ing app domain studies on the three topics and compare their
datasets, methods, and key findings.

A. App Ecosystem Profiling

Millions of mobile apps form a symbiotic mobile app
ecosystem [50]–[52]. App ecosystem profiling aims to inves-
tigate the inherent characteristics of mobile apps, focusing
on two main sub-problems: app categorization and popularity
modeling.

1) App Categorization: An app category groups apps that
perform similar functions. WhatsApp and Skype, for example,
are both classified as communication apps on Google Play.
App categories are currently determined by app developers
when they release apps in app stores [54], [55]. However,
deciding on a category for an app can be difficult at times [56].
WeChat, for example, can be used for social networking as
well as messaging. As a result, both the communication and
social app categories appear to be appropriate. Moreover, man-
ually selecting app categories opens the door to deliberate
gaming [57], [58]. App developers may desire to avoid fierce
competition by selecting less appropriate categories to improve
their app’s ranking. For the reasons stated above, many mobile
apps are miscategorized in app stores. Hence, it is expected
to have an effective and automated method for categorizing
mobile apps.

Several studies looked into the possibility of automatically
categorizing apps based on their descriptions. They gener-
ally modeled app categorization as a problem of short text
topic modeling, which they solved with Natural Language
Processing (NLP) tools. Al-Subaihin et al. [59] used Term
Frequency-Inverse Document Frequency (TF-IDF), while
Ochiai et al. [60] used a word embedding model to extract
app features from app descriptions. Fuad and Al-Yahya [61]
further used Latent Dirichlet Allocation (LDA) to analyze
the app descriptions of 13,282 apps in Google Play. They
discovered some new categories, including occasions, pan-
demics, and languages, that were not present in the original
app store classification. Surian et al. [62], on the other hand,
concentrated on the app market’s miscategorization issue. To
refine the category of apps, they developed a von Mises-Fisher
distribution-based probabilistic topic model. They discovered
that 0.35 ∼ 1.10 percent of game apps are miscategorized
after running experiments on 48,663 game apps crawled from
Google Play.
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PUBLIC APP USAGE DATASETS

Untrusted developers may manipulate app descriptions,
affecting categorization accuracy. As a result, some researchers
used customer-generated app usage data to improve app cate-
gorization, assuming that different types of apps have different
usage patterns. For example, Zhu et al. [63] extracted con-
textual features of mobile apps from usage records, such as
time, location, and battery level. They combined all of the
features into a Maximum Entropy model [64] for app cate-
gorization. Radosavljevic et al. [65] took advantage of users’
app installation behavior to categorize apps. He et al. [66]
explored sequential characteristics of app usage. They used
time series to formalize users’ app-launching behavior and
extracted app features using dynamic time warping [67] across
time series. After conducting experiments on 3,086 apps, they
concluded that app usage traces are a good source for app
categorization.

2) Popularity Modeling: App popularity, as measured by
chart rankings, user ratings, and downloads, reflects the user
experience of mobile apps. App popularity modeling is criti-
cal for developers and app market intermediaries to understand
the factors that influence app adoptions and then make appro-
priate decisions about which apps to develop, release, and
remove [44], [68].

Modeling app popularity by depicting popularity distribu-
tions is one of the most common approaches used in existing
research. Many studies have demonstrated that app popular-
ity has a power-law distribution [69]–[72]. Petsas et al. [53]
further discovered that paid and free apps have different pop-
ularity distributions. Paid app popularity follows a power-law
distribution with truncated edges, as shown in Fig. 5, whereas
free app popularity follows a clear power-law distribution.
Such a discovery provides valuable prior knowledge for

Fig. 5. The downloads of free apps follow a power-law distribution with
truncated edges, while paid apps follow a clear power-law distribution [53].

downstream applications. For example, the recommendation
system for free apps does not need to consider the long tail
effect. Li et al. [73], [74] studied the long-term evolution of
app popularity from 2012 to 2017, spanning six years. They
discovered that the popularity of apps exhibits a typical Pareto
effect. Shen et al. [75] discovered that, in addition to the Pareto
effect, app popularity exhibits a Matthew effect when consid-
ering time-varying data. In other words, high-ranked apps tend
to receive higher ratings and have more consistency in top app
lists.

Some researchers investigated the factors that influence app
popularity. Fu et al. [76] used LDA to extract key topics
from over 13 million user reviews of 171,493 apps on Google
Play. They identified the top five user concerns as attrac-
tiveness, stability, accuracy, compatibility, and connectivity.
Potharaju et al. [77] investigated the relationship between the
price and popularity of paid apps and discovered that the price
of paid apps does not affect app popularity. Lu et al. [78]
noticed that different mobile device models have an impact
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Fig. 6. A three-level hierarchy structure to model app adoption [79].

on app adoption. Lower-end users, for example, prefer Opera
Mini, whereas higher-end users prefer Chrome. Shen et al. [75]
discovered that app release strategy has an impact on app pop-
ularity. A timely subsequent release has a higher chance of
turning a descending rating trend than a late release.

Some studies have made efforts towards app popularity
prediction. Zhu et al. [80] used chart rankings and user ratings
to define app popularity states and proposed a popularity-
based hidden Markov model (PHMM) to predict the popularity
states of mobile apps. Wang et al. [79] proposed an evo-
lutionary hierarchical competition model (EHCM) to predict
app downloads by using a three-level hierarchy structure to
model app adoption. As shown in Fig. 6, the top-level in
the app adoption model is users; the middle-level is cate-
gories of user demands; and the bottom-level is apps. Each
app serves several categories of user demands and competes
with other apps by providing engaging functions. In terms of
model design, EHCM has higher interpretability than PHMM.
Ouyang et al. [81] further proposed a Multivariate Hawkes
Process-based prediction model (MHP). The MHP jointly con-
sidered exogenous stimuli, e.g., updates, reviews, ratings, and
endogenous excitations, e.g., historical popularity, app ages.
MHP outperforms PHMM and EHCM, according to exten-
sive experiments. Zhang et al. [82] leveraged deep learning to
predict app popularity and proposed DeePoP, an RNN-based
prediction model. DeePoP considered time-varying app inter-
actions and modeled their impact on app popularity. DeePOP
outperforms MHP and EHCM, effectively lowering the Root
Mean Square Error (RMSE) to 0.088. Li et al. [83], on the
other hand, argued that app ratings do not accurately reflect
app quality or user preferences. As a result, they proposed
modeling user preferences and predicting app popularity using
uninstallation-downloading sequential activities.

3) Discussion: Existing research primarily examined the
app ecosystem in terms of app categories and popularity.
Table IV summarizes prominent literature by dataset size,
data type, methods, results, and findings. As can be seen in
Table IV, the study scale ranges from 600 to over 1 million
apps. The majority of the datasets used were obtained from
app stores. App descriptions are commonly used for app cate-
gorization. To extract app features from app descriptions, NLP
tools such as TF-IDF, LDA, and probabilistic topic models are
used. However, because untrustworthy developers may operate
app descriptions, there is a trend to use app usage data, such

as installation and usage behaviors, to categorize apps more
reliably.

In popularity modeling, app downloads, rankings, and rat-
ings are commonly used to indicate app popularity. Descriptive
statistics were used to depict the distribution of app popular-
ity and analyze factors influencing app popularity. Time-series
methods, like the Markov model, Wavelet transform, Hawkes
Process, and Recurrent Neural Network, are used to predict
app popularity. In addition to positive activities such as down-
loading and installing apps, some studies tried to use negative
behaviors such as uninstalling apps to model app popularity.

B. App Usage Pattern Discovery

App usage pattern discovery aims to find regularities in
usage behaviors to learn typical usage habits and improve the
quality of user experience. Existing studies focused primarily
on two sub-fields: contextual pattern discovery and temporal
pattern discovery.

1) Contextual Pattern Discovery: The goal of contextual
pattern discovery is to investigate the connection between app
usage and contextual factors [84]. As shown in Table V, there
are three different types of context: sensor context, usage
context, and social context. Sensor context, collected from
smartphone sensors, includes location, time, battery levels,
movement status of users, WiFi or cell connectivity, etc. Usage
context refers to the prior and posterior used apps. Social con-
text refers to the social environments in which an app is used,
such as with friends, family members, strangers, coworkers,
and so on.

Locations, as a sensor context, have a significant impact
on app usage. Mehrotra et al. [85] discovered that student
users are more attentive to app notifications at college, in
libraries, on the streets, and in residential areas. However, users
at religious institutions are less receptive to app notifications.
Do et al. [86] and Böhmer et al. [87] found that while waiting
for and during trips, users prefer to use Web and multimedia
apps. Graells-Garrido et al. [88] further discovered that street
types have an impact on app usage. Message apps, for exam-
ple, generate more traffic on main streets, whereas dating apps
are more popular on pedestrian streets. Xia and Li [89] and
Ren et al. [90] demonstrated how the function of a location
influences app usage in that location.

Time is also an important sensor contextual factor that influ-
ences app usage. Böhmer et al. [87] discovered that news
apps are most popular in the morning, while game apps are
at night. Van Canneyt et al. [91] and Li et al. [92] noted
that some specific dates and events, such as New year’s day,
UEFA European Championship, and Covid-19, will disrupt
users’ regular app usage patterns. Several studies investigated
the relationship between app usage and other sensor con-
text factors [86], [93], like Bluetooth data, battery levels,
and movement status. For example, Do et al. [86] studies
how Bluetooth density affects app usage and discovered that
communication apps are more likely to be used with high
Bluetooth density.

App usage is still strongly linked to the usage context, i.e.,
prior and posterior used apps. The fact that several apps need
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TABLE V
TYPES OF CONTEXTUAL FACTORS

to work together to complete a single task causes such correla-
tions [94], [95]. Rahmati et al. [96] first demonstrated the app
usage dependency of one-nearest prior used apps and found
that such a dependency remains relatively constant for one to
three months. By analyzing a dataset spanning seven years,
Fan et al. [97] looked into how usage context changes over
time. Huang et al. [34] and Liu et al. [98] identified frequent
cooccurrence app sets. They discovered that e-commerce and
online payment apps, such as Taobao and Alipay, are fre-
quently used together to complete the task of online shopping.
Tseng and Hsu [99] found that usage context dependency has

sequential characteristics. For example, using the Camera app
first and then the Album app is twice as likely as using the
Album app first and then the Camera app.

App usage is also influenced by the social context.
Ferreira et al. [100] classified the social context into four
types alone, with friends, with strangers, and others. They
observed a significant correlation between app usage and
social context with a p-value of 0.002. Shema and Acuna [101]
used app usage sequences to predict social context, achiev-
ing an accuracy of 70% with a random forest model.
Kloumann et al. [102] and Taylor et al. [103] discovered that
social contexts have varying degrees of influence on mobile
app usage. The context of friendship has a greater impact when
compared to family members.

2) Temporal Pattern Discovery: Unlike contextual patterns,
which focus on static analysis, temporal patterns look into
the dynamics of app usage. The diurnal pattern is a basic
temporal pattern of app usage behavior that has been dis-
covered by numerous studies [104]–[106]. A typical diurnal
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Fig. 7. A typical diurnal pattern of app usage [104].

Fig. 8. Diagram of app usage sessions [113]. For each app usage, only one
app is in the foreground and the usage will last for a period.

pattern of app usage is shown in Fig. 7. The intensity of
app usage increases during the day and decreases during the
night. However, in different scenarios, such a diurnal pattern
may change. The diurnal pattern presents differently at var-
ious granularities [105], such as bytes, packets, flows, and
users. For example, in terms of the number of bytes and pack-
ets, app usage is still highly active at night from 20.00 to
24.00, but not observed in flows and users. Also, different
app categories may have distinct diurnal patterns. In contrast
to other app categories, the diurnal usage pattern of trans-
portation apps has more than two peaks on weekends [106].
Meanwhile, some researchers attempted to model the tempo-
ral patterns of app usage over the course of a single day.
Kostakos et al. [107] used a time-sensitive Markov model,
while Do and Gatica-Perez [108] represented app usage traces
in one day as a bag-of-apps to infer the underlying structure
of daily app usage.

The temporal traces of mobile app usage, on the other
hand, can be represented as a series of app sessions. An
app session, as shown in Fig. 8, is a period during which
a user is actively engaged with the app. Some studies looked
into the temporal patterns of app sessions. Silva et al. [109]
conducted description statistics on app session time and dis-
covered that map and media apps have longer app sessions.
As users’ activities for app advertisement are dependent on
app session time [110], Rula et al. [113] proposed using
decision trees to predict app session time for better adver-
tising. Jones et al. [111] and Cao et al. [114] analyzed
users’ app re-visitation patterns across sessions and discov-
ered three distinct patterns: checkers, waiters, and responsives.
Users who exhibit brief revisit patterns of fast re-visitation are
referred to as checkers (less than one hour). Users with longer
revisit patterns, uniformly distributed between short-medium
re-visitations (between 1min and 4hrs) and long re-visitations,
are referred to as waiters (from 2hrs to 3days). Users who
exhibit both brief and long revisit patterns are referred to
as responsives. Leiva et al. [112] looked into the disrupted

patterns of app sessions and discovered that app sessions dis-
rupted by phone calls resulted in task completion delays of up
to four times.

3) Discussion: Contextual pattern discovery and tempo-
ral pattern discovery are two sub-topics of existing research
on app usage pattern discovery. Table VI summarizes promi-
nent literature in terms of dataset information, methods, and
patterns discovered. We can see that datasets vary greatly
according to size and duration. The majority of datasets are
collected from monitoring apps and network operators because
pattern discovery requires fine-grained usage behaviors, such
as launching apps and switching apps. The studies on con-
textual pattern discovery focus on static patterns to discover
relationships between app usage and context factors. Statistical
methods such as Pearson correlation, analysis of variance,
hypothesis testing, and posterior probability are commonly
used to investigate correlations. These studies pave the way for
context-aware app prediction and recommendation. Temporal
pattern discovery, on the other hand, focuses on dynamic pat-
terns to investigate how app usage changes over time. In this
subtopic, descriptive statistics and time series analysis are fre-
quently used methods. It is worth noting that some studies
looked into temporal patterns and used them to predict and
recommend app usage. In the following section, we will go
over these studies in detail.

C. App Usage Prediction and Recommendation

1) App Usage Prediction: App usage prediction aims to
forecast the apps that will be launched so that smartphones
can load app-related resources in advance to cut down the
searching and loading time [115]–[117].

App usage prediction is solved by examining usage
rules based on historical user behavior. Predicting the most
frequently used (MFU) and most recently used (MRU)
apps [118], as the basic benchmark method, takes advantage
of the most basic regularity of user behavior. Furthermore,
probabilistic models are used to investigate complex regu-
larity [119]–[121]. Natarajan et al. [119] modeled the app
usage sequence as a Markov chain and utilized the one-order
transition probability for prediction. Zou et al. [120] con-
sidered high-order app transitions to improve the prediction
accuracy by leveraging a bayesian network model. Baeza-
Yates et al. [121] used all apps used in the recent time
window for prediction. They achieved an accuracy of 85.7%
by using a parallel tree augmented Naive Bayesian network.
Thanks to recent advances in deep learning, Xu et al. [122]
and Lee et al. [123] proposed using long short-term memory
(LSTM) to capture the temporal regularity for app usage
prediction.

App usage is also influenced by a variety of sensor contexts,
as shown in Section III-B. As a result, many existing studies
used various kinds of sensor contextual information, such as
time, location, and movement status, to improve prediction
performance instead of solely relying on users’ historical app
usage traces.

Time is widely used for app usage prediction as a fundamen-
tal sensor contextual feature, indicating the hour of one day or
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the day of one week of usage behavior. Jiang et al. [124] added
time as a new feature and used the most similar app usage case
from history to generate prediction results. Wang et al. [125]
used time as a condition in their probabilistic graphical mod-
els. Zhao et al. [126] developed a deep learning-based model
for predicting app usage based on time context. As illustrated
in Fig. 9, they concatenated the time feature with historical
used apps and fed the time feature into the last layer of the
neural network to introduce time context. It is a state-of-the-
art deep learning-based app usage prediction model, with a
Recall@5 of 84.47%.

Location is also an important contextual factor to consider
when predicting app usage. To achieve location-aware app
prediction, Parate et al. [127] split app usage sequences into
a variable-length Markov chain according to location features,
while Wang et al. [128] used the location factor as a condition
in Bayesian networks. Furthermore, deep learning techniques
are used in location-aware prediction. Xia et al. [129], for
example, developed a recurrent neural network-based model
to predict the next used app and visited location at the same
time. Chen et al. [130] proposed CAP, a graph embedding-
based model for learning node embeddings from app-location,

Fig. 9. A deep learning model for time context-aware app usage
prediction [126].

app-time, and app-category subgraphs. Yu et al. [131] used a
graph neural network to learn the node embeddings on an
app-location-time graph. They then used the learned node
embeddings to predict app usage. Zhou et al. [132] fur-
ther proposed a heterogeneous graph-based model that learns
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embeddings for apps, locations, and time, to achieve an
end-to-end prediction. The above frameworks based on graph
embedding open the door to modeling correlations between
app, location, and time through spatiotemporal app usage
graphs.

Movement status, network mode, and battery level are also
used for app usage prediction. In [133] and [134], movement
status, including mobility entropy and travel patterns, is
extracted from users’ trajectories. The above information and
app usage sequences are jointly utilized for training a clas-
sifier for app usage prediction. Do and Gatica-Perez [135]
considered network mode and battery level when building the
probabilistic model for app usage prediction. Xu et al. [136]
enriched query vector using screen state and network mode to
recall the most likely used apps as prediction results.

2) App Recommendation: App recommendation aims to
infer users’ preferences towards unobserved new apps and then
recommend favorable ones [137], [138]. Regarding whether
contextual information is used, app recommendations can
be classified into non-contextualized recommendations and
context-aware recommendations.

Non-contextualized app recommendations are made solely
based on the user’s previous app usage behavior. Yan and
Chen [139] presented AppJoy, a framework for tracking
how users install and use apps. The AppJoy system uses
an item-based collaborative filtering (CF) model to predict
usage scores and make recommendations. To deal with sparse
datasets, Shi and Ali [140] proposed a PCA-based model
for app recommendation, which uses PCA to extract fea-
tures from the user-item matrix before performing item-based
CF. Instead of collaborative filtering, Liang et al. [141] and
Ouyang et al. [142] used graph neural network models to
depict the similarity of apps and make recommendations.
Specifically, Liang et al. [141] considered only app installa-
tion behavior, while Ouyang et al. [142] took both installation
and search behaviors into account.

Many studies extended to a context-aware case in which
apps are recommended based on contextual information
such as time, location, movement status, and app meta-
data. One of the most widely used methods for utilizing
contextual information is context-aware collaborative filter-
ing (CAF), which extends conventional collaborative filter-
ing by multiplexing user identities through context features.
Böhmer et al. [144] compared different recommendation
systems and demonstrated that context-aware collaborative fil-
tering outperformed non-contextualized collaborative filtering.

Tu et al. [145] took time as a contextual factor and con-
sidered changes in user preferences over time. They proposed
a personal interest evolution network to model user dynamic
preference and make recommendations. Xu et al. [143] lever-
aged usage context, prior and posterior used apps, to infer
users’ preference to recommend apps. The proposed model,
as shown in Fig. 10, contains two paths to combine user fea-
tures and app usage context. They started by merging the user
and app embeddings. The merged embedding was then used
as inputs to predict context apps (on the right path) and to
predict user preference (on the left path). Pan et al. [14] used
social contextual features for app recommendations by creating

Fig. 10. A deep learning model for usage context-aware app recommenda-
tions [143].

four different social networks for users, including a call log
network, a Bluetooth proximity network, a friendship network,
and an affiliation network. They then proposed a graph model
to predict the probability of installing a new app.

App metadata like category, description, and permission
are frequently used in context-aware app recommendations.
Liu et al. [146] leveraged app category information for app
recommendation based on a kernelized non-negative matrix
factorization (KNMF) model. Liang et al. [147] proposed
characterizing app features based on three factors: cate-
gories, permissions, and descriptions. They then used a
tensor-based framework to integrate the multi-view features
of apps to achieve app recommendations. Lin et al. [148]
and Cao et al. [149] looked into version-sensitive app rec-
ommendation by considering the version update of apps.
Rocha et al. [151] and Gao et al. [150] proposed using app
permissions, to improve security degree of recommendations.

3) Discussion: We reviewed existing studies on app
usage prediction and recommendation in this subsection.
Table VII summarizes prominent literature in terms of dataset
information, methods, and system performance.

In the field of app usage prediction, sensor context-based
cases are the mainstream because sensor context features, such
as time and location, can provide a significant performance
boost. Most of the datasets are collected from monitoring apps
and network operators because these two collection methods
can support sensor context data. There is a clear progression
from basic statistical learning models (e.g., nearest neigh-
bor, random forest, Markov model) to probabilistic models
(e.g., Bayesian networks, probabilistic graphical models), and
finally to deep learning models (e.g., deep neural networks,
graph embedding, graph neural networks). This is because
deep learning models can explore contextual information in-
depth and extract coupling relationships between users, apps,
time, and locations.

In the field of app recommendations, contextual
information, such as location, time, and app metadata,
is frequently used. To support supplementary data, the
datasets used are primarily collected from monitoring apps
and app stores. Regarding the methods applied, collaborative
filtering (CF) is the most basic algorithm framework. Tensor
factorization is a popular and effective way to address



950 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 2, SECOND QUARTER 2022

TABLE VII
LITERATURE REVIEW IN APP USAGE PREDICTION AND RECOMMENDATION

context-aware app recommendations by taking location
and time as context information and adding additional
dimensions to represent them. Deep learning models, such

as deep neural networks and graph neural networks, have
become increasingly popular in recent years for mobile app
recommendations.
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TABLE VIII
USER ATTRIBUTES THAT CAN BE PROFILED FROM MOBILE APP USAGE DATA

Fig. 11. The relationship between user attributes and app usage.

IV. USER DOMAIN RESEARCH

Personal characteristics, such as interests, age, gender, and
occupation, have a significant impact on mobile app usage.
Many studies analyzed mobile app usage data from the
user’s perspective to reveal a link between user characteris-
tics and app usage behavior. This section summarizes user
domain research on two primary topics: user profiling and
user identification.

A. User Profiling

User profiling aims to infer personal attributes from user-
generated data, which is essential for personalized services
such as personalized search, recommendations, and advertise-
ments [152]–[154]. Demographic characteristics, personality
traits, psychological status, personal interests, and life status
are five categories of user features profiled from mobile app
usage data, as shown in Table VIII. Demographic characteris-
tics refer to a person’s inherent properties, such as gender,
age, income level, nationality, and occupation. Personality
traits reflect people’s characteristic patterns of thoughts, feel-
ings, and social adjustments. The Big-Five model is the most
widely used personality trait measurement system [41], [155],
which includes five broad traits: extraversion, agreeableness,
conscientiousness, neuroticism, and openness. Psychological
status is a mental state that influences people’s behavior and
decisions, such as stress, well-being, and emotion. Personal
interests are the objects or events that users prefer to concen-
trate on. Individuals’ life status denotes their preferred way of
life, which includes things like life events and life stages.

The relationship between user attributes and app usage is
depicted in Fig. 11. On the one hand, user attributes shape
how people use mobile apps. On the other hand, app usage
behavior also reflects individual attributes. Based on differ-
ent directions of the relationship, existing studies can be

separated into two groups: descriptive profiling and predictive
profiling. In descriptive profiling, researchers focus on how
user attributes affect their app usage behavior. Alternatively,
researchers aim to use app usage data to predict users’ profile
labels in predictive profiling.

1) Descriptive Profiling: References [19], [23],
[156]–[160] investigated how demographic characteris-
tics affect app usage behavior. Andone et al. [156] looked
into the effects of age and gender. They analyzed the app
usage patterns of 30 thousand users for 30 days. According
to the study, females spent more time on communication
and social apps, while males spent more time playing
games. Teenagers aged 12 to 17 spend the most time on
communication, social media, and gaming apps, averaging
over 40 minutes per day. Nonetheless, participants over the
age of 30 spend less than ten minutes using these apps.
Gordon et al. [23] pointed out that older adults using fewer
apps is caused by cognitive decline. As a result, they recom-
mended that developers consider cognitive function to better
support older adults. Zhao et al. [157] looked at how app
usage differed by income level. They discovered that users
with a higher income use apps in the categories of shopping,
finance, travel, and business more frequently. Users with a
low-income level use game and video apps more frequently.
Tu et al. [158] expanded the analysis to include education
level and discovered that Ph.D. users use more communica-
tion apps but fewer sports apps than other education levels.
References [19], [159], [160] investigated the differences
in mobile app usage by country. Lim et al. [19] gathered
data on app adoption in an online survey of 10,208 partic-
ipants from over 15 countries. They discovered significant
differences in different countries. Users in the United States,
for example, are more likely to download medical apps.
Peltonen et al. [159] suggested that cross-cultural differences
could explain differences in mobile app usage behavior across
countries. They discovered three main clusters of countries
with distinct usage patterns by using app category usage as
features and applying the hierarchical clustering algorithm.
The countries within the same cluster, as shown in Fig. 12,
have similar cultural backgrounds, with three main clusters:
European, English-speaking, and mixed. Guzman et al. [160]
also demonstrated that cross-cultural differences in mobile
app reviews still exist.

The impact of personality traits on mobile app usage was
investigated in [161], [162]. They used the Big-Five frame-
work, which consists of five bipolar factors: extraversion,
agreeableness, neuroticism, conscientiousness, and openness,
to represent users’ personality traits. The five factors in
Table IX are explained using adjective examples to describe
each trait. The impact of personality traits on app category
usage was highlighted by Huseynov [161]. Extraverts use
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Fig. 12. Countries colored by cluster labels in terms of app category
usage [159].

TABLE IX
THE BIG-FIVE PERSONALITY FRAMEWORK AND EXAMPLES OF

ADJECTIVES DESCRIBING EACH TRAIT

more photography and video editing apps. Agreeableness indi-
viduals are negatively associated with the use of health and
lifestyle mobile apps, while e-commerce-related apps are usu-
ally avoided by conscientious individuals. Beierle et al. [162]
looked at the link between personality traits and app ses-
sion characteristics. They discovered that extraversion and
neuroticism are linked to more app sessions, whereas con-
scientiousness is linked to a shorter average session time.

Some researchers looked into the psychological status of
users [163]–[165]. Gao et al. [163] analyzed the links between
app use and social anxiety and loneliness. Using the Wilcoxon-
Mann-Whitney test to examine differences in user behaviors,
they discovered that people with social anxiety or lone-
liness receive fewer incoming calls and use health apps
more frequently. People with higher levels of social anxiety
receive fewer messages and utilize camera apps less often.
Katevas et al. [164] focused on users’ well-being. Based on
data from 340 participants over the course of four weeks, they
offered evidence that intense app usage alone does not indicate
negative well-being. However, nightly usage behavior shows
a strong link to a reduced sense of well-being. According
to [165], user emotions and app usage behaviors have bidi-
rectional causality. App usage, on the one hand, influences
emotions. Entertainment apps, like YouTube and music apps,
evoke positive emotions. On the other hand, emotions drive
app usage. When users are experiencing happy emotions, they
are more active in using social apps.

Personal interests are the subject of [33], [166], [167].
Zhao et al. [33], [166] conducted a large-scale study in
which they assessed 105,762 users’ app usage traces for one
month. They identified 382 unique groups of users based
on their temporal patterns of app usage using K-means

clustering. Each user group is assigned a meaningful label,
such as night communicators, evening learners, or finan-
cial users. Lee et al. [167], on the other hand, undertook
a small-scale investigation. They used Seq2Seq to extract
app usage sequence embeddings from 180 volunteers’ app
usage sequences. They found eleven user groups using the K-
means clustering method on embeddings: conversationalists,
utilitarians, social stars, photographers, music fans, news and
magazine readers, video streamers, gaming buffs, power users,
and beginners. Both large-scale and small-scale analyses in the
previous studies highlighted the diversity of personal interests
in app usage.

Some researchers have indicated links between app usage
and life status [168], [169]. Frey et al. [168] are the first
to recognize that a user’s current life stage has a significant
impact on their app adoptions. For example, when a person’s
life stage changes from without children to with children,
the use of travel and entertainment apps drops dramatically.
Chen et al. [169] used fitness app data to examine people’s
workout activities and discover their exercise styles. They
found that people in the central business district (CBD) walk
or jog more than those in rural areas and that people with
longer mobility spans exercise less.

2) Predictive Profiling: Given users’ app usage data,
predictive profiling aims to predict their attribute labels.
References [170]–[174], [176], [177], [184] estimated users’
demographic characteristics, such as gender, age, and income,
based on their app usage behaviors. Seneviratne et al. [170]
gathered app adoption data and gender labels from 200 users
and found that using only app installation lists could accurately
estimate users’ gender by 75%. They then expanded their
research to include other characteristics such as religion, spo-
ken languages, and nationality [171], where precision reached
over 90%. Malmi and Weber [172] further used a larger dataset
of 3,760 users to confirm Seneviratne’s findings and consid-
ered new demographics, such as wealth and race. According
to their study, gender is the most predictable attribute, with an
accuracy of 82.3%, while wealth is the most difficult to fore-
cast, with an accuracy of 60.3%. Instead of using the list of
users’ apps directly as features, Zhao et al. [173] constructed a
Boolean user-app matrix to represent user app adoptions and
used Boolean matrix factorization (BMF) to extract hidden
representations of users. Hidden representations had a higher
gender prediction accuracy of 77.2% than app lists (75.2%).
Zhao et al. [174] also looked into the sequential characteris-
tics of app usage and learned user embeddings from app usage
sequences. With the help of users’ embeddings, they improved
gender prediction accuracy to 82.49%. Bian et al. [175] con-
sidered user-app interactions as well as user-item interactions
on apps to learn user embeddings and infer users’ occupations
with a 70% precision. To improve prediction accuracy, some
studies use additional information such as app descriptions and
sensory data. Zhao et al. [176] used the LDA model to extract
topic features from app descriptions as side information. They
then used both topic features and app lists to predict users’
gender labels. Yu et al. [177] used sensory data such as screen
and battery status to predict gender with a precision of 91.70
percent and an RSME of 4.3696 in age estimation.
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TABLE X
LITERATURE REVIEW IN DESCRIPTIVE PROFILING

In terms of personality trait prediction, Xu et al. [178]
developed a prototype, Personality Test, which automatically
evaluates users’ personality traits based on apps they installed.
Personality Test tracks the use of seven app categories: social
apps, games, music and video apps, shopping apps, photog-
raphy apps, finance apps, and personalization apps. With a
random forest classifier, the Personality Test can obtain an
average prediction precision of 42.72%. Peltonen et al. [179]
went on to collect data on app usage across all categories. They
showed that category-level aggregated app usage can predict
Big Five personality traits with a prediction fit of 86%-96%. In
addition to app usage data, Chittaranjan et al. [180] considered
call logs, SMS logs, and Bluetooth scan logs. They achieved
an average F1-score of 0.57 using an SVM classifier with a
radial basis function (RBF) kernel. Kambham et al. [181] and
Gao et al. [182] characterized personality trait prediction as

a regression problem by placing participants on a Big Five
Personality Inventory continuum. They used app usage and
smartphone sensory data and achieved RMSEs ranging from
12.7% to 22.2% for different traits.

Ochiai et al. [183] looked at app usage patterns to see if
they might forecast users’ psychological states, such as stress
levels. They considered the order in which the apps were
used and created an app usage graph for each user to depict
the contextual relationship between apps. Based on the Graph
Isomorphism Network (GIN), they classified app usage graphs
to predict users’ stress levels and achieved an accuracy of
54.5%.

3) Discussion: We summarized recent studies on user pro-
filing based on app usage behaviors in this section. In Tables X
and XI, we review prominent literature on descriptive profiling
and predictive profiling. The tables include research topics,
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TABLE XI
LITERATURE REVIEW IN PREDICTIVE PROFILING

dataset information, methods, and findings and results. We
can see that the dataset scale ranges from 28 users to over
100,000 users. App usage data is generally collected through
monitoring apps and network operators, while user attributes
are collected through online surveys. Descriptive statistics are
frequently used in descriptive profiling to reveal the relation-
ship between app usage and user characteristics. The statistical
significance of discovered relationship is demonstrated using
correlation test metrics such as Pearson correlation, Wilcoxon-
Mann-Whitney test, and Tukey-Kramer test. In predictive
profiling, SVM, LR, MLP, and random forest are commonly
used classification methods. A few studies recently looked
into advanced machine learning techniques, such as trans-
former, attention, and embedding, indicating a hot direction
for predictive user profiling.

B. User Identification

Although data collection agencies have anonymized user
IDs to protect users’ privacy, mining or sharing app usage
datasets still poses a significant privacy risk. Many studies
have demonstrated that users can be identified or re-identified
from anonymized datasets based on their app usage behav-
iors. In 2010, Falaki et al. [185] were the first ones to
demonstrate the diversity of smartphone and app usage among
individuals, paving the way for user identification research.

Welke et al. [186] studied app adoption of 46,726 participants
and discovered that using 500 of the world’s most popular
apps could distinguish unique app-signatures for 99.67% of
users. Tu et al. [187] analyzed a larger dataset of 1.37 million
Chinese users and found that using only four apps can uniquely
identify 88% of users. Sekara et al. [188] further compared
the size of app-signatures of users in different countries. They
discovered that the identification rate is heavily influenced by
the country of users. When the size of app-signatures is set to
5, the average identification rate varies dramatically between
countries, ranging from 41.2% in Finland to 66.5% in the
United States. These observations present severe privacy con-
cerns as most individuals are identifiable and trackable, even
in large-scale anonymized datasets.

Some researchers use such identifiable characteristics for
active authentication to secure users’ smartphones. The basic
idea is to use a user’s app usage patterns to verify his or her
identity [189]. For each user, Ashibani and Mahmoud [190]
chose the eight most-used apps and used the timestamp of
app usage as a feature to continuously identify users. Their
authentication model verifies users with an average F1-score
of 96.5% after conducting experiments on ten users. They
then improved the F1-score to 98% by including traffic pat-
terns while accessing apps as features in their model [191].
For more reliable authentication, Bassu et al. [192] proposed
combining contextual information, such as location and time,
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LITERATURE REVIEW IN USER IDENTIFICATION

Fig. 13. User authentication by using text entered via soft keyboards, apps
used, websites visited, locations visited [193].

with users’ uploading, downloading, and updating behaviors.
Fridman et al. [193] also looked at various types of biomet-
ric behaviors, including text entered via soft keyboards, apps
used, websites visited, and locations visited. Each distinct bio-
metric behavior is fed into a classifier, as shown in Fig. 13.
A data fusion center then fuses the local binary decisions
from each classifier to produce a single global binary deci-
sion. The authentication system can achieve an equal error
rate (ERR) of 5% after conducting experiments on 200 users.
Notable, unexpected events, such as newly installed apps, can
have a significant impact on the performance of authentica-
tion systems. Mahbub et al. [194] investigated the impact
of unknown apps on the verification task. In their case, the
unknown apps refer to the test set’s apps but not in the train
set. They discovered that the appearance of unknown apps
increased the number of false negatives.

User identification can be regarded as individual-level user
profiling, i.e., predicting a user’s specific identity label instead
of an attribute label. Table XII summarizes prominent lit-
erature related to user identification. We can observe that
users’ identifiable characteristics based on their app usage
behaviors are demonstrated in both small-scale [185] and
large-scale [186]–[188] datasets. Several studies have also
looked into using such identifiable characteristics for user
authentication. By utilizing simple classifiers, like RF, LR,
SVM, they achieved good performance with an F1-score of

98% or an equal error rate of 3%. However, existing frame-
works continue to rely on a centralized learning structure, in
which all users’ data is uploaded to a server, putting user
privacy at risk during data uploading and computing processes.

V. SMARTPHONE DOMAIN RESEARCH

Many researchers analyzed app usage data to improve
system performance and solve problems in the smartphone
domain. This section summarizes smartphone domain research
in terms of two perspectives: app energy drain and app traffic
patterns.

A. App Energy Drain

The smartphone is a limited-energy device whose battery
life is a critical performance and user experience metric [195].
Both the research community and the industry are working on
ways to extend the life of batteries. Increasing battery capacity
is one simple solution. However, due to hardware limitations,
we need to improve the energy efficiency of smartphone apps
parallelly. Some researchers have studied the energy drain of
app usage in order to improve energy efficiency.

Song et al. [196] empirically measured energy consumption
for ten mobile apps. They discovered that average energy con-
sumption in the studied apps varies significantly, ranging from
0.25 Joule/second to 1.25 Joule/second. Their research empha-
sizes the importance of optimizing app design to reduce energy
consumption. To gain a thorough understanding of app energy
consumption patterns, Oliner et al. [8] developed Carat, an app
for both iOS and Android platforms, which detects and diag-
noses energy anomalies in apps. On stock devices, Carat runs
as a user-level app that collects information such as battery
level, running app names, memory status, and device model.
Oliner et al. discovered 10,110 hogs and 233,258 buggy apps
by analyzing energy drain data from over 500,000 devices. An
app is a hog if it consumes a lot of energy to run. Pandora
Radio, Skype, Live Wallpapers are typical hogs. Apps that
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consume significantly more energy on some clients than oth-
ers are referred to as bug apps. That may be caused by the
different usage habits of users. For example, some users prefer
to use Kindle with networks to synchronize notes and book-
marks, while others prefer not to do so to save money on
mobile data. The energy consumption will differ significantly
depending on whether the network connection is turned on or
off. In this way, Kindle, Facebook, Youtube are typical bug
apps. Based on these findings, they then created actionable
diagnosis trees to recommend practical actions such as turn-
ing on/off WiFi/GPS, avoiding using certain apps under certain
conditions, and upgrading/keeping app or operating system
versions.

Chen et al. [197] created eStar, a free Android app that col-
lects energy drain data, and used it to gather an energy trace
dataset from 1,520 Galaxy S3 and S4 devices covering 800
different apps in the wild. They discovered that background
apps and services consume 16.1% of total energy during the
screen-off period. This finding implies that energy consump-
tion can be reduced by improving the app scheduling algorithm
and killing background apps when the screen is off. However,
if we disable all apps without considering the differences in
background activities, the user experience may be adversely
affected. In [198], Chen et al. looked into this issue in depth.
By analyzing the same dataset, they discovered 76 no-sleep
apps for which the CPU was never suspended. They then
designed a metric, Background-Foreground Correlation (BFC),
to assess the utility of background app activities. A simple
yet effective screen-off energy optimizer based on BFC was
developed to learn and suppress useless background activi-
ties of apps automatically. Li et al. [199] pointed out that the
unnecessary workload of apps is a major root cause of energy
issues. Many apps, they discovered, perform computations that
do not provide users with discernible benefits, resulting in
unnecessary workload and energy consumption.

The above studies look at the energy drain pattern of a sin-
gle app. However, because most smartphones have multi-core
CPUs, parallelism execution results in different app combina-
tions having different power consumption patterns. The energy
consumption of one app’s threads will affect the energy con-
sumption of other apps’ threads. By studying different apps as
a group, Rex et al. [200] attempted to reschedule app threads
and correlate their influence on energy consumption. Because
the number of total possible combinations of apps is enor-
mous, they explored the frequent app usage sets based on
users’ usage habits and then optimize scheduling sequences
for frequent app usage sets.

To help developers create ‘greener’ apps that use less
energy, some researchers looked at energy drain patterns of
specific app events or functions. Li et al. [210] developed
a prototype tool called vLens to collect energy data at the
nanosecond and millisecond levels. As a result, vLens can
calculate the energy consumption of smartphone apps at the
source line level and track high-energy events like thread
switching and garbage collection. In [201], they then used
vLens to collect the energy drain patterns of 405 apps. They
discovered that, on average, apps waste 61% of their energy
in idle states, and the network is the most energy-consuming

component, confirming the findings in [197]. Most impor-
tantly, they discovered that called system APIs account for
the majority of an app’s energy consumption, implying that
app developers should exercise caution when using them.

B. App Traffic Patterns

Smartphones, which are supported by a variety of network-
based apps, allow users to stay connected to the ubiquitous
Internet [211]. According to a Cisco report [212], smartphone
traffic accounted for 73% of all traffic in 2018 and will rise
to 89% by 2023. Because of the high volume and growing
importance of mobile traffic, researchers and network oper-
ators are interested in understanding how mobile apps use
network resources.

Xu et al. [32] conducted anonymous network measurements
from a tier-1 cellular carrier in the United States, covering
over 600 thousand users, and used HTTP signatures to iden-
tify traffic from various apps. In terms of traffic sources, they
discovered that mobile apps could be divided into two groups:
local apps and national apps. The majority of the traffic of
local apps comes from a single region, whereas the traffic of
national apps comes from diverse regions. This finding sug-
gests that content optimization in access networks could be
significant, with local app content being placed on servers
closer to end-users. Jiang et al. [202] looked into the relation-
ship between app popularity and network performance. They
discovered that over 60% of popular apps optimize network
delay under 350ms, highlighting the importance of app service
network performance. Falaki et al. [213] and Li et al. [203]
looked at a small and large scale network dataset, respectively,
and found that smartphone operating systems have an impact
on app traffic consumption. When compared to Android and
Windows Phone, iOS consumes more traffic. Jin et al. [204]
also discovered that different data collection purposes resulted
in different app network traffic usage. As a result, they created
MobiPupose, a system that could track app network requests
and classify data collection purposes based on app traffic pat-
terns. Walelgne et al. [205] and Okic et al. [206] showed that
different app categories have different traffic patterns. In terms
of traffic volume, entertainment and social media apps are the
most traffic-intensive, while education and weather apps are
the least traffic-intensive [205]. Moreover, in terms of tempo-
ral patterns, music and shopping apps see the most traffic in
the morning, while e-mail and game apps see the most traffic
during lunchtime [206]. Some studies leveraged app traffic pat-
terns to improve network performance. Ouyang and Yan [207]
developed AppWiR, a crowdsourcing-based system that gath-
ers app usage data and derives relationships between app
usage, network traffic, and network resources. AppWiR can
predict network resources occupied by apps with a mean abso-
lute percentage error of 12.54% sim13.39$. Zeng et al. [10]
analyzed the temporal traffic consumption patterns of various
app categories. They then used a linear regression model to
forecast the amount of traffic consumed by the most popu-
lar app categories over a given period of base stations and
devised an edge caching strategy to cache the content for the
most popular app services. Aceto et al. [208] defined network
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TABLE XIII
LITERATURE REVIEW IN SMARTPHONE DOMAIN RESEARCH

traffic at various levels, such as packet and message levels,
and proposed using the Markov model to predict app network
traffic at different levels. Yin et al. [209] incorporated mobile
app usage patterns into data pricing strategies, creating a pric-
ing scheme that is updated based on user satisfaction and
operational conditions.

C. Discussion

This section summarized relevant smartphone domain stud-
ies from two principal fields: app energy drain and app
traffic patterns. Table XIII lists the most important litera-
ture in terms of research topics, dataset information, methods,
and key findings. We can see that most datasets for energy
drain analysis are gathered from monitoring apps to sup-
port battery state collection. Excessive energy consumption

is primarily caused by hogs and background apps and unnec-
essary workload. These findings suggest that app developers
should carefully select system APIs to reduce unnecessary
power consumption and that operating systems should improve
app scheduling algorithms. Some studies have attempted to
optimize app scheduling; however, their optimizer is still
unable to support personalized requirements, such as adjust-
ing optimization strategies for different user habits. In the field
of app traffic patterns, the datasets are collected from network
operators and monitoring apps. Network operator datasets typ-
ically cover millions of users, which is significantly more
than those of monitoring apps. Clustering algorithms, such
as K-means and DBSCAN, are used to discover app traf-
fic patterns. In the meantime, classification and regression
methods, such as SVM, decision tree, markov model, and
random forest, are used to forecast app traffic consumption
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to optimize network resource allocation and data pricing
strategies.

VI. CHALLENGES AND FUTURE RESEARCH

Smartphone app usage analysis is a promising direction.
A significant number of studies have been done in recent
years and obtained a lot of achievements. However, there
are still several active challenges that have not been well
addressed. This section will discuss the challenges first and
then look forward to the future research of smartphone app
usage analysis.

A. Challenge in Data

1) Data Collection: The collection of app usage data
has become much more difficult after the implementation of
GDPR. A major reason is that GDPR principles and data
collection for big-data analysis are not always mutually exclu-
sive. For example, a large amount of data is preferred in the
data collection to reduce deviation and bias in analysis results.
However, it goes against the data minimization principle. New
hypotheses are frequently introduced after data collection in
data analyses. However, it is constrained by the purpose of the
users’ initial consent. One possible way to overcome such con-
tradictions is to collect anonymized data because anonymized
data is excluded from GDPR [214]. While the GDPR has a
strict definition of anonymized data, which means that the data
subject is not or is no longer identifiable. In other words,
it must be impossible to obtain personal information from
anonymized data. As a result, anonymized app usage data can
only be used in the app and smartphone domain research rather
than user domain research.

We have discovered that GDPR has some unintended conse-
quences. Collecting data from network operators, for example,
has become extremely difficult due to the difficulty in obtain-
ing user consent. Researchers are hesitant to publish datasets
for fear of penalties, especially when European citizens are
involved. Furthermore, because data collection in the European
Union is difficult, there is a risk that researchers will prefer
to use data from places with fewer or no regulations. A few
trends have emerged. Recent studies from the last three years,
i.e., 2018, 2019, and 2020, are primarily based on data from
China and the United States. Only a few studies are based on
data from Europe.

2) Mode Effect and Data Bias: Existing app usage datasets
vary greatly in terms of collection methods, scales, col-
lected items, and duration. These differences could lead to
biases in their studies and make research more difficult to
replicate. Different collection methods will result in a mode
effect, which will introduce biases into the collected data.
App stores and monitoring apps, for example, can only col-
lect data from their users. Furthermore, monitoring apps can
impact users’ normal app usage behavior due to privacy con-
cerns, resulting in data collection biases. Approximately 1%
of participants changed their normal usage behavior during
data collection [215]. As a result, it is critical to address
participants’ privacy concerns and develop more unobtrusive
monitoring apps. The population difference across studies also

leads to data bias. It is hard to organize a smartphone app
usage dataset wholly and accurately reflecting real-world user
behaviors. Most existing studies are based on biased popu-
lations. The users involved in [34], [43], [69], [78], [169],
[187] are all Chinese. The participants in [39], [101], [216]
all live in the Lake Geneva region in Switzerland. University
students are only considered in [40], [217], [218]. To alleviate
the biases, improving the diversity of participants and sampling
technology are useful methods to increase the robustness of
results.

The replicability of research will be hampered by data
bias. Church et al. [2], for example, attempted to duplicate
previous work. However, their findings differed significantly
from previous research, revealing replicability issues and
biases across datasets. To solve this problem, we need to put
a lot more effort into constructing open datasets. Researchers
can use unified public datasets to compare their new algo-
rithms and discoveries to state-of-the-art ones, especially in
method-oriented topics like app usage prediction, app rec-
ommendation, and predictive user profiling. The standard
platform can help to reduce the number of unrepresentative
repeated experiments and boost academic loyalty. Thankfully,
we have taken the first step toward creating benchmark
datasets. As we mentioned in Section II, some researchers have
made their app usage datasets public. We believe their public
datasets will be strong candidates for benchmark datasets in
terms of data quality and impact.

B. Challenge in Methods

1) Heterogeneous Data Fusion: Other types of data, such
as smartphone sensor data and app metadata, are also impor-
tant and helpful for analyzing smartphone app usage. Although
some approaches for fusing heterogeneous data in app usage
analysis have been proposed, current methods can be improved
by increasing their effectiveness and generalizability. For
example, there are two widely used methods in existing studies
for fusing context data into app usage records. The first one
is to use the tensor structure by adding additional dimensions
to represent context information. The second one is to take
context features as conditions that are parallelly input into a
probabilistic model or Bayesian networks. However, when the
scale of the context grows large, these two methods will suffer
from the curse of dimensionality and high computational cost.

Most existing data fusion models are task-specific, making it
difficult to generalize results across different studies. App fea-
tures, for example, are commonly used in the tasks of app cat-
egorization and app recommendations, which are determined
based on app descriptions and app usage behaviors. However,
the model is difficult to transfer directly due to different dataset
settings [2]. The question of how to better fuse heteroge-
neous data is still an active challenge. Embedding technology
could be a promising method. Embedding technology aims
to map high-dimensional data into low-dimensional vectors
in latent embedding space while maintaining similarity across
data points. A few studies [167], [174] have tried to employ
embedding to model app usage sequences. Heterogeneous data
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fusion can also benefit from embedding technology. For exam-
ple, to describe the relationship between different types of
data, we can create a heterogeneous graph. We can learn a
low-dimensional data representation that embeds node features
and relations together using graph embedding technologies
like Metapath2Vec [219] and HAN [220], which improves the
effectiveness of data fusion. We can learn universal data rep-
resentations in this way, such as app embeddings that capture
global patterns of app usage, context information, and app
metadata. The learned embeddings can be reused in multiple
models.

2) Privacy Preserving Analysis: Privacy is always an
important consideration when accessing, using, and sharing
mobile app usage data. As we discussed in Section IV-A,
users’ attributes can be inferred from their app usage data.
Thus, privacy-preserving technologies must be used when
dealing with such sensitive data. Anonymization is a com-
mon technique. Böhmer et al. [87], for example, used hash
functions to replace all participants’ personal identifiers with
unrecognizable symbols. This method can delink multiple
sets of users, reducing the risk of individual identities being
leaked along with other public auxiliary data. However, sim-
ply anonymizing user IDs is insufficient to ensure privacy.
Based on anonymized app usage records, previous stud-
ies have shown that most people can be re-identified and
tracked [187], [188]. In the privacy-preserving analysis, the
problem of how to create a well-established anonymization
mechanism remains unresolved.

Most existing studies rely on centralized data processing,
which is bound to raise privacy concerns. Collecting app
usage data and centralized processing has become more dif-
ficult as a result of recently enacted strict privacy protection
regulations. The European GDPR, for example, requires data
controllers to disclose any data collection and to declare the
lawful basis and purpose for data processing. In addition,
after iOS 9, the iOS system removed most data collection
APIs to address user privacy concerns. As a result, convert-
ing to a decentralized analysis framework is critical to protect
user privacy and facilitate the research community’s long-term
development. Federated Learning could be a promising analy-
sis framework [221]–[223]. Federated Learning allows mobiles
to learn a shared model collaboratively while keeping all data
on the local device. Users are not required to upload their
usage data to cloud servers, and their sensitive information
will be well protected [224]. Researchers can also take proac-
tive steps to build privacy-preserving mechanisms by making
the analysis framework transparent and giving users complete
control over their data. These measures will help to protect
user privacy to some extent and alleviate privacy concerns.

C. Future Research

1) App Evolution Globalization VS. Localization: Since the
release of the first iPhone in 2007, the app ecosystem has
evolved significantly over the last two decades. Starting with
a few system-embedded apps, the app ecosystem has grown to
include over 3 billion apps that cater to a wide range of user
needs. Many apps have appeared in recent decades, attracting

millions of users before eventually disappearing. Exploring the
app ecosystem’s evolutionary processes and extracting gen-
eral rules and impact factors behind app usage is critical for
all relevant stakeholders, including smartphone manufactur-
ers, service providers, and app developers, to provide valuable
guidance.

Globalization has a significant impact on the app ecosys-
tem’s development. Globalization has accelerated interaction
and integration among people from various countries and cul-
tural backgrounds in recent decades. The app’s usage also
reflects such interaction and integration. Apps are easier to
distribute around the globe and attract a large number of
users. For instance, Pokémon Go, a popular smartphone game,
was first released in the United States on July 6, 2016, and
quickly spread around the world. The study of how popular
apps spread is important for developing business strategies,
predicting app popularity, and profiling the app ecosystem.

Localization, on the other hand, is also a trend in the app
ecosystem. Many apps provide access to local information
and are useful to both tourists and residents. For example,
residents of Shenzhen, one of China’s largest cities, can use
a parking app called Yitingche. KYOTO Trip+4 is an offi-
cial app that provides information to visitors and residents of
Kyoto, Japan’s largest city. According to our careful inves-
tigation, a few previous studies have worked on local apps.
Ochiai et al. [60], for example, created a framework for
identifying local apps in app stores and making app recom-
mendations to residents. However, we pay less attention to
local apps in existing studies than we do to global apps. There
could be two reasons for this. Local apps, tied to a specific
location, usually have fewer users and have a less international
impact than global apps. Second, conducting studies on local
apps is more difficult due to a lack of data. Nonetheless, we
would like to emphasize that, in contrast to global apps that
support a broad range of interests, local apps focus on local
life services and deserve more research attention.

2) Context-Aware App Usage Modeling: Context-aware app
usage modeling is a critical but difficult problem to solve.
Breakthroughs in mobile app usage pattern discovery, app
usage prediction, and app recommendations will be made if
this problem is solved. App usage modeling can also help with
the creation of synthetic datasets for benchmarking systems.
However, because app usage varies depending on the context,
modeling such complex and dynamic behaviors is difficult.
Thankfully, a few existing studies have taken the first steps.
Yu et al. [131] depicted the co-occurrence of apps, locations,
and time to model app usage behaviors. Zhao et al. [126] con-
sidered user characteristics. However, existing research either
ignores the sequential features of app usage or the location
context. Thus, modeling the sequential features of app usage
in various contexts, such as location, time, and motion, is still
a work in progress. The spatiotemporal graph neural network
is one possible solution, in which we can use graph structure to
model the co-occurrence of app usage and context factors, and
a recurrent neural network (RNN) model to capture sequential
patterns.

4https://play.google.com/store/apps/details?id=jp.kyoto.pref.visitkyoto&hl
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3) Deep Reasoning App Usage Behaviors: Existing
research is limited to correlation analysis. Even though correla-
tion analysis can reveal co-occurrence, it lacks interpretability
in some cases. When we find a user who uses travel apps fre-
quently, for example, we do not know if he/she is traveling or
just planning to travel. Thus, it is difficult to provide direct
guidance to service providers. Furthermore, the correlation
analysis may become stuck in Simpson’s Paradox, resulting
in incorrect analysis results. Therefore, adding causal analysis
to deep reasoning app usage behaviors is required. Fortunately,
causal inference has progressed significantly in recent years.
A number of promising methods, such as individual treatment
effects estimation [225] and shared causal model [226], have
emerged. For reasoning analysis of app usage behaviors, these
advanced methods provide robust technology and algorithm
support.

Sophisticated deep learning methods are now used to inves-
tigate app usage behaviors to improve system performance.
These black-box models, however, are unable to interpret the
discovered features and how they relate to the significant
results obtained. Several deep learning explainers [227] have
recently been developed by advanced machine learning stud-
ies in an attempt to open the black-box models. Incorporating
these deep learning explainer models into app usage analysis
will be a promising step toward improving the interoperability
of profiling results and providing reliable guidance to relevant
stakeholders.

4) Linking User Activities and App Usage: Smartphones,
which are supported by a diverse set of mobile apps, allow
people to do things like order food, shop, manage their
finances, and socialize more conveniently. These spatiotem-
poral app usage traces have the potential to infer users’
physical world activities and can be used for user profiling
and authentication. A strong link between physical activities
and mobile app usage has been demonstrated in a few stud-
ies. Li et al. [104] used app usage data to identify seven user
activities. However, they focused solely on app usage, ignor-
ing the impact of time and locations. Different physical world
activities may be reflected by the same app usage behavior at
different times and in different places. As a result, it is nec-
essary to introduce spatial and temporal factors to infer users’
physical activities better. This is difficult due to the high com-
plexity of spatiotemporal features. The probabilistic graphical
model, which is scalable to model multiple factors and can
apply different distribution functions to capture various activity
patterns, is one possible solution to this problem.

5) Location-Based Service and Urban Computing: There
is a strong link between app usage behaviors and locations,
according to numerous existing studies. However, the majority
of them were only interested in using locations as contextual
features to improve app usage prediction and recommenda-
tions. By leveraging app-location relationships, app usage data
can be used in location-based services, such as urban com-
puting, in addition to app-oriented tasks. As we discussed in
Section II, the app usage dataset gathered from network oper-
ators can cover the majority of mobile users in a given area,
such as a city or state. The datasets usually include location
data derived from associated base stations. Such high-coverage

and fine-grained datasets provide rich user behavioral data,
such as app usage and user mobility [228], for conducting
urban computing studies. There have been a few studies that
have focused on this promising area. Xia and Li [89], for
example, used users’ online behavior, such as app usage, as
well as offline behavior, such as human mobility, to uncover
urban dynamics and identify urban zone functions.

VII. CONCLUSION

The research efforts on smartphone app usage analysis are
surveyed and summarized in this paper. We first introduced
and compared various data sources, such as surveys, monitor-
ing apps, network operators, and app stores. For the research
community, we presented a set of public datasets and discussed
privacy and ethical issues. The related studies in the app,
user, and smartphone domains were surveyed, respectively. We
made a detailed taxonomy for each research domain based on
the problem investigated, the characteristics of the datasets
used, the methods used, and the key results obtained. Finally,
we discussed two current research challenges and identified
five future research directions for this hot topic.
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