

Radiumin esiintyminen kallioperässä, maaperässä ja pohjavedessä ja sen määrittäminen vesinäytteissä

Maisteritutkielma

Kemian ja molekyylitieteiden maisteriohjelma

Rohafza Dehqanzada

Ohjaaja(t): Yliopistolehtori Marja Kauppi-Siitari Yli-insinööri Markus Nyman

> 10.12.2022 Helsinki

Kaulutusahialmasta vastaava tiadakunta – Fakultatar	anguaria för	Tutkinnon myönt	ävä tiodolaunta – Folgultaton som havilier overnon			
Noululusonjelliasia vasiaava lieuekunta – Fakultelen ansvarig for		Faculty granting the degree				
Matana attic lucana attict allin an tic dalam		Vanian Laita				
Matemaattis-luonnontieteellinen tiedekuni	a	Kemian Laito	S			
Tekijä – Författare – Author						
Rohafza Dehganzada						
1						
Tutkielman otsikko – Avhandlingens titel – Title of t	thesis					
Radiumin esiintyminen kallioperässä, maa	Radiumin esiintyminen kallioperässä, maaperässä ja pohjavedessä ja sen määrittäminen vesinäytteissä					
Koulutusohjelma – Utbildningsprogram – Study programme						
Kemian ja molekyylitieteiden maisteriohielma						
Tutkielman taso – Avhandlingens nivå –	Aika – Datum	n – Date	Sivumäärä – Sidoantal – Number of pages			
Level of the thesis	10/2022					
Moisteritutkielmo	12/2022		57			
INIAISIETTUUKIETTIA						
Tiivistelmä – Referat – Abstract						
	1	1 . 1 . 6				
Radium (Ra) is a naturally occurring radio	bactive metal	, which is forme	ed by the decay of uranium-238 and thorium-			

232 in the environment. In nature, radium occurs at trace levels in virtually all water, soil, rock and plants. ²²⁶Ra-, ²²⁸Ra, ²²⁴Ra, and ²²³Ra-isotopes are the most common isotopes of radium, and all isotopes are radioactive.

The aim of the work was to study the behavior of radium in nature. In general, radium isotopes with variable activity concentrations in water and solid samples such as soil, and sediment can be measured with alpha- or gamma spectrometry or liquid scintillation counting (LSC). In this work, the measurements were done using gamma spectrometry with a Ge-detector, which is a semiconductor detector made of germanium. In addition, a very low-level liquid scintillation spectrometer (Quantulus 1220) was also used. The determination of the PSA value (Pulse Shape Analysis) was successful and was determined experimentally with a 226 Ra standard sample. The activity of the 226 Ra standard sample obtained with Ge detectors was almost of the same order of magnitude as both theoretically and experimentally determined activities. The determined 226 Ra activities in water samples with gamma spectrometry were in good agreement with the activities obtained by LSC using α/β -discrimination.

Avains an at-Nyckel ord-Keywords

Radium, LSC, sorption, soil and rock, isotope, PSA

Säilytyspaikka – Förvaringställe – Where deposited

Kumpulan kampuskirjasto, Helsingin yliopiston kirjallinen arkisto, E-thesis

Muita tietoja - Övriga uppgifter - Additional information

Sisällysluettelo

Lyhen	teet ja symbolit	5
1 Jo	hdanto	7
2 Ra	adium ja sen tärkeimmät isotoopit	9
2.1	Luonnon hajoamissarjat	9
2.1	.1 Uraani ja torium	10
2.2	Radium	12
2.3	Radiumin isotoopit ja niiden muodostuminen	13
3 Ra	adiumin esiintyminen luonnossa	15
3.1	Radiumin esiintyminen kiteisen kiven mineraaleissa	15
3.2	Radiumin pidättyminen maaperän mineraaleissa	16
3.3	Pohjavesi ja sen ominaisuuksien vaikutus radiumin esiintymiseen	17
4 Ra	adiumin erotusmenetelmät ja mittaaminen	19
4.1	Radiumin erotus ja puhdistus	19
4.2	Radiumin määritysrajan laskeminen	19
4.3	α-spektrometria ja radiumnäytteiden mittaus	20
4.4	Radiumin mittaaminen gammaspektrometrisesti Ge-ilmaisimella	21
4.5	Radiumin mittaus nestetuikelaskennalla	22
5 K	okeellinen osuus	24
5.1	Materiaali	24
5.1	.1 Näytteet	24
5.1	.2 Nestetuikeaine	25
5.1	.3 Standardinäyte PSA tasanon valitsemiseksi	25
5.2	Menetelmä	27
5.2	2.1 ²²⁶ Ra:n välilaimennus ja standardinäytteen γ-säteilymittaus	27
5.2	2.2 α/β -erottelu nestetuikelaskennalla	28
5.3	Tulokset	28
6 YI	hteenveto	35
7 Ki	irjallisuusviitteet	36

iitteet	40
Liite 1. ²²⁶ Ra-nuklidin α/β-tyttäret	40
Liite 2. Radiumin isotoopit	41
Liite 3. Kivinäytteet	42
Liite 4. K _d -arvojen tulokset	44
Liite 5. PSA-arvot	45
Liite 6. OGD-näytesarja	46
Liite 7. OGD-näytesarja	49
Liite 8. OGP-näytesarja	52
Liite 9. OGV-näytesarja	55
Liite 9. OGV-näytesarja	57

Lyhenteet ja symbolit

Ac	aktinium
ALLMR	lievästi pelkistävä graniittinen vertailupohjavesi
Ba	barium
Ca	kalsium
CaCO ₃	kalsiumkarbonaatti
CEC	cation-exchange capacity (kationin vaihtokapasiteetti)
CPS	counts per second / pulssimäärä sekunnissa
СРТ	co-precipitation (kerasaostuminen)
DGN	diateksiittinen gneissi
DTPA	dietyylitriamiinipentaasetaatti
EDTA	etyleenidiamiinitetraetikkahappo
Eh	hapetus/pelkistyspotentiaali
Ge-imaisin	germanium-ilmaisin
HC1	suolahappo
HF	vetyfluoridi
HNO ₃	typpihappo
K _d	jakaantumiskerroin
LSC	Liquid Scintillation Counter (nestetuikelaskuri)
Ν	ytimessä neutronien määrä
NH ₂ OH·HCl	hydroksyyliamiini·suolahappo
MDA	minimun detectable activity (määritysraja)
MCA	multichannel analysator / monikanava-analysaattori
MGN	kiillegneissi
MnO ₂	mangaanidioksidi
OLGA	jäätikön hapeton sulamisvesi, vertailupohjavesi
OLRS	pelkistävä suolainen vertailupohjavesi
Pb	lyijy
PGR	pegmatiittinen graniitti
Ро	polonium
ppm	miljoonasosa (parts per million)

PSA	pulse shape analyses / pulssimuotoanalyysi		
Ra	radium		
Ra(OH) ₂	radiumhydroksidi		
Ra ₃ N ₂	radiumnitridi		
Redox-reaktio	hapetus-pelkistysrektio		
SF	spontaani fissio		
SO4 ²⁻	sulfaatti-ioni		
Sr	strontium		
TBP	tributyylifosfaatti		
TDS	Total Dissolved Solids (liuenneiden kiintoaineiden kokonaismäärä)		
Th	torium		
ThO ₂	toriumdioksidi		
ThSO ₄	toriumsulfaatti		
U	uraani		
UO ₂	uraanidioksidi		
VGN	suonigneissi		
Z	ytimessä protonien määrä		

1 Johdanto

Vuonna 1898 joulukuussa Marie ja Pierre Curie ilmoittivat löytäneensä uuden alkuaineen uraanimalmin uuttoliuoksista, joista uraani oli erotettu. Radioaktiivisuutensa vuoksi se sai nimekseen radium. Tämä historiallinen löytö sai aikaan radiumin merkittävän käytön lääketieteellisiin, tieteellisiin ja teollisiin tarkoituksiin, mukaan lukien sen käyttö merkkiaineena. [1] Radium on luonnon uraanisarjan hajoamistuote ja sitä esiintyy siksi pieninä määrinä uraanimalmeissa. Ympäristössä sitä esiintyy hyvin vähän kaikissa kivissä, maaperässä, vedessä, kasveissa ja eläimissä. Radium ja sen suolat ovat veteen helposti liukenevia ja se reagoi ilman typen kanssa nopeasti. Radium on erittäin radiotoksinen ja jopa yli miljoona kertaa radioaktiivisempi kuin sama massa uraania.

Radiumista tunnetaan 34 isotooppia, joiden massaluvut vaihtelevat 201–234 ja niiden puoliintumisajat vaihtelevat nanosekunneista tuhansiin vuosiin. Kaikki radiumin isotoopit ovat radioaktiivisia. Radiumin isotoopeista vain neljää (²²³Ra, ²²⁴Ra, ²²⁸Ra ja ²²⁶Ra) esiintyy luonnossa uraania (^{235/238}U) ja toriumia (²³²Th) sisältävissä mineraaleissa. Radiumin kulkeutumista ja pidättymistä pohjavedessä, kallioperässä ja maaperässä tutkitaan laajasti mm. ydinjätteen loppusijoitukseen liittyen ja radium on siten tärkeä käytetyn polttoaineen loppusijoituksessa. [2] [3]

Radiumin korkea säteilymyrkyllisyys on herättänyt jatkuvaa kiinnostusta Ra-isotooppien määritysmenetelmien kehittämiseen erilaisista luonnon näytteistä. Erityisesti ²²⁶Ra:n määritys vedestä, maaperästä ja biologisista näytteistä on tärkeää. Kirjallisuudessa on raportoitu useista erilaisista tekniikoista Ra-isotooppien määrittämiseksi, joista yleisimmät ovat γ -ja α -spektrometria sekä nestetuikelaskenta. Alfa- ja gammaspektrometrialla voidaan mitata kaikkien luonnossa esiintyvien Ra-isotooppien aktiivisuuspitoisuuksia. Nestetuikelaskennalla voidaan määrittää suoraan ²²⁶Ra ja ²²⁴Ra yleensä vesiliuoksista ja ²²⁸Ra β -mittauksella jos näytteistä puuttuu ²¹⁰Pb, ²¹⁰Bi. [4] [5]

Tässä tutkimustyössä tutustutaan radiumin mittaustekniikoihin ja kaikista kolmesta mainituista menetelmästä annetaan havainnollistavat esimerkit, joiden erityispirteitä käydään läpi perusteellisesti ja lyhyesti kappaleessa 4. Kokeellisessa työssä määritettiin 226 Ra:n aktiivisuus vesinäytteistä, joita käytettiin aikaisemmissa radiumin pidättymiskokeissa kiven mineraaleihin. Radiumin aktiivisuuden määritys suoritettiin α/β -erottelulla käyttämällä matalataustaista nestetuikelaskuria (Quantulus 1220). Tämä nestetuikelaskuri on varustettu

pulssimuotoanalysaattorilla, joka mahdollista α -ja β -tapahtumien erottamisen ja samanaikaisen laskennan. Näytteet mitattiin kahdesti. Ensimmäinen mittaus tehtiin heti näytteiden valmistamisen jälkeen (välitön mittaus) ja toinen mittaus (viivästetty mittaus) sekulaarisen tasapainon saavuttamisen jälkeen. Lopuksi määritettiin vesinäytteiden Ra-226 aktiivisuudet.

2 Radium ja sen tärkeimmät isotoopit

2.1 Luonnon hajoamissarjat

Luonnon hajoamissarjat luokitellaan kolmeen ryhmään, joita ovat uraani, aktinium- ja toriumhajoamissarja (Kuva 2.1). Kaikki nämä luonnon radioaktiiviset hajoamisketjut koostuvat epävakaista raskaista atomiytimistä (²³⁸U, ²³⁵U ja ²³²Th). [5]

Kuva 2.1. Luonnon hajoamissarjat ja kuva on muokattu lähteestä. [6]

2.1.1 Uraani ja torium

Maankuori koostuu useista eri alkuaineista, mutta sen tärkeämpiä luonnossa esiintyviä radionuklideja ovat uraani, torium ja niiden hajoamistuotteet kuten radium ja radon. [7]Uraanin ja toriumin isotooppeja muodostuu neutronitähtien törmäyksissä, ja pitkäikäisyytensä vuoksi ne ovat säilyneet pitkään maapallolla. [5] [8]

Maankuoren keskimääräinen uraanin pitoisuus on 1,3 ppm ja yläkuoressa 2,7 ppm, eli noin kaksinkertainen koko kuoreen verrattuna. Vastaavat luvut toriumilla ovat 5,6 ppm ja yläkuoressa 10,5 ppm. Kuoren likimääräinen Th/U-suhde on 4. Suomen kallioperän keskimääräinen uraanipitoisuus on 2,0 ppm ja Th-pitoisuus 8,9 ppm ja Th/U-suhde 5,6. [9] Suomen kallioperä voidaan iän perusteella jakaa arkeeisiin (ikä 3,5–2,7 milj. vuotta) ja proterotsooisiin (ikä 2,5–1,5 milj. vuotta) alueisiin. Uraani on paikoitellen rikastunut useassa vaiheessa, jolloin lopputuloksena on paikoin uraania enemmän sisältäviä kivilajeja ja alueita, esim. U-pitoisuus on korkein Etelä-Suomen graniittialueilla. [10]

Uraani on ensimmäinen alkuaine, jonka havaittiin säteilevän, mikä johti radioaktiivisuuden ilmiön löytämiseen. Luonnossa esiintyvä uraani koostuu kolmesta isotoopista, joista ²³⁴U (0,0057 %) ja ²³⁸U (99,27) esiintyvät uraanisarjassa ja ²³⁵U (0,72 %) on aktiniumsarjan emoydin. [10] Uraani voi esiintyä liuoksessa neljällä hapetustilalla (+III:sta +VI:een), joista +IV ja +VI ovat yleisimmät. [11]

Uraniitti (UO₂) on yleisin maankuoren uraanimineraali, lisäksi alkuaine esiintyy pieninä pitoisuuksina mm. monatsiitissa (Ce, La, Th) PO₄ ja zirikoniassa (ZrSiO₄). [12]

²³⁶U- ja ²³²U-isotoopit ovat myös alfahajoavia ja niitä käytetään merkkiaineina kemiallisen saannon määrittämisessä uraanin analyysissa. ²³⁶U-isotooppia tuotetaan myös ydinpolttoaineessa ²³⁵U:sta neutronisieppauksen avulla. ²³³U on toinen uraanin tärkeä keinotekoinen isotooppi, jota valmistetaan säteilyttämällä ²³²Th:ia neutroneilla ja sitä voitaisiin käyttää fissioituvana isotooppina ydinreaktoreissa (torium- ydinpolttoainekierrossa). Uraanin isotoopit (Taulukko 2.1.1) voidaan mitata sekä alfa-, gamma-että massaspektrometrilla ja uraanin kokonaispitoisuuksien mittaamiseen voidaan käyttää nestetuikelaskentaa. [5] [11]

Nuklidi	Puoliintumisaika [a]	Hajoamistapa
²³⁴ U	$2,46 \times 10^5$	α/SF
²³⁵ U	$7,04 imes 10^{8}$	α/SF
²³⁸ U	4,47 × 10 ⁹	α/SF
²³³ U	1,59 × 10 ⁵	α
²³⁶ U	$2,34 \times 10^{7}$	α/SF
²³² U	67	α

Taulukko 2.1.1 Uraanin isotooppien puoliintumisajat luonnossa ja käytetyssä ydinpolttoaineessa. *[13] [5]*

Torium on suhteellisen yleinen luonnossa esiintyvä radioaktiivinen metalli, jolla on vain yksi hapetustila +IV (Th⁴⁺). [9] Toriumin yleisimmät puhtaat mineraalit ovat kiteinen torianiitti (ThO₂) ja amorfinen toriumsilikaatti (ThSiO₄). Molemmat ovat harvinaisia ja esiintyvät mineraaliseoksina, joissa on uraania (Th, U) O₂ ja (Th, U) SiO₄. [5] [14]

Toriumin tärkein päälähde on monatsiitti (lantanoidi-fosfaattimineraali), jossa toriumia voi olla jopa 12 %. Torium esiintyy luonnostaan kuuden isotoopin (Taulukko 2.1.2) muodossa ja sen pitkäikäisin isotooppi on ²³²Th ja sen isotooppiosuus luonnon toriumista on 99,9995 %. [5] [11] Toriumia esiintyy pieninä määrinä kallio- ja maaperässä, missä sitä on noin kolme kertaa enemmän kuin uraania. Toriumin ei ole helposti hydrolysoituva ja sen liukoisuus on erittäin alhainen. Käytännössä vain ²³²Th esiintyy luonnossa. [11]

Nuklidi	Puoliintumisaika	Hajoamistapa
²²⁷ Th	18,72 d	α
²²⁸ Th	1,91 y	α
²³⁰ Th	75 400 y	α
²³¹ Th	25,52 h	β^{-}/SF
²³² Th	1,4 × 10 ⁹ y	α
²³⁴ Th	24,10 d	β-

Taulukko 2.1.2 Kuuden toriumisotoopin puoliintumisaika ja hajoamistapa. [13]

Alfaspektrometriaa käytetään tyypillisesti toriumisotooppien (²²⁸Th, ²³⁰Th ja ²³²Th) mittaamiseen, jolloin näytteen valmistukseen on käytettävä monivaiheisia kemiallisia erotuksia. Toriumin mittaamiseen käytetään myös massa- ja gammaspektrometriaa.

Toriumin erotuksissa käytetään saostusta, ionivaihtoa, liuotinuuttoa ja uuttokromatografiaa. Sen erottaminen näillä mainituilla menetelmillä perustuu siihen, että torium muodostaa vahvan negatiivisen kompleksin, jossa nitraattianionit ovat vahvassa typpihapossa. [5]

2.2 Radium

Jaksollisen järjestelmän toiseen pääryhmään kuuluva radium on raskain maa-alkalimetalli. Radiumin suhteellinen atomimassa on 226,0254 u ja sen kemiallinen merkki on Ra, järjestysnumero 88. Sen elektronikonfiguraatio on (Rn7s²), sulamispiste 700 °C ja kiehumispiste 1140 °C. Radium on kiiltävä, pehmeä ja hopeavalkoinen metalli. Sitä ei koskaan löydy luonnosta puhtaana metallina, koska se on erittäin reaktiivinen ja reagoi nopeasti ilmassa olevan typen kanssa muodostaen mustan radiumnitridin (Ra₃N₂). Lisäksi radiummetalli reagoi hyvin helposti veden kanssa muodostaen vetykaasua ja radiumhydroksidia (Ra(OH)₂). [3]

Radium voi liueta pohja-ja pintavesiin kahden arvoisena (Ra²⁺) kationina, joista se voi saostua niukkaliukoisina karbonaatteina ja sulfaatteina. Radium muodostaa liukenemattomia sulfaatti-, karbonaatti- ja kromaattisuoloja ja kun taas kloridi-, bromidi-, nitraatti-, ja hydroksidisuolat ovat veteen liukenevia. [2] Radiumin 34 isotooppia esitetty liitteessä 2. Ympäristössä esiintyy vain neljä radiumisotooppia (Taulukko 2.2), joista kolme on α -säteilijöitä (²²³Ra, ²²⁴Ra, ²²⁶Ra) ja yksi on β -säteilijä (²²⁸Ra)(Liite 1). Niitä kaikkia muodostuu jatkuvasti luonnon hajoamissarjojen seurauksena. [3]

Isotooppi	Puoliintumisaika	Emonuklidi	Hajoamistapa Hajoamisenergia ja intensiteetti [MeV] ja [%]		Hajoamissarja
²²⁸ Ra	5,8 a	²³² Th	beeta	46 keV (E _{max})	Torium-232
²²⁶ Ra	1600 a	²³⁸ U	alfa	4,784 (94,45 %), 4,601(5,55 %)	Uraani-238
²²⁴ Ra	3,66 d	²³² Th	alfa	5,685 (94,9 %), 5,448 (5,1 %)	Torium-232
²²³ Ra	11,45 d	²³⁵ U	alfa	5,7116 (51,6 %), 5,606 (25,2 %)	Uraani-235

Taulukko 2.2 Radiumin luonnossa esiintyvät isotoopit. [5] [13]

Ra-isotooppien määrittäminen ympäristönäytteistä on tärkeää osa-alue ympäristön säteilysuojelussa. Kohonneita Ra-pitoisuuksia voi syntyä sivutuotteena tai jätteenä

fosfaattiteollisuudesta, metallimalmien kaivos- ja jalostusteollisuudesta, öljy- ja kaasuteollisuudesta, hiilikaivos- ja polttoteollisuudesta. Radium pääsee helposti nisäkkäiden luihin koska sen kemiallinen ja biologinen käyttäytyminen on samankaltaista kuin kalsiumin ja muiden maa-alkalimetallien (Ca, Sr, Ba). Lisäksi radiumin hajoamisen jälkeen syntyy useita muita radioaktiivisia tytärnuklideja lyhyessä ajassa. [4]

2.3 Radiumin isotoopit ja niiden muodostuminen

Radium-226 on yleisin radiumin isotooppi, joka on alfasäteilijä ja sitä syntyy ²³⁸Uhajoamisketjussa eli se muodostuu ²³⁰Th-isotoopin alfahajoamisessa ja edelleen hajoaa alfahajoamisella radoniksi (²²²Rn). Gammasäteilyä vapautuu myös hajoamisessa, mutta sen intensiteetti on hyvin alhainen (5,6 %), joten gammasäteilyä on vaikea käyttää ²²⁶Ra-isotoopin suoraan mittaamiseen alhaisen aktiivisuuden omaavista näytteistä. Toinen vaikeus ²²⁶Ra:n suorassa gammamittauksessa on se, että vahvimman gammasiirtymän energia (186 keV) on sama kuin ²³⁵U:n gamma energia. Tällöin ²²⁶Ra:n määritetään joko mittaamalla sen alfasäteilyä tai mitataan epäsuorasti tytärnuklidien gamma- ja alfasäteilyä. Mittaus tyttärien kautta edellyttää, että radium on sekulaarisessa tasapainossa.

²²⁶Ra:n suurin alfahiukkasenergia on 4,78 MeV. ²²⁶Ra hajoaa yhdentoista alfa- tai beeta aktiivisen tytärytimen kautta stabiiliksi ²⁰⁶Pb-isotoopiksi (kuva 2.1). ²²⁶Ra-isotoopin pitkä puoliintumisaika tekee siitä erittäin hyödyllisen monissa ympäristösovelluksissa esimerkiksi pohjaveden ja pintaveden välisen sekoittumisen arvioinnissa ja pohjaveden ja kiviaineksen iänmäärityksissä. [3] [6] [13]

Puhdas alfasäteilijä ²²³Ra-isotooppi muodostuu aktiniumin hajoamissarjasta, jossa kantanuklidina on ²³⁵U. Sen puoliintumisaika on 11,435 päivää, alfahiukkasten korkein energia on 5,87 MeV ja voimakkain gammaemissio 269,5 keV (14,7 %). ²²³Ra hajoaa seitsemän tytärnuklidin kautta stabiiliksi ²⁰⁷Pb-isotoopiksi (kuva 2.1). ²²³Ra:n tytärnuklidien suhteellisen nopea hajoaminen on johtanut sen käyttöön radiofarmaseuttisissa sovelluksissa, esimerkiksi ²²³RaCl₂ pidentää elinaikaa ja parantaa elämänlaatua luustoon levinneessä eturauhassyövässä. [3] [6] [13]

²²⁸Ra ja ²²⁴Ra syntyvät osana ²³²Th-isotoopin hajoamisketjua. ²²⁸Ra on puhdas beeta-emitteri, jonka energia on hyvin alhainen (keskimäärin 7,2 keV), mikä vaikeuttaa sen mittaamista. Sen puoliintumisaika on 5,57 vuotta. ²²⁸Ra hajoaa kolmen alfa- tai beetahajoavan tytärnuklidin

kautta ²²⁴Ra-isotoopiksi. ²²⁶Ra-isotoopin jälkeen toiseksi pitkäikäisintä ²²⁸Ra:a voidaan käyttää iänmääritys sovelluksissa. [2] [15]

²²⁴Ra on puhdas alfasäteilijä, jonka puoliintumisaika on 3,66 päivää, suurin alfaenergia on 5,67 MeV ja gammaenergia on 240,99 keV 8 (4,10 %). Se hajoaa kuuden alfa- tai beeta-aktiivisen tytärnuklidin kautta stabiiliksi ²⁰⁸Pb-isotoopiksi (kuva 2.1). Suhteellisen lyhyen puoliintumisajan vuoksi ²²⁴Ra-isotooppia käytettiin radiofarmaseuttisissa sovelluksissa vuoteen 2005, mutta sen käyttö lopetettiin terveelle kudokselle aiheutuneen merkittävän säteilyannoksen vuoksi. Toisaalta pitkäikäisten (²²⁶Ra, ²²⁸Ra) ja lyhytikäisten (²²³Ra, ²²⁴Ra) radiumin isotooppien olemassaolo samassa hajoamissarjassa on mahdollistanut radioaktiivisen epätasapainon tutkimuksen vesi-, kivi- ja sedimenttinäytteissä. [2] [3] [5]

3 Radiumin esiintyminen luonnossa

3.1 Radiumin esiintyminen kiteisen kiven mineraaleissa

Luonnossa esiintyvien radionuklidien pitoisuudet magmakivissä ovat yleensä suuremmat kuin sedimenttikivissä, lukuun ottamatta savi-, syvämeren sedimentti- ja fosfaattikiviä. Metamorfisten kivien pitoisuudet ovat samankaltaiset kuin kivien, joista ne ovat uudelleen kiteytyneet. [2] Tyypilliset uraanin ja toriumin pitoisuudet eri kivilajeissa on esitetty taulukossa 3.1 Geokemiallisten ominaisuuksiensa perusteella uraani ja torium rikastuvat maankuoren muodostumisprosesseissa yläkuoreen. [9] Uraania ja toriumia esiintyy pääasiassa graniiteissa ja pegmatiiteissa. [7]

Taulukko 3.1 Uraani- torium- ja radiumpitoisuudet eri kivilajeissa perustuen tietoihin eri mantereista ja valtamerien saarikohteista. *[7] [2]*

Kivilajien tyypit	Kiven nimi	Uraani (ppm)	Torium (ppm)	²²⁶ Ra-ptoisuus [Bq/kg]
Magmakivet	graniitti	2,2–6,1	8–33	0,037–185
Metamorfiset kivet	liuskekivi	2,7	7,5	629–1040
	savikivi (musta)	3–1250	-	14,8–2220
	kalkkikivi	2	0–2,4	5–18
Sedimenttikivet	fosforiitti	50-300	1–5	148–1480

Korkeimmat ²²⁶Ra-pitoisuudet havaittiin liuskekivissä, fosforiitissa ja savikivissä. Liuske- ja savikiven korkeat ²²⁶Ra-tasot johtuvat todennäköisesti orgaanista alkuperää olevan savipitoisen materiaalin assosiaatioista. ²²⁶Ra-pitoisuudet ovat hyvin korkeat niissä kivissä, joissa esiintyy huomattavasti uraania ja toriumia. [2] [16] [17]

Ra-pitoisuudet vähenevät pohjavesissä, jotka ovat kosketuksissa maaperän sedimenttien kanssa johtuen siitä, että ne muodostuvat kiinteitä yhdisteitä esimerkiksi Fe:n, Al:n ja Mn:n kanssa. [18] Adsorptio- ja ionivaihtoprosessit ovat erityisen tärkeitä määritettäessä radiumin kulkeutumista missä tahansa pohjavesi- ja maaperäsysteemissä. [19] Ra²⁺-ioni liukenee kohtalaisesti veteen, vaikka korkea sulfaattipitoisuus (SO₄²⁻) suosii sen poistamista sulfaattisakkana tai jos hiilidioksidipitoisuus (CO₂) on suuri ja sen poistaminen on mahdollista radiumkarbonaattina (RaCO₃). Radiumin jakautumiseen vaikuttavia prosesseja voidaan

analysoida viittaamalla tärkeämpiin ja yksinkertaistettuihin reaktioyhtälöihin (1), (2), (3) ja (4).

$$\begin{array}{ll} [2] [17] \\ Ra^{2+} + Ba^{2+} + Ca - (savi) \rightarrow Ca^{2+} + Ra - (savi) - Ba \\ xCa^{2+} + (1-x)Ra^{2+} + MCO_3 \rightarrow Ca_xRa_{1-x}CO_3 + M^+ \\ Ra^{2+} + SO_4^{2-} \rightarrow RaSO_4 \\ Ra^{2+} + 2Cl \rightarrow RaCl_2, jne \dots \end{array} \begin{array}{ll} Adsorptio \\ Saostumien \\ Liukenevat yhdisteet \\ (4) \end{array}$$

3.2 Radiumin pidättyminen maaperän mineraaleissa

Ra²⁺-ionit sitoutuvat kiinteisiin pintoihin mm. fysikaalisella ja kemiallisilla prosesseilla, jotka luokitellaan pidättymiseksi. [2] Pidättymisen mallinuksessa maaperän koostumuksessa tärkeämpiä komponentteja ovat mm. savi, orgaaninen aines ja vesipitoiset rautaoksidit. [16] [20] Radiumin pidättymisen käyttäytyminen on voimakkaasti riippuvainen vesiympäristön pH-arvosta ja radiumia odotetaan pidättyvän mm. metallihydroksideihin ja saviin. [16] K_d-arvo eli jakaantumiskerroin ilmaisee radionuklidien jakautumisen kiinteä- ja nestefaasin välillä maaperässä ja se lasketaan yhtälön (5) mukaisesti seuraavasti,

$$K_{d} = \frac{aktiivisuuspitoisuus kiinteäfaasissa}{aktiivisuuspitoisuus nestefaasissa} \left(\frac{L}{kg}\right)$$
(5)

K_d-arvot riippuvat vahvasti maaperätyypistä ja paikkakohtaisista olosuhteista, kuten pohjaveden kemiallisista ominaisuuksista ja kiinteän aineen koostumuksesta. Pidättymisreaktiot tapahtuvat kiven mineraalien välisellä rajapinnalla, jolloin veden pH, kiviaineksen kationivaihtokapasiteetti (CEC), kationien pitoisuus ja maaperäliuoksen koostumus vaikuttavat kemialliseen pidättymiseen. [21]

Maaperän ryhmä	n	Keskiarvo K _d (Ra) [L/kg)]
Kaikki maaperät	51	2500
Hiekka	20	3100
Hiekansekainen savi	19	1100
Saviaines	6	38 000
Orgaaninen aines	1	-
Muut	4	1200

Taulukko 3.2 K_d(Ra) arvot tietyille pohjavesille, joiden ionivahvuus on alhainen. [2]

3.3 Pohjavesi ja sen ominaisuuksien vaikutus radiumin esiintymiseen

Pohjavesi on uusiutuva luonnonvara, joka muodostuu lumen, sadeveden ja sulamisveden tihkuessa maakerrosten läpi. Kallionraoissa virtaa pohjavettä, kunnes kiven ja maaperän huokoset ovat kyllästyneet. Pohjavettä muodostuu alueilla, joilla maalaji on karkearakeista ja huokoista, jolloin vesi pääsee siihen imeytymään. [21]

Taulukko 3.3 Pohjavesien luokittelu niiden liuenneiden kiintoaineiden kokonaismäärän (TDS) mukaan. *[22]*

Pohjaveden tyyppi	[g/l]	Arvioitu syvyys [m]
Makea vesi	TDS < 1	150
Murtovesi	1< TDS <10	100–400
Suolainen vesi	10< TDS <100	500

Maaperästä pohjaveteen liukenee vaihtelevia määriä ioneja ja liukoisia orgaanisia molekyylejä. Pohjaveden muodostuminen vaihtelee suuresti maalajin mukaan esimerkiksi savikoilla ei pohjavettä muodostu, koska vesi ei pääse imeytymään tiiviiseen maahan. Pohjavettä muodostuu kallioalueilla, jolloin niiden johtaviin rakoihin suotautuu vettä. [21] [23] Pohjaveteen vaikuttavat kallioperän ja maaperän koostumukset. Esimerkiksi alueilla, joilla pohjaveden radionuklidipitoisuus on korkea, silloin tyypillisesti kallioperä koostuu graniiteista, joissa uraani ja torium pitoisuudet ovat huomattavia. [24] [25] Koska kalliossa vesi liikkuu hitaammin kuin maan pinnalla tai maaperässä, radioaktiivisia aineita ehtii liueta kalliopohjavesiin suuriakin määriä. [25]

Pinta- ja pohjavedessä saattaa vallita aktiivisuusepätasapaino, jonka syynä on radionuklidien erilaiset fysikaaliset ja kemialliset ominaisuudet. Esimerkiksi radionuklidit liukenevat kiviaineksesta erilaisilla nopeuksilla ja viipyvät vedessä eripituisia aikoja, jolloin emo- ja tytärnuklidien aktiivisuudet muuttuvat ja aiheuttavat epätasapainon syntymistä, johon vaikuttaa myös se, ovatko ympäristön olosuhteet hapettavat tai pelkistävät. [18]

Radiumin siirtyminen pohjaveteen riippuu monista asioista. Muun muassa emonuklidin hajotessa alfahiukkasen energia aiheuttaa rekyylin ja se sinkoutuu kiinteästä aineesta (ns. alfarekyyli) desorptio mineraalin pinnalta, pohjavesikerrosten kiinteiden aineiden liukeneminen ja emonuklidin hajoaminen liuoksessa. Radiumin aktiivisuuspitoisuutta pohjavedessä säätelevät kemialliset ja fysikaaliset prosessit, kuten saostuminen, liukeneminen,

kompleksoituminen ja adsorptio-desorptio. Nämä prosessit liittyvät pohjaveden kemialliseen koostumukseen ja ne vaikuttavat radiumin kulkeutumiseen vedessä. [7] [23] [24]

Radium ei koskaan esiinny puhtaana faasina pohjavedessä, vaan kerasaostuneena, esimerkiksi barium kanssa (esim. Ba(Ra)SO₄). Radiumin vuorovaikutus bariumin kanssa ei riipu pH-arvosta, mutta se on riippuvainen suuresti annetusta sulfaattipitoisuudesta, koska sulfaatti-ionit estävät radiumin desorptiota kiven pinnoilta. [26] Rauta- ja mangaanihydroksidien muodostuminen on tärkeä mekanismi radiumin sitomisessa pohjavedestä. [24]

Pohjavedessä suurimmat radiumin aktiivisuuspitoisuudet on todettu vedestä, joka sisältää suuria määriä natriumia, kaliumia, magnesiumia ja kalsiumia, koska nämä alkuaineet kilpailevat mineraalien pidättymispaikoista. [27] Puhtaan radiumsuolan saostuminen on epätodennäköistä tyypillisessä suomalaisessa pohjavedessä. [7]

Matalan suolaisuuden vesissä radium esiintyy kompleksoitumattomina Ra²⁺-kationeina. Heikot kompleksit kloridi-, sulfaatti- ja karbonaattianionien kanssa ovat mahdollisia suolaisessa vesissä, mutta vähäsuolaisessa vedessä niillä ei ole vaikutusta radiumin kulkeutumiseen. [2]

²²⁸Ra ja ²²⁶Ra esiintyy valtameressä syvämeren ja mannerjalustan ²³⁰Th:n ja ²³²Th:n pitoisista sedimenteistä kulkeutuneena. Näiden vesimassojen Ra-pitoisuus pienenee etäisyyden kasvaessa lähteestä laimentumisen (sekoittumisen) ja radioaktiivisen hajoamisen seurauksena.
²²⁸Ra-isotooppi soveltuu erityisen hyvin keskisuurten valtamerten prosessien tutkimukseen. Suurin aktiivisuus on raportoitu rannikkomerillä, jossa vedet rikastuvat ²²⁸Ra:lla sedimenttien diffuusion ansiosta, mutta myös jokien suistoissa tai merenalaisissa pohjavesissä kohonneita radium pitoisuuksia havaitaan. [28] [29] [30]

Lyhyen puoliintumisajan isotooppeja ²²³Ra ja ²²⁴Ra käytetään rannikkovesien ilmiöiden tutkimukseen muun muassa merenalaisten pohjavesien virtauksien selvittämiseen ja mannerjalusten vesien iän määrittämiseen. Ra-isotoopit erotetaan merivesinäytteistä käyttämällä MnO₂:lla kyllästettyjä Mn-kuituja tai kerasaostamalla ne BaSO₄:n kanssa. [28]

4 Radiumin erotusmenetelmät ja mittaaminen

4.1 Radiumin erotus ja puhdistus

Radiokemialliset erotusmenetelmät Ra-isotooppien määrittämiseksi perustuvat radiumin liukenemiseen uuttoliuoksiin. Maanäytteiden erilaisten koostumuksen perusteella voidaan valita erilaisia liuotus- ja konsentraatiomenetelmiä. Esimerkiksi kiinteiden näytteiden liukenemisen aikaansaamiseksi on käytetty nykyaikaista mikroaalto-hajottamismenetelmää. Esimerkiksi tässä tekniikassa laitetaan näyte vahvaan happoon suljetussa systeemissä ja nostetaan lämpötilaa ja painetta mikroaaltosäteilyn avulla. Näytteenhajottaminen koostuu kahdesta vaiheesta, joista ensin on liuottaminen HCl:n, HNO₃:n, HF:n seokseen. [31] [32] Ra-isotooppien alhaisten pitoisuuksien määrittäminen ympäristönäytteistä edellyttää radiumin erottamista ja puhdistamista suuresta määrästä epäorgaanisia ja orgaanisia epäpuhtauksia, erityisesti muista maa-alkalimetalleista, siirtymäalkuaineista ja aktinideista. Tyypillisiä menetelmiä radiumin erottamiseen ja puhdistamiseen ovat kerasaostus, liuotinuutto, ioninvaihtokromatografia ja uuttokromatografia. [33]

4.2 Radiumin määritysrajan laskeminen

Määritysrajasta käytetään lyhennettä MDA (Minimum detectable activity), joihin vaikuttavat pääasiassa taustan aktiivisuus, kemiallinen saanto erotusprosessissa, analysoitavan näytteen koko, mittausjärjestelmän havaitsemistehokkuus ja laskenta-aika jne. MDA tulee laskea kullekin tietylle näytteelle eri mittausmenetelmille käyttäen kyseisen näytteen ja reagenssin nollanäytteen laskentatietoja, jotka on mitattu samoissa olosuhteissa. MDA lasketaan Currien yhtälöstä:

$$MDA = \frac{2,71+4,66\sqrt{Bt}}{EYVt}$$
(6)

missä B on instrumentin ja reagenssin taustan laskentataajuus [cps], t on laskenta-aika [s], E on laskentatehokkuus, Y on kemiallinen saanto ja V on näytteen tilavuus [L] tai määrä [kg]. [34] Tässä työssä mitattiin vesinäytteitä ilman kemiallista separointia gammamittauksina ja nestetuikelaskennalla. MDA määrityksissä ei tarvinnut ottaa huomioon kemiallista saantoa.

4.3 α -spektrometria ja radiumnäytteiden mittaus

Alfaspektrometriaa käytetään radionuklidien tunnistamiseen ja määrittämiseen hajoamisprosessissa vapautuvien alfahiukkasten energian perusteella. Alfaspektroskopian etuja ovat tyypillisesti alahainen tausta ja hyvä mittaustehokkuus. Tietyn radionuklidin lähettämillä α -hiukkasilla on joko kaikilla sama energia tai ne jakautuvat muutamiksi monoenergeettisiksi ryhmiksi eli viivaspektriksi. [35] [36]

Alfahiukkasten lyhyt kantama merkitsee tarkkoja vaatimuksia sekä näytteelle että mittausjärjestelylle. [35] Näytteen valmistus ennen α -spektrometrista mittausta sisältää esikäsittelyn, näytteen liuottamisen ja radionuklidien kemiallisen erottamisen. [30] Alfaspektroskopiassa mitattava näyte valmistetaan esimerkiksi haihduttamalla, kera- tai sähkösaostamalla. Itseabsorption, takaisinsironnan, spektrihäiriöiden ja ilmaisimen kontaminaatioiden välttämiseksi alfaspektrometrialla mitattavan näytteen on oltava homogeeninen, massaton ja täysin tasainen, jos mahdollista pitäen sisällään vain halutun radionuklidin. Näytepidikkeen materiaalina käytetään ruostumattoman teräksen lisäksi myös tantaalia, platinaa, hopeaa, nikkeliä, optisesti tasaista lasia, keramiikkaa tai polymeerejä. [37] Tekniikan herkkyydestä johtuen voidaan analysoida pieniäkin aktiivisuuksia. Esim. uraani- ja toriumsarjan radionuklidien määrittämisessä ympäristönäytteistä yleiset näytekoot ovat maa-, sedimentti- ja biologisille näytteille luokkaa 1-10 g ja vesinäytteille 0,1-1L. [19]Alfasäteilevän isotoopin käyttö sisäisenä merkkiaineena tekee alfaspektrometriasta erittäin luotettavan analyyttisen tekniikan edellyttäen, että häviöitä ei tapahdu ennen kuin näyte ja sisäinen merkkiaine ovat tasapainossa. [19]

Alfa-emittoivat ²²⁶Ra-, ²²⁴Ra- ja ²²³Ra-isotoopit voidaan mitata suoraan α -spektrometrialla, mutta β -emittoiva ²²⁸Ra-isotooppi mitataan epäsuorasti se tytärnuklidien (²²⁸Th, ²²⁴Ra ja ²¹⁶Po) välityksellä. Siksi α -spektrometrialla voidaan määrittää kaikki luonnossa esiintyvät Ra-isotoopit ympäristönäytteistä. [38]

Alfaspektrometria on nopein ja herkin radiometrinen menetelmä alhaisen taustansa vuoksi. Jotta erottelukyky ja kemiallinen saanto ei heikkenisi, radium on erotettava huolellisesti näytematriisista ja muista alkuaineista mukaan lukien barium ja sen jälkeen esim. sähkösaostettava ohuena kerroksena ruostumattomalle teräslevylle tai kerasaostettava barium-tai/ja lyijysulfaatilla, joka kerätään kalvosuodattimelle. [39] [40]

Isotooppeja ²²³Ra, ²²⁴Ra ja ²²⁵Ra on käytetty radiumin kemiallisen saannon sisäisinä merkkiaineina, joista ²²⁵Ra-isotooppi ($T_{1/2}$ = 14,82 d) on sopivin sisäinen merkkiaine matala-aktiivisten Ra-isotooppien määrittämiseen johtuen mm. siitä, että ²²⁵Ra-nuklidi ei esiinny

luonnossa siksi eikä sitä ole läsnä ympäristönäytteissä. Se ei tuota radonisotooppia, joka voisi karata laskentalähteestä hajoamisen aikana. Lisäksi ²²⁵Ra on helposti saatavilla ²²⁹Themonuklidin ($T_{1/2}$ = 7800 y) liuoksesta huolimatta sen lyhyestä puoliintumisajasta. [33] [41]

4.4 Radiumin mittaaminen gammaspektrometrisesti Ge-ilmaisimella

Gammaspektrometria on tehokas menetelmä, jolla voidaan määrittää y-säteilyä lähettävien näytteiden radioaktiivisten aineet ja niiden aktiivisuudet. Mittauslaitteen pääkomponentit ovat energiaherkkä säteilyilmaisin ja elektroniset laitteet, jotka analysoivat ilmaisimen lähtösignaaleja. Kvalitatiivinen analyysimenetelmä perustuu siihen, että kullakin radionuklidilla on juuri sille ominainen gammasäteilyn energiajakauma, joten näytteen radioaktiiviset nuklidit tunnistetaan rekisteröimällä ja analysoimalla niiden lähettämää ysäteilyä. [35] Gammasäteily (kuten muutkin säteilylajit) vuorovaikuttavat kaikkien materiaalien vuorovaikutusten todennäköisyydet vaihtelevat. kanssa, vain eri Tärkeimmät vuorovaikutusmekanismit ovat valosähköinen ilmiö, Comptonin sironta ja parinmuodostus. Valosähköisessä ilmiössä fotonin energia siirtyy yhdelle elektronille, joka aiheuttaa lisää ionisaatiota liikkuessaan Ge-kiteessä. Comptonin sironnassa vain osa fotonin energiasta siirtyy yhdelle elektronille ja matalaenergisempi fotoni jatkaa matkaa. Parinmuodostuksessa fotoni muuttuu elektroni-positronipariksi ja positroni annihiloituu nopeasti tuottaen kaksi 511 keV fotonia. Erilaiset kombinaatiot näistä prosesseista siirtävät joko kaiken tai osan fotonin alkuperäisestä energiasta Ge-kiteeseen, joissa syntyneet ionit kerätään korkean jännitteen avulla. [31] [42]

Gammaspektrometreissä taustaa aiheuttavat

- (i) kosmiset säteet ja niihin liittyvät prosessit,
- (ii) radioaktiiviset epäpuhtaudet Ge-ilmaisemin päädyssä, kryostaatissa ja elektroniikassa
- (iii) radioaktiiviset epäpuhtaudet suojauksessa,
- (iv) γ-säteet ulkoisesta luonnollisesta radioaktiivisuudesta, radonista ja sen tytärnuklideista ilmassa. [31]

Yleisimmin tausta määräytyy luonnon hajoamissarjojen nuklideista sekä kalium-40:stä ja näin on myös tässä työssä käytetyssä mittausjärjestelmässä. Näytteitä, jotka mitataan γ spektrometrialla eivät yleensä vaadi radiokemiallista erottelua. Gammanäytteiden on vastattava tarkasti γ -spektrometrin kalibroinnissa käytettyjen vertailunäytteiden mittausgeometriaa, sillä näytteen koko, kemiallinen koostumus ja tiheys ovat kaikki tärkeitä. Alemman määritysrajan saavuttamiseksi on pohdittava, miten voidaan alentaa taustaa. Suuria näytemääriä käsiteltäessä voidaan näyte konsentroida tai poistaa häiritsevät radionuklidit (kuten ²³⁵U). [33] [43]

Radiumin eri isotooppien mittaus voidaan tehdä γ-spektrometrialla eri tytärnuklidien ²¹⁴Pb-, ²¹⁴Bi-, ²¹²Pb ja ²²⁸Ac gammaemissioiden avulla, kun näytteet ovat sekulaarisessa tasapainossa. Kaasumaisten ²²⁰Rn- ja ²²²Rn-tytärnuklidien pysyminen näyteastiassa on varmistettava (vakuumipakkaus). [28]

Ympäristönäytteiden ²²⁶Ra-isotoopin γ-spektrometriseen määritykseen voidaan käyttää suoraa ja epäsuoraa menetelmää. Suoran ²²⁶Ra-mittausmenetelmän etuna on se, että näyte voidaan valmistaa ja mitata välittömästi ilman tytärten sisään kasvua. Suora menetelmä ei kuitenkaan ole kovin herkkä koska ²²⁶Ra:n γ-säteilyn intensiteetti on pieni (3,28 %) ja samalla gammaenergialla emittoivan ²³⁵U:n osuus on vähennettävä. [33] [44] [45] Epäsuora menetelmä on herkempi, mutta aikaa vievä, koska on odotettava näytteen asettumista sekulaariseen tasapainoon ²²⁶Ra:n ja sen ²¹⁴Pb- ja ²¹⁴Bi-tytärten välillä. Kun näyte suljetaan radontiiviisti ja odotetaan noin kolme viikkoa (²²²Rn puoliintumisaika 3,82 d) sekulaarisen tasapainon saavuttamista, tällöin ²²⁶Ra määritetään käyttämällä sen tytärnuklidien ²¹⁴Pb:n γ-emissioita 295 ja 352 keV:n energioilla ja ²¹⁴Bi:n ja 1120 keV:n energiaa. [33] [46] [44]

4.5 Radiumin mittaus nestetuikelaskennalla

Nestetuikelaskenta (liquid scintillation counting LSC) on ollut suosittu tekniikka radioaktiivisuuden havaitsemiseksi ja kvantitatiiviseksi mittaamiseksi 1950-luvun alusta lähtien. Sitä käytetään lähinnä beeta- ja alfa-aktiivisten aineiden määrittämiseen. ja tserenkov säteilyn. [33]

Nestetuikelaskennassa näytteen esikäsittelyssä, konsentroinnissa ja liuottamisessa käytetään samanlaisia menetelmiä kuin alfaspektrometrisiin mittauksiin valmistettavien näytteiden käsittelyssä, esimerkiksi uuttoa, haihdutusta ja tislausta. [33] Tutkittava radionuklidi on erotettava kemiallisesti muista aineista, joskin vesinäytteistä voidaan joitakin isotooppeja määrittää suoraan, esimerkiksi radon. [35]

Nestetuikelaskennalla voidaan mitata samanaikaisesti α - ja β -hajoavia aineita ns. α/β erottelutekniikan avulla. [38] [47] Alfa/beeta-erottelu perustuu pulssin kestoaikaan ja yhdellä mittauksella voidaan määrittää samanaikaisesti näytteen alfa- ja beeta-aktiivisuus. Tärkeänä sovellutuksena tästä on pulssimuotoanalyysia (PSA), jossa määritetään optimaalinen alfa ja beeta nuklidien erottelutaso eli PSA-taso. Optimaalinen PSA-taso on määritettävä mittausolosuhteiden mukaan standardinäytteillä, joiden on oltava koostumukseltaan samanlaisia kuin mitattavat näytteet. Standardinäytteiksi on valittava joko puhdas beetasäteilijä (esim. ³²P, ³⁶Cl) ja puhdas alfasäteilijä (esim. ²⁴¹Am) tai sama referenssinuklidi kuin tutkittava nuklidi. [35] [48] [49]

5 Kokeellinen osuus

Tässä kokeellisessa työssä oli tutkittava ja määritettävä ²²⁶Ra-isotoopin määrä alfa-beetaerottelulla vesinäytteille, jotka olivat peräisin ²²⁶Ra sorptiokokeista neljälle Olkiluodon kivinäytteelle.

5.1 Materiaali

5.1.1 Näytteet

Työssä käytettiin valmiita vesinäytteitä, jotka olivat ²²⁶Ra- isotoopin pidättymiskokeista ja ne edustivat neljää eri Olkiluodon yleistä kivityyppiä (Liite 3). Tutkittavien kivinäytteiden kivet olivat diatektsiitti gneissi (DGN), suonigneissi (VGN) pegmatiitti graniitti (PGR), kiillegneissi (MGN) (liite 3). Ennen sorptiokokeita Olkiluodon kivinäytteet murskattiin, jauhettiin ja seulottiin 0,3–0,071 mm:n raekokoon. Seulonnan jälkeen saadut jauhemaiset näytteet pestiin MilliQ-vedellä hienoaineksen poistamiseksi. Pestyt jauhetut kivinäytteet kuivattiin uunissa 105 °C:ssä yön yli, minkä jälkeen ne siirrettiin jäähtymään ja edelleen kuivumaan näytevarastointiin. [22]

Lisäksi pidättymistutkimuksessa valittiin kolme Olkiluodon vertailupohjavettä, joita ovat tuore makea, lievästi pelkistävä graniittinen vertailupohjavesi ALLMR, jäätikön hapeton makea sulamisvesi OLGA ja pelkistävä suolainen vertailupohjavesi OLSR (suolainen vesi). Valittujen vertailupohjavesien uskotaan edustavan Olkiluodon saaren nykyistä ja tulevaa hydrogeologisia olosuhteita.⁵⁸ Liitteessä 4 on yhteenveto neljän eri kiteisen kivityypin radiumin K_d-arvojen tuloksista kolmessa eri vertailupohjavedessä. Liitteen 4 (kuva 0.4) mukaan pohjaveden vertailusuolaisuuden ja siitä johtuvan kilpailevien natrium- ja kalsiumionien määrien vaikutus radiumin pidättymiseen on selvä: korkeammissa suolapitoisuuksissa (OLSR) radiumin pidättyminen ei ole yhtä voimakasta kuin matalasuolaisissa vesissä (OLLMR, OLGA). Itse asiassa korkean ja matalan suolapitoisuuden vesien välinen radiumin K_d-aron ero on pienimmillään suonigneisissa (yksi suuruusluokka) ja suurin pegmatiittisella graniitilla ja kiillegneissillä (noin neljä suuruusluokka). [22]

Tässä kokeellisessa työssä valmistettiin LSC-näytteet yllä esitetyn radiumin pidättymistutkimuksen pohjavesinäytteistä, joita jaettiin neljään näytesarjaan (Taulukot 5.3iiv). Jokainen sarja sisälsi 14 näytettä, joka nimitettiin alkuperäisellä näytekoodilla (OGD-, OGM-, OGP-, OGM-31,32,41,42,51,52,61,62, 71,72, 81,82,91,92) eli yhteensä 54 näytettä. Kaikki LSC-näytteet valmistettiin 20 ml:n teflonoituihin nestetuikepulloihin, joissa oli alumiinitiivisteellä varustettu korkki ja käyttäen Ultima Gold AB PerkinElmer nimistä tuikeainetta.

5.1.2 Nestetuikeaine

Nestetuikeaineena käytettiin PerkinElmer Companyn Ultima Gold AB-cocktailia, joka sisältää 99 % nitrometaania. Ultima Gold AB-nestetuikeaineella on hyvä laskentatehokkuus ja erittäin korkea leimahduspiste, noin 140 °C. [50]

5.1.3 Standardinäyte PSA tasanon valitsemiseksi

Punnittiin ²²⁶Ra-standardiliuosta (A_{std.}; 37 kBq, 01552 g) ja laimennettiin (10 ml, 1 M) HNO₃liuokseen, jolloin saatiin ²²⁶Ra-välilaimennusliuos (A_{VÄLIL.}). ²²⁶Ra-välilaimennuksesta tehtiin näyte α/β -erotteluun (2 ml, 1,0 M typpihappoa ja 18 ml tuikeaineliuosta), jonka aktiivisuudeksi saatiin (23 ± 4) Bq (Taulukko 5.1).

Taulukko 5.1. Mittauksissa käytetyn standardinäytteen aktiivisuuskonsentraatio.

Tutkittava radionuklidi	Astd [kBq]	Ac(std) [kBq/ml]	m _{std} [g]	V [ml]	Avälil. [Bq/ml]
²²⁶ Ra	37,0 ± 5,6	$7,40 \pm 1,1$	0,16 ± 0,01	$10,0 \pm 0,1$	1184 ± 191

Puhdasta ²²⁶Ra:ta käytettiin α/β -erottelun näytteenä, jonka avulla määritettiin sopiva PSA-arvo. Tässä työssä optimaalinen PSA-asetus määritettiin kokeellisesti mittaamalla ²²⁶Ra-näyteliuosta eri PSA-arvoilla (160–135, 110 ja 100) etsien optimaalinen erottelutaso (Liite 5). Sopivaksi PSA-tason arvoksi valittiin 145 koska siinä optimaalisessa tasossa alfahiukkasten vuoto beetahiukkasten kanava-alueelle on yhtä suuri kuin beetahiukkasten vuoto alfahiukkasten kanava-alueelle (Kuva 5.1.3).

Kuva 5.1. PSA-tason määritys. Tämän kuvan perustella päästiin parhaaseen erotuskykyyn PSA-arvolla 145.

Eri PSA-arvoilla mitatun 226Ra-satandardinäytteen lasketut aktivisuudet esitettään Taulukossa

5.2 ja mittausajaksi valittiin 5 minuuttia/näyte.

Taulukko 5.2. Sekulaarisen tasapainon saavuttamisen jälkeen ja kokeellisesti

standardinäytteelle lasketut aktiivisuudet eri PSA-arvoilla.

PSA- arvot	Kokeellisesti saadut laskentanopeudet ²²⁶ Ra- standardinäytteelle virheineen (R±δR %) [cps]	Lasketut aktiivisuudet ²²⁶ Ra- standardinäytteelle virheineen (A±δA %) [Bq]
160	69 <u>±</u> 29	18,0 ± 7,5
155	55 <u>+</u> 26	14,0 ± 6,7
150	68 <u>+</u> 29	18,0 ± 7,5
145	84 ± 32	$21,7 \pm 8,3$
140	68 <u>+</u> 29	$17,8 \pm 7,5$
135	110 ± 36	$28,2 \pm 9,4$
110	154 ± 43	40 ± 11
100	164 ± 45	43 ± 12

5.2 Menetelmä

5.2.1 ²²⁶Ra:n välilaimennus ja standardinäytteen γ-säteilymittaus

Tässä työssä mitattiin ²²⁶Ra:n (186 keV, 3,64 %) välilaimennus- ja standardinäytteen lähettämää γ-säteilyä Ge-ilmaisimella. Määritettiin molempien näytteiden spektristä havaittujen ²²⁶Ra:n ja sen tytärten (²¹⁴Pb, ²¹⁴Bi) gammapiikkien energiat ja niiden perusteella laskettiin niiden aktiivisuudet. Taulukoissa 5.2.-5.3. on esitetty sekä ²²⁶Ra:n ja sen tytärnuklidien aktiivisuudet Ge-ilmaisimen mittauksesta. Mittauksen eri virhelähteet on esitetty taulukossa 5.2.

Standardinäytteen aktiivisuus ja sen virhe laskettiin seuraavien yhtälöiden (7) ja (8) mukaisesti,

$$A = \frac{N}{I\epsilon t}$$
(7)

Virheeksi saatiin kasaantumislain mukaan seuraavasti,

$$\delta A = \sqrt{\left(\frac{\partial A}{\partial N} \times \delta N\right)^2 + \left(\frac{\partial A}{\partial I} \times \delta I\right)^2 + \left(\frac{\partial A}{\partial \varepsilon} \times \delta \varepsilon\right)^2 + \left(\frac{\partial A}{\partial t} \times \delta t\right)^2} \tag{8}$$

Yhtälön (8) mukaan aktiivisuuden virhe on,

$$\delta A = \sqrt{\left(\frac{\delta N}{I\epsilon t}\right)^2 + \left(\frac{N\delta I}{I^2\epsilon t}\right)^2 + \left(\frac{N\delta \epsilon}{I\epsilon^2 t}\right)^2 + \left(\frac{N\delta t}{I\epsilon t^2}\right)^2}$$

Taulukko 5.2. ²²⁶Ra-välilaimennusnäytteessä olevien radionuklidien mitatut aktiivisuudet Geilmaisemilla.

Määritettävä	Pulssimäärä	Intensiteetti	Efektiivisyys	Mittaus aika	Aktiivisuus
nuklidi	(N±δN %)	(I±δI) [%]	$(\epsilon \pm \delta \epsilon)$ [%]	(t±δt) [s]	(A±δA) [Bq]
²¹⁴ Pb	$2212,0 \pm 4,3$	35,72 ± 0,024	$5,75 \pm 0,20$	225,00 ± 0,01	480 ± 16
²¹⁴ Bi	1563,9 ± 2,6	45,44 ± 0,050	3,71±0,20	225,00 ± 0,01	410 ± 22
²²⁶ Ra	$1212,0 \pm 3,3$	$3,64 \pm 0,040$	9,08 ± 0,20	$225,00 \pm 0,01$	1630 ± 40

Taulukko 5.3. ²²⁶Ra-standardunäytteessä olevien radionuklidien mitatut aktiivisuudet Geilmaisemilla.

Määritettävä nuklidi	Pinta-ala	Intensiteetti	Efektiivisyys	Mittausaika (t±δt) [s]	Aktiivisuus
	(N±δN %)	(I±δI) [%]	$(\epsilon \pm \delta \epsilon)$ [%]		$(A\pm\delta A)$ [Bq]
²¹⁴ Pb	2277,7 ± 5,7	35,72 ± 0,024	4,04 ± 0,20	4269,00 ± 0,01	37,0 ± 9,4
²¹⁴ Bi	$1660,7 \pm 8,0$	45,44 ± 0,050	2,60 ± 0,20	4269,00 ± 0,01	33,0 ± 2,5
²²⁶ Ra	616,0 ± 9,8	$3,64 \pm 0,040$	$5,05 \pm 0,20$	4269,00 ± 0,01	20 ± 3

5.2.2 α/β -erottelu nestetuikelaskennalla

Mittautukset suoritettiin käyttämällä Quantulus 1220 nestetuikelaskuria, joka on erityisesti suunniteltu erittäin alhaisten aktiivisuuksien määrittämiseen ja spektrit analysoidaan EasyView-ohjelmistolla. Laitteessa on kaksi ohjelmoitavaa monikanava-analysaattoria (MCA), joihin α -ja β -tapahtumat tallennetaan erikseen. Lisäksi Quantulus LSC on varustettu pulssin muotoanalyysi (PSA)-ohjelmalla ja sen avulla alfa- ja beetasäteilyn tuottamat pulssit voidaan erottaa eri MCA:ssa optimaalisilla PSA-asetuksilla. [51]

Työssä ²²⁶Ra-isotoopin määrä näytteissä mitattiin nestetuikelaskimella kahdesti ja käyttämällä α/β -erotusta. Lisäksi molemmissa vaiheissa määritettiin PSA-taso ja mittausaika oli 60 min/näyte. ²²⁶Ra tyttäristä on tasapainossa ja sisään kasvaneet tyttäret voidaan mitata. ²¹⁸Po ja ²¹⁴Po ovat alfa hajoavia tyttäriä, ja β -emittereitä ovat ²¹⁴Pb, ²¹⁴Bi ja ²¹⁰Pb. Ensin näytteet mitattiin heti niiden valmistuksen jälkeen ja seuraavaksi kolmen viikon kuluttua.

5.3 Tulokset

PSA-tasoa käyttämällä saatiin sekulaarisessa tasapinossa olevien näytteiden mittauksessa ²²⁶Ra ja sen tytärten (²²²Rn, ²¹⁸Po ja ²¹⁴Po) erotettua. Tässä tapauksessa ²²⁶Ra-aktiivisuuden arvioimiseen voidaan käyttää koko ikkunaa (1–1024). Toinen vaihtoehto on ²¹⁴Po alpha-piikki-ikkunaa. ²¹⁴Po-radionuklidi on ²²⁶Ra:n tytär, joka on sekulaarisessa tasapainossa ²²⁶Ra:n kanssa kolmen viikon radiumin erotuksen jälkeen. LSC-spektrissä voidaan helposti erottaa ²¹⁴Po:n alfapiikki ²²⁶Ra:sta (Kuva 5.2) ja muista alfatyttäristä sen korkean energian ansiosta.

Kokeellisesti sekulaarisen tasapainon saavuttamisen jälkeen kokonaislaskentatehokkuuden arvo alfahajoaville nuklideille (366 \pm 5) %. Alhaisempi tehokkuus ²¹⁴Po-alueella johtuu ²¹⁴Po:n erittäin lyhyestä puoliintumisajasta (T_{1/2}=164 µs) ja korkeasta alfaenergiasta (7,68 MeV). [47] [32]

Esimerkiksi OGD32-näytteen spektrit sekä ennen että jälkeen sekulaarisen tasapainon saavuttamista on esitetty kuvissa 5.2–5.3 ja toisessa kuvassa voidaan havaita radiumin sisään kasvaneet tyttäret.

Kuva 5.2. Näytteen OGD32 alfaspektri (vihreä) ja beetaspektri (punainen) ennen tasapainon saavuttamista.

Kuva 5.2. ²²⁶Ra on tasapainossa tyttäriensä kanssa (Näyte OGD32). ²¹⁴Po:n alfapiikki on helposti erotettavissa ²²⁶Ra:sta.

²²⁶Ra-aktiivisuus ja sen virhe määritettiin sekulaarisen tasapainon saavuttamisen jälkeen koko alfaspektrin kanavan ikkunan (1–1024) mukaan yhtälöiden (7) ja (8) mukaisesti.

Taustanäytteet	PSA	Mittausaika [min]	Havaittu pulssimäärä virheinen alfa-spektrissä
			$N \pm \sqrt{N}$
Bg1	145	480	102 ± 10
Bg2	145	480	76 ± 9

Taulukko 5.4. Taustanäytteiden mitatut pulssimäärät, kun PSA-arvot valittiin 145.

Taulukon 5.4 mukaan taustanäytteiden havaitut kokonaispulssimäärät ovat hyvin pienet, joten ne voidaan jättää huomiotta. Tällöin näytteen ²²⁶Ra aktiivisuus lasketaan yhtälön (7) mukaisesti. Näytesarjojen lasketut ²²⁶Ra-aktiivisuudet ja aktiivisuuskonsentraatioiden tulokset ovat esitetty taulukoissa 5.5.-5.8. ja kuvissa 5.4.–5.7.

Kuvissa 5.4-5.7. ²²⁶Ra:n aktiivisuuskonsentraatiot esitetään virheineen sekä nestetuikelaskennalla että gammaspektrometrialla. Niitä tutkittaessa havaitaan, että saatiin suhteellisen samat tulokset molemmilla tutkimusmenetelmillä, vaikka jotain pieniä huomattiin niissä. Esimerkiksi 5.3iii eroavaisuuksia Kuva nähdään ainoastaan nestetuikelaskennalla on saatu aktiivisuuskonsentraatio OLGA nolla-näytteelle ja gammaspektrometrisesti sitä ei ole määritetty.

	Nestetuikelaske	enta	Gammaspektro	metria*		
Näytekoodi	Havaittu kokonaispulssimäärä virheineen	²²⁶ Ra-aktiivisuus virheineen	Näytteen määrä [g]	²²⁶ Ra- aktiivisuuskonsentraatio virheineen	²²⁶ Ra-aktiivisuus virheineen	²²⁶ Ra- aktiivisuuskonsentraatio virheineen
	(N ± δN %)	(A ± δA) [Bq]		$(A_c \pm \delta A_c) [Bq/g]$	(A ±δA) [Bq]	(Ac $\pm \delta$ Ac) [Bq/ml]
OGD 31	291306,0 ± 9,1	20,96 ± 0,16	1,74	$12,02 \pm 0,09$	48,1 ± 8,1	12,4 ± 2,1
OGD 32	380653 ± 10	27,39 ± 0,21	2,27	$12,04 \pm 0,09$	59.7 ± 1,5	12,1 ± 0,3
OGD 41	20518,0 ±2,4	$1,48 \pm 0,01$	2,14	$0,69 \pm 0,01$	7,7 ± 1,2	$1,8 \pm 0,3$
OGD 42	20265,0 ± 2,4	1,46 ± 0,01	1,97	$0,74 \pm 0,01$	6,3 ± 0,3	1,99 ± 0,10
OGD 51	85477,0 ± 4,9	$6,15 \pm 0,05$	2,12	$2,90 \pm 0,02$	$14,2 \pm 0,4$	$2,85 \pm 0,08$
OGD 52	$102784,0 \pm 5,4$	$7,40 \pm 0,06$	2,19	3,38 ± 0,03	16,1 ± 1,4	3,03 ± 0,26
OGD 61	$72625,0 \pm 4,6$	5,23 ± 0,04	2,18	$2,40 \pm 0,01$	7,3 ± 1,2	$1,72 \pm 0,27$
OGD 62	44857,0 ±3,6	$3,23 \pm 0,03$	2,07	$1,56 \pm 0,01$	8,1 ± 0,3	$1,68 \pm 0,06$
OGD 71	37949,0 ± 3,3	2,73 ± 0,02	2,12	$1,29 \pm 0,01$	6,9 ± 0,2	1,38 ± 0,03
OGD 72	42162,0±3,5	$3,03 \pm 0,02$	2,15	$1,41 \pm 0,01$	6,4 ± 0,6	1,93 ± 0,18
OGD 81	42954,0±3,5	3,09 ± 0,02	2,26	$1,37 \pm 0,01$	5,9 ± 0,5	1,41 ± 0,13
OGD 82	39958,0 ± 3,4	2,88 ± 0,02	2,15	$1,33 \pm 0,01$	5,7 ± 0,1	1,27 ± 0,03
OGD 91	39727,0 ± 3,4	2,86 ± 0,02	2,23	$1,28 \pm 0,01$	6,4 ± 1,2	$1,28 \pm 0,24$
OGD 92	44536,0 ± 3,6	3,20 ± 0,03	2,13	$1,51 \pm 0,01$	4,6 ± 1,3	$1,35 \pm 0,39$

Taulukko 5.5. OGD-näytesarjalle saadut aktiivisuuskonsentraatiot virheineen.

Kuva 5.4. OGD-näytesarjan mitatut aktiivisuuskonsentraatiot virheineen sekä nestetuikelaskennalla että gammaspektrometrialla.

	Nestetuikelaske	nta	Gammaspek	trometria		
Näytekoodi	Havaittu kokonaispulssimäärä virheineen (N ± δN %)	²²⁶ Ra-aktiivisuus virheineen (A ± δA) [Bq]	Näytteen määrä [g]	²²⁶ Ra- aktiivisuuskonsentraatio virheineen (A _c ± δA _c) [Bq/g]	²²⁶ Ra-aktiivisuus virheineen (A ±δA) [Bq]	²²⁶ Ra- aktiivisuuskonsentraatio virheineen (Ac ± δAc) [Bq/ml]
OGM 31	330737,0 ± 9,7	23,80 ± 0,18	1,92	12,39 ± 0,09	54,16 ± 1,65	10,87 ± 0,33
OGM 32	292812,0 ± 9,1	21,07 ± 0,16	1,86	$11,33 \pm 0,09$	69,77 ± 2.53	10,68 ± 0,39
OGM 41	158490,0 ± 6,7	11,41 ± 0,09	1,87	$6,08 \pm 0,05$	19,46 ± 0,40	3,93 ± 0,081
OGM 42	119876,0 ± 5,9	8,63 ± 0,07	1,88	$4,58 \pm 0,04$	23,63 ± 0,51	4,79 ± 0,10
OGM 51	24746,0 ± 2,7	$1,78 \pm 0,01$	1,83	0,98 ± 0,01	6,21 ± 0,19	$1,25 \pm 0,038$
OGM 52	26425,0 ± 2,7	1,90 ± 0,02	1,86	$1,02 \pm 0,01$	5,47 ± 1,52	1,11±0,31
OGM 61	13446,0 ± 1,9	0,96 ± 0,01	1,85	$0,520 \pm 0,004$	3,81 ± 0,46	0,77 ± 0,10
OGM 62	23410,0 ± 2,6	1,68 ± 0,01	2,01	$0,84 \pm 0,01$	4,33 ± 1,41	0,88 ± 0,29
OGM 71	16693,0 ± 2,2	1,20 ± 0,01	2,24	$0,540 \pm 0,004$	4,08 ± 0,34	$0,82 \pm 0,07$
OGM 72	14891,0 ± 2,1	1,07 ± 0,01	2,04	$0,530 \pm 0,0041$	3,20 ± 0,20	0,66 ± 0,04
OGM 81	12334,0 ± 1,9	0,89 ± 0,01	1,85	$0,480 \pm 0,004$	-	-
OGM 82	12990,0 ± 1,9	0,93 ± 0,01	1,88	$0,500 \pm 0,004$	3,75 ± 0,22	$0,76 \pm 0,04$
OGM 91	11859,0 ± 1,8	0,85 ± 0,01	1,92	$0,450 \pm 0,004$	3,56 ± 0,29	$0,72 \pm 0,06$
OGM 92	12697,0 ± 1,9	0,91 ± 0,01	1,81	$0,510 \pm 0,004$	2,80 ± 1,36	0,57 ± 0,28

Taulukko 5.6. OMG-näytesarjalle saadut aktiivisuudet ja aktiivisuuskonsentraatiot virheineen.

Kuva 5.5. OMG-näytesarja mitatut aktiivisuuskonsentraatiot virheineen sekä nestetuikelaskennalla että gammaspektrometrialla.

	Nestetuikelaske	enta	Gammaspektrometria			
Näytekoodi	Havaittu kokonaispulssimäärä virheineen (N ± δN %)	²²⁶ Ra-aktiivisuus virheineen (A ± δA) [Bq]	Näytteen määrä [g]	²²⁶ Ra- aktiivisuuskonsentraa tio virheineen (A _c ±δA _c) [Bq/g]	²²⁶ Ra- aktiivisuus virheineen (A ±δA) [Bq]	²²⁶ Ra- aktiivisuuskonsentraatio virheineen (Ac ± δAc) [Bq/ml]
OGP 31	478510,0 ± 11,8	$34,\!44 \pm 0,\!27$	1,85	$18,\!62\pm0,\!14$	60,81 ± 3,71	$17,18 \pm 1,05$
OGP 32	526576,0 ± 12,3	$37,89 \pm 0,29$	2,17	$17,\!48 \pm 0,\!13$	$78,49 \pm 7,79$	$16,03 \pm 1,59$
OGP 41	299326,0 ± 9,2	$21,57 \pm 0,17$	1,97	10,93 ± 0,09	$60,02 \pm 2,86$	$10,\!44 \pm 0,\!50$
OGP 42	281823,0 ± 8,9	20,28 ± 0,16	1,87	$10,\!85\pm0,\!08$	54,16 ± 2,69	11,08 0,55
OGP 51	121847,0 ± 5,9	$8,77\pm0,07$	1,52	5,75 ± 0,04	$22,50 \pm 2,23$	4,71 ± 0,47
OGP 52	$105810,0 \pm 5,5$	$7,\!61 \pm 0,\!06$	1,90	$4,02 \pm 0,03$	31,57 ± 3,24	$4,\!78\pm0,\!49$
OGP 61	64525,0 ± 4,3	$4,\!64\pm0,\!04$	1,85	2,51 ± 0,02	$12,15 \pm 1,21$	$2,\!49 \pm 0,\!25$
OGP 62	66792,0 ± 4,4	4,81 ± 0,04	1,91	2,51 ± 0,02	$12,97 \pm 0,51$	$2,54 \pm 0,01$
OGP 71	75336,0 ± 4,6	$5,\!42 \pm 0,\!04$	1,98	$2,74 \pm 0,02$	$12,05 \pm 1,19$	$2,45 \pm 0,24$
OGP 72	41690,0 ± 3,4	$3,00 \pm 0,02$	1,91	1,57 ± 0,01	8,79 ± 0,26	$1,79 \pm 0,05$
OGP 81	53854,0 ± 3,9	$3,88 \pm 0,03$	1,95	1,98 ± 0,02	8,76 ± 0,21	$1,78 \pm 0,04$
OGP 82	46829,0 ± 3,7	$3,37 \pm 0,03$	1,98	1,70 ± 0,01	7,01 ± 0,16	$2,03 \pm 0,05$
OGP 91	71510,0 ± 4,5	$5,15 \pm 0,04$	1,76	$2,92 \pm 0,02$	11,77 ± 0,34	$2,\!38\pm0,\!07$
OLGA blanco	412311 ±12	29,67 ± 0,23	1,66	17,88 ± 0,14	-	-

Taulukko 5.7. OGP-näytesarjalle saadut aktiivisuudet ja aktiivisuuskonsentraatiot virheineen.

Kuva 5.6. OPG-näytesarjan mitatut aktiivisuuskonsentraatit virheineen sekä nestetuikelaskennalla että gammaspektrometrialla.

	Nestetuikelaske	nta		i	Gammaspektrometria		
Näytekoodi	Havaittu kokonaispulssimäärä virheineen (N ± δN %)	²²⁶ Ra-aktiivisuus virheineen (A ± δA) [Bq]	Näytteen määrä [g]	²²⁶ Ra- aktiivisuuskonsentraatio virheineen (Ac±δAc) [Bq/g]	²²⁶ Ra-aktiivisuus virheineen (A ±δA) [Bq]	²²⁶ Ra- aktiivisuuskonsentraatio virheineen (Ac ± δAc) [Bq/ml]	
OGV 31	357337,0 ± 10,1	$25,72 \pm 0,20$	1,99	$12,91 \pm 0,10$	56,72 ± 2,32	13,34 ± 0,54	
OGV 32	$337243,0 \pm 9,8$	$24,\!27\pm0,\!19$	1,90	$12,75 \pm 0,10$	50,11 ± 1,58	$10,23 \pm 0,32$	
OGV 41	282722,0 ± 8,9	$20,35 \pm 0,16$	1,83	$11,12 \pm 0,09$	16,77 ± 0,69	4,25 ± 0,17	
OGV 42	66241,0 ± 4,4	$4,77 \pm 0,04$	1,86	2,56 ± 0,02	$18,\!43 \pm 0,\!85$	4,24 ± 0,20	
OGV 51	$154928,0\pm 6,7$	11,15 ± 0,09	1,94	$5,74\pm0,05$	4,72 ± 0,19	1,15 ± 0,29	
OGV 52	31856,0±3,1	$2,29 \pm 0,02$	1,9058	1,20 ± 0,01	5,63 ± 0.27	1,24 ± 0,06	
OGV 61	20408,0 ± 2,4	$1,\!47 \pm 0,\!01$	2,11	0,70 ± 0,01	$2,\!48 \pm 0,\!23$	$0,59 \pm 0,06$	
OGV 62	23197,0 ± 2,6	1,67 ± 0,01	1,80	0,93 ± 0,01	3,24 ± 0,17	$0,65 \pm 0,03$	
OGV 71	73300,0 ± 4,6	5,27 ± 0,04	1,92	2,74 ± 0,021	$2,28 \pm 0,08$	0,46 ± 0,02	
OGV 72	15442,0 ± 2,1	1,11 ± 0,01	2,16	$0,510 \pm 0,004$	2,71 ± 0,19	0,55 ± 0,04	
OGV 81	13493,0 ± 1,9	0,97 ± 0,01	1,97	$0,\!490 \pm 0,\!004$	2,30 ± 0,09	0,47 ± 0,02	
OGV 82	12787,0 ± 1,9	0,92 ± 0,01	1,91	$0,\!480 \pm 0,\!004$	-	-	
OGV 91	16584,0 ± 2,2	1,19 ± 0,01	1,83	0,65 ± 0,01	2,19 ± 0,24	$0,\!45 \pm 0,\!05$	
OGV 92	13624,0 ± 1,9	0,98 ±0,01	1,86	$0,530 \pm 0,004$	$2,754 \pm 0,16$	0,55 ± 0,32	

Taulukko 5.8. OGV-näytesarjalle saadut aktiivisuudet ja aktiivisuuskonsentraatiot virheineen.

Kuva 5.7. OGV-näytesarjan mitatut aktiivisuuskonsentraatiot virheineen sekä nestetuikelaskennalla että gammaspektrometrialla.

6 Yhteenveto

Työn tavoitteena oli tutkia radiumin käyttäytymistä luonnossa. Ra-isotooppien määrittäminen ympäristönäytteistä ja erityisesti vesistä on tärkeätä niiden mahdollisen säteilyvaarallisuuden vuoksi ihmisiin. Radiumin erotus- ja määritysmenetelmiä on esitetty erilaisilla tekniikoilla ja tätä kirjallisuutta tarkasteltaessa tulee jatkuvasti olla hyvin kriittinen. Useimmissa artikkeleissa radiumin erotus- ja määritysmenetelmiä on esitetty eri tavoilla. Yleisesti radiumin isotoopit niiden esiintyessä näytteissä korkealla aktiivisuuspitoisuudella voidaan mitata suoraan gammaspektrometriatekniikalla vedestä ja kiinteistä näytteistä kuten maaperästä, sedimentitsä ja biologisten näytteiden tuhkanjäännöksistä.

Nestetuikelaskenta (LSC) on kätevä analyyttinen menetelmä alfa- ja beetasäteilijöiden määrittämiseen vesinäytteistä, koska näytteen valmistelu on helppoa. LSC tekniikka tarjoaa korkean laskentatehokkuuden α -säteilijöille ja tämän takia sitä voidaan käyttää helposti ²²⁶Ra:n ja sen lyhytikäisen tyttären radonin (²²²Rn) määrittämiseen ja tunnistamiseen.

Kokeellisessa työssä tutustuttiin gamma- ja nestetuikespektrometreihin sekä niiden käyttöön että toimintaan. Laitteistona γ-spektrin mittauksessa käytettiin Ge-ilmaisinta, joka on germaniumista valmistettu puolijohdeilmaisin. Toisena laitteistona käytettiin nestetuikespektrometriä (Quantulus 1220).

Pulssinmuotoanalyysin avulla radiumin määritys onnistui hyvin ja se määritettiin kokeellisesti ²²⁶Ra-näytteellä, ja PSA-arvoksi saatiin 145. Teoreettisesti Taulukon 5.1 mukaan ²²⁶Ra-näytteen välilaimennuksen aktiivisuudeksi saatiin (1184 ±191Bq ja Ge-detektorin mukaan saatiin (1630 ± 60) Bq. ²²⁶Ra- näytteen α/β -erottelun aktiivisuus saatiin Ge-ilmaisemilla lähes samaa suuruusluokkaa (20 ± 3) Bq kuin sekä teoreettisesti (23 ± 4) Bq että kokeellisesti (22 ± 8) Bq määritetyt aktiivisuudet.

Taulukoiden 5.4.-5.8. mukaan ²²⁶Ra-aktiivisuuden määritys vesinäytteistä onnistui hyvin nestetuikelaskennalla. Radiumin aktiivisuuskonsentraatiot kahdella eri menetelmillä mitattuna olivat yhtäpitävät. ²²⁶Ra voidaan mitata gammaspektrometrialla riittävän tarkasti radiumin merkkiainekokeissa.

7 Kirjallisuusviitteet

- [1] R. F. Mould, *Medical Physics*, vol. 26, pp. 1766-1772, 1999.
- [2] IAEA, "The Environmental Behavior of Radium," vol. 2, Vienna, IAEA, 1990, pp. 6-21, 33-87, 106-157.
- [3] M. Gott, J. Steinbach and C. Mamat, *The Journal Open Chemistry*, vol. 14, pp. 118-129, 2016.
- [4] R. C. Ropp, in *Encyclopedia of the Alkaline Earth compounds*, Oxford, Elsevier, 2013, pp. 1-19.
- [5] J. Lehto and X. Hou, "Chemistry and Analysis of Radionuclides," Weinheim, Wiley-VCH, 2011, pp. 117-122, 57-122, 264, 117-132.
- [6] R. Pöllänen, "Säteily ympäristössä," Hämeenlinna, Karisto Oy, 2003, p. 377.
- [7] P. Vesterbacka, "238U-series radionuclides in Finnish groundwater-based drinking water and effective doses," Dark Oy, Vantaa, 2005.
- [8] T. M. Missimer, C. Teaf, R. G. Maliva, A. Danley-Thomson, D. Covert and M. Hegy, *Environmental Research and Public Health*, vol. 16, no. 10, 2019.
- [9] R. L. Rudnick, S. Gao, G. D. Holland and K. K. Turekian, "The crust, Treatise on Geochemistry, 3rd Edition," Amsterdam , Elsevier, 2005, pp. 1-64.
- [10] L. Lauri, E. Pohjolainen ja O. Äikäs, "Selvitys Suomen kallioperän Upitoisuudesta," Geologian tutkimuskeskus, Rovaniemi/Kuopio, 2010.
- [11] L. R. Morss, M. E. Norman and J. Fuger, in *The chemistry of the actinide and Transactinide Elements, 3rd Edition*, New York, Springer Dordrecht, 2006, pp. 52-150 and 243-399.
- [12] M. Turunen, "Geologia," SKGK, 25 4 2018. [Online]. Available: https://www.geologia.fi/2018/04/25/suomen-kalliopera/.
- [13] NuDat3, "National Nuclear Data Center," IAEA, [Online]. Available: https://www.nndc.bnl.gov/nudat3/.
- [14] N. G. Rachkova, I. I. Shuktomova and A. I. Taskaev, *Eurasian Soil Science*, vol. 43, no. 6, pp. 651-658, 2010.
- [15] W. C. Sidle, D. Shanklin, P. Y. Lee ja D. L. Roose, *Journal of Environmental Radioactivity*, osa/vuosik. 55, nro 1, pp. 29-46, 2001.

- [16] L. Urso, V. Hormann ja M. Achatz, *Applied Geochemistry*, osa/vuosik. 105, pp. 78-86, 2019.
- [17] N. G. R. A. c. Langmuir, *Geochemica et Cosmochimica Acta*, osa/vuosik. 49, pp. 1593-1601, 1985.
- [18] L. Salonen, P. Vesterbacka, I. W. A. Mäkeläinen and A. Hannu, "Säteily Ympäristössä," Hämeenlinna, Karisto Oy, 2003, pp. 164-195.
- [19] M. F. L'Annunziata, in Handbook of radiochemistry Analysis, 3rd Edition, San Diego, Elsevier, 2012, p. Chapter 6.
- [20] S. Colley and J. Thomson, *Science of the Total Environment*, vol. 155, no. 3, pp. 273-283, 1994.
- [21] C. A. J. Appleo ja D. Postma, "Geochemistry, Groundwater and pollution, 2nd Edition," London, CRC Press, 2005, p. Chapter 7.
- [22] O. Tikkanen, A. Nurminen, X. Li and M. Siitari-Kauppi, "Sorption of radium on Olkiluoto crystalline rocks in various reference groundwater conditions," Helsingin Radiokemian laitos, Helsinki, 2021.
- [23] S. Hurst, "Uranium- Past and Future Challenges," in *Radium in Groundwater*, Dresden, Springer, 2014, pp. 591-598.
- [24] P. Vesterbacka, T. Turtiainen, S. Heinävaara and H. Arvela, *Radiation Protection Desimetry*, vol. 121, no. 4, pp. 406-412, 2006.
- [25] A. Vuotilainen, "Povisan työraportti," STUK, Helsinki, 1998.
- [26] A. J. Bard, R. Parson ja J. Jordan, "Standard Potentias in Aqueous Solution, 1st Edition," New York, CRC Press, 1985, pp. 723-726.
- [27] I. T. Webster, G. J. Hancock and A. S. Murray, *Geochimica et Cosmochimica Acta*, vol. 59, pp. 2469-2476, 1995.
- [28] P. Vaan Beek, M. Souhaut and J. L. Reyss, *Journal of Environmental Radioactivity*, vol. 101, no. 1, pp. 521-529, 2020.
- [29] W. S. Moore, *Continental Shelf Research*, vol. 20, no. 15, pp. 1993-2007, 2000.
- [30] W. S. Moore, *Earth and Planetary Science Letters*, vol. 6, no. 6, pp. 437-446, 1969.

- [31] T. M. Semkow, P. P. Parekh, C. D. Schwenker, A. J. Khan, A. Bari, J. F. Colaresi, K. Tench, G. David and W. Guryn, *Applied Radiation and Isotopes*, vol. 57, no. 2, pp. 213-223, 2002.
- [32] P. Sonali, D. Bhade, P. J. Reddy, S. Anilkumar, R. K. Singhal and D. D. Rao, *Journal of Radioanalytical and Nuclear Chemistry*, vol. 315, pp. 13-20, 2018.
- [33] G. Jia and J. Jia, *Journal of Enviromental Radioactivity*, vol. 106, pp. 98-119, 2012.
- [34] L. A. Currie, Analutical Chemistry Division, osa/vuosik. 40, nro 3, pp. 586-593, 1968.
- [35] T. K. Ikäheimonen, S. Klemola, P. Vasterbacka ja T. Rahola, "Säteily ja sen havaitseminen," Hämeenlinna, Karisto Oy, 2002, pp. 138-181.
- [36] R. Bojanowski, Z. Radecki and R. Piekos, *The Scientific World Journal*, vol. 2, pp. 1891-1905, 2002.
- [37] W. S. Claude and L. W. Rodger, *Analutical Chemistry*, vol. 53, no. 3, pp. 412-415, 1981.
- [38] C. Cazala, J. L. Reyss, L. Decossas and A. Royer, *Environmental Science & Technology*, vol. 37, no. 21, pp. 4990-4993, 2003.
- [39] M. F. L'Annuziata and M. J. Kessler, "Liquid Scintillation Analysis: Principles and practice," Oxford, Elsevier, 2012, pp. 424-537.
- [40] G. J. Hancook and P. Martin, *Applied Radiation and Isotopes*, vol. 42, no. 1, pp. 63-69, 1991.
- [41] G. Jia, G. Torri, P. Innocenzi, R. Ocone and A. Di Lullo, *JOurnal of Radioanalytical and Nuclear Chemistry*, vol. 267, pp. 505-514, 2006.
- [42] A. E. Lally and K. M. Glover, Nuclear Instruments and Methods in Physics Research, vol. 223, no. 2-3, pp. 259-265, 1984.
- [43] P. Pravin, H. Douglas, A. Bari and T. Miguel, *Health Physics*, vol. 85, no. 5, pp. 613-620, 2003.
- [44] M. Köhle, W. Preusse, B. Gleisberg, I. Schäfer, T. Heinrich and B. Knobus, *Applied Radiation and Isotopes*, vol. 56, no. 1-2, pp. 387-392, 2002.
- [45] P. Parekh, D. Haines, A. Bari and M. Torres, *Health Physics*, vol. 85, no. 5, pp. 613-620, 2003.

- [46] J. Michael, W. S. Moore and P. T. King, *Analytical Chemistry*, vol. 53, pp. 1885-1889, 1981.
- [47] J. Byegard, J. Crawford, L. Monero, I. Neretnieks, A. Iraola, P. Trinhero, K. Helariutta, M. Siitari-Kauppi, B. Lanyon, B. Gylling and j. M. Soler, "Modelling and evaluation report of Task 9C Extension regarding migration of radium and radon in fractured rock," SKB R-21-16, Stockholm, June 2022.
- [48] K. Sato, T. Hashimoto, M. Noguchi, W. Nitta, H. Higuchi, N. Nishikawa and T. Sanada, *Journal of Environmental Radioactivity*, vol. 48, no. 2, pp. 247-256, 2000.
- [49] R. Elder ja C. Passo, "Application note," PerkinElmer, October 2010. [Online]. Available: chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.perkinelmer.co.j p/Portals/0/resource/data/pdf/ApplicationNotes/LS_AN_009379_01.pdf.
- [50] R. Elder, "Application Note," 2015. [Online]. Available: chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.perkinelmer.co.j p/Portals/0/resource/products_ls/ls_cocktails/pdf/Cocktails4LSC_011940_0 1.pdf. [Accessed 2022].
- [51] H. P. Monero, A. Absi, I. Vioque, G. Manjon and R. Garcia-Teronio, *Journal of Radioanalytical and Nuclear Chemistry*, vol. 245, no. 2, pp. 309-315, 2000.
- [52] M. Söderlund, H. Ervanne, e. Mauri ja J. Lehto, *Geochemical Journal*, osa/vuosik. 53, pp. 223-234, 2019.

Liitteet

Liite 1. ²²⁶Ra-nuklidin α/β -tyttäret

²²⁶ Ra:n α-tytär	T _{1/2}	E _{max/a} [MeV]	²²⁶ Ra:n β-tytär	T _{1/2}	E _{max/β} [MeV]
²²² Rn	3,82 d	5,49	²¹⁴ Pb	27,06 min	0,21
²¹⁸ Po	3,097 min	6,00	²¹⁴ Bi	19,71 min	1,27
²¹⁴ Po	164 μs	7,69	-	-	-

Taulukko 0.1²²⁶Ra-nuklidin alfa/beetatytärten puoliintumisajat ja suurin alfaenergiat.

Liite 2. Radiumin isotoopit

Nuklidi	Z	Ν	Massaluku Puoliintumisaika	
²⁰² Ra	88	114	202.00989	2.6 ms
²⁰³ Ra	88	115	203.00927	4.0 ms
²⁰⁴ Ra	88	116	204.006500	60 ms
²⁰⁵ Ra	88	117	205.0062	220 ms
²⁰⁶ Ra	88	118	206.003827	0.24 s
²⁰⁷ Ra	88	119	207.00380	1.3 s
²⁰⁸ Ra	88	120	208.001840	1.3 s
²⁰⁹ Ra	88	121	209.00199	4.6 s
²¹⁰ Ra	88	122	210.000495	3.7 s
²¹¹ Ra	88	123	211.000898	13 s
²¹² Ra	88	124	211.999794	13.0 s
²¹³ Ra	88	125	213.000384	2.74 min
²¹⁴ Ra	88	126	214.000108	2.46 s
²¹⁵ Ra	88	127	215.002720	1.55 ms
²¹⁶ Ra	88	128	216.003533	182 ns
²¹⁷ Ra	88	129	217.006320	1.63 µs
²¹⁸ Ra	88	130	218.007140	25.2 µs
²¹⁹ Ra	88	131	219.010085	10 ms
²²⁰ Ra	88	132	220.011028	17.9 ms
²²¹ Ra	88	133	221.013917	28 s
²²² Ra	88	134	222.015375	38.0 s
²²³ Ra	88	135	223.0185022	11.43 days
²²⁴ Ra	88	136	224.0202118	3.6319 days
²²⁵ Ra	88	137	225.023612	14.9 days
²²⁶ Ra	88	138	226.0254098	1600 years
²²⁷ Ra	88	139	227.0291778	42.2 min
²²⁸ Ra	88	140	228.0310703	5.75 years
²²⁹ Ra	88	141	229.034958	4.0(2) min
²³⁰ Ra	88	142	230.037056	93(2) min
²³¹ Ra	88	143	231.041221	103 s
²³² Ra	88	144	232.04364	250 s
²³³ Ra	88	145	233.04806	30 s
²³⁴ Ra	88	146	234.05070	30 a

Taulukko 0.2. Radiumin isotoopit.

Liite 3. Kivinäytteet

Alla esitetyt alkuperäiset kuvat 1, 2, 3, ja ovat Olkiluodon kiteisen kallioporan ydinnäytteistä ja joidenkin alustavien näytteenottoleikkausten kanssa. Kaikki esitetyt kuvat on otettu lähteestä 22.

Kuva 0.3i. Diakteksiitin gneissi (DGN), jossa on jotain alkuperäisen näytteenottoleikkauksia.

Kuva 0.3ii. Suonigneissi (VGN), jossa on jotain alkuperäisen näytteenottoleikkauksia.

Kuva 0.1iii. Pegmatiitti graniitti (PGR), jossa on jotain alkuperäisen näytteenottoleikkauksia.

Kuva 0.3iv. Kiillegneissi (MGN), jossa on jotain alkuperäisen näytteenottoleikkauksia.

Yhteenveto radiumin K_d-arvojen tulokset neljästä erilaisesta kiteisestä kivilajista kolmessa eri vertailupohjavesissä ja kuva on otettu liitteestä 22.

Kuva 0.4. ²²⁶Ra:n jakautumikertoimet (K_d-arvot) bariumisotermisessä 10⁻⁷ M neljässä eri testatussa Olkiluodon kiteisessä kivilajissa (DGN, VGN, PGR ja MGN) kolmessa eri testatussa Olkiluodon vertailupohjavesissä (lievästi pelkistävä graniittien vertailupohjavesi ALLMR, jäätikön hapeton sulamisvesi OLGA ja suolaliuosta vähentävä vertailupohjavesi OLRS).

Liite 5. PSA-arvot

Taulukko 0.5. Standardinäyte sekulaarisen tasapainon saavuttamisen jälkeen ja PSAmääritystä varten.

Liite 6. OGD-näytesarja

PSA 100, mittausaika 60 min/näyte ja kanavat (1-1024).

Taulukko 0.6. Ensimmäinen näytesarja (OGD).

Liite 7. OGD-näytesarja

PSA 100, mittausaika 60 min/näyte ja kanavat: (1-1024)

Taulukko 0.7. Toinen näytesarja (OGM).

Liite 8. OGP-näytesarja

PSA 100, mittausaika 60 min/näyte ja kanavat: (1-1024)

Taulukko 0.8. Kolmas näytesarja (PGP).

Liite 9. OGV-näytesarja

PSA 100, mittausaika 60 min/näyte ja kanavat: (1–1024)

Taulukko 0.9. Neljäs näytesarja (OGV).

PSA 100, mittausaika 60 min/näyte ja kanavat: (1-1024)

Taulukko 0.9. Neljäs näytesarjab(OGV).

