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Retrieval of Multiple Atmospheric Environmental
Parameters from Images with Deep Learning

Peifeng Su, Yongchun Liu, Sasu Tarkoma, Andrew Rebeiro-Hargrave, Tuukka Petäjä, Markku Kulmala,
and Petri Pellikka,

Abstract—Retrieving atmospheric environmental parameters
such as atmospheric horizontal visibility and mass concentration
of aerosol particles with diameter of 2.5 or 10 micrometers
or less (PM2.5, PM10, respectively) from digital images pro-
vides new tools for horizontal environmental monitoring. In
this study, we propose a new end-to-end convolutional neural
network for the retrieval of multiple atmospheric environmental
parameters (RMEP) from images. In contrast to other retrieval
models, RMEP can retrieve a suite of atmospheric environmental
parameters including atmospheric horizontal visibility, relative
humidity, ambient temperature, PM2.5, and PM10 simultaneously
from a single image. Experimental results demonstrate that: (1)
it is possible to simultaneously retrieve multiple atmospheric
environmental parameters; (2) spatial and spectral resolutions
of images are not the key factors for the retrieval on the
horizontal scale; (3) RMEP achieves the best overall retrieval
performance compared with several classic convolutional neural
networks such as AlexNet, ResNet-50, and DenseNet-121, and
the results are based on experiments on images extracted from
webcams located in different continents (test R2 values are
0.63, 0.72, and 0.82 for atmospheric horizontal visibility, relative
humidity, and ambient temperature, respectively). Experimental
results show the potential of utilizing webcams to help mon-
itor the environment. Code and more results are available at
https://github.com/cvvsu/RMEP.

Index Terms—Environmental monitoring, atmospheric pollu-
tant, meteorological parameters, convolutional neural network,
deep learning, image processing.

I. INTRODUCTION

MASS concentration of aerosol particles with diameter
of 2.5 or 10 micrometers or less (PM2.5, PM10, re-

spectively), aerosol number size distribution, aerosol chemical
composition, (ambient) temperature, and relative humidity
(RH) are key parameters governing the transmission of light
through the urban troposphere and therefore governing (atmo-
spheric horizontal) visibility. The aerosol mass concentration
and visibility are tightly connected to air quality and particu-
larly its regional variability in the urban landscape. To under-
stand climate change and processes influencing air pollution,
we need to make reliable observations about atmospheric pol-
lutants and meteorological parameters. For simplicity, we term
visibility, RH, temperature, PM2.5, and PM10 as atmospheric
environmental parameters in this study.
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Ground-based comprehensive in-situ observations at fixed
measurement locations are expensive and require well-trained
operators for daily operations and maintenance. The observa-
tions are also tightly descriptive of the specific observation lo-
cation. Particularly in the highly variable urban environments,
the data are not representative for the whole city [1], [2]. For
monitoring air quality, a network of observation stations is
typically deployed to capture the spatio-temporal variability
of the air pollution in the region. Another way forward to
upscale the representativeness of the measurements is to utilize
ground-based remote sensing such as Lidars [3], which are
typically resolving the aerosol concentrations in the vertical
dimension.

Analysis of digital images provides possible tools to capture
air pollution on the horizontal scale [4]–[6] since digital
images are influenced by atmospheric environmental param-
eters in many ways. More precisely, images captured under
different environmental conditions can objectively record these
conditions, thus offering the possibility to retrieve atmospheric
environmental parameters. For example, images captured un-
der hazy and foggy conditions manifest poor visibility, reduced
contrast, fainted surfaces, and color shift [7].

To retrieve atmospheric environmental parameters from im-
ages, environment-related image features should be extracted
from images, and then a regression or classification model can
be built between these image features and reference values
of atmospheric environmental parameters. For instance, image
features such as dark channel and spatial contrast are related
to visibility [8], [9] and PM2.5 [4], and local pixel intensities
are related to temperature [10]. Deep learning methods such
as convolutional neural network (CNN) and recurrent neu-
ral network (RNN) can directly build relationships between
images and reference values of atmospheric environmental
parameters without extracting image features manually. CNN
usually deals with single image [5], [11]–[14], while RNN is
used to find relationships between sequential images [5]. CNN
and RNN can also be used together for the retrieval [15], [16].
It is also possible to extract environment-related image features
manually and then send these image features to a CNN, and
the CNN can be regard as a regressor or a classifier in this
case [6], [16], [17]. However, whether the spatial and spectral
resolutions of images affect the retrieval results and whether
it is possible to retrieve as many atmospheric environmental
parameters as possible from images simultaneously are still
unclear.

In this letter, we propose a new convolutional neural net-
work which can estimate multiple atmospheric environmental

https://github.com/cvvsu/RMEP
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Fig. 1. Illustration of the RMEP model, assuming the spatial size of the input RGB image is 256×256 pixels. ResNet block is the basic component of ResNet
[18]. Instance norm means the instance normalization [19].

parameters including visibility, RH, temperature, PM2.5, and
PM10 simultaneously. The main findings and contributions of
this letter are:

1) it is possible to retrieve a suite of atmospheric environ-
mental parameters from images simultaneously in an end-
to-end manner;

2) on the horizontal scale, the spatial and spectral resolutions
of images are not the key factors for the retrieval;

3) the proposed RMEP model achieves the best overall
performance compared with several classic CNNs such
as AlexNet [20], ResNet-50 (50-layer ResNet) [18], and
DenseNet-121 (121-layer DenseNet) [21], in terms of the
retrieval accuracy.

II. METHODOLOGY

A. Images and Atmospheric Environmental Parameters

In the computer vision community, the atmospheric scatter-
ing model is widely used for the removal of haze and fog [22],
[23]:

I(x) = J(x)t(x) +A(1− t(x)),
t(x) = e−βd(x),

(1)

where I is the observed image, J is the scene radiance without
attenuation, A is the global atmospheric light, t is the medium
transmission, β is the scattering coefficient of the atmosphere,
and d is the scene depth. Koschmieder’s law is used for
daytime visibility estimation [24]

V = − ln(0.05)

β

.
=

3

β
, (2)

where V is visibility.
According to Eq. (2), if the attenuation coefficient β could

be obtained from an observed image, we can retrieve the
visibility from the image. According to [25], visibility is
affected by PM2.5 and RH. Therefore, it is possible to retrieve
visibility, RH, temperature, PM2.5, and PM10 simultaneously.
However, it is clear that the relationships between images
and the related atmospheric environmental parameters are
complex. Fortunately, deep learning methods can retrieve

atmospheric environmental parameters with a lack of sound
physical models due to their capacity of approximating com-
plex relationships [26], [27]. Thus, we propose an end-to-
end CNN for retrieving a suite of atmospheric environmental
parameters without knowing the explicit relationship between
them.

B. The RMEP Model and Smooth L1 Loss

CycleGan has been presenting excellent performance in
changing the weather conditions for images, such as im-
age dehazing and transferring seasonal appearances of im-
ages [28], [29]. Specifically, CycleGan can convert a hazy
image into a haze-free one and a haze-free image into a
hazy one, meaning that CycleGan can automatically extract
the visibility-related image features. Similarly, CycleGan can
also extract temperature-related image features since it can
transfer the seasonal appearances of images. Environmental-
related features are important for the retrieval of atmospheric
environmental parameters. Therefore, we crop the first few
layers from the generator of CycleGan and add some new
layers to build a model between images and atmospheric
environmental parameters. We term the proposed model as
RMEP for simplicity (Fig. 1).

Smooth L1 loss lsmooth [30] is applied as the loss function

lsmooth =

{
0.5 ∗ (y − ŷ)2, |y − ŷ| < 1

|y − ŷ| − 0.5, otherwise
(3)

where y is the reference value and ŷ is the retrieved value.

III. RESULTS AND DISCUSSION

A. Datasets

We use a portable hyperspectral device Specim IQ, which
can record a hyperspectral and a related RGB image simulta-
neously, to collect paired hyperspectral and RGB images. A
captured hyperspectral image is with the shape of 512×512
pixels and 204 channels, while a paired RGB image is with
the shape of 645×645 pixels. The wavelength range of a
hyperspectral image is 400-1000 nm.

https://www.specim.fi/iq/
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TABLE I
DETAILED INFORMATION ABOUT IMAGE SIZES

Datasets #Channel Spatial size (pixels)
Original Resampled Original Resampled Training

RGB 645 3 3 645×645 645×645 640×640
RGB 512 3 3 645×645 512×512 510×510
RGB 256 3 3 645×645 256×256 254×254
RGB 128 3 3 645×645 128×128 126×126
HS3 204 3 512×512 128×128 126×126
HS30 204 30 512×512 128×128 126×126
HS51 204 51 512×512 128×128 126×126
HS117 204 117 512×512 128×128 126×126
HS204 204 204 512×512 128×128 126×126
SSF 3 3 ? 160×120 118×118
?Original images in SSF dataset are with several different sizes.

Images are captured in the Aerosol and Haze Labo-
ratory/Beijing University of Chemical Technology Station
(AHL/BUCT Station) (Fig. 2) during the years 2018-2020,
and the station provides the reference values for the above-
mentioned atmospheric environmental parameters. After fil-
tering out images without reference values, 751 paired images
are obtained and termed as the RGBHSI dataset. We resample
the RGB images to different spatial resolutions (512×512,
256×256, and 128×128 pixels, respectively) to check whether
the spatial resolution will affect the retrieval results. Similarly,
to verify whether the spectral resolution will affect the retrieval
accuracy, we select three channels (449.35 nm, 548.55 nm,
and 598.60 nm), the first 117 channels that are in the visible
spectrum region (380-740 nm), and all the 204 channels from
each hyperspectral image to construct the HS3, HS117, and
HS204 datasets, respectively. Furthermore, we select channel
1, 5, 9, 13, 17, . . . , 113, 117 from HS117 and channel 1, 5,
9, 13, 17, . . . , 200, 204 from HS204 to construct the HS30
and HS51 datasets, respectively. Detailed spatial and channel
information of images can be seen in TABLE I.

To validate the generality of the RMEP model, we use the
SkyFinder dataset, which contains roughly 90,000 webcam
images collected in different continents (Fig. 2). In [5], images
in the SkyFinder dataset without reference values are dropped,
and 35,417 images are left. We further drop images captured
during nighttime and images with reference visibility values
that are greater than 20,000 m. There are 24,328 images left,
which construct the Sub-SkyFinder (SSF) dataset. The images
in the SSF dataset are captured during the years 2011-2014.
The reference values of the SkyFinder and the SSF datasets are
from the weather stations that are nearby the locations where
the webcams installed. Only reference values for visibility,
RH, and temperature are available for the SSF dataset.

B. Experimental Setup

We run the experiments on the Finnish CSC Puhti Server,
using one GPU (NVIDIA V100), and 16 CPUs (Xeon Gold
6230 @ 2.1 GHz). The learning rate is 2×10−4 for the first
50 epochs and then linearly decay to zero for the rest 150
epochs. Batch size is 16. Since RMEP is a CNN model, in
general it cannot keep the sequential information, which can
be extracted from sequential datasets by sequence models such

180° 120°W 60°W 0° 60°E 120°E

60°S

30°S

0°
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60°N

webcam locations
AHL/BUCT Station

Fig. 2. Example images and the locations of the webcams and the AHL/BUCT
Station.

TABLE II
RETRIEVAL RESULTS ON THE TEST SETS IN RGBHSI

Datasets
Visibility RH Temperature PM2.5 PM10

R2 MAE
(m) R2 MAE

(%) R2 MAE
(◦C) R2 MAE

(µg/m3) R
2 MAE

(µg/m3)

HS3 0.97 566.99 0.92 2.46 0.98 0.95 0.94 5.48 0.94 7.47
HS30 0.97 500.54 0.93 2.39 0.98 0.78 0.94 5.30 0.93 7.75
HS51 0.97 522.35 0.93 2.24 0.98 0.89 0.95 4.97 0.95 6.76
HS117 0.97 554.94 0.93 2.42 0.98 0.94 0.94 5.61 0.92 8.56
HS204 0.96 550.74 0.93 2.21 0.98 0.90 0.93 5.81 0.94 7.63
RGB 645 0.99 484.00 0.95 2.29 0.98 0.91 0.91 7.05 0.93 8.09
RGB 512 0.99 344.29 0.96 1.74 0.98 0.72 0.95 4.83 0.96 5.93
RGB 256 0.98 397.70 0.96 1.87 0.99 0.64 0.94 5.68 0.96 6.90
RGB 128 0.98 376.23 0.96 1.92 0.99 0.62 0.95 5.22 0.97 6.07

as RNNs. Thus, we randomly split the datasets into training,
validation, and test sets. Specifically, for each dataset, 20% of
images are randomly selected as the test set, and out of the
rest 80% images, 20% are of them randomly selected as the
validation set, and the remaining images construct the training
set. To avoid over-fitting, the resampled images are randomly
cropped and horizontally flipped during training.

To evaluate the performance of the RMEP model, we utilize
the coefficient of determinations (R2) and the mean absolute
error (MAE) to compare the retrieved and reference values.
Please refer to our code to see more results.

C. Retrieval Results

The retrieval results on the test set of each dataset are
shown in TABLE II. On the RGBHSI dataset, all the R2

values are greater than 0.91, and the MAE values are less
than 566.99 m, 2.46%, 0.95 ◦C, 7.05 µg/m3, and 8.56
µg/m3 for visibility, RH, temperature, PM2.5, and PM10,
respectively, indicating that it is possible to retrieve multiple
atmospheric environmental parameters from images simulta-
neously. Though atmospheric environmental parameters are
retrieved at the same time, the retrieval accuracies of visibility
and temperature are better than the retrieval accuracies of RH,
PM2.5, and PM10.

Interestingly, compared with the hyperspectral datasets
(HS3, HS30, HS1, HS117, and HS204), the RGB datasets
(RGB 645, RGB 512, RGB 256, and RGB 128) have sim-
ilar retrieval results (TABLE II). In addition to the spectral

http://mvrl.cs.uky.edu/datasets/skyfinder/
https://www.wunderground.com/
https://docs.csc.fi/computing/systems-puhti/


4

resolution, different spatial resolutions offer similar retrieval
results (TABLE II).

On a larger spatial scale, it is still possible to retrieve the
atmospheric environmental parameters (TABLE III and Fig. 3),
which further validate the effectiveness of the RMEP model.
The retrieval accuracy of temperature is better than that of
RH, which agrees with the retrieval results on the RGBHSI
dataset. However, the retrieval accuracy of visibility is worse
than that of RH, which is different from the retrieval results
on the RGBHSI dataset.

We use the AlexNet, ResNet-50, and DenseNet-121 to
further demonstrate the performance of the proposed RMEP
model (TABLE III). The RMEP model achieves the best
overall performance compared with AlexNet, ResNet-50, and
DenseNet-121.

D. Ablation Study

On the SSF dataset, different pooling layers and numbers of
ResNet blocks are used for ablation study. No matter whether
the adaptive max polling (Fig. 1) or adaptive average pooling
is utilized, their retrieval accuracies are similar (TABLE IV).
In addition, different numbers of the ResNet blocks (Fig. 1)
have similar retrieval results, and there is a balance among the
retrieval accuracies of different atmospheric environmental pa-
rameters as the number of ResNet blocks grows (TABLE IV).
Thus, it appears that utilizing six ResNet blocks in the RMEP
model is a superior option.

E. Discussions

According to the above-mentioned experimental results,
it is possible to retrieve multiple atmospheric environmen-
tal parameters including visibility, RH, temperature, PM2.5,
and PM10 simultaneously from images. Experimental results
demonstrate that the spectral and special resolutions are not
the key factors for the retrieval on the horizontal scale.

Visibility, RH, temperature, PM2.5, and PM10 can be re-
trieved at the same time since these atmospheric environmen-
tal parameters can influence each other. For example, when
the PM10 values are high, then generally it means that the
visibility value is low. Visibility and temperature are easier to
retrieve than RH, PM2.5, and PM10 (TABLE II). On the SSF
dataset, the retrieval accuracy of visibility is lower than that
of RH and temperature, and one possible reason is that some
weather stations are unable to obtain precise visibility values
when the values exceed specific distances, making visibility
values cluster around some values (Fig. 3).

According to the experimental results and the cost of
hyperspectral cameras, RGB images seem to be a better choice
for environmental monitoring since RGB images can be easily
and cheaply obtained through smartphones and webcams.
At least for the weather stations, the RGB images can be
used to complete the missing values caused by instrument
malfunctions.

As the RMEP model only handles a single input image,
it cannot grasp the temporal information between images. A
combination of the RMEP model and some other sequence
models will further improve the retrieval accuracy.

TABLE III
RETRIEVAL RESULTS ON THE TEST SET OF THE SSF DATASET UTILIZING

DIFFERENT MODELS

Model
Visibility RH Temperature

R2 MAE
(m) R2 MAE

(%) R2 MAE
(◦C)

AlexNet 0.62 1542.26 0.63 11.68 0.61 5.13
ResNet-50 0.61 1591.72 0.71 10.09 0.83 3.37
DenseNet-121 0.61 1706.85 0.69 10.70 0.79 3.81
RMEP 0.63 1190.26 0.72 9.85 0.82 3.44

TABLE IV
ABLATION STUDY USING DIFFERENT POOLING LAYERS AND NUMBERS OF

RESNET BLOCKS

Visibility RH Temperature

R2 MAE
(m) R2 MAE

(%) R2 MAE
(◦C)

Max pooling 0.63 1190.26 0.72 9.85 0.82 3.44
Average pooling 0.64 1221.88 0.72 9.90 0.82 3.49
#ResNet blocks: 0 0.65 1277.91 0.70 10.25 0.80 3.74
#ResNet blocks: 3 0.63 1344.94 0.72 9.87 0.81 3.52
#ResNet blocks: 6 0.63 1190.26 0.72 9.85 0.82 3.44
#ResNet blocks: 9 0.63 1207.02 0.72 10.03 0.82 3.51

IV. CONCLUSION

An end-to-end CNN called RMEP is proposed for the
retrieval of multiple atmospheric environmental parameters
including atmospheric horizontal visibility, relative humidity,
ambient temperature, PM2.5, and PM10. Experimental results
demonstrate that spatial and spectral resolutions of images are
not the key factors for the retrieval on the horizontal scale.

In the future, we will try to combine CNNs and sequence
models to obtain the spatio-temporal patterns of atmospheric
environmental parameters, in addition to studying the possibil-
ity of retrieving other atmospheric environmental parameters.
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