
https://helda.helsinki.fi

Automatic Performance Tuning for Distributed Data Stream

Processing Systems

Herodotou, Herodotos

IEEE

2022-08

Herodotou , H , Odysseos , L , Chen , Y & Lu , J 2022 , Automatic Performance Tuning for

Distributed Data Stream Processing Systems . in 38TH IEEE International Conference on

Data Engineering . Data engineering , IEEE , IEEE International Conference on Data

Engineering , Kuala Lumpur , Malaysia , 09/05/2022 . https://doi.org/10.1109/ICDE53745.2022.00296

http://hdl.handle.net/10138/354267

https://doi.org/10.1109/ICDE53745.2022.00296

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Automatic Performance Tuning for Distributed Data
Stream Processing Systems

Herodotos Herodotou
Cyprus University of Technology
herodotos.herodotou@cut.ac.cy

Lambros Odysseos
Cyprus University of Technology

lambros.odysseos@cut.ac.cy

Yuxing Chen
Tencent Inc.

axingguchen@tencent.com

Jiaheng Lu
University of Helsinki
jiaheng.lu@helsinki.fi

Abstract—Distributed data stream processing systems (DSPSs)
such as Storm, Flink, and Spark Streaming are now routinely
used to process continuous data streams in (near) real-time.
However, achieving the low latency and high throughput de-
manded by today’s streaming applications can be a daunting task,
especially since the performance of DSPSs highly depends on a
large number of system parameters that control load balancing,
degree of parallelism, buffer sizes, and various other aspects of
system execution. This tutorial offers a comprehensive review
of the state-of-the-art automatic performance tuning approaches
that have been proposed in recent years. The approaches are
organized into five main categories based on their methodolo-
gies and features: cost modeling, simulation-based, experiment-
driven, machine learning, and adaptive tuning. The categories
of approaches will be analyzed in depth and compared to each
other, exposing their various strengths and weaknesses. Finally,
we will identify several open research problems and challenges
related to automatic performance tuning for DSPSs.

Index Terms—Performance tuning, data stream processing,
parameter tuning, Storm, Flink, Spark Streaming

I. INTRODUCTION

The need for real-time analytical processing has spurred the
development and evolution of data stream processing systems
(DSPSs) such as Apache Storm, Flink, and Spark Streaming,
which execute on distributed clusters of commodity hardware.
Streaming applications on DSPSs process each data record (or
each small batch of records) of a data stream as it arrives on a
continuous basis, while the DSPSs transparently handle their
data-parallel execution on the cluster [1]. Examples of latency-
sensitive applications include identifying potential fraud in
real-time, recommending personalized content, recognizing
trading signals in financial markets, etc.

In many of these applications, the continuous data streams
must be processed (almost) instantly as the extracted value
depreciates quickly over time [2]. At the same time, the
ever-increasing volume of streaming data requires systems to
sustain high levels of throughput. Hence, the ability to handle
and process continuous streams of data in a scalable and timely
fashion is becoming crucial for the success of today’s data-
driven organizations [3]. However, the performance of DSPSs
highly depends on a large number of system parameters that
control various aspects of system execution, including load
balancing, degree of parallelism, memory settings, and buffer
sizes, among others [4]. Inappropriate settings of these pa-
rameters have been shown to impact application performance
negatively, and hence must be tuned carefully [5]–[7].

Automatically tuning system parameters for optimizing the
performance of streaming applications has several key chal-
lenges. First, the parameter search space is large and complex
as there are hundreds of parameters affecting performance that
can be arranged in thousands of different combinations [5]. To
make matters worse, many parameters have complicated inter-
dependencies among each other [8]. Improper configurations
with some parameter values set too low could waste cluster
resources and constrain application performance. On the other
hand, if some parameter values are set too high, they could
lead to resource contention and cause issues such as thrashing
and page faults [9]. In addition, the input data is a real-time
data stream that can experience dynamic changes in workload
properties, introducing difficulties in observing and model-
ing workload performance [10]. Finally, good configurations
depend on both the type of streaming application and the
hardware characteristics. Hence, a configuration that is optimal
for a particular application and workload might perform poorly
in a different environment [5].

A substantial amount of research has been introduced in the
last few years for addressing the problem of automatic perfor-
mance tuning in distributed data stream processing systems,
presented in a recent survey paper by the authors [4]. This
tutorial will offer a comprehensive review of state-of-the-art
performance tuning approaches, which tackle one or more of
the aforementioned challenges in an attempt to achieve the
dual goal of low latency and high throughput in a stream-
ing environment. While these approaches target the same
problem, their methodologies, implementations, and target
DSPSs vary significantly. Hence, we introduce a taxonomy of
automatic approaches into five main categories: cost modeling,
simulation-based, experiment-driven, machine learning, and
adaptive tuning. These approaches will be analyzed in depth
and compared within the context of popular DSPSs such as
Storm, Flink, and Spark Streaming.

Tutorial overview. We will first provide an overview and mo-
tivating examples of performance tuning on distributed DSPSs.
We differentiate between 2 main types of DSPSs, offering
per-record or micro-batching stream processing. Next, we will
introduce our taxonomy of existing tuning approaches, discuss
each category’s key characteristics, and analyze their respec-
tive advantages and disadvantages. Finally, we will identify
and discuss several open research problems and challenges.



Related tutorials. One past tutorial [11] presented high-level
optimizations for streaming applications, such as operator sep-
aration, fusion, fission, and placement, while another one [12]
discussed fault tolerance and elastic scaling mechanisms for
stream processing in a Cloud computing environment. A recent
tutorial (SIGMOD 2020) [1] reviewed the evolution of stream-
ing system aspects over the last two decades and described
emerging streaming applications. However, none of the above
tutorials discussed any performance tuning approaches related
to parameter configurations. In terms of automatic parameter
tuning, our recent tutorial (VLDB 2019) [13] surveyed the area
for database systems, Hadoop MapReduce, and Spark, but did
not cover data stream processing systems.
Contributions. To the best of our knowledge, this is the first
tutorial to discuss the state-of-the-art research and industrial
works on automatic performance tuning for popular data
stream processing systems. The tuning approaches covered
in this tutorial will help application developers to better
understand performance trade-offs, system administrators to
select appropriate tuning strategies, and researchers to develop
novel automatic tuning techniques.

II. BACKGROUND

A. Data Stream Processing Systems

Distributed DSPSs take an arbitrary and potentially un-
bounded stream of data as input and perform the processing
that is needed in real (or near-real) time [2]. The processing
typically takes the form of a directed acyclic graph (DAG) of
operators, which are broken into parallel tasks and distributed
across the cluster for execution. DSPSs are categorized into
two types of processing models, namely, record-based (or con-
tinuous operator) streaming and micro-batching (or batched)
streaming [10]. In the record-based model, shown in Figure
1(A), a DSPS processes each record individually as soon as it
arrives in the system. This model enables real-time processing,
providing lower latencies but sacrifices throughput. Batched
streaming works by dividing the input data stream into mini-
batches and processes each batch one at a time, as visualized
in Figure 1(B). This processing model benefits from higher
throughput since multiple records are processed together, but
typically results in higher average latency. Apache Storm,
Heron, and Flink support record-based streaming, while Spark
Streaming and Storm Trident support micro-batching.

When applying performance tuning on DSPSs, it is crucial
to understand and discriminate these two categories since a
distinct set of configurations on a system that belongs to
the first category will not provide the same performance
throughput in the second, and vice versa. This concept must
also be taken into consideration depending on the DSPS that
will be used and on the application that will be developed
because each processing model has different characteristics.

B. Performance Tuning Problem Statement

A streaming application A executing on a DSPS is of
the form A = 〈g, d, r, p〉, where g denotes the DAG of
operators executing as part of the application, d the input

Processing Operator

Processing Operator

Input
Stream

Records
Source

Operator
Sink

Operator

DSPS with record-based streaming

Processing Operator

Processing Operator

Input
Stream

Records Receiver
Sink

Operator

DSPS with batched streaming

Micro
batches

Fig. 1. Data stream processing with (A) record-based and (B) batched
streaming model.

stream data properties, r the cluster resources, and p the set
of parameter settings used [4]. The parameter search space S
is the Cartesian product of the domains of all parameters. The
performance of A (typically referring to latency or throughput)
can be modeled and calculated using a function F (g, d, r, p).

The definition of the performance tuning problem is as
follows: Given a DAG of streaming operators g to process an
input data stream d over cluster resources r, find the optimal
parameter settings p∗ that maximizes F over the parameter
search space S. The performance function F is hard to model
mathematically but can be approximated to some degree using
past measurements. Finally, finding an optimal solution to this
problem is NP-hard [4].

III. PERFORMANCE TUNING CATEGORIES

The performance implications of tuning are well-known in
the industry, with good configurations leading to significant
performance benefits, while bad ones can cause severe perfor-
mance degradation. A substantial amount of research has been
introduced in the last few years for automating performance
tuning in DSPSs using a variety of approaches, classified into
five categories: cost modeling, simulation-based, experiment-
driven, machine learning, and adaptive tuning. Table I outlines
and compares the various key features and functionalities of
approaches falling in the five categories in terms of modeling,
need for statistics or runs, prediction accuracy, and adaptability
to workload and system changes [4]. These approach cate-
gories will be examined in depth and compared within the
context of DSPSs during this tutorial.

Cost modeling approaches such as [14]–[16] build efficient
performance prediction models that use mathematical cost
functions and data statistics. These approaches are computa-
tionally very efficient and can produce predictions with reason-
able accuracy. However, it is hard to represent complex system
internals using mathematical models because (i) streaming
systems are distributed and with numerous moving parts and



TABLE I
FEATURE COMPARISON AMONG THE FIVE PARAMETER TUNING CATEGORIES OF APPROACHES [4]

Feature Cost modeling Simulation Experiment-driven Machine learning Adaptive

Key modeling technique cost functions simulation search algorithms ML models mixed
Number of parameters modeled some some many many some
System understanding strong strong light no strong
Need for history logs light light strong strong light
Need for data input stats light light no strong light
Real tests to run some no yes yes yes
Time to build model efficient medium slow slow medium
Prediction accuracy medium medium medium high medium
Adapt to workload light light no no adaptive
Adapt to system changes no light no adaptive light

pluggable components and (ii) the evolving data statistics
for the input streams impact system execution. Finally, these
approaches are typically specific to a particular version of a
streaming platform, and are hard to be adapted after platform
changes are made.

Simulation-based approaches such as [17]–[19] use partial or
complete system simulation to build performance prediction
models. Users can then simulate executions with different
parameter settings to find the ones that optimize performance
in a safe simulation environment. Thus, users can make cost-
effective decisions, even when they have limited information
on data, workload, or resource characteristics. Simulators offer
various degrees of support with regards to network traffic,
hardware properties, and resource scheduling, while most
simulators only support some basic parameter configurations.
Finally, creating an accurate simulator often requires a deep
and comprehensive understanding of the internal system dy-
namics, data, and workloads.

Experiment-driven approaches such as [6], [20], [21] execute
a streaming application multiple times with different parameter
settings each time, until the (near) optimal settings are found.
The sequence of executions is guided by a search algorithm
and the feedback provided after each execution. The insights
acquired from the actual runs enable a deeper understanding
of how data, applications, or resources impact performance.
Overall, most of the methods focus on search-based algo-
rithms, which enable global and local search for finding (near)
optimal parameter settings. Even though experiment-driven
approaches often produce better settings, they often require
much longer tuning times due to the repeated runs.

Machine learning approaches such as [22]–[24] train perfor-
mance prediction models on historical logs and/or execution
metrics using machine or deep learning methods. The models
are then used for predicting application performance when
using various parameter settings. These approaches consider
the entire system as a black box and assume no knowledge of
system internals. ML models can often achieve high prediction
accuracy and find near-optimal parameter settings, especially
when trained with large training data. However, acquiring
training data can be time-consuming since it may require
multiple runs with different settings to avoid under-fitting.

The situation becomes worse as data properties can change
dynamically or unseen applications appear.
Adaptive approaches such as [7], [25], [26] change system
parameters adaptively while an application is running, based
on online performance metrics computed on-the-fly, in order to
dynamically improve performance. Most adaptive approaches
employ some performance models for making predictions,
along with a search or scheduling algorithm for making tuning
decisions. Such approaches typically work well for ad-hoc
streaming applications. However, changing parameter settings
dynamically in an online system may sometimes cause various
performance or stability issues (e.g., introduce stragglers).

IV. OPEN PROBLEMS AND CHALLENGES

In the final part of the tutorial, we will focus on open
problems and challenges that remain in the field of auto-
matic performance tuning. We identify three general areas
of challenges that are related to cluster heterogeneity, cloud
computing, and edge computing. In each of these areas, we
will briefly overview partial/preliminary solutions and discuss
the various challenges involved.

As organizations often own multiple generations of hard-
ware, heterogeneous clusters are becoming common in prac-
tice, with nodes having different types of CPUs or memory
sizes, which make tuning even more challenging. The adoption
of modern hardware such as NVRAM, GPUs, and FPGAs also
calls for investigation, including its impact on the performance
of streaming applications.

The proliferation of the Cloud led to new cloud-based data
streaming engines such as Amazon Kinesis and Confluent
Cloud, which have some unique requirements as well as
new challenges, including how to (i) manage performance
interactions among multiple tenants, (ii) ensure high scalability
and elasticity, and (iii) navigate the tradeoffs between high
performance and fault tolerance.

A recent trend in stream-based computing, especially in
the Internet-of-Things (IoT) domain, involves decentralized
processing at the source of the data (i.e., at the edge),
to alleviate the pressure of computation at the cluster or
Cloud. This process, however, creates new problems regarding
interoperability, managing devices with limited capabilities,
application reconfiguration at the edge, etc.



V. TUTORIAL ORGANIZATION

The tutorial is planned for 1.5 hours (90 minutes) and will
have the following structure:
Introduction and motivation (10’). We introduce the problem
of performance tuning in large-scale data stream processing
systems and motivate the need for automatic tuning approaches
with several applications/scenarios.
Method taxonomy (10’). We present the taxonomy of au-
tomatic performance tuning approaches in DSPSs, including
cost modeling, simulation-based, experiment-driven, machine
learning, and adaptive tuning.
Parameter tuning approaches (50’). We introduce represen-
tative approaches from each category for tuning the perfor-
mance of streaming applications.
Comparison of approaches (10’). We compare the solutions
in the various tuning categories and across the two streaming
models, i.e., record-based and batched streaming.
Open problems and challenges (10’). We discuss open
problems and challenges for performance tuning.

VI. GOALS OF THE TUTORIAL

Intended Audience. This tutorial is intended for a wide
scope of audience ranging from academic researchers and
students to industrial developers and practitioners that want
to understand the impact of performance tuning on streaming
applications executing on large-scale DSPSs. Basic knowledge
in the execution and configuration of streaming applications in
DSPSs is sufficient to follow the tutorial. Some background in
distributed computing, performance tuning, and basic machine
learning techniques would be useful but not necessary.
Learning Outcomes. The main learning outcomes of this tu-
torial are: (1) understanding the impact of tuning on the perfor-
mance of DSPSs and streaming applications; (2) learning the
taxonomy of performance tuning approaches used for current
streaming applications; (3) comparison of features, function-
alities, advantages, and disadvantages of tuning approaches;
(4) identification of open problems and research challenges
of automatic performance tuning. Practitioners and students
will be able to quickly build an extensive understanding as
well as grasp the latest trends and state-of-the-art techniques
in automatic performance tuning. In addition, this tutorial can
guide both researchers and developers in contributing their
expertise and advancing this important and challenging field.

VII. SHORT BIOGRAPHIES

Herodotos Herodotou is an Assistant Professor at the Cyprus
University of Technology. His research work focuses on auto-
matic performance tuning of both centralized and distributed
data-intensive computing systems. His Ph.D. dissertation on
MapReduce performance tuning received the ACM SIGMOD
Jim Gray Doctoral Dissertation Award Honorable Mention.
Lambros Odysseos is a PhD student at the Cyprus University
of Technology. He has been working as a research associate
for the past few years and his research interests include

stream processing, data analytics and visualizations, smart data
processing, Internet of Things (IoT), and machine learning.
Yuxing Chen is a senior engineer at the Tencent Inc. His
research topics are parameter tuning on big data systems and
transaction processing.
Jiaheng Lu is a Professor at the University of Helsinki,
Finland. He has written four books on Hadoop and NoSQL
databases, and more than 100 journal and conference papers
published in SIGMOD, VLDB, TODS, TKDE, etc.

REFERENCES

[1] P. Carbone, M. Fragkoulis et al., “Beyond Analytics: The Evolution of
Stream Processing Systems,” in SIGMOD. ACM, 2020, pp. 2651–2658.

[2] H. Isah, T. Abughofa, S. Mahfuz et al., “A Survey of Distributed Data
Stream Processing Frameworks,” IEEE Access, vol. 7, 2019.

[3] H. Isah and F. Zulkernine, “A Scalable and Robust Framework for Data
Stream Ingestion,” in Big Data. IEEE, 2018, pp. 2900–2905.

[4] H. Herodotou, Y. Chen, and J. Lu, “A Survey on Automatic Parameter
Tuning for Big Data Processing Systems,” ACM Computing Surveys
(CSUR), vol. 53, no. 2, pp. 1–37, 2020.

[5] A. Dethise, “A Reinforcement Learning Approach to Optimize Perfor-
mance of Stream Processors,” in EuroDW. EuroSys, 2018.

[6] X. Liu et al., “A Stepwise Auto-Profiling Method for Performance
Optimization of Streaming Applications,” ACM TAAS, vol. 12, 2018.

[7] M. Petrov, N. Butakov, D. Nasonov, and M. Melnik, “Adaptive Perfor-
mance Model for Dynamic Scaling Apache Spark Streaming,” Procedia
Computer Science, vol. 136, pp. 109–117, 2018.

[8] M. Trotter, T. Wood, and J. Hwang, “Forecasting a Storm: Divining Opti-
mal Configurations using Genetic Algorithms and Supervised Learning,”
in ICAC. IEEE, 2019, pp. 136–146.

[9] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli et al., “Twitter Heron:
Stream Processing at Scale,” in SIGMOD. ACM, 2015, pp. 239–250.

[10] M. Dayarathna and S. Perera, “Recent Advancements in Event Process-
ing,” ACM Computing Surveys (CSUR), vol. 51, no. 2, p. 33, 2018.

[11] S. Schneider, M. Hirzel, and B. Gedik, “Tutorial: Stream Processing
Optimizations,” in DEBS. ACM, 2013, pp. 249–258.

[12] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based Data
Stream Processing,” in DEBS. ACM, 2014.

[13] J. Lu, Y. Chen, H. Herodotou, and S. Babu, “Speedup Your Analytics:
Automatic Parameter Tuning for Databases and Big Data Systems,”
PVLDB, vol. 12, no. 12, pp. 1970–1973, 2019.

[14] I. Bedini et al., “Modeling Performance of a Parallel Streaming Engine:
Bridging Theory and Costs,” in ICPE. ACM/SPEC, 2013, pp. 173–184.

[15] M. Bansal et al., “Trevor: Automatic Configuration and Scaling of
Stream Processing Pipelines,” CoRR, vol. abs/1812.09442, 2018.

[16] F. Kalim, T. Cooper et al., “Caladrius: A Performance Modelling Service
for Distributed Stream Processing Systems,” in IEEE ICDE, 2019.

[17] J. I. Requeno et al., “Performance Analysis of Apache Storm Applica-
tions Using Stochastic Petri Nets,” in IRI. IEEE, 2017, pp. 411–418.

[18] J. Kroß and H. Krcmar, “Model-based Performance Evaluation of Batch
and Stream Applications for Big Data,” in MASCOTS. IEEE, 2017.

[19] J. Lin, M. Lee, I. C. Yu, and E. B. Johnsen, “Modeling and Simulation
of Spark Streaming,” in AINA. IEEE, 2018, pp. 407–413.

[20] P. Jamshidi and G. Casale, “An Uncertainty-aware Approach to Optimal
Configuration of Stream Processing Systems,” in MASCOTS. IEEE,
2016, pp. 39–48.

[21] M. Bilal and M. Canini, “Towards Automatic Parameter Tuning of
Stream Processing Systems,” in SoCC. ACM, 2017.

[22] T. Li et al., “Performance Modeling and Predictive Scheduling for
Distributed Stream Data Processing,” IEEE TBD, vol. 2, no. 4, 2016.

[23] C. Wang et al., “Automating Characterization Deployment in Distributed
Data Stream Management Systems,” IEEE TKDE, vol. 29, no. 12, 2017.

[24] L. M. Vaquero and F. Cuadrado, “Auto-tuning Distributed Stream
Processing Systems using Reinforcement Learning,” CoRR, vol.
abs/1809.05495, 2018.

[25] T. Z. J. Fu, J. Ding, R. T. B. Ma et al., “DRS: Dynamic Resource
Scheduling for Real-Time Analytics over Fast Streams,” in ICDCS.
IEEE, 2015, pp. 411–420.

[26] S. Venkataraman et al., “Drizzle: Fast and Adaptable Stream Processing
at Scale,” in SOSP. ACM, 2017, pp. 374–389.


