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The data produced by various services should be stored and managed in an appropriate format for gaining
valuable knowledge conveniently. This leads to the emergence of various data models, including relational,
semi-structured, and graph models, and so on. Considering the fact that the mature relational databases estab-
lished on relational data models are still predominant in today’s market, it has fueled interest in storing and
processing semi-structured data and graph data in relational databases so that mature and powerful relational
databases’ capabilities can all be applied to these various data. In this survey, we review existing methods on
mapping semi-structured data and graph data into relational tables, analyze their major features, and give a
detailed classification of those methods. We also summarize the merits and demerits of each method, intro-
duce open research challenges, and present future research directions. With this comprehensive investigation
of existing methods and open problems, we hope this survey can motivate new mapping approaches through
drawing lessons from each model’s mapping strategies, as well as a new research topic - mapping multi-model
data into relational tables.
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1 INTRODUCTION

Since the emergence of database management systems (DBMSs), the database community has
been continuously exploring which kinds of data models are appropriate for such a system. This is
because data modeling establishes the logical structure of a database, which determines how data
is stored, organized, and manipulated in the databases. With the evolution of data models - from
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the relational model (relationships across records are predefined and normalized), semi-structured
model (self-describing, constantly evolving, convenient for data exchange), to the graph model
(capturing the inherent graph structure of data) - a wide variety of database systems have been
developed. For example, an RDBMS (relational DBMS) (e.g., Oracle [98]) is based on the rela-
tional model [38]; XML (eXtensible Markup Language) databases (e.g., MarkLogic [87] and
BaseX [23]) that manage data in XML format [30] are a flavor of document-oriented databases; A
JSON (JavaScript Object Notation) document database (e.g., MongoDB [93]) that is designed to
store and query data as JSON documents [119] is also a flavor of document-oriented databases. A
graph database (e.g., AllegroGraph [9] and Neo4j [95]) uses graph structures (e.g., RDF (Resource

Description Framework) [77] and PG (property graph) [60]) to represent and store data. The
data models (key-value, column, document, and graph stores) [42] used by NoSQL databases are
different from the relational model in RDBMSs, making some operations faster in NoSQL databases.
However, compared to those NoSQL databases, RDBMSs still dominate today’s business market
since they possess mature and powerful capabilities to handle security, query optimization, trans-
action management, and so on. Therefore, there is increasing interest in storing and processing
NoSQL data in RDBMSs. Storing those data in RDBMSs could enable NoSQL data applications to ac-
cess and update legacy relational database tables easily while bridging the gap between structured
and NoSQL information. Besides, this approach could make several data models survive together
in a relational database, making it possible to constitute applications involving multi-model data
(i.e., using relational tables to preserve structured tabular data, using semi-structured documents to
record unstructured object-like data, and using graphs to store highly linked referential data) [83].

However, due to the mismatch between the complexity of NoSQL data structure and the sim-
plicity of flat relational tables, it is a challenge to store these datasets in RDBMSs with a relational
schema. To deal with this challenge, many researchers proposed a variety of approaches. As shown
in Table 1, we classify those approaches into several categories based on their principal techniques
and strategies. Each category will be discussed in-depth and compared in the following sections.

Scope: The goal of this survey is to perform a comprehensive study on transforming XML, JSON,
RDF, and PG data into relational data. We temporarily do not consider key-value store and column
store. This is because that key-value and column stores place emphasis on a data storage paradigm.
For example, ArangoDB [13] (a graph database) is key-value stored internally. MonetDB [92] (an
RDBMS) preserves data in vertical fragmentation (aka. column store). Besides, to the best of our
knowledge, there are no relevant works about mapping key-value and column data into relational
data after searching literature on the web.

Main Contributions: This survey revisits existing approaches of mapping semi-structured and
graph data to relational data and summarizes their main features. The detailed categorization and
comparative analysis enable the reader to capture the aerial view of this field and quickly locate
the research field he/she is interested in. As we do not limit the survey to a specific data model,
the reader can get a broader scope in this research area. Besides, we identify open problems and
future directions to show that it is still a challenging and promising research area. The compre-
hensive review and analysis make this article useful in motivating new mapping techniques for
storing semi-structured and graph data in RDBMSs, serving as a technical reference for choosing
appropriate mapping methods under different scenarios, and providing an alternative way for im-
plementing multi-model databases products. In particular, the main contributions are summed up
as follows:

(1) We chronicle the approaches of mapping semi-structured or graph data into relational data
and provide a detailed classification of these approaches.

(2) We provide a comprehensive overview of existing methods and a detailed description of their
features for practitioners or organizations to choose which approaches suited them most.
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Table 1. An Overview of Mapping Methods

Approach Literature Description

S
e
m

i-
S

tr
u

ct
u
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d

D
o
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m

e
n

t

X
M

L

Structure-Based
[10, 11,

47, 117]
It takes advantage of XML schemas to generate a
specific relational schema for each XML document.

Model-Based
[59, 67,
71, 75]

It is a generic mapping regarding XML as a tree and
designing mapping based on nodes, edges, paths,
etc.

Semantic
Information-Based

[41, 78,
86, 114]

It adopts XML constraints (e.g., keys/foreign keys) to
improve the generated relational schema’s quality.

Cost-Driven
[24, 25,

109, 141]
It uses a cost model to estimate cost of each schema
to find/generate the “optimal” relational schema.

JS
O

N

Structure-Based [66]
It extracts the JSON schema information from JSON
data and use it to create a relational schema.

Model-Based [21, 34]
It shreds JSON documents into relational data with
a fixed and generic relational schema.

Unsupervised
Learning-Based

[46]
It designs a relational schema for an input JSON doc-
ument automatically.

Cost-Based [118]
It adapts the relational data layout dynamically to
minimize cost for a given JSON document.

G
ra

p
h

D
a

ta

R
D

F

Triples Table
[31, 64,
89, 96]

The RDF data is preserved as a linearized list of
triples and stored by a three-column schema.

Property Table
[37, 81,

130, 131]
Based on the data’s regularity (frequent patterns), it
stores several related properties in the same table.

Path-Based [88]
As RDF data structure is a directed graph, it designs
relational schemas with path information.

Vertical
Partitioning

[4]
It uses a fully decomposed storage model (DSM) to
preserve RDF data in the relational tables.

Entity-Oriented [26] It uses a mix of horizontal and binary tables.

DRL-Based [140]
It adopts Deep Reinforcement Learning (DRL) to de-
sign an adaptive relational structure to store RDF.

P
G

Column-Oriented [121]
It utilizes the column group concept to create a flex-
ible relational schema.

(3) We compare existing methods from various viewpoints and then present their cons and pros,
which could make readers understand these methods clearly.

(4) We identify open problems, present future research directions, and indicate storing multi-
model data in tabular format in RDBMSs forms a challenging and promising research area.

Related Work: So far, there exist some reviews involving how to map semi-structured or graph
data into relational data. Bourret [28] (1999) provides an introduction to the table-based mapping
approach that is one of the commonly used methods to map the XML schema to the relational
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schema. Chaudhuri and Shim [35] (2003) hold a seminar to discuss how to represent XML data
in the relational model. Gou et al. [63] (2007) begin with the introduction of XML query pro-
cessing and then describe how to utilize RDBMSs to store and query XML data. Mlynkova and
Pokorny [91] (2007) focus on adaptive or flexible mapping methods (e.g., [12, 22, 25]) to improve
XML processing based on RDBMSs. Kolahi and Libkin [73] (2007) use an information-theoretic
approach [14] to compare XML designs and corresponding designs of relational schema. Kader
et al. [68] (2008) present advantages of hybrid storage combining structure mapping and XML data
type. Vyas et al. [128] (2014) review several techniques for mapping XML data to relational data
with supervised and unsupervised learning. Then Mourya et al. [94] (2015) simply demonstrate
two mapping strategies: schema-aware and schema-less. Next, Qtaish et al. [106] (2015) review and
compare some model-based mapping approaches. A more recent survey by Qtaish et al. [108] (2019)
revisits the popular methods employing RDBMSs to manage XML data by relational schema, but
this survey lacks a detailed discussion on those methods and open problems. Petković and Piriyaie
(2021) [102] provide a simple comparison between the Argo/3 approach [34] and Single Table

Data Mapping (STDM) [21]. As for storing graph data in RDBMSs, Velegrakis [127] (2010) and
Sakr and Al-Naymat [112] (2010) review several approaches on mapping RDF data into relational
data and indicate the advantages of managing RDF in RDBMSs. MahmoudiNasab and Sakr [85]
(2010) give us an experimental evaluation of several relational representations of RDF data. Faye
et al. [55] (2012) survey three strategies (i.e., triple table, property table, and vertical partitioning)
to store RDF data in RDBMSs. After that, Wylot et al. [134] (2018) list several relevant works on
RDF data storage and query processing. Unfortunately, previous surveys only focus on XML-To-
Relational or RDF-To-Relational mappings. There exists no paper discussing JSON-To-Relational
and PG-To-Relational mappings. Compared to current works, this survey covers all the most pop-
ular data models in NoSQL data. But this survey is not simply piled up by several data models; it
could provide a clear dissection of this research field in extent (semi-structured and graph mod-
els) and depth (the detailed categorization and comparative analysis). The full review makes it a
complete technical reference, and we hope readers could get some inspiration from this article.

Outline: The rest of this article is organized as follows: Section 2 presents a comprehensive
introduction of mapping semi-structured documents into relational data. Section 3 offers a detailed
description of mapping graph data into relational data. In Section 4, we identify open problems
and present future research directions, and finally, we conclude this survey in Section 5.

2 MAPPING SEMI-STRUCTURED DATA INTO RELATIONAL DATA

Unlike the highly structured table instances in RDBMSs, semi-structured data is schema-less. This
paradigm lacking predetermined schema upfront is a self-describing data model (i.e., it contains the
data structure along with its actual values, and its data instances allow different objects to have
different structures and properties). These flexible features relieve developers from the upfront
schema design effort and let them more quickly get their applications up and running without
worrying in advance about which attributes may appear in their raw data or about their domains,
types, and dependencies [124]. However, the introduction of semi-structured data increases the
difficulty of data management. For example, it may improve long-term development and main-
tenance complexity. Specifically, due to a lack of explicit entity and relationship tracking, it will
burden new developers who are unfamiliar with the raw data [46]. We think that it is an excel-
lent way to develop an efficient solution for storing semi-structured data based on firm theoretical
foundations. Thus, RDBMSs, based on relational algebra [38], may be one of the best choices in
providing a promising and economical solution to handle semi-structured data, which also has the
following advantages:

ACM Computing Surveys, Vol. 55, No. 10, Article 218. Publication date: February 2023.
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• RDBMS is a mature system and scales very well by relational technologies (e.g., TiDB [2]).
• People could use many powerful capabilities of RDBMSs and do not need to spend decades

developing native semi-structured systems.
• People could use a common and standard Structured Query Language (SQL).

Besides, the advantages of mapping semi-structured data into relational data include but are not
limited to the following points:

• This method could provide a way to combine the best features of both worlds: the flexibility
of semi-structured data, consistency of the relational model, and efficiency of SQL;
• Storing semi-structured data in a good-designed relational schema is beneficial to the fast

and efficient querying and avoids some long-term issues (e.g., sharing, performance) [124];
• We could obtain ACID (atomicity, consistency, isolation, durability) compatibility from

the features of SQL when querying JSON instances from the relational schema [66].

Consequently, it has attracted considerable interest in leveraging RDBMSs’ powerful and reli-
able data management services to store and query semi-structured data [11]. Generally, there are
about three ways to store semi-structured data in RDBMSs. The first one is defining a data type, a
built-in one, in RDBMSs for preserving the semi-structured data. For example, XML data type [1]
could preserve the XML content of the data in an internal representation. This internal represen-
tation contains information such as document order and containment hierarchy. However, it does
not support some column and table constraints, such as PRIMARY KEY/FOREIGN KEY, UNIQUE,
and COLLATE. And it is cast or converted to [n]varchar(max), not supporting text. The second
way is to store semi-structured data with SQL data types (e.g., [82]) such as large object storage,
[n]varchar(max), varbinary(max), VARCHAR2, Character Large Object (CLOB), and National

Character Set Large Object (NCLOB). However, it is not efficient to parse a large object for ac-
cessing an element or attribute. Even though it is appropriate for retrieving documents, it requires
specific indices to facilitate processing. The last one is to shred the semi-structured data into rela-
tional tables. In this survey, we mainly focus on the third one and provide an overview of relevant
works to guide practitioners or organizations to choose which approaches suit them most. If read-
ers are interested in the previous two methods, Appendix A gives some related introductions in
detail.

For the third approach, due to the mismatch between the relational and semi-structured data
models, we need a “good” mapping for shredding and loading the semi-structured data into rela-
tional tables. The meaning of “good” depends on several factors, such as the nature of data, the
application, and the query workload. Specifically, we give the following challenges:

(1) Keep the data accuracy and avoid data loss while shredding;
(2) Maintain the structure of semi-structured documents;
(3) Consider integrity constraint;
(4) Reduce storage consumption;
(5) Achieve efficiency for query and update operations;
(6) Support the semantic search;
(7) Handle dynamics of semi-structured data;
(8) Enable systems to reconstruct original semi-structured data.

Because the data model of semi-structured data is essentially different from that of relational
data, it is not easy to define a “good” mapping. Firstly, the relational model is a flat, normalized,
and unordered data representation with tables, records, and columns. Then, we not only need to
address the hierarchical and ordered structure of semi-structured data with relational tables, but

ACM Computing Surveys, Vol. 55, No. 10, Article 218. Publication date: February 2023.
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Fig. 1. An Example of XML. (a) XML document. (b) Node-labeled XML tree. (c) Edge-labeld XML tree.

sometimes we also need to take its nested and recursive elements into account. Although it is dif-
ficult, with the increasing popularity and amount of semi-structured data on the Web, this growth
has prompted numerous researchers to propose various designs and strategies for mapping semi-
structured data into rows and columns within tables. Therefore, this section reviews these works,
summarizes their methods, and gives their limitations. In detail, we briefly introduce the most fa-
mous representatives of the semi-structured data model, XML, and JSON, firstly. Next, Sections 2.2
and 2.3 present the existing solutions of mapping XML and JSON documents into relational tables,
respectively.

2.1 The Preliminaries of XML and JSON

2.1.1 XML. Figure 1 presents an example of an XML document, and it can be modeled as a la-
beled and ordered tree. According to label location, an XML tree can be depicted as a node-labeled

tree or an edge-labeled tree. As one of the most important representatives of semi-structured
data, XML has been widely applied to exchange and express data on the internet. Also, the self-
describing feature of semi-structured data making XML describe data independent from platforms
facilitates all kinds of applications and services supporting XML. These facts make the size of XML
quickly increase, which leads researchers to consider storing XML in RDBMSs so that people could
make better use of the properties from both XML and RDBMSs. To store XML in RDBMSs, many
methods have been proposed. For those methods, people generally divide them into two categories
based on whether XML schema (i.e., document type descriptor (DTD)) is known. When XML’s
schema exists, people collect structural constraint information from the schema file and use it to
guide the mapping process making different XML documents have different relational schemas.
Unfortunately, since XML’s schema may not always be available, people propose using a generic
mapping, a fixed and pre-defined relational schema, to store all XML documents. In Section 2.2, we
will describe a more fine division based on the current classification and the paper’s predominant
technique while providing a review regarding mapping XML to a relational schema.

2.1.2 JSON. Considering that XML needs many rules to represent semi-structured data, this
complexity makes it a less-than-ideal format for representing data-oriented semi-structured data.
As the other most important data format of semi-structured data, JSON is proposed as a light-
weight, schema-less, readable, writable, and language-independent data interchange format on
the web. Nowadays, it has become a popular format since it is simple yet powerful, which not only
supports hierarchical, nested, dynamic, and self-describing data structure but is easy to parse and
generate by machines. Each JSON object consists of structured key-value pairs, where key denotes
attribute name, value is the attribute value. Since value has four primitive types (i.e., String, Num-
ber, Boolean, and Null) natively supported by Javascript, it further improves JSON’s popularity.

ACM Computing Surveys, Vol. 55, No. 10, Article 218. Publication date: February 2023.
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Fig. 2. An Example of JSON. (a) JSON document. (b) JSON tree.

Figure 2 shows a JSON document that can also be modeled as a tree. The growing popularity of
JSON leads to the rapid growth of JSON data, which has fueled more and more interest in loading
and processing JSON documents within RDBMS. Unfortunately, the essential properties of JSON
format (e.g., schema-less and dynamic) present enormous challenges for mapping JSON documents
to relational tuples. We have to consider the data sparseness caused by JSON’s flexibility and the
mismatch between the complexity of JSON’s hierarchical and recursive structure and the simplic-
ity of flat relational tables. To overcome these difficulties, researchers have made some attempts.
We will review these mapping approaches to show their development and summarizes them in
Section 2.3.

2.1.3 The Differences between XML and JSON. As the leading representatives of semi-structured
data, XML and JSON have many similar features. However, since JSON is proposed as a lightweight,
compact data interchange format to replace XML in some applications, their differences result
in the difference between XML-to-Relational mapping and JSON-to-Relational mapping. These
differences between XML and JSON include but are not limited to the following points.

(1) Schema. XML document has XML schema or DTD information to describe restrictions on
its structure. In contrast to XML, JSON does not have a similar equivalent.

(2) Order. XML has a sibling concept while JSON has index order in its array.
(3) Path. Nodes (elements) of XML documents with the same tag may have the same path (par-

ent), but JSON does not.
(4) Interacts. People could map JSON data to the native data types of Javascript. For XML, users

need to use the programmatical way to interact with XML documents via DOM (Document

Object Model) or SAX (Simple API for XML).

The similarities between JSON and XML allow people to use some methods from the XML-to-
Relational mappings to do JSON-to-Relational mappings, while some distinguishing characteristics
of JSON make researchers need to reconsider how to do JSON-to-Relational mapping. Managing
massive volumes of semi-structured data with RDBMSs is a challenge, but there are also enough
benefits to use an SQL engine as the target query processor for semi-structured data operations.

2.2 Mapping XML Documents to Relational Data

2.2.1 Structure-Based Mapping. The first category is schema-based mapping, also called a
structure-based approach, where the schema/structure means the XML schema (DTD) - describ-
ing the structure of XML data and facilitating the data exchange among different applications
based on a consensus on the meaning of tags. Here, it could help design a more compact storage
schema by eliminating redundancy and help improve query efficiency by significantly reducing the
number of joins (e.g., inlining as many proper elements as possible into a single table). Therefore,

ACM Computing Surveys, Vol. 55, No. 10, Article 218. Publication date: February 2023.
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Table 2. Comparison among Structure-Based Mapping Methods

Time Works Contributions Order

Preserved

Empirically

Validated

In
li

n
in

g

1999 Inlining [117]
Proposing three Inlining techniques
(Basic, Shared, and Hybrid)

No Yes

2001 Yan and Fu [90]

Discovering FDs and the candidate keys
to normalize the relational schema pro-
totype gotten by the Inlining technol-
ogy

No No

2003 NewInlining [84]

An improved Inlining [117] to deal
with DTDs including arbitrary cyclic
DTDs, to eliminate redundancy for
shard nodes, and to reduce the number
of relations

Yes No

2005
Balmin

et al. [22]

Creating relational schema with tech-
nologies of binary-coded XML frag-
ments and denormalized tables that fea-
ture inlined repeatable elements

Yes Yes

2007 ODTDMap [16]
An improved Inlining [117] with the
ability to handle a DTD having cycles
and set-valued XML attributes

Yes Yes

2013
Suri and

Sharma [123]

Presenting an Inlining algorithm for
handling recursion in an XML docu-
ment

No No

A
n

n
o

ta
ti

o
n

2004 MDF [12]
Proposing a mapping definition frame-
work based on a declarative approach

Yes No

2004 ShreX [11, 47]
A modular and extensible mapping sys-
tem

Yes No

G
e
n

e
ra

l

2004 X-Ray [69]
Proposing a generic approach for inte-
grating XML with RDBMSs

Yes No

L
a

b
e
l

2005 SPIDER [10] Proposing a labelling scheme Yes Yes

the primary purpose of this part is to comprehensively review the development of the structure-
based approach, summarize them, and represent them in Table 2.

Inlining is proposed in [117], which uses a set of transformations to “simplify” the original
DTD’s complexity while preserving the semantics. Next, it utilizes a DTD graph to represent the
simplified DTD and converts the DTD graph to relations. However, there is a high probability of
causing excessive fragmentation of the document when directly mapping elements to relations.
Hence, the Basic inlining is presented to solve the fragmentation problem by inlining as many
descendants of an element as possible into a single relation. But, due to the Basic allowing an
element node to appear in multiple tables repeatedly, the proposed Shared inlining technology
identifies these element nodes and creates separate tables for these elements to share. Besides, to
control the number of tables, the Shared provides some rules to decide whether or not to create a
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relation. Finally, it proposes the Hybrid inlining technology to combine the Basic (join reduction
properties) with the Shared (the sharing features) for improving query performance.

Yan and Fu [90] propose two algorithms (Global Schema Extraction and DTD-splitting Schema
Extraction) to generate relational schemas based on the XML data and the DTD. Those two algo-
rithms have the same framework. Firstly, they simplify DTD; Then they need to create schema
prototype trees; Next, they form relational schema prototypes; After that, they find functional

dependencies (FDs) and candidate keys; Finally, they normalize the formed prototypes. However,
the global algorithm analyzes the XML data to discover FDs and the candidate keys. Next, they use
them to normalize the prototypes. The DTD-splitting algorithm infers features of the XML data
from the DTD and conducts schema decomposition (DTD split) before discovering FDs and keys.

NewInlining is proposed in [84] and inspired by the shared-inlining method [117]. It starts with
simplifying DTDs by a set of new transformation rules. Next, it creates and inlines DTD graphs,
where inlining rules eliminate the redundancy and deal with DTDs containing arbitrary cycles.
Finally, it generates relational schemas based on the inlined graph.

Balmin et al. [22] propose a schema-driven decomposition framework, which firstly adopts
the labeled tree notation to represent XML data. Next, it utilizes schema graphs to abstract the
syntax of XML schema definitions, decomposes the schema graph into fragments (including non-
MVD (Multi-valued dependency) fragments), and generates a relational table definition for each
fragment. Finally, it decomposes the XML data and loads them into the corresponding tables.

ODTDMap is proposed in [16], which simplifies DTD, creates a DTD graph, does the inlining
operation, and generates the database schema and δ−mapping. Besides, two data mapping algo-
rithms (OXInsert and SDM) are proposed. Both OXInsert and SDM utilize globe IDs of elements to
help reconstruct XML documents.

Suri and Sharma [123] propose mapping an XML DTD into relations, which has three steps:
(1) simplifying the complexities of DTD; (2) creating a DTD graph based on simplified DTD; and
(3) using the proposed inlining algorithm to generate a relational schema from the DTD graph,
where the algorithm will decide to create one or two relations for the two elements appearing in
a cycle.

MDF is proposed in [12], which is a mapping definition framework (MDF). MDF starts
with annotating an input XML schema with a limited number of pre-defined annotations, then
parses annotated XML schema, creates the relational schema, verifies mapping correctness and
losslessness, and ends up with shredding the input XML document to tuples.

ShreX is proposed in [11, 47], which provides a comprehensive system for mapping, load-
ing, and querying XML documents. Specifically, the mapping is specified by annotating an XML
schema, which shows how elements and attributes are stored in tables. Furthermore, it makes map-
pings diversify through combining different annotations. That is, ShreX can use existing mapping
strategies as well as potential new mapping techniques. The annotation processor’s function is to
parse an annotated XML schema, check the validity of the mappings, and form the corresponding
relational schema. Finally, the document shredder shreds an XML document and generates the
tuples.

X-Ray is proposed in [69], whose principal purpose is to support the existing schemas. X-Ray

offers several basic mapping options and decides which kind of mapping is reasonable according
to different situations. Reasonable mappings are served as mapping patterns to promote the
mapping process at a syntactical level through analyzing the database schema and the DTD and
suggesting potential mappings as well as preventing others due to syntactical conflicts. Since
those mapping patterns are universally applicable, X-Ray employs them to represent mapping
knowledge for mapping an XML to a relational schema.
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SPIDER is proposed in [10], which uses SPIDER (Schema based Path IDentifiER) to iden-
tify paths from the root node to a node, adopts Sibling Dewey Order to identify multiple nodes
appearing in the same path, and designs the following four relational tables to preserve the XML
document.

(1) Element (docID, nodeID, spider, sibling, parentID);

(2) Attribute (docID, nodeID, spider, sibling, parentID, value);

(3) Text (docID, nodeID, spider, sibling, parentID, value);

(4) Path (spider, pathExp).

Discussion. With DTDs, the relational schema generated by a structure-based approach is tai-
lored to specific XML documents. This is to say, structure-based approaches could use predefined
rules to generate different relational schemas for different DTDs. These schemas usually tend to
have a more compact storage representation and an excellent query performance [126]. However,
both inlining and annotation techniques do not consider semantic constraints. Besides, due to a
lack of path information, some queries require many joining operations in the relational schema
generated by the above methods. What’s more, a complex and large XML schema may generate a
relational schema with many simple tables, although the XML document instance is simple. As for
X-Ray [69], it is just a research prototype supporting the existing schemas. Finally, SPIDER [10]
uses a pair of spider and Sibling Dewey Order to identify each node. With these labeled nodes, it
creates a four-table schema according to XRel [115]. Although this schema could reduce the range
of relabeling (spider is not affected) when updating documents and make retrieval more efficient,
it cannot store node orders exactly by employing a pair of spider and Sibling Dewey Order if a
DTD contains multiple components having the same name but appearing in different places [10].
Furthermore, XML documents do not require DTDs’ existence. This fact would cause a problem
that these methods may not be inapplicable when the absence of DTDs.

2.2.2 Model-Based Mapping. Contrary to the previous work, this part deals with mapping in
the absence of XML schema. In fact, schema absence is a common phenomenon these days, which
makes querying these schemaless XML documents difficult. Considering this, people propose a
model-based approach to map XML documents without schema information into relational data
as an alternative way to solve this difficulty. Generally, the model-based approach is a generic map-
ping that regards an XML document as a tree model and designs mapping based on nodes, edges,
paths, and so on. Next, we will review the development of this generic mapping comprehensively.

(1) Fixed Schema. The work presented in this portion (and summarized in Table 3) is about
mapping an XML document into relation tuples with a fixed number of tables.

Edge-Based Approach. This approach maintains the Parent-Child (using Source object - Target
object) and Ancestor-Descendent (using self-join) relationships in the table.

Florescu and Kossmann [58, 59] regards an XML document as an ordered and labeled directed
graph, where each XML element is a node, element-subelement relationships are edges, values of
an XML document are leaves. Then it proposes three alternative ways to record edges of a graph:

(1) Store all edges of the graph in a single table (i.e., the edge approach):

Edge (source, ordinal, name, flag, target).

(2) Class every edge having an identical label to a table:

Bname (source, ordinal, flag, target);

(3) Use a single universal table to store all the edges (i.e., the universal table):

Universal (source, ordinaln1 , flagn1 , targetn1, . . . , ordinalnk
, flagnk

, targetnk
).

two alternative ways to preserve the leaves:
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Table 3. Comparison among Model-Based Mapping Methods with Fixed Schema

Approaches Time Works
Order

Preserved

Empirically

Validated

No. of

Tables

Edge-Based 1999
Florescu and

Kossmann [58, 59]
Yes Yes

1 or
more

Path-Based

2001 XRel [71] Yes Yes 4

2004 SUCXENT [103] Yes Yes 5

2004 SUCXENT++ [104] Yes Yes 5

2010 Xlight [139] Yes Yes 5

2010 SMX/R [6] Yes Yes 2

Edge- &

Path- &

Signature-Based

2002 XParent [67] Yes Yes 4

2008
2009

XPred [132, 133] Yes Yes 3

2012 Wang et al. [129] No No 2

2012 Ying et al. [136] Yes Yes 4

Edge- & Path-Based
2001 Khan and Rao [70] No Yes 2

2005 XPEV [105] Yes Yes 3

Path- & Signature-Based 2005 LNV [50] Yes Yes 2

Pointer-Based 2006 XMLEase [51] No Yes 1

Token-Based
2008 Dweib et al. [48] Yes Yes 2

2009 MAXDOR [49] Yes Yes 2

Edge- &

Signature-Based

2012 XRecursive [52, 53] No Yes 2

2012
Suri and

Sharma [122]
Yes Yes 2

Labeling-Based 2012 s-XML [120] Yes Yes 2

Path- &

Labeling-Based

2015 XMap [29] Yes No 3

2016 XAncestor [107] Yes Yes 2

2017 Mini-XML [142] Yes Yes 2

(1) Establish separate Value tables for each conceivable data type:

Vtype (vID, value).

(2) Store values together with edges (Inlining) to keep values and attributes in the same tables.

which leads to overall six different relational schemas for storing XML documents (i.e., graphs).
In the above tables, the attribute source keeps the source ids of each edge, the tarдet preserves

the target ids and utilizes the f laд to distinguish between internal nodes and leaves, the ordinal
holds the orders of edges, and n1, . . . ,nk in the table Universal are the label names.
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Path-Based Approach. It preserves all available path expressions (from the root to each node in
the XML tree) in a relational attribute.

XRel is proposed in [71], which decomposes an XML document into nodes based on its tree
structure, stores the simple path expressions (from the root to node) of these nodes, and preserves
these nodes in different relational tables according to their types.

(1) Path (pathID, pathExp);

(2) Element (docID, pathID, start, end, index, reindex);

(3) Text (docID, pathID, start, end, value);

(4) Attribute (docID, pathID, start, end, value).

XRel designs a schema containing four tables to store the combination of the path expression
and the region of nodes in an XML tree as relational tuples. These could help record the topol-
ogy information of the XML tree and the expanded names of nodes. The attributes start and end

indicate start and end position of a region. The index represents the order of an element node
among its siblings in the XML document order, and the reindex indicates the reverse document
order.

SUCXENT is proposed in [103], which stores the information of paths and nodes in tables:

(1) Document (docID, docName);

(2) Path (pathID, pathExp);

(3) PathValue (docID, pathID, leafOrder, siblingOrder, leftSibIxnLevel, leafValue);

(4) TextContent (docID, linkID, text);

(5) AncestorInfo (docID, siblingOrder, ancestorOrder, ancestorLevel).

The table Path preserves paths of all the leaf nodes. PathValue stores all leaf nodes, where the
column leftSibIxnLevel storing the level of the highest common ancestor of the leaf node is used
to reconstruct the XML document, the column leafValue is used to record the textual content of
the leaf node. However, for large textual data (e.g., DNA sequences), LeafValue only keeps a link.
SUCXENT uses another table TextContent to hold such large data. As for AncestorInfo, it saves
the ancestor information for each leaf node to quickly answer some queries.

SUCXENT++ is proposed in [104], which stores the leaf nodes and the associated paths together
with new offered attributes to handle the recursive XML queries.

(1) Document (docID, docName);

(2) Path (pathID, pathExp, cPathID);

(3) PathValue (docID, pathID, leafOrder, cPathID, branchOrder, branchOrderSum, leafValue);

(4) TextContent (docID, pathID, leafOrder, cPathID, branchOrder, branchOrderSum, text);

(5) DocumentRValue (docID, level, rValue).

It introduces the attribute cPathID to convert any recursive path expression to a range query.
Users could use the attributes branchOrder, branchOrderSum, and rValue to decrease the consump-
tion of storage and the times of join operations.

Xlight is proposed in [139], whose schema has the following five relational tables:

(1) Document (docID, docName);

(2) Path (pathID, pathExp);

(3) Data (docID, pathID, leafNo, leafGroup, linkLevel, leafValue, hasAttrib);

(4) Ancestor (docID, leafGroup, ancestorPre, ancestorLevel);

(5) Attribute (name, val, id, pre).

In this schema, the table Data stores all the information of leaf nodes in the XML document.
Ancestor preserves the ancestor information of each leaf node. The attribute leafGroup marks the
same number for any leaf nodes having the same parent. The linkLevel indicates the level that each
path is linked with its previous path. The hasAttrib records the number of attributes in each path.
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SMX/R is proposed in [6], where startPos/endPos denotes the starting (pre-order) /end (post-
order) location of the node.

(1) Path (docID, pathID, startPos, endPos, nodeLevel, nodeType, nodeValue);

(2) PathIndex (pathID, pathExp, nodeName).

Edge- & Path- & Signature-Based Approach. It preserves path expressions (path-based method),
parent-child relationships (edge-based method) in the tables. Besides, this approach assigns a dif-
ferent signature (number) to each distinctive label (node).

XParent is proposed in [67], where the table LabelPath provides a global view of the XML doc-
uments. DataPath keeps parent-child relationships, which can be further materialized as ancestor-
descendant relationships. The attribute length and order represent the number of edges in the label
path and the order of the element among its siblings, respectively.

(1) LabelPath (pathID, length, pathExp);

(2) DataPath (parentNodeID, childNodeID); /Ancestor (nodeID, ancestorID, level);

(3) Element (pathID, nodeID, order);

(4) Data (pathID, nodeID, order, value).

XPred is proposed in [132, 133], which stores the structural information (e.g., parent-child rela-
tionship and order) distributively into nodes to reduce the number of joins when doing queries.

(1) Path (pathID, length, labelPath);

(2) Node (nodeID, pathID, order, parentID);

(3) Data (nodeID, pathID, order, parentID, value).

Wang et al. [129] propose the following schema, where ValueTable stores the leaf nodes with
the value. NoValueTable stores the inner nodes. The attribute nodeID is the node identifier number
assigned by pre-order traversal.

(1) ValueTable (nodeID, name, value, pathExp, parentID, level);

(2) NoValueTable (nodeID, name, parentID, level).

Ying et al. [136] keep the parent-child relationship, path, and level information to support struc-
tural queries, especially for the twig query.

(1) File (docID, docName);

(2) Path (pathID, pathExp);

(3) LeafNode (docID, leafNodeID, pathID, parentID, leafValue);

(4) InnerNodes (docID, innerNodeID, nodeName, parentID, level, sibling).

Edge- & Path-Based Approach. Khan and Rao [70] propose the following schema to keep parent-
child relationships and path information, where the attribute pathExp, considered as the primary
key, is the simple path expression (from root to node) of these nodes.

(1) SampleTable (pathExp, dataItem, parentPathExp);

(2) AttributeTable (pathExp, attributeName attributeValue).

XPEV is proposed in [105], whose schema is proposed by combining edge [59] with path [71]:

(1) Path (pathID, pathExp);

(2) Edge (pathID, source, target, label, ordinal, flag);

(3) Value (pathID, source, target, label, ordinal, value).

Path- & Signature-Based Approach. It preserves path expressions (path-based method) in the
table and assigns a different signature (number) to each distinctive label (node).

LNV is proposed in [50], where the attribute pathNode (pathSignature) is a list of nodes (signa-
tures of labels) in the path ordered from the root. The attribute value is the value associated with
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the end of the path. The attribute typeNode denotes the leaf node’s type that can be an element,
attribute, comment, or text. The attribute position records where the element node is among its
sibling.

(1) LabelsSignatures (label, signature);

(2) Path (docID, pathSignature, pathNode, value, typeNode, position).

Pointer-Based Approach. It preserves as many the pointers of nodes’ ancestors as possible.
XMLEase is proposed in [51], where some redundant edges are introduced into the XML tree

so that each node is connected to its ancestors instead of just its parent. How many ancestors be
connected for each node will depend on the number of ancestor columns in the pre-defined table.

(1) Table (identifier, ancestor1, ancestor2, ...)

The attribute identifier denotes labels (values) for intermediate nodes (leaves) of the XML
tree. Other columns keep identifier’s ancestors. In this way, it could speed up hierarchical data’s
retrieval.

Token-Based Approach. It uses a table to record XML document structure information and uses
another table to preserve token (element, tag, attribute, or property) information.

Dweib et al. [48] keep the XML document structure in the attribute docStructure (a big text field
containing a coded string). Any changes (e.g., adding a new tag or deleting an existing property)
in the structure should be recorded in this attribute.

(1) Documents (docID, docStructure);

(2) Tokens (docID, tokenID, tokenName, tokenValue).

MAXDOR is proposed in [49], which adopts a global label approach for identifying each token
in an XML document and assigns additional labels (parent, left and right sibling) to each token
for facilitating future inserting and relocating a given token. Besides, MAXDOR uses the table
Documents to keep document information.

(1) Documents (docID, docName, docElement, totalTokens, schemaInfo);

(2) Tokens (doctID, tokenID, lSib, parentID, rSib, tokenLevel, tokenName, tokenVal, tokenType).

Edge- & Signature-Based Approach. Each element or attribute is identified by a signature (num-
ber) and each path is identified by its parent from the root node in a recursive manner.

XRecursive is proposed in [52, 53], whose schema is:

(1) LabelStructure (labelName, signature, parentID);

(2) LabelValue (signature, value, type).

Suri and Sharma [122] design the following schema:

(1) Node (nodeID, nodeName);

(2) Data (docID, nodeID, parentID, nodeValue, nodeType, position).

Labeling-Based Approach. It uses a labeling technique to annotate each node.
s-XML is proposed in [120], which adopts the Persistent Labeling [62] to annotate each node in

the XML tree and stores those labels in the attribute selfLabel. In the following schema, Parent-

Table preserves the non-leaf (internal) nodes. ChildTable records the leaf (external) nodes.

(1) ParentTable (nodeID, parentNodeName, NodeName, level, parentNodeID, selfLabel);

(2) ChildTable (nodeID, level, parentNodeName, selfLabel, parentNodeID, value).

Path- & Labeling-Based Approach. It preserves path expressions in the table and adopts a labeling
technology to annotate each node.
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Table 4. Comparison among Model-Based Mapping Methods with a Non-Fixed Number of Tables

Time Works Contributions Order

Preserved

Empirically

Validated

1999 STORED [44, 45]
Exploiting the regularities inherent
in the semi-structured data to design
schemas by the data mining

No Yes

2009 Kyu and

Nyunt [75]
Automatically creating the schema No Yes

XMap is proposed in [29], which uses ORDPATH labeling [97] (conceptually similar to the
Dewey technique) to materialize the parent-child relationship, stores it in the attribute ordpath,
and uses it to reflect a numbered tree edge of the path from the root to a node.

(1) Data (ordpath, value, order, numberofElements, numberofAttributes, pathID);

(2) Node (nodeID, nodeName);

(3) Path (pathID, pathExp).

XAncestor is proposed in [107], where the table AncestorPath stores the ancestor paths (root-
to-parent) of the leaf nodes in the XML tree. The attribute ancesPos is a position of the ancestor
for the leaf node, whose value is obtained by Dewey order labeling.

(1) AncestorPath (ancesPathID, ancesPathExp);

(2) LeafNode (nodeName, ancesPathID, ancesPos, nodeValue).

Mini-XML is proposed in [142], which adopts a persistent labeling approach to annotate leaf
nodes. The specific format is (Level, [P-pathID, S-order]) stored in the attribute pos, where Level
is the depth of the current leaf node in the XML tree, P-pathID is the path id of the direct parent
node, and S-order is the order among its sibling.

(1) Path (pathID, pathExp, pos);

(2) Leaf (leafID, name, value, pos).

(2) Non-Fixed Schema. Next, we will introduce some works that map an XML document into
a relational schema with a non-fixed number of tables and summarize these methods in Table 4.

STORED is proposed in [44, 45], which takes data instances as input and uses a heuristic algo-
rithm, data-mining, to generate complex storage patterns with high combined support for creating
tables. Each storage pattern keeps a pointer back to its subpattern with the highest data support,
which is used to find the required attributes. Each semi-structured object having all the required
attributes for a relational table will be stored in it. And the remaining attributes in this table may
be filled with nulls. STORED uses created relational schemas to store most of the data. As for the
outliers, parts of the semi-structured data that do not fit the generated schema or the possible fu-
ture inserted data, are stored in a self-describing structure (overflow graph) to guarantee that the
mapping and storing are lossless. Besides, STORED could take several parameters as input (e.g.,
the maximum number of relations allowed) to control generated relational schema.

Kyu and Nyunt [75] utilizes a data extraction approach to get a table name list, a table element
list, a table attribute list, and the primary key of each table. Next, it uses those lists to create a
relational schema and presents a data mapping algorithm to store XML data into relational tables.

Discussion. Compared to structure-based mapping, model-based approaches are widely stud-
ied since they are typically simple to implement, do not require extra schema information basi-
cally, and could have a better performance. Moreover, most model-based approaches could handle
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dynamic XML documents whose DTDs change from time to time and support XML documents
without any extension of the relational model. And there are many methods (edge, path, signature,
labeling, pointer, token or combinations among these methods, etc.) supporting the model-based
approach to map XML documents into relational tuples. Depending on adopted methods, they will
create a varying number of tables. But the works introduced in the former have in common that
they have a fixed schema, regardless of how XML document instances change. However, these
methods also have their limitations. According to different methods taken, they may cause dif-
ferent performance variations. This is because some approaches may generate very complex SQL
queries involving many joins for complex path expressions. For example, the edge method possibly
has many self-joins when reconstructing a large XML document. Besides, the path method needs
high storage space to keep path information. The pointer method holds more ancestor columns in
the pre-defined relational table, and there will be more chances for “Null” pointers, thus wasting
storage. The token method could not handle the complex semantic searches. The labeling method
needs a larger space to store labeling when dealing with a large XML document. Therefore, except
for introducing new techniques or combining different strategies to improve query performance,
researchers also attempt to create relational schemas with non-fixed tables to fit XML document
instances better. Unfortunately, these methods also inevitably store much structure information
to reconstruct the original XML data and do not consider the importance of semantic information
toward the relational schema, which could help reduce space consumption.

2.2.3 Semantic Information Approach. Recently, studies in the constraints of XML (e.g., keys
and foreign keys) have caused an interest in using the semantic information to improve the gen-
erated relational schema’s quality. In this part, we will introduce current researches in this area,
classify it as the third category of the mapping approach, and summarize those works in Table 5.

CPI is proposed in [78, 79], which discovers semantic constraints hidden in DTDs and then
rewrites the discovered constraints in relational notations. Since finding and preserving seman-
tic constraints is independent of transformation algorithms, one could use other transformations
instead of only the hybrid inlining algorithm.

XSchema is proposed in [86], which provides two normal form representations of regular tree
grammars - NF1 and NF2. NF1 representation is used for document validation and schema valida-
tion. NF2 forms the basis for mapping type definitions in XML schema to SQL. Besides, this paper
defines XSchema, a language-independent formalism to specify XML schemas. Next, it starts with
simplifying XSchema to get a simpler XSchema, which does not have constraints that cannot be
captured in the relational model. Then, it uses inlining [117] to generate relational schemas, maps
collection types, stores IDREF and IDREFS attributes, handles recursion, captures the order speci-
fied in the XML model, and keeps constraints such as key constraints and inclusion dependencies.

RRXS is proposed in [36], which presents XML functional dependencies (XFDs) to cap-
ture structural as well as semantic information. It offers a set of rewriting rules to obtain
redundancy-reduced XFDs in polynomial time. Then, RRXS translates optimized XFDs to rela-
tional functional dependencies and creates a third normal form (3NF) decomposition to guide
the design of the target relational schema, where the generated schema is redundancy-reduced
and has a set of keys.

Xshrex is proposed in [80], which is an extended ShreX by adding more constraints like struc-
tural choice, unique, key & foreign key, and domain constraints. Although these constraints need
to be checked when doing insertions, deletions, and updates, it does not yield prohibitive costs. On
the contrary, queries could utilize the index created based on the user-defined primary and foreign
key constraints to improve performance.

X2R-Xing is proposed in [135], which starts by using a data structure called a marked schema
tree to store the mapping from the DTD to a relational schema, where the node grouping algorithm
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Table 5. Comparison among Mapping Methods with Semantic Information

Time Works Contributions Order

Preserved

Empirically

Validated

W
it

h
D

T
D

2000
2001

CPI [78, 79]
Designing a relational schema with the
hybrid inlining algorithm [117] and
constraints-preserving algorithm

No Yes

2002 XSchema [86]
Mapping based on the theory of regular
tree grammars

Yes No

2003 RRXS [36] Reducing redundancy by using XFDs No Yes

2006 Xshrex [80]
Extending ShreX [47] by holding in-
tegrity constraints in the XML schema

Yes Yes

2007
X2R-

Xing [135]
A mapping system with range indexing
and XML key constraints

Yes Yes

2010
Castro

et al. [33]

Proposing a mapping mechanism using
the conceptual model to maximize the
preservation of semantics

Yes Yes

2011
X2R-

Ahmad [8]
Designing a non-redundant relational
schema with XFDs and DTD

No Yes

W
/O

-D
T

D

2000
Monet-XML-

Model [114]

Decomposing XML into small, flexible,
and semantically homogeneous tables
based on the binary associations

No Yes

2007
Davidson

et al. [41]
Refining the design of the relational
schema based on XML key propagation

No Yes

generates the schema tree. Then the schema tree is used to shred XML documents into relational
tuples. In this process, it indexes XML node groups based on range indexing. And it propagates
key constraints for XML to keys in a relational schema.

Castro et al. [33] propose using the conceptual model as the intermediate schema for achieving
the mapping. For establishing parallelism between two data models (i.e., XML and relation), they
use a class diagram in UML (Unified Modeling Language). This is because of the simplicity
with which schemas modeled in UML can be mapped to relational databases. In this intermediate
schema, DTD constructors are mapped into classes, and the relationships between them are pre-
sented in the form of associations in the UML diagram. The attribute level represents the nested
levels for the main elements. The number of the appearance of an element is stored in the attribute
cardinality. The logical operators in DTD are preserved in the attribute operator.

X2R-Ahmad is proposed in [8], which first obtains the XML structure from DTD and generates
the DTD schema for describing XML. The expression of form about functional dependency for
XML (XFD) is: (C, Q : X → Y ), where C is the downward context path (defined by an XPath
expression), Q is a target path, X is an LHS (Left-Hand-Side), and Y is an RHS (Right-Hand-

Side). Next, it uses a constraint-preserving algorithm to remove redundant paths in XFD. It then
maps the paths to attributes for obtaining a relational schema and several functional dependencies
over this schema.

Monet-XML-Model is proposed in [114], which offers a data model (Monet-XML-Model) based
on a complete binary fragmentation of the document tree to represent, store, and query all related
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Table 6. Comparison among Mapping Methods with Cost-Driven Strategy

Time Works Contributions Order

Preserved

Empirically

Validated

2002 LegoDB [24,
25]

Proposing a cost-based approach to find the op-
timal mapping in the solution domain for a spe-
cific scenario

No Yes

2003 Zheng

et al. [141]

Proposing a cost-driven approach to generate
a near-optimal relational schema for a given
XML data and expected workload in the limit
of space

No Yes

2003 FlexMap [109]
Generating efficient relational configurations
for XML applications that suit an XML Schema
with cost-based methods

No Yes

associations (e.g., parent-child relationships, attributes, and topological orders) in the document. It
applies paths to group semantically related associations into the same relation. In this way, related
data can be accessed directly in the form of a separate table for a given query, avoiding large scans.

Davidson et al. [41] develop algorithms to find minimum cover functional dependencies from
a set of XML keys on XML data through a given mapping (transforming an XML document to
relational tables). With the functional dependencies, one could normalize the relational schema
into, e.g., 3NF, BCNF to obtain efficient relational storage for XML data.

Discussion. When creating a relational schema, it is quite natural to consider all kinds of nor-
mal forms and integrities. Therefore, we think mapping XML to a relational schema with semantic
information is more in line with our perception. However, most works in this field need DTD infor-
mation (e.g., [33, 78, 79, 86]). Some methods may increase space consumption to keep redundant
information (e.g., [80, 135]). And several approaches (e.g., [8, 114]) may create many simple tables,
which will increase efforts to reconstruct the original document. Besides, those methods do not
consider the importance of workloads (queries and data updates) toward the relational schema.

2.2.4 Cost-Driven Approach. Given the flexibility of XML, and the variety and complexity of
transactions processed by XML applications, it’s hard to say which of a structure-based approach
and a model-based approach is better. The structure-based approaches take advantage of DTD
to generate a specific relational schema for each XML document. However, this method may not
get a “good” schema for arbitrary XML data having different complexity. What’s more, there are
some applications needing to deal with XML documents without DTDs. Therefore, model-based
mapping is proposed. But this generic mapping limits the performance of relational schema. This
is because the target relational schema is pre-defined and fixed, regardless of the XML schema. As
a result, it is unlikely to work well for all possible applications. Therefore, next, we will review a
cost-driven approach in this section, which could generate a near-optimal relational schema. We
classify this approach as the fourth category of the mapping approach and summarize current
works in Table 6.

LegoDB is proposed in [24, 25], which is a cost-based XML mapping system that takes an XML
schema, an XQuery workload, and a set of sample documents as input, and outputs an efficient
relational schema for a given application. In detail, LegoDB starts with extracting statistical infor-
mation from the given XML documents. This information is used to derive relational statistics that
are needed by the relational optimizer to estimate the cost of the query workload. Then, LegoDB
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utilizes the XML schema and XML statistics to generate an initial physical schema (p-schema). Next,
a set of p-schema rewritings are applied to the generated p-schema for getting a space of alterna-
tive p-schema. Based on a greedy heuristic, LegoDB explores an interesting subset of this space
to find the best relational schema. In this process, LegoDB derives a relational schema from the p-

schema, transforms XML statistics into relational statistics for the corresponding relational schema,
translates the XQuery workload into the corresponding SQL equivalent, and uses a relational op-
timizer to obtain cost estimates.

Zheng et al. [141] firstly use an annotated schema graph to represent the XML schema. Thus, all
of the possible partitioning schemes on the annotated schema graph consist of the solution space.
The selection problem of the XML mapping schema can be regarded as the problem of the graph’s
optimal partition. It could use the Hill-Climbing algorithm to find the optimal solution in this
solution space for an expected workload at a reasonable time. The Hill-Climbing algorithm starts
from an initial schema generated by three approaches (Attribute mapping [58], Shared, and Hybrid

mapping [117]). If one mapping schema is a state in the solution space, the algorithm tries to visit
all the neighboring states that can be reached from the current state through state transformation
defined by four primitive operations and uses the cost model to estimate the cost of executing
the workload at the new state. Finally, the final state with minimal cost is returned as the optimal
partitioning scheme, i.e., target relational schema.

FlexMap is proposed in [109], which defines a schema tree by several type constructors to
represent an XML schema. A relational configuration could be derived from a schema tree. Sup-
pose there is a set of transformations like inline and outline, type split/merge, commutativity, and
associativity, and union distribution/factorization. As transformations are applied and new con-
figurations are derived, FlexMap uses a cost model to estimate the cost for the query workload
under each relational configuration. To find a nice configuration, FlexMap designs three greedy
algorithms (InlineGreedy, ShallowGreedy, and DeepGreedy) to study how the quality of the final
configuration is influenced by the choice of transformations and the query workload. In the end,
FlexMap optimizes the DeepGreedy to get GroupGreedy by a grouping transformation concept
and uses a small threshold of δ to accelerate processing (early terminate the iteration).

Discussion. The cost-driven approach uses a cost model or a relational optimizer to obtain cost
estimates for each storage schema to find or generate an “optimal” relational schema. However,
the problem is that we need to guarantee the accuracy of the cost model, which has a significant
influence on the results [109, 141]. Besides, another problem is the generated schema that does not
preserve too many constraints [24, 25]. Therefore, how to combine the cost-driven approach with
semantic information to design a “good” relational schema is an interesting topic.

2.2.5 Other Studies on Mapping XML Documents to Relational Data. The research on mapping
XML documents to relational data has many sub-problems that include but are not limited to
building XML view on the relational schema to improve query performance, saving XML order,
and translating XML query to SQL. Due to the space limitation, we list a few examples in Table B.1
(see Appendix B) to show research on these points.

2.3 Mapping JSON Documents to Relational Data

Argo is proposed in [34], which uses a vertical table format (three-column table for the object id,
key, and value) [7] to solve the problem of sparse data representations in relational tables and uses
a key-flattening technique to handle the hierarchical structure of JSON (i.e., objects and arrays).
In detail, it appends the keys of a nested object to their parent key for forming the Argo’s table
keys, where Argo uses the “.” as an interval separator character. For arrays, each value is identified
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by the table key (arrayKey[position]) after shredding JSON arrays into tables. Argo presents two
schemas:

(1) Argo/1 uses a single table to store JSON document:

❶ Argo (objID, keyStr, valStr, valNum, valBool).

(2) Argo/3 uses three tables to store key-value pairs according to the value types ((long) number, string, and boolean):

❶ ArgoStr (objID, keyStr, valStr);

❷ ArgoNum (objID, keyStr, valNum);

❸ ArgoBool (objID, keyStr, valBool).

Bahta-Atay [21] propose Single-Table Data Mapping (STDM) and Multi-Table Data Map-

ping (MTDM) algorithms to map JSON documents into relational tuples, which are inspired by
the universal and binary approaches [59]. STDM and MTDM algorithms build a JSON tree derived
from the JSON document, where nodes represent JSON elements and edges represent parent-child
relationships (see Figure 2(b)). Then, they store the JSON tree in the following tables:

(1) The STDM maps the JSON tree into a table:

❶ STDM (elementID, parentElementID, elementName, valText, valNumeric).

(2) The MTDM creates two separate tables to store non-leaf and leaf nodes, respectively:

❶ NonLeafTable (elementID, parentElementID);

❷ LeafNodeTable (elementID, parentElementID, value).

Irshad et al. [66] propose transforming JSON schema into a relational schema by parsing the
JSON schema file, preserving the extracted information in the following metadata tables, creating
relational tables with a vertical table approach by reading these two metadata tables, and storing
the JSON data in the created tables.

(1) RelationalStructureMasterTable (RS_ID, level, objectName, tableName, attributeCategory, parentLevel, pkCol-

umn);

(2) RelationalStructureChildTable (RS_CID, attributeName, columnName, attributeDataType, required, RS_ID).

DiScala and Abadi [46] present a three-phase unsupervised machine learning (ML) algo-
rithm to automatically design a relational schema for an input JSON document. The first phase
starts with transforming the JSON data into a flat table similar to the universal relation model.
Next, it identifies “soft” functional dependencies among attributes. After that, it leverages them to
decompose the previous flat table into a collection of smaller tables joined by primary-to-foreign
key relationships. Each small table consists of a group of attributes that exhibit similar functional
relationships and are likely to correspond to an independent semantic entity. The second phase
searches these entities to discover semantically equivalent entities with overlapping attributes and
merge them into a single entity to eliminate redundant storage. The third phase combines the inter-
mediate tables produced from the previous two phases to create a relational schema for avoiding
excessive normalization.

DVP is proposed in [118], which presents Dynamic Vertical Partitioning (DVP) technology
utilizing heuristics to adapt the data layout for the workload dynamically. DVP groups some at-
tributes accessed together in queries into the same partition (smaller table) by an algorithm with
polynomial complexity. This dynamic partition is based on two criteria: awareness of workload
access patterns and data sparseness awareness. Specifically, when the DVP is invoked, it starts
with the current layout (or an initial partitioning) and generates a new layout by incrementally
refining the current schema. At each iteration, DVP examines all existing attributes and partitions.
For each attribute-partition pair, DVP calculates the gain of moving the attribute to the specific
partition. When there is no further cost improvement, DVP stops and returns a new layout.

Petković [101] proposes using the following schema to store JSON documents, where it assigns
a unique ID for each element and preserves its corresponding parent ID.

(1) Table (elementID, parentID, objectID, keyName, value, valueType).

ACM Computing Surveys, Vol. 55, No. 10, Article 218. Publication date: February 2023.



A Survey on Mapping Semi-Structured Data and Graph Data to Relational Data 218:21

Discussion. The model-based approach is a generic mapping having a predefined fixed schema,
which has been widely studied in the field of XML-to-Relation mapping. It is especially suitable
for JSON data. This is because JSON data come without a schema [19]. The other advantage of this
approach is it could handle the dynamic feature of JSON documents. However, it is inevitable to
have limitations, just like in the domain of XML-to-Relation mapping. For example, works [21, 34]
need recursive joins when it processes a complex query, which affects application performance.
Recently, some people have concentrated on deducing a meaningful schema for JSON data [19, 20,
27, 32, 61]. We could apply this technique [18] to find schema information of JSON data and employ
this information to guide the design of relational schemas. Then, we could store JSON data in the
relational tables and empower JSON to use RDBMSs for analysis and complex queries (e.g., [66]).
Based on this idea, we may be able to draw lessons from the structured-based approach in the field
of XML-to-Relation mapping. We think this is an interesting research topic.

The unsupervised ML approach wants to transform JSON documents into relational data auto-
matically. It expects to identify the structures implied in semi-structured documents and extracts
them to create relational schemas. However, this is not easy to generate a good schema with match-
ing algorithms discovering semantic entities or with analysis tools gaining a semantic understand-
ing of complex data. For example, although the work of DiScala and Abadi [46] could simplify
the cognitively tricky task of exploring new JSON documents by highlighting recurring structural
and semantic patterns, the generated schema often contradicts original expectations. Besides, the
method in [46] does not support functional dependencies with multiple attributes on the left-hand
side, and it does not consider all structural information relevant to input data.

The cost-based approach provides a flexible way to adapt the data layout for the workload dy-
namically. Although this approach could use a cost model to evaluate each storage schema to find
or generate an “optimal” relational schema that achieves predefined goals, the generated schema
may not be a “good” one. For example, the approach of Bahta-Atay [46] is able to achieve a better
cache utilization and TLB utilization, but it may create a large number of small tables.

XML and JSON are the main representatives of semi-structured data. Therefore we review how
to map them into relational schemas in previous sections. Since mapping JSON documents to
relational tables is a new research topic, it does not have many references (see Table 7). But in
other words, this means there is still a lot of room for improvement on this topic.

3 MAPPING GRAPH DATA INTO RELATIONAL DATA

The graph model is a natural way of representing linked data. It gains more and more popularity in
the database community as the growth of linked data on the web and the broad applications of so-
cial networks, web graphs, geographical networks, and so on. This is because people put more and
more attention on the relationship among the objects. Graphs allow increasingly interconnected
networks to be visualized in a straightforward way to catch crucial information. These benefits
make various applications built on graph data. However, this leads to another problem, how to
store and query increasing graph data efficiently. Considering the difficulty and cost of developing
an new native graph database, many application developers resort to RDBMSs to store graphs. For
graph data models, there are about two ways to store their data instances in RDBMSs. One is to
adopt the external data type - BLOB (Binary Large Objects) - to keep unstructured binary large
objects such as property graphs. BLOB data types have full transactional support. Its value ma-
nipulations can be committed or rolled back. However, the BLOB has a maximum limitation, i.e.,
4 gigabytes of binary data. We have to reassemble and/or disassemble BLOB whenever accessing
it. Another is to design a good schema layout for the storage of graph data in RDBMSs. Since the
storage scheme based on RDBMSs is currently the primary storage method for the graph data, our
emphasis is on this strategy. As for the first approach, interested readers may refer to Appendix C.
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Table 7. Comparison among Methods of Mapping JSON into Relational Data

Time Works Contributions No. of

Tables

Empirically

Validated

M
o

d
e
l-

B
a

se
d

2013 Argo [34]
Proposing a mapping layer to make RDBMSs
support the flexibility of the JSON data model

1 or 3 Yes

2019
Bahta-

Atay [21]

Proposing two JSON-to-Relation mapping al-
gorithms: STDM and MTDM, according to
model-based approaches

1 or
more

Yes

S
tr

u
ct

u
re

-
B

a
se

d

2019
Irshad

et al. [66]
Proposing using the descriptive nature of
JSON schema to create a relational schema

- Yes

M
L

-
B

a
se

d

2016
DiScala and

Abadi [46]
Proposing an unsupervised machine learning
algorithm to design relational schemas

- Yes

C
o

st
-

D
ri

v
e
n

2019 DVP [118]
Proposing an architecture-aware technique
to adapt the relational data layout for work-
loads dynamically

- Yes

A
d

ja
ce

n
cy

L
is

t

2020 Petković [101]
Proposing a general method for storing hier-
archical data and comparing it with the ap-
proach of STDM [21]

- Yes

To store graph data in relational tables, we need to create a relational schema. We know that
the design of a relational schema is guided by finding the regularity or uniformity of datasets.
Unfortunately, the a priori uniformity causes difficulties for modeling a dynamic scene (e.g., social
networks) [55]. This is because the primary goal of the RDF/property graph is to handle non-
regular or unstructured data. And the fundamental cause of this hardness is a conflict between a

priori regularity demanded by the relational model and the irregularity of the graph data model.
Due to the conflict between these two data models, it is essential to consider the following points
when designing a “good” schema for storing the graph data in relational tables.

(1) Guarantee the information integrity;
(2) Handle the scalability for large graph stores;
(3) Support the dynamics of graph structure;
(4) Achieve efficiency for query and update operations;
(5) Accommodate multi-valued properties;
(6) Adapt to data sparsity for reducing space consumption.

The critical demand for storing graph data in RDBMSs is holding the whole relevant data to
guarantee information integrity. As more and more large-scale datasets are linked together, some
datasets may consist of billions of nodes or more. These data might be frequently updated online,
mostly by adding new nodes and edges. We believe that an efficient relational storage scheme for
graph data should offer scalability and support dynamics in its data management system. And we
should keep the response time for updates, especially query operations, under the acceptable range
on the available hardware to maintain excellent efficiency. Besides, we might meet a situation in
a graph dataset where a subject is associated with several objects by the same property. That is,
such property has distinct values. The designed schema should have the ability to handle this
multi-valued case. Lastly, we should notice the data sparsity problem and avoid storing too many
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Table 8. Methods about Mapping Graph into Relational Tables

Time Works Contributions No. of

Tables

R
D

F
G

ra
p

h

T
ri

p
le

s
T

a
b

le

2002 Jena [89] Normalizing the triples table to store RDF data 3

2003 3store [64] Normalizing the triples table by a hash technology 4

2003 Sesame [31]
Proposing an architecture independently from plat-
forms to keep RDF data and schema information

13

2010 RDF-3X [96] Using a single “giant triples table” to store RDF data 1

P
ro

p
e
rt

y
T

a
b

le

2003
2006

Jena2 [130, 131]
Introducing property tables and property-class ta-
bles to store RDF data for improving query perfor-
mance

-

2005 Chong et al. [37]
Proposing a compact storage format and using SP-
MJVs to speed up specific types of queries

2

2009 Data-Centric [81]
Presenting a two-phase algorithm consisting of clus-
tering and partitioning to create schema

-

P
a

th 2005
Matonoy

et al. [88]
Proposing a path-based relation schema 6

V
P 2007 Abadi et al. [4]

Dividing a triples table into several two-column ta-
bles to store RDF data

-

E
n

ti
ty

2013 DB2RDF [26]
Using a mixed schema having k-ary and binary ta-
bles

4

D
R

L

2021 GSBRL [140]
Learning an adaptive relational schema for various
data and workloads

-

P
G

C
o

lu
m

n

2015 GRAPHITE [99]
Proposing a framework (GRAPHITE) as a central
graph processing component inside RDBMSs

2

NULL values in the relational tables for reducing space consumption. This section will review the
current mapping approaches to show their development and summarize them in Table 8.

3.1 The Preliminaries of RDF Graph and Property Graph

3.1.1 RDF Graph. RDF is a schema-less and self-describing (the graph’s labels within the graph
describe the data itself) data format. It is common to use RDF to describe various types of metadata.
One typical usage is to describe large-scale metadata, such as ontologies, dictionaries, and data
dictionaries. RDF data is a collection of statements (i.e., triples) where each triple is defined as
subject-predicate-object (s-p-o) and interpreted as “a subject s has a relationship p with object o, or
a subject s has a predicate (or property) p with value o”. From a formalized perspective, a triple is
(s,p,o) ∈ (U ∪B) ×U × (U ∪B ∪L), whereU (representing Uniform Resource Identifier, URI),
B (denoting blank node), and L (expressing literal) are disjoint infinite sets. This is, a subject must
be a URI or a blank node; a predicate (property) is always a URI; an object can be any of these data
types (U /B/L). Besides, a collection of triples can be represented as a directed graph connecting
resource nodes and their property values by labeled arcs. The graph structure of RDF is called
the edge-labeled graph [134] in which labels are added to edges to indicate the different types of
relationships (see Figure 3). An edge-labeled graph G is a pair of (V ,E), where V is a finite set of
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Fig. 3. An Example of RDF graph.

Fig. 4. One possible serialization of the RDF graph (Figure 3) in XML syntax.

vertices (or nodes), and E is a finite set of edges, E ⊆ V ×Lab×V , Lab is a set of labels. Syntactically,
the RDF graph could also be represented by an XML syntax. One possible serialization of the RDF
data (Figure 3) in XML syntax looks like the description of Figure 4. Structurally, we could parse
the RDF into a series of triples and store them in RDBMSs. Therefore, many researchers dedicate
themselves to designing a “good” relational schema for storing and querying RDF data.

3.1.2 Property Graph. As another commonly used graph-based data model, the property graph
is defined as a directed labeled graph where each vertex or edge could have an arbitrary number
of property-value pairs (see Figure 5). And the key-value pairs of a vertex (or an edge) could be
encapsulated in an object, exhibiting an object-oriented view of graphs. Therefore, after being in-
troduced by Rodriguez-Neubauer [111], the property graph has been extensively used by graph
database systems like Neo4j [76] and Sparksee.1 These specialized graph databases for graph anal-
ysis lie in a broader enterprise ecosystem where there are some already existing data processing
platforms (e.g., RDBMSs) for carrying out “traditional” data analysis jobs [54]. Therefore, users

1http://sparsity-technologies.com/#sparksee.
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Fig. 5. An Example of property graph.

could directly use RDBMSs to manage graph data instead of spending decades developing a new
database. Of course, the graph engines have their benefits (e.g., affording a vertex-centric form
of graph programming, which is intuitive for the end (graph analytics) application developer to
use). However, with a syntactic layer on top of SQL, RDBMSs could also provide much of this
programmer’s convenience [54]. Those, coupled with the powerful and mature data management
services of RDBMSs, remind people it is time to reconsider using RDBMSs to manage graph data.

3.1.3 The Differences between RDF Graph and Property Graph.

(1) Function. RDF is more about data exchange and property graph about storage and query.
(2) Definition. Property graph has no concept of URIs or entailments. But, it allows direct

association of properties (key-value pairs) with edges. RDF, by contrast, needs reification or
a quad data model to associate properties with edges.

(3) Structure. The vertices and edges of the property graph could have an internal structure
(key-value pairs). For RDF, neither vertices nor edges have this; they are purely unique labels.

Due to the structure complexity, the property graph faces more challenges in storing edge and
vertex in RDBMSs. Maybe we could transform the property graph into an RDF graph [65], and
then keep the new gotten graph in RDBMSs with RDF-to-Relational technologies.

3.2 Mapping RDF Graph to Relational Data

3.2.1 Triples Table. The first category approach of providing persistent storage for RDF data
in RDBMSs is to store statements in triples tables. One of the straightforward implementations is
using a giant triples table (i.e., a three-column table) to preserve RDF data as a linearized list of
triples (subject-predicate-object). To avoid storing too much redundant information, there are many
variations on this approach.

Jena is proposed in [89], which normalizes the triples table by storing literals and URIs in sep-
arate tables so that they are stored only once. In the following schema, the table Literal keeps all
literal values, and Resource holds all URIs.

(1) Statement (subject, predicate, uriID, literalID);

(2) Literal (literalID, value);

(3) Resource (resourceID, uri).

3store is proposed in [64], which normalizes the triples table by hashing the resource URIs and
literal values as foreign keys. In the following schema, the attributes flagLiteral, flagUri are boolean
values to indicate whether the object is a literal value or a URI.

(1) Triples (model, subject, predicate, object, flagLiteral, flagURI );

(2) Models (hash, model);

(3) Resources (hash, uri);

(4) Literals (hash, value).

Sesame is proposed in [31], which presents the following architecture to preserve RDF data and
schema information. To reduce storage cost, Sesame encodes resource and literal via an integer
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value (the id field). The attribute isDerived is added into some tables, which is to encode whether
a statement was explicitly asserted or derived from the schema information.

(1) Triples (subject, predicate, object, isDerived);

(2) Property (propertyID, isDerived);

(3) Range (propertyID, class, isDerived);

(4) Domain (propertyID, class, isDerived);

(5) SubClassOf (subclass, superclass, isDerived);

(6) Class (classID, isDerived);

(7) Namespaces (namespaceID, prefix, name);

(8) Resources (resourceID, namespace, localName);

(9) Type (resourceID, class, isDerived);

(10) SubPropertyOf (subprop, superprop, isDerived);

(11) Labels (resourceID, literal, isDerived);

(12) Comment (resourceID, literal, isDerived);

(13) Literals (literalID, language, value).

RDF-3X is proposed in [96], which is a workload-independent schema (i.e., a single “giant triples
table” with appropriate indexes). Considering that triples may include long string literals, it uses
a mapping dictionary to replace all literals with ids. As a triples table would incur expensive self-
joins, RDF-3X address this problem by creating the “right” (appropriate) index set and using merge
joins.

Discussion. The triples table could handle dynamic RDF by inserting statements directly into
the table without considering RDF data types. Since URIs and literal values tend to be long strings,
one efficient way to reduce space consumption is not to store the entire string but to keep shortened
versions or keys in the table (e.g., Oracle [98], Jena [89], 3store [64], Sesame [31], and RDF-3X [96]
map strings to integer identifiers). Though flexible, this schema may cause a scalability issue as
the quantity of RDF data grows fast. This is because it uses a giant triples table to store RDF data,
and almost all interesting queries require many expensive self-joins over this table.

3.2.2 Property Table. Based on the RDF data’s regularity (frequent patterns), the second cate-
gory method introduces the property table concept to store several related properties together in
a table. In this approach, a single tuple may include numerous RDF statements.

Jena2 is proposed in [130], which uses a property table to keep all the subject-object pairs re-
lated to a particular property (predicate). That is, this property would not appear in any other
tables. Jena2 clusters multiple properties about a common subject together to form a property ta-
ble. Besides, a special property table (the property-class table) is proposed to hold all instances of
a specified class and reserve properties of that class. The approach of [131] gives the following
three property table formats. The table SingleValuedPropertyTable records values for one or
more properties that have a maximum cardinality of one. MultipleValuedPropertyTable stores
a single property that has a maximum cardinality greater than one (or unknown). And Property-

ClassTable stores all members (single-valued properties) of a class together.

(1) SingleValuedPropertyTable (subject, prop1, prop2, . . . , propn );

(2) MultipleValuedPropertyTable (subject, property);

(3) PropertyClassTable (subject, prop1, prop2, . . . , propn , type).

Chong et al. [37] propose a compact storage format where RDF data is stored (after normal-
ization) in the following two tables. In the table IDTriples, triples are recorded in the identifier
format, which avoids storing URIs (or literals) repeatedly. The table URIMap holds the mappings
from uriIDs to URIs (literals). Besides, a class of materialized views called subject-property ma-

trix materialized join views (SPMJVs) is adopted to speed up specific types of queries over RDF
triples, where the subject-property matrix is a property table-like data structure.
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Table 9. The Features and Differences among Different types of Property Tables

Name Features Differences

Clustered
Property
Table

Each table includes a cluster of proper-
ties that tend to be accessed together
frequently.

A particular property may only appear
in at most one table.

Property-
Class
Table

Each table groups resembling sets of
subjects based on the property rdf:type

and stores them together.

A property may exist in multiple
property-class tables. Any single-
valued property may be stored in this
table, i.e., not just those that declare the
class in their domain. Jena2 [130, 131]
also uses it as the storage of reified
statements.

Subject-
Property
Matrix

Each table consists of a set of single-
valued properties that occur together.
These properties can be direct proper-
ties of subjects or nested properties.

This table is used as an auxiliary data
structure (i.e., a materialized view) in-
stead of a primary storage structure.

(1) IDTriples (modelID, subjectID, propertyID, objectID,...);

(2) URIMap (uriID, valueURI,...).

Data-Centric is proposed in [81], which presents a two-phase algorithm consisting of cluster-
ing and partitioning to create relational schema. The clustering phase scans the whole RDF data
to cluster all properties for generating several groups. Each group, which is made up of proper-
ties frequently appearing together, is a candidate n-ary table. Properties not in clusters may be
stored in binary tables. The partitioning phase takes clusters as input and determines whether or
not to remove some properties for balancing the trade-off between holding as many properties
as possible in a table and reducing NULL storage to a minimum (i.e., below a given threshold).
Data-Centric also handles the multi-valued properties problem and reification storage. The final
relational schema is a balanced mix of binary (i.e., decomposed storage [39, 40]) and n-ary tables
(i.e., property tables) based on the data structure.

Discussion. To distinguish the property tables that have been introduced, we summarize their
features and differences in Table 9. The property table method offers several advantages over the
triples table method. Initially, having multiple tables in a schema is more like a general relational
schema, which makes access to legacy data stored in RDBMSs quite natural. Besides, it may im-
prove performance through a better locality and caching. Next, the use of numerous tables may
make better use of the query optimizer. Finally, this approach simplifies database administration
since the different tables can be separately managed. For the property tables, they could derive
from the ontology of the dataset (e.g., Sesame [31]). Of course, these tables could also be defined by
the applications (e.g., Jena2 [130]). However, these definitions must be provided when the graph is
initially created, which makes this method lose some flexibility. And data sparsity results in many
NULL values in the property table method. Furthermore, multi-valued attributes are slightly in-
convenient to present in a flattened format. But unfortunately, it is common to see multi-valued
attributes in various RDF datasets, which causes the complexity of designing schema.

3.2.3 Path-Based Mapping. The approaches, storing RDF data in statement formats in RDBMSs,
would require many join operations when doing path-based queries. Therefore, path-based
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mapping is proposed for handling those queries efficiently by keeping schema information as well
as path expressions of each resource in tables.

Matonoy et al. [88] divide the RDF graph into subgraphs and then extracts different information
from these subgraphs to fill the following proposed path-based relation schema. In this schema, the
attributes pre, post, and depth express node numbers created by the extended interval numbering
scheme. The values of these attributes are calculated from the Class Inheritance (CI) graphs.
The attributes domain and range, calculated from the Domain-Range (DR) graphs, define the
domain and range of a property. The RDF instance data in the Generic (G) graph is recorded by
using three tables Resource, Path, and Triple, where Resource collects every node in graph G,
Path extracts and holds all absolute arc-path expressions for each node, and Type stores Type (T)
graphs that associate the RDF schema with RDF instances.

(1) Class (className, pre, post, depth);

(2) Property (propertyName, domain, range, pre, post, depth);

(3) Resource (resourceName, pathID, dataType);

(4) Triple (subject, predicate, object);

(5) Path (pathID, pathExp);

(6) Type (resourceName, className).

Discussion. Since the RDF data structure is a directed graph, most of the queries for RDF data
can be regarded as subgraphs matching or finding a set of nodes that can be reached via given
path expressions. These queries, represented in path expressions, need many join operations when
RDF is stored in statement formats. Path-based schema could efficiently reduce the number of join
operations. However, this approach would increase space cost due to keeping path expressions.

3.2.4 Vertical Partitioning (VP) Approach. For taming the scalability problem and avoiding using
clustering algorithms, the vertical partitioning approach uses a fully decomposed storage model

(DSM) to preserve RDF data. We also call it a predicate-oriented approach.
Abadi et al. [4] divide a triples table into several two-column tables whose amounts are equal to

the quantity of distinct RDF properties. For each table, one attribute preserves the subjects having
that property, and the other attribute holds the corresponding object values. With this schema,
listing each distinct value in a successive row could address the problem of multi-valued attributes.
Besides, to locate specific subjects quickly and use fast merge joins, tuples in these tables are sorted
by subjects. Of course, the value column could also be optionally indexed.

Discussion. The proposal of RDF is not equal to a kind of physical storage. As a logical data
model, we do not need to store collections of triples on disks. The vertical-partitioning approach
creates distinct two-column tables for each property. The advantage of this schema is able to sup-
port heterogeneous records, especially for non-well-structured data. Besides, due to a query only
accessing the involved properties, I/O costs are greatly reduced. However, when a query involves
one subject’s numerous properties, it has to merge corresponding two-column tables. As more and
more new predicates appear, this would result in a large number of small tables.

3.2.5 Entity-Oriented Approach. This approach could make relational schema have flexibility
(handling dynamic RDF schemas) and scalability (handling most complex queries efficiently for a
large of RDF data) by using a mix of horizontal tables and binary tables.

DB2RDF is proposed in [26], which attempts to preserve all the predicates for a given entity
on a single row while handling the inherent variability of different entities. DirectPrimaryHash

is a wide table where the attribute entry keeps the subject s , each pair of predicatei and valuei

(0 ≤ i ≤ k) preserves s’ associated predicates and objects. If s has more than k predicates, new
tuples are used to store the additional attributes until covering and storing all the predicates for s .
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DirectSecondaryHash is a binary table that is used to store multi-valued predicates. The tables
DirectPrimaryHash and DirectSecondaryHash hold the outgoing edges of an entity (from s to
the predicates). For efficient access, DB2RDF also encodes the incoming edges of an entity (object
values of the predicate to subject s) with ReversePrimaryHash and ReverseSecondaryHash.

(1) DirectPrimaryHash (entry, spill, predicate1, value1, . . . , , predicatek , valuek );

(2) DirectSecondaryHash (valueID, element);

(3) ReversePrimaryHash (entry, spill, predicate1, value1, . . . , , predicatek ′ , valuek ′ );

(4) ReverseSecondaryHash (valueID, element).

Discussion. Due to using the wide table, the entity-oriented approach could reduce the number
of joins when queries look for multiple predicates for the same subject or object. Besides, using a
column to store various predicates could efficiently save space. Otherwise, we have to use as many
columns as predicates to keep the whole RDF data. Of course, if possible, storing all the instances
of a predicate in the same column could take advantage of all the index benefits of relational
representations. However, as new data flow in databases, the original k may be unsuitable.

3.2.6 Deep Reinforcement Learning-Based Approach. The sixth approach category is to use
deep reinforcement learning (DRL) to design an adaptive storage structure that fits various
datasets and workloads. This approach allows users to obtain an optimal relational schema by
interacting with the environment without requiring prior experience.

GSBRL is proposed in [140], which takes a dataset (stored in a single triples table) and a work-
load (a set of SQL statements rewritten from SPARQL statements) as input to find the optimal
schema in RDBMSs. Firstly, GSBRL vectorizes the data storage features to encode the storage
state of the current tables. Then, it uses Double Deep Q-Network (DDQN) as a training model
to interact with the environment (database). The DDQN selects actions (dividing or merging tables)
to train the network. In the process of training, the database returns the query time to generate
the reward. After the training, GSBRL could find the final schema according to the trained deep
neural network.

Discussion. Compared to current work using fixed rules, DRL-Based approach could generate a
more reasonable and adaptive storage structure. However, it may require a large number of queries
to assist in training the deep neural networks for obtaining a reasonable relational schema. This
is inevitable to result in time-consuming.

3.3 Mapping Property Graph to Relational Data

3.3.1 Column-Oriented Approach. This approach utilizes the column group concept to create a
flexible relational schema for handling dynamic graph data.

GRAPHITE is proposed in [99], which is an extensible graph traversal framework, worked as
a central graph processing unit inside RDBMSs. It provides an extensible set of logical graph tra-
versal operators and their corresponding implementations. It also offers two traversal implemen-
tations (i.e., level-synchronous (LS) traversal and fragmented-incremental (FI) traversal) to
support various graph topologies and different graph traversal queries efficiently. This framework
operates on the following physical column group schema. In this schema, each table is a column
group, which could handle the new attribute insertion problem by appending a new column to the
column group.

(1) Vertex (vID, attribute1, attribute2, ...);

(2) Edge (vIDst ar t , vIDt erminat e , attribute1, attribute2, ...).

Discussion. This approach could easily handle updates of the property graph. Furthermore,
it could use run-length-based compression techniques [3] to compress NULL values in sparsely
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populated columns for saving space consumption. However, this approach is not friendly for star
queries (i.e., queries involve multiple attributes for the same vertex or edge).

3.4 Other Technologies for Storing Graph Data in RDBMSs

There are also other approaches to store the property graph data in the RDBMSs. For example, we
could use an adjacency (i.e., entity-oriented) approach [26] to hold all the adjacency edges of a
vertex on the same row as much as possible while using JSON to store attribute values together
for eliminating joins [113, 121]. For more detail, interested readers may refer to Appendix D.

4 OPEN PROBLEMS AND FUTURE RESEARCH DIRECTIONS

Although various approaches have been proposed to enable an RDBMS to manage semi-structured
data and graph data without extension, the landscape of efforts is fragmented, with no clear view
of which approach is the best and what open problems we should address in this field. To help
towards this direction, we identify and summarize the following open challenges:

• The trade-off between space consumption and query performance. It is hard to bal-
ance data sparsity and query complexity when storing semi-structured or graph data in
RDBMSs. If relational tables consist of few columns that are highly correlated, these narrow
tables would have a higher average value density. That is, these tables have fewer NULL val-
ues. But it may result in a single query involving multiple table join operations. In contrary,
if tables are made wide, they may include many NULL values [5].
• Adaptability to fit dynamic data and workload. The evolving structure of semi-

structured data and graph data and workload’s variety and dynamics make storing these
data in RDBMSs difficult. This is because there is a conflict between the fixed relational
schema and new appearing properties (nonexistent attribute in tables).
• Scalability on handling growing data size. We use scalability to measure an RDBMS’s

ability to handle a growing amount of SQL operations by adding data to the designed
relational schema. The goal of the research aims to provide a “good” schema to store semi-
structured data and graph data in RDBMSs so that users could efficiently perform vari-
ous SQL operations over this schema. But this scalability problem is compounded by ever-
increasing volumes of data to be maintained in tables. Therefore, we need to notice the
scalability problem when designing a relational schema to store semi-structured or graph
data.

This survey presents a comprehensive review, analysis, and discussion of the existing ap-
proaches attempting to address the problems as mentioned above. Each approach outshines in
one or more aspects, having its unique application scenarios. According to the existing works, we
identify some future research directions:

(1) Without the knowledge of schema information (a common situation in practice), the model-
based mapping approach is the most approachable for XML and JSON documents. Consid-
ering that graph data also has no schema, the model-based method might be applied to the
field of mapping RDF or PG data into relational data. Therefore, the model-based approach
is well worthy of further studying.

(2) The adaptive approaches, dynamically adjusting relational schema to ensure required perfor-
mance, are more like what we need today. This is because such an approach can work well for
any long-running workload. However, this approach heavily relies on the cost model. Thus,
it introduces another research problem about how to define an appropriate cost function.

(3) Artificial intelligence (AI) could leverage computer science and data to handle tasks (e.g.,
schema design) that typically require human intelligence. It could relieve the users from
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such a tedious task. Different from most approaches (e.g., structure-based, model-based, and
cost-driven), AI is a data-driven technique, which could utilize data to generate an optimal
schema for fitting various datasets and workloads. Therefore, we think this would be an
attractive research direction in the future.

(4) As big data applications increase in size and complexity, one application may produce data
having multiple formats. These data might have certain relationships instead of being inde-
pendent of each other. For managing multi-model data in a unified platform, multi-model
databases are proposed [83]. But they are still not as mature as traditional RDBMSs. Thus,
this introduces a new research topic - how to use RDBMSs to manage multi-model data.
• A viable approach is first to map multi-model data into a unified intermediate format (e.g.,

map RDF into XML, see Figure 3 and 4) and then leverage prior technologies to map this
intermediate format to relational data.
• Another feasible way is using AI technology to directly learn a relational schema from

workloads to store multi-model data. Interested readers can refer to our latest work [137,
138] which employs the reinforcement learning method to generate a relational schema
for multi-model datasets consisting of relational, RDF, and JSON.

5 CONCLUSION

Since RDBMS has many powerful artificial services, it fuels more and more interest in using ma-
ture RDBMSs to manage various data. This paper’s primary goal is to review and introduce the
existing literature on mapping semi-structured data and graph data into relational data. Instead of
investigating a single specific data model, we cover the currently most popular data models and
study how to map each of them into relational data model. With the development of research, we
may expand it by applying the model-based method to the field of mapping RDF or PG data into
relational data, exploring the adaptive approaches to dynamically adjust relational schema to en-
sure required performance, adopting AI techniques to generate relational schema, or attempting
to map multi-model data into relational data, and so on. This review is essential because it pro-
vides useful insights into the current state of the art in this field, identifies open problems for both
researchers and practitioners, and motivates new research topics towards this research direction.

APPENDICES

A ALTERNATIVE WAYS OF SUPPORTING SEMI-STRUCTURED DATA IN RDBMSS

The XML data type [1] is an internal representation in SQL Server, which is a bit like int, varchar,
and other built-in types. Users could use it as a column type and define column-level or table-
level constraints. They could also use XQuery or the XML Data Manipulation Language (XML

DML) to update the XML instances, where the XML DML is the extension of XQuery. Besides,
users could use an XML constant or an explicit cast to the XML type for assigning a default XML
instance. Overall, the XML data type could make it convenient if XML data have complicated
structures that are not easy to transform into tables.

Large objects (LOBs) [98] could store semi-structured data as a whole in RDBMSs instead of
mapping a document into several smaller tables. Applications concerning semi-structured docu-
ments usually deal with massive volumes of character data. LOBs datatypes like CLOB and NCLOB

are suitable for saving and operating such data. Oracle8i and later versions suggest processing
semi-structured data with LOBs. This is because a table could keep multiple LOBs, and each LOB

could preserve 4GB data or more.
Petković [100] investigates how RDBMSs like Oracle, PostgreSQL, and SQL Server integrate

JSON documents. Oracle stores JSON documents by using data types VARCHAR2, CLOB, and BLOB.
PostgreSQL supports two data types, JSON and JSONB, for storing JSON documents, where JSON
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Table B.1. Other Studies on Mapping XML to Relational Schema

Time Works Contributions

2000
2001

SilkRoute [56, 57]
Proposing a general, dynamic, and efficient tool, silkRoute, for view-
ing and querying relational data in XML

2001
Shanmugasundaram

et al. [116]
Reconstructing an XML view on the relational schema

2002 Tatarinov et al. [125]
Proposing three order encoding approaches to record XML orders
and convert ordered XPath expressions into SQL statements

2003 DeHaan et al. [43]
Proposing dynamic intervals, an encoding based on an interval rep-
resentation of XML data that enables relational engines to execute
arbitrarily nested XQuery FLWR expressions

2003
Krishnamurthy

et al. [74]
Formalizing the problem of finding optimal relational mapping for
the XML workload and exploring the problem complexity

2005 VLEI [72]
Proposing the VLEI code and applying it to XML labeling to reduce
the cost of the insertion operation

2007 ID-XMLToSQL [17]
Proposing an approach - translating XML query into SQL statements
- that is suitable for both single- and multi-valued schema mappings

stores an exact copy of the input text, and JSONB stores data in a decomposed binary form. SQL
Server keeps JSON documents with the NVARCHAR data type. Oracle integrates JSON accord-
ing to the ANSI SQL/JSON standard and implements the most concepts specified in the standard.
PostgreSQL has not implemented any features specified in the standard due to its implementation
before the standard. SQL Server uses the standard to define the data type for JSON documents and
realizes a few standardized features.

Liu et al. [82] extend RDBMSs to use the document-object-store model for storing JSON objects
natively, where each JSON object instance is stored in an aggregated form without decomposition
(i.e., it is self-contained). This aggregated storage not only facilitates the import/export of JSON
data but eliminates the cost of reconstructing the original JSON data.

B OTHER STUDIES ON MAPPING XML TO RELATIONAL DATA

Table B.1 shows some other relevant researches on mapping XML documents into relational data.

C THE ALTERNATIVE WAYS OF SUPPORTING GRAPH DATA IN RDBMSS

Binary Large Objects (BLOB)2 are designed to store large objects in RDBMSs efficiently. With
BLOB, RDBMSs could directly store the property-value pairs of property graph as an attribute
(e.g., [15, 54, 110]), which avoids dividing property-values of a vertex/edge into smaller pieces.
However, the disadvantage is that we have to reassemble and/or disassemble BLOB whenever ac-
cessing one of these property-value pairs. For example, Linkbench [15] designs two tables (one for
graph nodes and one for graph edges) to store property graph data. Instead of creating an attribute
for each property, it uses the attribute data (BLOB) to store relevant properties. And it leaves the
responsibility of extracting specific attributes from the BLOB to the application.

(1) Vertex (vID, type, data, ...);

(2) Edge (vIDst ar t , vIDt erminat e , type, data, ...).

2https://docs.oracle.com/cd/E17276_01/html/api_reference/C/blob.html.
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D OTHER TECHNOLOGIES FOR STORING GRAPH DATA INTO RELATIONAL TABLE

Sun et al. [121] design the following relational schema, inspired by [26], that combines relational
storage for adjacency information and JSON storage for vertex and edge attributes.

(1) OutgoingPrimaryAdjacency (vID, spill, eID1, label1, value1, . . . , eIDk , labelk , valuek );

(2) IncomingPrimaryAdjaccency (vID, spill, eID1, label1, value1, . . . , eIDq , labelq , valueq );

(3) OutgoingSecondaryAdjacency (valueID, eID, value);

(4) IncomingSecondaryAdjacency (valueID, eID, value);

(5) VertexAttributes (vID, attribute (JSON object));

(6) EdgeAttributes (eID, inVertex, outVertex, label, attribute(JSON object)).
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