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We contribute a novel model evaluation technique that divides available measurements into training and
testing sets in a way that adheres to the requirements imposed on professional monitoring stations. We
perform extensive and systematic experiments with a wide range of state-of-the-art calibration models to
demonstrate that our approach provides accurate insights about the performance of calibration models in real-
world deployments, while at the same time highlighting issues with evaluation techniques used in previous
works. Among others, our results show that although trained and tested in the same location, calibration
errors can exhibit deviation up to 116% depending on the evaluation protocol that is being adopted. We
also demonstrate that models trained with continuous data can suffer up to 76% greater error when tested
with data coming from diverse environmental conditions. In contrast, when models are trained and tested
with our method, the variability of errors is significantly reduced and the robustness of calibration models is
significantly improved. The overall performance improvements depend on pollutant concentration, ranging
from 10% for low concentrations to 90% for high concentrations that represent conditions that are most
dangerous for human health.
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1 INTRODUCTION

Low-cost pollution sensors, costing less than $2,500, are rapidly emerging as a powerful solution
for acquiring pollutant information at high spatiotemporal resolution [8, 23, 47, 48]. Increasing the
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Fig. 1. Machine learning calibration model adjusts low-cost sensor’s measurements based on differences

with reference measurements. The model is trained in Step 1 by comparing a collection of low-cost sensor

measurements to measurements from a reference station. In Step 2, the model can be used for correcting

incoming measurements.

scale of monitoring is essential particularly in densely packed urban environments where pollu-
tant concentrations can differ significantly even at a short distance apart [37, 43]. Unfortunately,
low-cost sensors come with a significant caveat, as ensuring the validity and quality of the mea-
surements is challenging. Indeed, evaluations of low-cost sensors have shown the measurements
to have low correspondence with high-precision pollutant monitoring stations, such as those used
by national infrastructure [2, 4]. The accuracy of low-cost sensor measurements can be improved
by taking advantage of machine learning–based calibration [8]. The idea in these approaches, il-
lustrated in Figure 1, is to learn a calibration (or correction) function that compensates for er-
rors in the pollutant measurements using information about environmental variables and other
pollutants. Machine learning–based calibration of low-cost sensors is currently a highly active
research area [8] and a wide range of techniques, ranging from variations of commonly used ma-
chine learning techniques, such as neural networks [7, 14, 35, 47], ensemble methods [31, 57], or
regression models [9, 33, 46], to sophisticated deep learning–based approaches [53], have been
proposed. Such techniques can provide significant improvements to measurement accuracy, e.g.,
Lee et al. [29] report improvements of over 80%, and Lin et al. [31] improvements between 6.1%
and 133% for PM2.5 (compared to simple methods) and similar results have been obtained for other
pollutants [5, 14, 53, 54].

While the algorithmic aspects of calibration have received significant attention in the literature,
unfortunately the evaluation of such techniques has received much less attention. Whereas pro-
fessional measurement instruments and national reference stations are subject to rigorous and
standardized evaluation protocols that require testing against low and high concentrations, con-
sidering the effect of temperature, humidity, and other potential interferents, and considering
multiple devices and testing locations [15], evaluations of low-cost calibration techniques tend
to rely on data from proprietary deployments with varying lengths, pollutant concentrations, and
other characteristics and use statistical model evaluation protocols, such as holdout evaluation or
cross-validation (see Section 8). These protocols do not take into account the characteristics of air
quality measurements and fail to account for requirements placed on professional stations. Indeed,
common statistical model evaluation protocols rely on time-based splits that can give optimistic im-
pressions about the performance of a model as the measurements can be highly sensitive to short-
term autocorrelation, seasonality effects, sensor drift, or other temporal effects. Indeed, neither
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Table 1. Regulatory Standards Set by the EU

EU Regulatory Standard Temporal limit

CO 10 8-h mean
40 annual mean

NO2 200 1-h mean
O3 120 8-h mean

350 1-h mean
125 24-h meanSO2

20 annual mean
50 24-h mean

PM10 20 annual mean
PM2.5 25 annual mean

Units are in µg/m3, except for CO (mg/m3). As harmful levels are set in hours,
it is crucial that calibrated values from low-cost monitors can be trusted.

short-term continuous training-testing split nor cross-validation are guaranteed to contain data
covering diverse environmental conditions [22], and therefore they only indicate performance on
the specific evaluation data. This lack of correspondence with standardized evaluation procedures
makes it difficult to properly assess the validity of the calibrated measurements, making it difficult
to take advantage of the outputs of low-cost sensors in scientific studies, decision making, and
pollution monitoring as a whole. Besides impacting the usefulness of the corrected measurements,
the limitations of current evaluation models also make it difficult to reliably compare different
calibration models or to assess their suitability for different deployment locations and timescales.
Finally, ensuring robust performance is essential for ensuring the information is actionable and
can be used to derive accurate insights to help mitigate adverse health effects resulting from pol-
lution. Indeed, according to regulatory standards, shown in Table 1, adverse health effects can
result even from few hours of exposure to pollutants. Therefore model evaluation should yield
true performance estimates and not merely test the model’s capability to estimate air quality in
very restricted environmental conditions.

We contribute by developing a novel statistical evaluation technique that has been designed
to overcome the key limitations of model evaluation techniques used in existing works on the
evaluation of low-cost air quality sensors. Our technique has been designed to adhere to evalu-
ation requirements of professional-grade measurement stations and capture key characteristics
of measurements. Our approach uses data-driven criteria that are inspired by statistical sampling
techniques to split measurements into training and testing sets so that generality of the measure-
ments against temporal, spatial, and distributional characteristics can be assessed. We validate
and demonstrate the benefits of our evaluation protocol through extensive benchmarks that have
been conducted using a public dataset. In our experiments, we consider 10 calibration models of
different complexity level and compare performance implications given by our protocol against
representative examples of the different evaluation protocols considered in previous works.
Among others, our results show that although trained and tested in the same location, calibration
errors can exhibit deviation up to 116% depending on the evaluation protocol that is being adopted.
We also demonstrate that models trained with continuous data can suffer up to 76% greater error
when tested with data coming from diverse environmental conditions. In contrast, when models
are trained and tested with our method, the variability of errors is significantly reduced and
the robustness of calibration models is significantly improved. The magnitude of improvements
depends on the concentration of pollutants, ranging from 10% for low pollutant concentrations up
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to 90% to high pollutant concentrations, which present the most dangerous conditions for human
health.

Summary of Contributions:

• Novel evaluation framework for machine learning calibration models that adheres to the
requirements imposed on professional monitoring stations.
• Extensive benchmarks that consider 10 different calibration models and four different

evaluation protocols to demonstrate that our approach yields better impressions about the
capabilities and restrictions of calibration models used in low-cost air quality sensing.
• Novel insights on calibration model performance. Among others, we show that calibration

errors can exhibit significant deviation of up to 116% depending on the evaluation protocol
that is being adopted. We also demonstrate that models trained with continuous data can
suffer up to 76% greater error when tested with data coming from diverse environmental
conditions.
• Improved robustness and training performance by limiting training data to periods

containing differing environmental conditions. Our experiments show this boosts model
performance while enhancing the robustness and the generality of the calibration models.

2 MOTIVATION

The performance of professional-grade reference instruments is governed by stringent metrologi-
cal requirements that require testing against high and low concentrations, assessing performance
in at least two different locations, and ensuring sufficient stability over time [16]. This contrasts
with research on low-cost sensor calibration where the evaluations are typically carried out
using data from a single location and using common statistical model assessment techniques,
such as holdout validation or cross-validation, without examining the generality of the tech-
niques [7, 19, 28, 36]. We next conduct small-scale experiments to highlight some of the key issues
with these evaluation techniques, thus motivating the need for improved evaluation protocols.
The experiments are carried out using a public dataset1 [51] containing hourly measurements
of several gaseous pollutants’ measurements from a reference sensor and a low-cost metal-oxide
sensor together with measurements from temperature and humidity sensors; see Section 4 for a
more detailed description of the data.

Autocorrelation: Both air pollutants and environmental variables are strongly autocorre-
lated [25], which can cause information to leak from the training data into the testing data and
result in overly optimistic performance estimates [22]. This issue is particularly problematic when
the measurements cover a short time period or when the environmental variables contain little
variation. Information leakage can give the models a strong performance gain in the short-term
but degrades performance in long-term predictions due to the model overfitting on short-term
correlation patterns between the pollutants and environmental variables. Table 2 shows the auto-
correlation for different environmental variables (temperature and relative and absolute humidity)
and gaseous pollutants (CO, NO2, NOx) in the dataset. From the table, we can observe that the
autocorrelation values remain high for several weeks. These correlations need to be accounted for
in the evaluation to ensure the results are robust. We later show that simply ensuring temporal
separation alone is not sufficient, as it does not guarantee the characteristics of the training and
testing sets to differ.

To show how autocorrelation affects the performance of low-cost calibration techniques, we
split the data into segments containing 1 or more weeks of measurements and sort the segments

1https://archive.ics.uci.edu/ml/datasets/Air+Quality.
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Table 2. Features Often Used in Machine

Learning Calibration Exhibit Strong

Autocorrelation That Persists for Weeks

n= T RH AH CO NO2 NOx

1 0.86 0.48 0.62 0.44 0.57 0.56
2 0.82 0.41 0.54 0.43 0.55 0.53
4 0.77 0.41 0.47 0.42 0.5 0.53
8 0.54 0.34 0.3 0.34 0.48 0.44

The table shows autocorrelation computed from hourly
measurements with lags equal to n weeks for
temperature, relative and absolute humidity, CO, NO2,
and NOx from the reference monitor. This is a data
property that must be addressed and separated from
model behavior and calibration efficiency.

Fig. 2. The accuracy of calibration varies as target variable’s (NO2) autocorrelation between training and

testing data changes. When the segment size of training and testing sets increases, i.e., the longer the con-

tinuous period of measurements that is considered, model predictions tend to reflect more general pollution

levels than the actual required corrections, which results in higher calibration errors. The error in the y-axis

is mean absolute error.

using autocorrelation.2 We then construct training and testing datasets from these segments and
evaluate the performance of different machine learning techniques used in the literature (see
Section 4 for details of the techniques). Figure 2 shows the performance of the calibration models
as a function of autocorrelation between training and testing data. In Figure 3(a) we see that, when
the segments contain 1 week of data, the model errors are rather stable until the autocorrelation
exceeds 0.8 and the errors decrease significantly when the autocorrelation is higher. Figure 3(b)
shows that when the segments cover 8 weeks of data the autocorrelation’s effect to model error is
more significant. Note that autocorrelation measures whether the changes in the segments follow

2Autocorrelation has been calculated with a lag of one but using segments instead of points. Thus, for segment size of
1 week, the autocorrelation measures the similarity between successive weeks, and for segment size 8 weeks the autocor-
relation measures similarity of successive 2-month periods.
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Fig. 3. Autocorrelation (a) and distribution difference (difference between first and third quartiles) (b) be-

tween training and testing sets for NO2 with different segment (number of continuous weeks) lengths. The

color scale ranges from dark blue to dark red. For autocorrelation dark blue indicates correlation of −1 and

dark red correlation of 1. For distribution differences, dark blue indicates the smallest difference and dark

red the greatest difference ( in µg/m3) between training and testing data.

the same trend, not whether they are similar. As a result, the data can manifest similar patterns
yet come from different distributions as they cover different seasons. This effect can be seen from
higher autocorrelation in measurements resulting in higher error when the segment size is several
months long. On shorter segment sizes these effects have more immediate effect and decrease the
autocorrelation, thus also reducing model performance as a function of autocorrelation. We also
see that the range of autocorrelation values is much smaller, even if the data span an entire year
(split into segments of 8 weeks). These patterns are only partially explained by seasonal changes
and highlight how both the total length of data and the length of the segments considered in the
evaluation affect performance. Ensuring the evaluation results of low-cost calibration techniques
are robust thus necessitates considering both the autocorrelation and the time window of the
correlation patterns.

Temporal difference: A naïve solution for reducing the effect of autocorrelation is to use mea-
surements from two periods that are sufficiently far apart. We next demonstrate that this is not
sufficient, as it does not guarantee meaningful distributional differences to guarantee robustness
of the models. We consider NO2 as the target variable and use four segment lengths (1, 2, 4, and
8 weeks). We separately consider (i) the autocorrelation between training and testing data using
a fixed lag of 1 week and (ii) the difference in distribution between the training and the testing
data. For the latter, we choose one segment as the training period, sort the remaining segments
by their similarity with the training segment, and progressively use the remaining measurements
as testing measurements. We measure similarity using the average distance of the first and third
quartile of the respective distributions. This effectively corresponds to comparing the difference
in data spread (or variance) between two distributions. As most machine learning models use the
interquartile range (or variance) for normalizing inputs, difference in data spread thus captures
the effect data variance has on the inputs for the machine learning models. An alternative would
be to use a full distributional metric, such as Kullback–Leibler divergence or Hellinger distance,
but these measures compare the entire distribution and thus are more sensitive to outliers.

The results with four segment sizes (of 1, 2, 4, and 8 weeks) are shown in Figure 3. We observe
that, in most cases, extending the time gap between training and testing data increases the differ-
ence in corresponding distributions but that the magnitude of autocorrelation varies much more
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erratically. This is particularly the case for short segments that contain 1 week of data. While in-
creasing temporal distance between testing and training sets typically increases difference in the
training and testing distributions, it does not guarantee that sets are not correlated. Indeed, as en-
vironmental parameters have strong autocorrelations, periods that are temporally apart but share
similar environmental characteristics result in short-term correlation patterns leaking from the
training data into the the testing data. Note that correlation does not necessarily lead to a better
performance for the models, but it easily leads the model to learn the temporal dependency instead
of the actual relationship between pollutants, environmental variables, and other variables used
in calibration. The result also implies that the naïve solution of enforcing a time gap is insufficient
for ensuring a robust evaluation, highlighting how non-trivial it is to select training and testing
datasets that are good at assessing robustness of the model performance.

Similarity in Distributions: The evaluation process is further complicated by irregular pollu-
tion events that change the target pollutant’s value distribution. Simpler machine learning mod-
els with one-dimensional input may result only in modest accuracy due to cross-sensitivities,
i.e., interference from non-target gases or aerosols affecting sensor readings, and feature cross-
correlations [8, 30], whereas complex models with multidimensional input require a large amount
of data to avoid overfitting on the most common feature and target values. Even in the simplest
case of training and testing a calibration model for a deployment in a single site, the calibration
model may achieve low test error if the testing data are similar to training data. However, this
model may fail drastically when changes occur, e.g., due to infrequent or extreme weather events.
This is due to the training data only partially capturing the true distribution of values, and thus
the model has limited generality on the parts of the distribution that are not part of the training
data. These issues are further exacerbated when distribution changes are greater between train-
ing and testing environment, e.g., when going from lab calibration to real-world deployment, or
attempting to generalize the model from one city to another with very different pollution levels or
distributions. Previous work on evaluating air quality calibration models has mainly used (short-
term) continuous data periods for training, testing, or both phases [5, 29, 45, 47, 57]. Table 3 shows
how the magnitude of standard deviation increases as we choose a larger dataset, which high-
lights how short-term data tend to have high similarity and thus limited distributional differences.
This means that evaluations with short time periods are unlikely to reflect performance with a
feature’s true variation or to satisfy variability criteria placed on professional-grade measurement
instruments.

Also changes in target distribution affect model performance. Figure 4 shows how calibration
errors increase as the training data’s target distribution differs from the target distribution of the
testing data. Larger distributional differences can be observed when the segment size is smaller
in Figure 4(a), but using a larger segment size of 8 weeks (Figure 4(b)) also shows a similar rela-
tionship. This means that simply increasing the size of the testing set alone is not sufficient as the
distributional differences also need to be taken into account. Note that standard machine learning
techniques, such as sample reweighting and bootstrapping [39, 41], are also insufficient, as they
focus on balancing the training set to give equal weights of different parts of the distribution rather
than assessing model performance in diverse conditions. Unlike our approach, these techniques
also do not account for temporal dependencies.

Summary: Taken together, the evaluation results highlight—in line with previous research—how
autocorrelation, temporal variations, and distributional differences have a significant impact on
the accuracy and robustness of low-cost calibration models. While real-world data offer no control
over the distribution of target values or the environmental or other events that may impact the
values of pollutants or environmental parameters, at a minimum the calibration evaluation should
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Table 3. Averaged SD for an n Week Long Dataset for

Temperature (°C), Relative Humidity (%), CO

(mg/m3), NOx (ppb), and NO2 (µg/m3)

n = T RH CO NOx NO2

1 4.15 13.38 1.32 145.04 38.69
2 4.4 14.48 1.33 147.11 39.74
3 4.57 14.46 1.35 151.1 40.78
4 4.63 15.02 1.36 151.23 41.3
5 4.8 14.76 1.32 148.9 40.67
6 4.88 15.38 1.36 154.59 41.72
7 5.04 15.33 1.39 158.99 42.18
8 5.3 15.35 1.38 154.62 43.04
9 5.04 15.37 1.35 157.33 41.61

10 5.52 15.36 1.39 164.6 43.59
11 5.44 15.57 1.33 155.06 42.15
12 5.51 15.9 1.4 159.63 43.32

All data 8.84 17.31 1.46 211.51 48.66
For comparison purposes, the lowest line in the table
shows SD for all available data. The values were produced
by computing standard deviations from consecutive
non-overlapping periods and averaging the results.

Fig. 4. The performance of calibration decreases as target variable’s (NO2) distribution in testing data differs

from the distribution in training data. The error in the y-axis is mean absolute error.

be subjected to testing where all three aspects are taken into consideration. While previous
research has identified these effects to have an influence on evaluation [11, 44, 49], thus far no
unified evaluation procedure that can address all of these aspects in model evaluation, and also
improve model training, has been proposed. We next introduce an evaluation framework that
has been designed to help minimize the impact of these factors and improve the robustness of
evaluations.
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Fig. 5. Illustration of Diverse Data Selector (Algo-

rithm 1). Blue indicates training data and orange

testing data.

Fig. 6. Demonstration of Diverse Data Selector in

practice. The number of windows in a set can be

limited to ensure the sets remain descriptive to their

concentration level. The image shows 8 windows for

each set.

3 DIVERSE EVALUATION FRAMEWORK

The previous section highlighted key issues that standard model evaluation protocols face when
applied to air quality calibration. We next present an improved evaluation framework, coined the
Diverse Evaluation Framework, that addresses these issues. The framework has been designed to
consider the requirements for professional-grade stations and especially the effect of high and low
target pollutant concentrations. The mechanism can be applied to both target variables and fea-
tures considered by the calibration model, such as temperature, humidity, and other pollutants.
Thus, our framework offers a generic procedure for creating training and testing datasets that can
be used to evaluate model generality. As part of our evaluation, we demonstrate that it captures
short-term seasonal variations but breaks long-term autocorrelations, while allowing us to con-
sider the effect of distributional differences in data. The mechanism for creating the splits can be
understood as an adaptive and hierarchical cluster sampling technique where the data are progres-
sively split into clusters according to the current characteristics being evaluated. The training and
testing datasets are then created by sampling measurements from these clusters. The overall idea
is illustrated in Figure 5, and a pseudocode describing how to implement the method is shown in
Algorithm 1.

Diverse Data Selector: Our algorithm creates a pool of segments that are scored according to a
target criterion. From this pool, it is then possible to create different types of sets, e.g., separate
between low and high concentrations or create balanced sets that integrate both high and low
concentrations. By operating on segments, we can preserve short-term autocorrelations and sup-
port models that incorporate temporal dependencies, while at the same time being able to omit
long-term correlations. In the following, we use distributional differences as a running example
of the target criteria for evaluation. The algorithm can be applied to other target criteria, such as
autocorrelation or the values of a covariate, and this example is only used to illustrate the key
ideas of the algorithm.

The algorithm for creating a data split, shown in Algorithm 1, takes as input the entire dataset
that is used for evaluation and a segment length w determining the length of continuous periods
that are considered. In the algorithm, the operator S\{−∞} denotes set difference, i.e., S excluding
−∞. The output of the algorithm consists of a ranked list of segments, i.e., continuous periods of
measurements.
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The algorithm proceeds through each measurement index d1, . . . ,dn , considering a segment of
length w starting from that index. For each index, we calculate a segment score that summarizes
the segment with respect to the desired target criteria. In the case of our running example, one-
dimensional-convolution can be used to sum the pollutant values within the segment, and this
sum can be used as the score. Once all segments are scored, we extract the segment with the
highest value and assign it to the pool of measurements. The scores of the measurements are then
cleared, and all the segment sums are recomputed. Recomputing the segment scores ensures that
overlapping periods are not included in the pool of segments, avoiding individual high- or low-
pollution events dominating the selection. This procedure is continued until there are no more
segments of the given length w , i.e., the algorithm identifies the maximum number of segments
that can be chosen without having any of the segments overlapping. After the algorithm finishes, it
has selected segments by the score in a descending order, and the data points that were not in any of
the segments are omitted from evaluation. Low segments are determined analogously and simply
require changing arg max to arg min (line 5) and reversing the sign of the reinitialized values (line
10). We can also alternate between arg max and arg min, which produces a combination of high
and low periods, which we refer to as diverse data. Figure 5 illustrates the algorithm’s functionality
with diverse data selection, and Figure 6 shows an example of applying it to real data.

ALGORITHM 1: construct-dataset
input : d,w where d � d1, . . . ,dn and w ∈ N
output : indexes

1 begin

2 indexes = ∅
3 while True do

4 S =
N⋃

i=0

∑
w

n=1 di+nK (n) where K=
⎧⎪⎨
⎪
⎩

1, when n ≤ w

0, otherwise

5 i = arg maxi (S\{−∞})
6 if i = ∅ then

7 break

8 end

9 indexes.push(di , . . . ,di+w )

10 di , . . . ,di+w = −∞
11 end

12 end

Stream-based version of Diverse Data Selector: Air quality sensor deployments typically need
to operate on data arriving as a stream of measurements instead of having access to all of the data
at one time. Our approach can also be executed in stream mode to support re-calibration of the
sensors or to transfer existing calibration models to new environments [37]. Stream-based imple-
mentation simply requires a buffer for storing segments and their scores. Incoming measurements
are buffered until a full segment is available, and then we calculate a score for the segment as
before. If the score is higher than the lowest segment score in the buffer, then we add the new seg-
ment into the buffer and remove the segment with the lowest score from the buffer. The process
for identifying low concentration events is analogous, sorting the segments by ascending order
instead of descending. The size of the buffer determines the amount of data that is available for
model evaluation. The more data are available for training, the more costly the training, and thus
the size of the buffer also controls how often re-calibration should be applied. By adapting the
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buffer size, complexity of the calibration model, and frequency of re-calibration, our approach can
be used to support a wide range of different devices. For example, low-end devices with limited
memory and storage can simply use a smaller buffer size and re-train the model whenever suffi-
ciently many segments have changed. Higher-end devices, however, can use larger buffer to train
a more complex model that typically requires less frequent re-calibration than a simpler model.

Practical Example: Assume that we have a collection of data that could potentially all be used for
evaluation purpose. This kind of collection could possibly be achieved by splitting a long dataset
from the middle (like we have done in Figure 6). We start by selecting an input feature, a desired
feature level (low, high, or diverse), and a time window length for using Diverse Data Selector.
The algorithm then produces a sorted set that contains the majority of indexes in it. We can then
select a subset of segments according to our needs, e.g., to match a desired testing set size or to
ensure a proper level of variation. For example, with a segment size equal to one day, selecting
the 30 first segments corresponds to selecting 30 days with lowest or highest feature levels. We
can now use this set for evaluation to get an improved understanding about model performance
in specific feature conditions. We can the rerun Diverse Data Selector with different parameters,
e.g., change the feature level from low to high or to use autocorrelation instead of total sum to
score the segments, and get another view of model performance in differing feature conditions. By
systematically going through different target criteria, we establish a more complete understanding
about model behavior and generality in real-world conditions.

4 EXPERIMENTAL SETUP

We validate and demonstrate the benefits of our evaluation framework through extensive experi-
ments carried out using a publicly available air quality dataset. The experiments focus on showing
how understanding about model performance and generality increases with our diverse dataset se-
lection approach and on demonstrating pitfalls of using conventional model evaluation techniques.
We next describe the data, evaluation methods, and calibration models used in these experiments.
All experiments were implemented in Python using common libraries (numpy, pandas, tensorflow,
keras, xgb, scikit, statsmodels). We repeat all experiments 20 times and average the results to re-
duce the effect of randomness in training.

Experiment Data: We conduct our experiments using a public dataset3 released by DeVito
et al. [52]. The dataset contains measurements for several gaseous pollutants from a low-cost metal
oxide sensor and a reference sensor. The dataset also contains measurements from temperature
and humidity sensors. The dataset contains hourly measurements from March 10, 2004 to April
4, 2005. We use this dataset despite its age as it presents the only openly accessible dataset that
contains measurements for an entire year. Naturally, more recent low-cost air quality sensors have
better correspondence with reference stations [38]. This would mean that the calibration errors
are likely to be smaller with modern sensors; however, the general issue with data diversity and
temporal dependencies would affect the measurements [8, 37].

In total there are 9,357 samples. We consider two pollutants as the target variables for calibration,
CO and NO2. We follow the data processing and guidelines in the original work of DeVito et al. [52]
as closely as possible. For both pollutants, we select the suggested feature sets to predict reference
station’s values. Specifically, for calibrating CO we use NO2, O3, and CO low-cost sensors together
with relative humidity and temperature, and for NO2 we use all the measurements available from
the low-cost sensor array. The low-cost sensor is a single integrated multisensor device produced
by Pirelli labs (which has since been discontinued). Reference measurements are also included

3https://archive.ics.uci.edu/ml/datasets/Air+Quality.
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Fig. 7. Correlogram comparing the measurements provided by the reference instrument (y-axis) to those

provided by the low-cost sensors (x-axis).

in the same dataset and were provided by a co-located reference certified analyzer [51]. Figure 7
shows a correlogram comparing the low-cost measurements with the reference station. As the
figure shows, the measurements rarely align with the diagonal. Calibration algorithms operate by
correcting the low-cost sensor values to better align with the diagonal in the correlogram.

Evaluation methods: We compare our method with the three most commonly applied model
evaluation techniques in machine learning–based air quality sensor calibration research [5, 21, 33,
45, 47, 52, 53, 57]: ordered holdout, shuffled holdout, and k-fold cross-validation. These techniques
together with their advantages and disadvantages are summarized in Table 4.

Calibration models: We consider nine machine learning models covering approaches used by
previous works of air quality sensor calibration and representing different levels of model com-
plexity [6, 26, 31, 33, 45, 52, 53, 57]. In addition, we consider a naïve baseline that uses the mean of
the training data as prediction. This baseline allows us to estimate the degree to which the models
improve on properties of the data itself. The machine learning models we consider are as follows:

• Training Mean: Uses the mean value of the target variable in the training data as the predictor.
This model is used as a naïve baseline to assess the overall benefits of the calibration.
• Linear Regression: A linear regression that uses a single input feature and minimizes the

Ordinary Least Squares between predictions and target values [33].
• Multiple Linear Regression: A multi-dimensional version uses multiple features as input but

otherwise the same as the previous model [9, 33, 45, 53, 57].
• Support Vector Regression: Uses a kernel function (Radial Basis Function) to map the input

data to a high-dimensional space and then finds a hyperplane in the transformed space that
minimizes the distance between the hyperplane and the data points [9, 20, 53].
• Extreme Gradient Boosting (XGB) [26, 53].
• RF: A random forest regressor [57].
• Multidimensional linear regression (MLR)+RF: A two-phase model introduced in Refer-

ence [31] that combines multiple linear regression and a random forest model to separately
estimate linear and non-linear corrections.
• Artificial neural networks (ANN) simple w/scaling: A simple feed-forward neural network

model used by DeVito et al. [52] with 10 neurons on each of the two hidden layers; uses scaled
input values.
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Table 4. Most Commonly Applied Model Evaluation Techniques in Machine Learning Air Quality Sensor

Calibration Compared to Our Method

We list description, pros, cons, and illustration from each evaluation method. In conventional method illustrations blue
section presents training data and orange section testing data. In the Diverse Evaluation Framework the high and low
sets have been selected according to the target variable.

• ANN simple w/o scaling: As the previous model but without scaling the input values.
• ANN deep: Feed-forward neural network with 5 hidden layers, 32 neurons per hidden

layer [45], and scaled input values.

Handling Missing Data: Air quality measurements are characterized by missing measurements,
and the public dataset we use is no exception. Of the 9, 357 samples, 4% have missing values for the
low-cost metal oxide, temperature, and humidity sensors, and the reference variables (CO and NO2)
are missing for 18% of the samples. The way the missing values are handled can have a significant
impact on the calibration model [27], with particularly complex models being vulnerable to the way
missing data are handled. We tested three methods for handling missing data and selected linear
interpolation as this resulted in best alignment with the results of previous works, see below.

Replicating previous work: To ensure our implementations of the calibration models are
correct, we replicated the results of the previous works where possible. Of the 10 models, 5 have
been applied to the public dataset we consider (LR, MLR, XGB, SVR, and ANN) [52, 53], and we
focus on comparing the results for these 5 models. The other models (RF, MLR+RF, ANN w/o
scaling, ANN deep) have largely been evaluated with proprietary datasets, and exact replication
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Table 5. The Mean Absolute Errors from Replicating a CO Calibration Experiment

Model Previous work Our implementation Interpolation method

(MAE) (MAE)

0.61 drop missing
0.63 linearLR 0.63 [53]
0.61 iterative imputer

0.39 [53]
0.36 drop missing
0.39 linearMLR

0.36 iterative imputer
0.41 drop missing
0.43 linearXGB 0.42 [53]
0.41 iterative imputer

0.34 [53]
0.32 drop missing
0.33 linearSVR

0.31 iterative imputer
0.42 drop missing
0.53 linearANN 0.35 [52]
0.36 iterative imputer

The errors are close to the original publications [52, 53]. The best alignment is obtained with linear
interpolation, and hence we use it to handle missing values in our experiments.

was not possible. Nevertheless, for these models, we verified that the performance differences
between different methods were in line with those published. The original articles for the dataset
we consider provide only partial details of how missing data were handled. While replicating
the results, we need to identify also the method that was used to handle missing values. We first
create the same training-testing partitions as in the original works. We then evaluate the models
proposed in the works by considering three methods for handling missing data: dropping missing
measurements, linearly interpolating measurements, and using an iterative imputer to fill in
missing values. The mean absolute errors of these models when used with the different missing
data processing techniques are shown in Table 5. The results closely align with the original
publications and linear interpolation results in the closest match with the original results. Hence,
we use it for handling missing data in our experiments.

5 EVALUATION RESULTS

We use the data and experimental setup described in the previous section to systematically assess
the benefits of our diverse data selection technique while at the same time comparing it against
conventional model evaluation techniques. An example of data splits created using our algorithm
is shown in Table 4, and examples of distribution statistics are given in the individual subsections.
The main results of our evaluation are as follows:

• Our diverse data framework results in training and testing sets that capture the distributional
and statistical characteristics of data better than conventional model evaluation techniques
(Section 5.1).
• The segment length parameterw offers control over data continuity, allowing our approach

to evaluate tradeoff between variations in data and continuity of measurements (Section 5.2).
• Conventional model evaluation techniques easily result in training and testing datasets hav-

ing similar characteristics, which results in optimistic performance bounds for calibration
models (Section 5.3).
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Table 6. Dataset Specifications for CO and NO2 Listed Separately for Each Evaluation Method

CO NO2
mean deviation ac (lag = 24) mean deviation ac (lag = 24)

training testing training testing training testing training testing training testing training testing
ord. holdout 1.72 2.9 1.07 1.47 0.59 0.63 92.1 107.4 37.74 38.68 0.62 0.64

shuf. holdout 2.02 2.03 1.23 1.25 0.0 -0.01 94.76 94.64 34.61 34.73 0.0 -0.03
CV 2.02 1.28 0.67 95.92 38.55 0.64
low - 0.97 - 0.64 - 0.07 - 78.35 - 28.53 - -0.04
high - 4.16 - 1.86 - -0.02 - 179.69 - 49.83 - 0.16

diverse - 2.71 - 2.37 - 0.0 - 130.27 - 75.62 - -0.06
4 months (2880 data points w/ 75:25 training-testing split)

All data 1.89 2.37 1.18 1.61 0.59 0.58 92.66 126.6 35.29 49.97 0.61 0.66
13 months (9357 data points w/ 50:50 training-testing split)

The proposed method successfully removes high autocorrelation in the data and provides descriptive data for high
and low concentration levels.

• Current calibration models are highly sensitive to data heterogeneity, yet current model
evaluation techniques have failed to demonstrate this (Section 5.4).
• Using our diverse data framework for training calibration models improves their generality

and reduces the results dependency on general pollution levels (Section 5.5).
• Diverse data framework can additionally improve model robustness while at the same time

decreasing the risk of overfitting and reducing computational requirements by focusing the
evaluation on periods that have the most variation (Section 5.6).
• Increasing temporal distance between training and testing set to at least 4 months can offer

improved robustness for continuous (conventional) model evaluation techniques, but using
diverse data is overall the best approach for model evaluation (Section 5.7).

5.1 Improved Coverage of Distributional and Statistical Characteristics

without Autocorrelation

We begin by demonstrating that our framework improves the understanding of model performance
as each testing set is linked with metrological criteria governing the performance requirements
of reference instruments [15]. We accomplish this by using the four different evaluation methods
to create training and testing splits from the overall dataset and comparing the distributional and
statistical characteristics of these splits.

We split the measurements into two and consider this as a preliminary training–testing split. We
then choose a 3-month continuous period from the first half’s end to represent continuous training
data and select the first month from the testing half to represent a continuous testing evaluation.
We also consider these 4 months together as the source for randomly shuffling training data points
and for performing a fourfold cross-validation (i.e., leave-one-month out). Finally, we apply our
Diverse Data Selector algorithm with a segment length w of one day to the latter half of the data
and form low, high, and diverse datasets. The characteristics of the created sets are summarized
in Table 6.

From the results, we can see that our method creates a combination of continuous time windows
that covers a wide range of conditions, e.g., ranging from low CO concentrations below 1.0 µg/m3

with low deviation to high concentrations above 4.0 µg/m3 with deviation 1.86, while breaking
autocorrelation in the data. In contrast, the datasets formed with conventional evaluation methods
have highly autocorrelated data, the differences in training and testing sets are minor, or both. As
all the data are collected from the same physical location, this means that there are highly varying
periods within the overall data but that conventional evaluation methods fail to identify and exploit
them in evaluating model performance.
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The impact of this result is also highly significant for human health. Pollutants have different
safety limits that are governed by standards, e.g., EU regulatory standards set a 10 mg/m3 limit for
CO for 8-hour exposure and 200 µg/m3 for NO2 for 1-hour exposure (see Table 1). It is therefore
important that the performance indicators are always within acceptable limits, not just during
days of average pollution levels. For example, looking at the mean and deviation values of NO2

in all of the testing sets created by the conventional evaluation methods, we see a mean value
around 100 µg/m3 and deviation around 35 µg/m3. In contrast, the high dataset created by our
method shows a mean close to 180 µg/m3 and deviation close to 50 µg/m3. In other words, there
are periods where the pollutant concentrations exceed the safety standards, but these are not re-
flected accurately in the training or testing sets created by conventional methods. For example,
taking a real dataset with 90% low pollution values, the selected methods will predict low values
to minimize error. When faced with high pollution values from the low-cost sensor, they will still
predict conservatively, underestimating the pollution level. As days with high pollution levels oc-
cur, possible false implications given by calibrated sensors become actually hazardous to health.
For example, a mean error close to conventional testing set deviation (35 µg/m3) would fail to in-
form citizens when conditions exceed hazardous levels. As negative health effects can result even
from short time exposures (1h or 8h) and as reference data are not expected to be available for
continuous error estimation of each low-cost sensor, ensuring the calibrated models can indeed
detect and react to hazardous situations is essential.

For air quality monitoring, it is vital that model performance is investigated under different en-
vironmental (i.e., weather or seasonal effects) or other conditions (e.g., human activity) instead of
on a temporal basis as calibration models are expected to function in a highly varying real-world
environment [8, 51]. The key finding from our evaluation is that conventional methods fail to
characterize generality of model performance and provide no indication of how well the model
meets performance requirements placed on air quality monitoring solutions. Our diverse selec-
tion framework improves the situation by creating splits that can be used to assess performance
in differing environmental conditions by considering criteria that link directly with metrological
requirements.

RESULT

The proposed diverse framework offers a mechanism to assess calibration performance in vary-

ing environmental conditions, unlike conventional model evaluation methods that underesti-

mate the effects of environmental conditions and temporal effects.

5.2 Control over Data Continuity

The previous section showed how our diverse data selection framework successfully forms sets
that are descriptive of the distribution of pollutants without being strongly correlated across time.
We next demonstrate how the segment length parameter w can be used to control the continuity
and characteristics of the training and testing sets. Increasing the segment length, while keeping
the size of the training and testing data fixed, results in the distributional characteristics of the
testing set progressively resembling those of continuous data. Continuity is essential for models
that incorporate temporal dependencies, such as recurrent neural networks or Gaussian process
regression, and being able to fine-tune the tradeoff between distributional characteristics and data
continuity offers a way to evaluate the generality and time dependency of such techniques.

We use our approach to create datasets with different segment lengths w , ranging from 1 day
to 15 days. We compare distributional characteristics of these sets against those extracted from
all data (i.e., the full 13 months included in the original dataset). Table 7 shows the statistical
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Fig. 8. JS-distance determines how similar two distributions are. Decreasing differences show that a larger

window reduces the special characteristics of subsets.

Table 7. Increasing Segment Length while Keeping Set Size Fixed Selects Data Points That Are More

Similar to Common Pollution Levels

low high diverse
window mean sd mean sd mean sd set size

1 0.97 0.64 4.16 1.86 2.71 2.37 720
3 1.15 0.72 3.96 1.76 2.61 2.15 720
5 1.27 0.93 3.78 1.83 2.58 1.92 720

10 1.42 1.1 3.48 1.74 2.7 1.97 720
14 1.54 1.31 3.23 1.73 2.32 1.71 672
15 1.54 1.33 3.17 1.83 2.3 1.7 720

All data 2.13 1.43 2.13 1.43 2.13 1.43 9357

(a) CO (in mg/m3)

low high diverse
window mean sd mean sd mean sd set size

1 78.35 28.53 179.69 49.83 130.27 75.62 720
3 82.87 32.21 172.85 51.87 130.04 70.93 720
5 85.44 34.0 170.86 55.62 131.73 69.22 720

10 90.26 32.81 163.74 58.77 139.92 64.81 720
14 91.91 28.96 161.23 59.12 129.89 62.94 672
15 93.04 31.47 158.96 54.24 128.19 63.25 720

All data 109.63 46.46 109.63 46.46 109.63 46.46 9357

(b) NO2 (in µg/m3)

characteristics of these sets. For both target pollutants, increasing the segment length results in
the mean and standard deviation progressively resembling those of the continuous data. Note that
this result is not due to coverage of the data increasing as the size of the testing sets is fixed. The
sole exception is segment lengthw = 14 where the size of the testing data decreases due to segment
overlap preventing additional segments being chosen.

We also computed the Jensen-Shannon distance of distributions between the testing sets cre-
ated with our technique and the entire data. The similarities are shown in Figure 8 as a function of
segment length. The figure provides further support to the finding that testing sets of similar size
but with longer segment lengths generally resemble the overall data more closely. The low con-
centration datasets for both target pollutants (CO and NO2) behave differently than the high and
diverse datasets, as can be seen from Figure 8. This is due to the low pollution values dominating
the data, resulting in the mean pollution levels being biased toward lower concentrations.

A dataset of a fixed size built from longer segments results in closer resemblance to continuous
data and emphasizes general pollution levels, whereas shorter segments allow us to assess the im-
pact of variations in environmental conditions. From a calibration model training perspective, a
longer time frame enables the use of modelling techniques that incorporate temporal dependen-
cies, but from an evaluation perspective the testing conditions become less restrictive and closer to
general pollution levels. This can limit insights about model performance and result in the model
performance following the mean pollution level too closely. Our framework offers a potential way
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Table 8. Mean Absolute Errors (CO in mg/m3, NO2 in µg/m3) of Calibration Models When Evaluated

with Conventional Evaluation Techniques

(=continuous)
ordered holdout shuffled holdout CV

Training mean 1.36 1.27 1.32
LR 0.71 0.70 0.73

MLR 0.66 0.61 0.68
SVR 0.64 0.62 0.67
XGB 0.82 0.58 0.82
RF 0.76 0.54 0.77

MLR+RF 0.75 0.52 0.76
ANN simple raw 0.72 0.64 0.72

ANN simple scaled 0.67 0.59 0.71
ANN deep 0.74 0.55 0.80

4 months (2,880 data points w/ 75:25 training-testing split)

(a) CO (in mg/m3)

(=continuous)
ordered holdout shuffled holdout CV

Training mean 40.35 37.51 38.61
LR 38.76 34.05 37.03

MLR 26.11 22.65 24.91
SVR 29.29 24.21 26.75
XGB 30.34 20.74 28.04
RF 27.96 19.51 26.46

MLR+RF 27.47 19.48 26.17
ANN simple raw 26.73 25.50 25.87

ANN simple scaled 27.81 22.26 25.98
ANN deep 28.61 19.70 26.55

4 months (2,880 data points w/ 75:25 training-testing split)

(b) NO2 (in µg/m3)

The errors are similar to each other, besides the shuffled holdout. Lowest errors for each evaluation method have been
emphasized.

to control this effect and assess the impact that temporal dependencies have on the measurements.
Tuning the segment length parameterw controls whether the datasets should emphasize continu-
ity or break the temporal structures. A potential way, then, to evaluate techniques that incorpo-
rate temporal dependencies is to use our framework to create testing sets with different segment
lengths, as this allows us to assess the model’s sensitivity to temporal dependencies and the overall
level of pollutants.

RESULT

The diverse framework offers control over data continuity and temporal dependencies, unlike

existing model evaluation methods. The segment length parameter w controls the tradeoff be-

tween data continuity and descriptiveness of the dataset. Repeating the evaluation with mul-

tiple segment lengths thus allows assessing the impact of both variations and continuity on

performance.

5.3 Diverse Data and Calibration Model Performance

Thus far we have considered how our framework affects the characteristics of the datasets that
are used for training and testing. We next assess the impact these characteristics have on model
performance and demonstrate how our evaluation framework helps to obtain a significantly better
understanding about the calibration model’s performance compared to existing machine learning
validation techniques.

We first carry out performance evaluation with three conventional evaluation schemes (ordered
holdout, shuffled holdout, and cross-validation; see Table 4). We train all the calibration models
(see Section 4) with 3 months of data and then use a 1-month testing set to evaluate them. The
results in Table 8 show that these evaluation methods give similar implications for overall model
performance. Shuffled holdout always produces the the lowest error, which is due to the fact that
the entire distribution is shown in the training phase and the testing data points might be close to
identical to training data points. The performance of ensemble methods supports this, as they are
known to easily overfit to properties of the data.

Table 9 shows the same results when the calibration models are run on three different datasets
generated with our method: low, high, and diverse, containing low, high, and mixed concentrations
of target pollutants, respectively. In the table, we have also included ordered holdout (continuous)
as a baseline to highlight how model performance changes. The diverse and high concentration
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Table 9. Mean Absolute Errors of Calibration Models When Evaluated with Different Testing Sets

cont. low high diverse

Training mean 1.5 0.88 (-41%) 2.57 (+71%) 2.02 (+35%)
LR 0.97 0.55 (-43%) 1.34 (+38%) 1.17 (+21%)

MLR 0.95 0.72 (-24%) 1.3 (+37%) 1.25 (+32%)
SVR 0.95 0.63 (-34%) 1.44 (+52%) 1.3 (+37%)
XGB 1.07 0.61 (-43%) 1.57 (+47%) 1.29 (+21%)
RF 0.98 0.63 (-36%) 1.39 (+42%) 1.25 (+28%)

MLR+RF 0.97 0.84 (-13%) 1.24 (+28%) 1.21 (+25%)
ANN simple raw 0.96 0.88 (-8%) 1.47 (+53%) 1.45 (+51%)

ANN simple scaled 0.98 1.11 (+13%) 1.45 (+48%) 1.52 (+55%)
ANN deep 1.01 0.6 (-41%) 1.54 (+52%) 1.24 (+23%)

AVG 1.03 0.74 (-28%) 1.53 (+49%) 1.37 (+33%)
4 months (2,880 data points w/ 75:25 training-testing split

(a) CO (in mg/m3)

cont. low high diverse

Training mean 32.77 25.29 (-23%) 88.25 (+169%) 65.0 (+98%)
LR 31.4 27.07 (-14%) 113.8 (+262%) 77.21 (+146%)

MLR 30.05 27.86 (-7%) 42.77 (+42%) 43.02 (+43%)
SVR 27.61 25.55 (-7%) 64.97 (+135%) 54.5 (+97%)
XGB 28.6 23.63 (-17%) 73.17 (+156%) 55.21 (+93%)
RF 27.32 21.74 (-20%) 66.77 (+144%) 51.83 (+90%)

MLR+RF 27.31 22.7 (-17%) 52.61 (+93%) 44.32 (+62%)
ANN simple raw 32.56 28.63 (-12%) 52.92 (+63%) 48.22 (+48%)

ANN simple scaled 30.77 29.01 (-6%) 43.73 (+42%) 44.03 (+43%)
ANN deep 29.35 30.65 (+4%) 43.76 (+49%) 40.57 (+38%)

AVG 29.77 26.21 (-12%) 64.28 (+116%) 52.39 (+76%)
4 months (2,880 data points w/ 75:25 training-testing split)

(b) NO2 (in µg/m3)

Lowest errors for each testing set have been emphasized. Comparison with continuous data highlights that calibration
models suffer from large error variation when testing data changes, which is why model performance estimations
should be better separated from data properties.

testing sets selected with our method result in significantly higher errors than continuous or low
concentration data, highlighting how other validation methods give optimistic views of model per-
formance and are biased toward lower concentration levels that tend to dominate the distribution
of pollutants. The performance of calibration models changes between −12 and +116 % for NO2

and between −28 and +49 % for CO. The significance of these changes is further highlighted by
the fact that for both target pollutants merely predicting the mean value from training data results
in lower error than using a simple ANN calibration. Changes in the evaluation sets also affect
the performance differences between the methods with the best-performing model being highly
dependent on the way the training and testing sets are constructed. Our approach allows testing
against variations in the pollutant concentrations and assessing the generality and sensitivity of
the model to these and other changes in the characteristics of the training and testing sets.

The performance variations indicate that the calibration model’s performance is sensitive to
changes in the pollution distribution, which makes the calibration model’s performance highly
sensitive to the conditions where the training and testing data have been collected. Training and
testing with similar target distributions intuitively results in lowest error rates that can be seen as
the best case performance. In the data considered in our evaluation, high pollution concentrations
are infrequent, resulting in continuous evaluation methods being biased toward lower concentra-
tions and the errors being strongly dependent on whether higher concentration periods occurred
during the training and testing periods or not. As we showed in Figure 3, simply enforcing tempo-
ral separation is not sufficient for ensuring the measurements are sufficiently varied for assessing
model generality. Conventional evaluation methods are not reliable for evaluating a calibration
model’s performance, as they fail to account for distributional characteristics and benefit from
similarity of training and testing data. As a result, they provide only limited insights about the
generality of the calibration models and easily offer an optimistic view of true model performance.
Our diverse data selection framework overcomes this issue, ensuring differences in distributional
characteristics are explicitly modeled and considered as part of the evaluation.

RESULT

Our evaluation framework avoids testing data to be very similar to training data, overcoming

the main issue with continuous evaluation methods and offering a method that can assess the

impact of different pollution levels.
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Table 10. Averaged Model Errors (MAE) and Their Deviations w.r.t. Each Training–Testing Dataset

Combination with Two Lowest Values Emphasized

training testing CO T RH

level level mean sd mean sd mean sd

low low 0.49 0.04 0.73 0.20 0.59 0.13

high low 1.80 0.48 0.91 0.22 0.90 0.27
low high 2.93 0.23 1.29 0.30 0.87 0.23
high high 0.97 0.16 0.61 0.13 0.92 0.18

(a) CO (in mg/m3)

training testing NO2 T RH

level level mean sd mean sd mean sd

low low 18.53 2.49 28.78 7.87 22.44 7.10
high low 61.11 23.44 55.26 20.08 27.61 4.77

low high 86.74 14.82 38.74 20.66 30.04 4.53

high high 29.97 5.38 22.17 4.51 28.89 5.47

(b) NO2 (in µg/m3)

Performance with different combinations of low and high concentration datasets shows that calibration models can be
emphasized to learn a given distribution’s properties. Although this brings out the issue that less frequent environmental
phenomena are less likely to be handled accurately, it also sheds light on the effect of correct training data selection.

5.4 Performance with Homogeneous and Heterogeneous Data

We showed that conventional model validation techniques easily result in training and testing
data being highly similar. This, in turn, results in the evaluation process merely characterising the
calibration model’s adaptability to general pollution levels without assessing its capability to learn
a generic mapping from low-cost measurements to those provided by reference monitors. We next
address in more detail how the calibration models perform with homogeneous and heterogeneous
measurements. Besides addressing model generality, this experiment also evaluates the model’s
ability to transfer across locations with differing environmental conditions.

We create a total of 12 datasets for the two target pollutants (CO and NO2), comprising low
and high sets created using the level of pollutant, or the level of humidity or temperature as the
criteria for creating the datasets (6 per pollutant). We train the calibration models with one set and
then evaluate them with another. When the levels are the same, we apply cross-validation (CV)

without breaking any window structures. We use a fixed 1-day segment length when forming the
high and low sets in this experiment. Training and testing data were sampled from 10 months of
data, and the final sets covered 75 to 79 days for training and 26 to 30 days for testing. The results
are shown in Table 10.

The results show that data homogeneity has (as expected) a significant effect on the performance
of the calibration models. Besides few exceptions, similar training and testing environments result
in the lowest errors and deviations. With heterogeneous data, training models with data from a
lower level and testing against a higher level tends to cause higher errors than reversing the roles.
This indicates that models are better at adapting from higher pollution levels to lower levels than
the other way around. A sole exception in this is the simple ANN, which uses scaled input values.
The errors vary considerably due to the challenge of scaling the feature values. Indeed, the scaler
is trained with training data, and therefore its scaling is limited to the values that appeared in the
training data.

Field testing requirements for reference monitors [15] state that performance needs to be tested
in different pollutant concentrations and against differing environmental conditions, whereas
our results have shown that current validation techniques tend to result in similar data being
used for evaluation. Our results have also shown how low-cost calibration models are highly
sensitive to variations in the level of pollutant concentrations or those of environmental variables,
while highlighting how current model evaluation techniques fail to characterize the models’
sensitivity to these variations. Indeed, our results show that the calibration model’s performance
exhibits substantial variation according to the relationship of training and testing environment.
Our proposed framework allows using different training and testing splits, which can identify
potential issues with the models and provide a better understanding of model performance. In
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Table 11. Training Calibration Models with Diverse Training Data Improves Model Generality Compared

to Training with Continuous Data (Table 9) or When Performance Is Contrasted against Different

Concentration Levels

cont. low high diverse

Training mean 1.24 1.05 (-15%) 2.41 (+94%) 2.02 (+63%)
LR 0.7 0.52 (-26%) 1.4 (+100%) 1.2 (+71%)

MLR 0.68 0.55 (-19%) 1.3 (+91%) 1.15 (+69%)
SVR 0.68 0.54 (-21%) 1.36 (+100%) 1.19 (+75%)
XGB 0.86 0.63 (-27%) 1.49 (+73%) 1.29 (+50%)
RF 0.8 0.58 (-28%) 1.46 (+82%) 1.24 (+55%)

MLR RF 0.8 0.64 (-20%) 1.32 (+65%) 1.19 (+49%)
ANN simple raw 0.77 0.76 (-1%) 1.29 (+68%) 1.25 (+62%)

ANN simple scaled 0.75 0.56 (-25%) 1.44 (+92%) 1.25 (+67%)
ANN deep 0.91 0.61 (-33%) 1.43 (+57%) 1.17 (+29%)

AVG 0.82 0.64 (-22%) 1.49 (+82%) 1.29 (+57%)

(a) CO (in mg/m3)

cont. low high diverse

Training mean 46.65 25.56 (-45%) 87.57 (+88%) 64.91 (+39%)
LR 67.92 28.67 (-58%) 116.67 (+72%) 79.18 (+17%)

MLR 26.04 26.12 (+0%) 38.17 (+47%) 39.03 (+50%)
SVR 35.05 25.23 (-28%) 63.36 (+81%) 53.12 (+52%)
XGB 37.42 24.42 (-35%) 64.37 (+72%) 51.53 (+38%)
RF 36.74 24.97 (-32%) 62.06 (+69%) 51.14 (+39%)

MLR RF 27.93 23.99 (-14%) 42.81 (+53%) 39.14 (+40%)
ANN simple raw 30.09 24.51 (-19%) 50.38 (+67%) 45.11 (+50%)

ANN simple scaled 26.19 26.81 (+2%) 37.8 (+44%) 39.16 (+50%)
ANN deep 28.96 31.17 (+8%) 33.81 (+17%) 34.89 (+20%)

AVG 36.3 26.14 (-28%) 59.7 (+64%) 49.72 (+37%)

(b) NO2 (in µg/m3)

case a single performance metric is desired, the results can be averaged across different splits, as
long as the process for establishing the splits is standardized.

RESULT

The diverse data framework creates splits that are in line with field testing requirements for ref-

erence monitors, unlike conventional model evaluation techniques that tend to result in training

and testing data being similar, which limits their potential to characterize model performance

in line with field testing requirements.

5.5 Diverse Data Improves Generality

We next demonstrate an added benefit of our proposed data selection method by showing how
the use of diverse data to train calibration models helps to improve model generality compared
to training with continuous data. We select two different diverse datasets that we use separately
for training and for testing. We achieve this by dividing all available data into two equal parts
(6.5 months in each) temporally from the middle and running the subset selection individually
on both of these sets. The continuous training and testing data contained 4,678 data points
(6.5 months) and the sampled low, high, and diverse subsets 1,800 data points (2.5 months) for
training and 720 data points (1 month) for testing. Table 11 shows model errors when trained with
diverse training data, and Table 12 shows performance differences between individual model er-
rors when training either with continuous or diverse data. Both performance levels are estimated
with multiple testing set runs.

Table 11 shows that the low and the high concentration testing sets result in the lowest and
highest errors in 85% (17 of 20 rows in the table) of the cases. Similarly to training calibration
models with continuous data (Table 9), the errors with diverse testing data are higher than those
with continuous data, indicating that continuous data are less challenging and do not give a
good understanding about performance in a real-world deployment where distributional differ-
ences may arise from infrequent pollution events. Comparison between these tables shows that
models trained with continuous data suffer a 76% greater error when tested with diverse data
instead of continuous, but when trained with diverse data and tested against it, the error is
only 37% greater than with continuous data training and testing. Diverse training therefore re-
duces the original model’s error by 39 percentage points, improving robustness against diverse
conditions.
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Table 12. A Comparison of MAEs Shows That Feeding Calibration Models Diverse Training Data also

Improves Models to Perform Better in a Wide Range of Concentrations, Compared to Using Merely

Continuously Selected Data in Training

cont. low high diverse

Training mean -0.0 0.03 -0.03 0.0
LR 0.0 -0.0 0.01 -0.0

MLR -0.04 0.07 -0.23 -0.09
SVR -0.01 0.07 -0.07 0.0
XGB 0.03 0.14 -0.12 0.01
RF 0.05 0.08 -0.03 0.03

MLR RF 0.01 0.14 -0.21 -0.03
ANN simple raw 0.04 0.14 -0.1 -0.0

ANN simple scaled -0.08 -0.09 -0.1 -0.08
ANN deep 0.15 0.09 0.02 0.0

AVG 0.02 0.07 -0.09 -0.02

improvement (in %) 30.0 10.0 80.0 30.0

(a) CO (in mg/m3)

cont. low high diverse

Training mean -0.08 0.06 -0.16 -0.02
LR 3.6 2.17 3.73 2.64

MLR -0.69 0.31 -4.06 -2.97
SVR 0.48 2.29 -2.93 -0.56
XGB -9.44 2.51 -20.28 -9.41
RF -1.65 5.86 -7.41 -0.44

MLR RF -2.35 4.56 -9.85 -3.74
ANN simple raw -2.81 1.77 -8.45 -3.71

ANN simple scaled -1.07 -0.0 -4.48 -3.32
ANN deep 0.53 4.36 -7.64 -4.24

AVG -1.35 2.39 -6.15 -2.58

improvement (in %) 70.0 0.0 90.0 90.0

(b) NO2 (in µg/m3)

Green color indicates lower error with diverse training data than with continuous data. We also show how many models
(in %) improved their performance when trained with diverse training data.

Table 13. Using the Subset Selection Algorithm to Create a Training Dataset with More Complete Range

of Possible Phenomena also Improves Model Generality and Results in Lower Error

testing set low high diverse continuous mean sd

training set

low 0.54 2.58 1.81 1.17 1.52 0.76
high 0.73 1.52 1.35 0.85 1.11 0.33

diverse 0.64 1.49 1.29 0.82 1.06 0.34
continuous 0.58 1.58 1.31 0.8 1.07 0.4

mean 0.62 1.79 1.44 0.91
sd 0.07 0.46 0.21 0.15

(a) CO (in mg/m3)

testing set low high diverse continuous mean sd

training set

low 19.87 88.18 59.54 47.56 53.79 24.52
high 32.11 54.46 51.84 34.21 43.16 10.07

diverse 26.14 59.7 49.72 36.3 42.97 12.78
continuous 23.76 65.86 52.3 37.65 44.89 15.76

mean 25.47 67.05 53.35 38.93
sd 4.44 12.85 3.7 5.13

(b) NO2 (in µg/m3)

From Table 12(b) we see that models trained with diverse data mostly have a smaller error than
those using continuous training data. Only when evaluating models with low testing data does
the use of long continuous data seem beneficial, which further provides evidence that lower values
dominate the data and hence are overrepresented when conventional model evaluation techniques
are used to partition the data. Using diverse training data is highly advantageous for improving
model performance against infrequently occurring pollution levels, while also improving perfor-
mance in continuous long-term evaluation.

RESULT

Using data splits created by the proposed diverse framework to train calibration models im-

proves model generality when tested in differing pollution concentrations and reduces the de-

pendency of evaluation results on general pollutant levels.

5.6 Other Criteria

We next further emphasize the effect of data selection by computing an average over all model er-
rors. The averaged model performances for each training and testing data combination are shown
in Table 13. The lowest errors are highlighted in the table. As expected, and in line with our earlier
findings in Section 5.4, which only considered low and high levels, the lowest error results from
having similar training and testing environments. Testing models trained with continuous data
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against high and diverse data shows how the continuous data does not cover high pollution levels
sufficiently well. Diverse training data are more advantageous with these testing sets, showing
better or similar performance rate in 80% of the models.

Model Robustness: The mean and standard deviation columns of testing data in Table 13 show
how model performance changes when trained with a fixed datasets and evaluated separately with
each testing set. This is indicative of model robustness, i.e., performance under various pollution
conditions, since if some testing data causes significantly lower or higher errors, the our train-
ing data overrepresent certain data properties. In contrast, small differences in performance with
various testing sets would indicate stable and predictable performance rate that would build confi-
dence about the performance level. The lowest value in testing data’s mean column and the second
lowest value in standard deviation column indicate that in general diverse training data improves
model robustness to changes in the testing data. This is due to the fact that diverse training data
covers well various pollution phenomena that can occur in the testing data, i.e., data encountered
in a real-world deployment.

Overfitting: Training data’s mean and standard deviation rows in Table 13 show how model per-
formance changes when trained separately with each data set and evaluated with a fixed testing
set. This demonstrates the results sensitivity to the testing set’s coverage of various phenomena.
For example, in both tables high testing set emphasizes model performance during days with high
pollution levels, and using dissimilar data (from days with low pollution levels) for training causes
70% (CO) and 62% (NO2) higher errors than using similar high pollution level data for training.
The mean and deviation thus depict how much influence training data variation has on the model
performance. Both parts of Table 13 indicate that although diverse training data are the optimal
choice for highest performance with diverse testing data, the sensitivity of diverse testing data to
training data selection is small in case of both pollutants.

Computational efficiency: The general consensus is that the more data complex machine learn-
ing algorithms are given the better they will perform. This statement carries the assumption that
all data are equally valuable learning material, which does not hold in our case. If the data distri-
bution is highly skewed toward the most common environmental feature values, then we might
have copious numbers of very similar data points to the extent that their presence diminishes the
model’s attention on the less common phenomena.

Besides improving robustness, diverse data selection can potentially also reduce computational
needs. From Tables 12 and 13, we see that using a balanced training dataset, i.e., diverse training
data, passes more descriptive information to the model and results in a very comparable model
than using training dataset that has a great number of the most common values, i.e., continuous
training data. The continuous training dataset has 4,678 data points (6.5 months of hourly-based
measurements), whereas the diverse training dataset has only 1,800 data points (2.5 months). As
the data contains many periods with low CO levels (see Section 5.2), using diverse data for training
can reduce the use of redundant low pollution periods for training the models. As diverse training
data has less than 40% of the continuous training dataset, this offers an opportunity for devices
with limited computation capacity to (re-)train calibration models.

RESULT

Besides improving model robustness and reducing overfitting, the diverse framework offers

potential for improving computational efficiency by reducing the effect of redundant periods

with similar pollution concentrations.
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Table 14. Averaging over All Calibration Models We See Deteriorating of Calibration as We Increase

the Distance between Training and Testing Data

months errors mean deviation

apart model avg model std training testing training testing

0 0.61 (44%) 0.19 2.22 1.97 1.52 1.38
1 0.68 (49%) 0.21 2.52 1.97 1.7 1.38
2 0.88 (64%) 0.19 2.72 1.97 1.77 1.38
3 1.00 (74%) 0.19 2.67 1.97 1.59 1.38
4 0.86 (64%) 0.14 2.24 1.97 1.3 1.38
5 0.80 (59%) 0.14 1.7 1.97 1.09 1.38
6 0.88 (65%) 0.17 1.64 1.97 1.04 1.38
7 0.88 (65%) 0.19 1.83 1.97 1.15 1.38
8 0.74 (55%) 0.14 1.96 1.97 1.2 1.38

AVG 0.82 (60%) 0.14 2.17 1.97 1.37 1.38
3 months (2,160 data points w/ 2:1 training-testing split)

(a) CO (in mg/m3)

months errors mean deviation

apart model avg model std training testing training testing

0 29.15 (56%) 6.16 136.01 144.67 49.11 51.59
1 34.16 (65%) 6.83 122.81 144.67 44.57 51.59
2 42.13 (81%) 7.67 113.73 144.67 46.13 51.59
3 45.30 (86%) 10.87 105.05 144.67 41.9 51.59
4 53.22 (101%) 12.78 95.86 144.67 36.72 51.59
5 50.89 (94%) 19.27 88.8 144.67 36.94 51.59
6 51.38 (95%) 23.18 92.27 144.67 38.45 51.59
7 51.68 (96%) 20.27 95.16 144.67 37.89 51.59
8 53.13 (100%) 17.13 91.74 144.67 33.39 51.59

AVG 45.67 (86%) 13.32 104.60 144.67 40.57 51.59
3 months (2,160 data points w/ 2:1 training-testing split)

(b) NO2 (in µg/m3)

However, with a gap of 3 months, the error stops increasing and shows some signs of stability. We also compare averaged
model errors to the diverse errors from Table 9. In terms of model generality, this is a better implication from the
performance level that calibration models have actually achieved.

5.7 Improved Holdout Validation

As the final step, we use our results to provide a simple extension to ordered holdout validation
that improves its suitability for evaluating calibration models. The improvement results from sepa-
rating model performance from inherited data properties, and thus yielding a better understanding
about the performance implications in a real-world deployment. We also show how this method
compares to our diverse data selection framework. We investigate this by selecting the testing data
with increasing temporal distance from the training data. We start by choosing adjacent training
and testing datasets and then gradually increasing the temporal distance between the two sets by
moving the training set to appear earlier in time. The dataset specifications and model errors are
shown in Table 14. We compute average errors and deviations over all calibration models with
respect to the testing sets to show how model behavior stabilizes when the temporal distance be-
tween training and testing data is increased. We also compare the averaged model errors from
this experiment to the diverse errors in Table 9. The results of these comparisons are shown in
Table 14.

The table highlights the optimistic impressions about model performance that are to be expected
if we choose the testing data to follow directly the training period. This, however, tells more about
the property of the relation between training and testing data than about the function learned by
any model. From the results for CO in Table 14(a), we see that all errors are smaller compared to
errors indicated by diverse dataset in Table 9(a), and on average the lagged holdout testing sets
reach around 60% of the error given by the diverse testing data. However, with adjacent training
and testing data (lag = 0) the error magnitudes are only 44% of the diverse errors. With NO2 in
Table 14(b) instead the errors are more similar to those indicated by diverse testing data. On aver-
age, the adjacency of training and testing data reduces the error by 44% while in general the error
behavior seems more stable from 4 months onwards. This implies that compared to consecutive
training and testing periods, a calibration model’s level of generality can better be approximated
with conventional holdout validation method by leaving a sufficiently long temporal gap between
training and testing data. In practice, it is hard to estimate how long of a gap should be left be-
tween training and testing data, and this is highly sensitive to seasonal variations at the location.
Nevertheless, evaluating the performance as a function of temporal difference can significantly im-
prove ordered holdout and other continuous evaluation techniques, even if diverse data are better
at capturing variations in the data.
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RESULT

Using the diverse framework for evaluation produces the most insights about model perfor-

mance and thus is the preferred option for evaluating model performance. Ordered holdout

(continuous) and other conventional evaluation methods are not reliable methods to evaluate

a calibration model’s goodness, since they benefit too much from similarity of training and

testing data.

6 GUIDELINES AND BEST PRACTICES FOR EVALUATION

Our results have highlighted several issues and effects that can affect the performance of machine
learning–based calibration techniques and that should be considered in their evaluations. Building
on our findings, we draw the following six key observations that may be helpful to future evalua-
tions of machine learning–based calibration techniques and for establishing a common pattern of
best practices for evaluation.

Know what your calibration model is set to learn: The results highlighted how the models
performed best when the training and the testing data were similar (see Tables 10 and 13) and
had high errors when this was not the case. Careless partitioning of training and testing data can
result in significant bias and give misleading results of model performance. It is vital to separate
the performance of the algorithm from the characteristics and limitations of the data that are used
for evaluation. Real-world deployments provide no guarantees on the distribution of data, and
thus it is essential also to derive bounds on the data values where a specific performance can be
achieved.

Use diverse testing data for model evaluation: The distributions of target variables in the
training and testing data should always be investigated to reflect on the calibration model’s per-
formance and generality. Our results have highlighted that model behavior might be very different
when infrequent environmental conditions occur (e.g., Table 9). Performing robustly in such condi-
tions is vital, as they often represent the highest pollution concentrations and therefore situations
that are most dangerous to human health. Statistical tests should therefore be used to ensure that
the deployment location’s estimated distribution is adequately covered. Otherwise, the suitability
of calibration techniques, regardless of level of sophistication, is challenging to evaluate and next
to impossible to guarantee.

Test with and without correlations in data: Autocorrelation of environmental data can be
beneficial for modeling [12, 25] even if it can be dangerous in model evaluation. In Section 2, we
showed that strong autocorrelation benefits calibration models with short-term data and results
in low error. However, as the training and testing set size increase autocorrelation turns into a
disadvantage. We also showed how conventional evaluation methods tend to form datasets with
high autocorrelation (Table 6). To obtain the best insights into model performance, it is therefore
important to understand to what degree the performance is a function of autocorrelation. This can
be accomplished using our diverse evaluation framework with different segment lengths or using
our diverse evaluation framework together with a conventional model evaluation technique.

Divide data into discontinuous sets: Selecting data points according to time (ordered holdout in
Table 4) or by pollutant concentration thresholds [21] is problematic, since either the data are not
descriptive to environmental conditions or then there is a possible issue of adjacent data points and
information leakage. We have identified an information leakage issue with conventional evaluation
methods and proposed a method that breaks overall continuity in the data without suffering from
the drawbacks that existing alternatives, such as shuffled holdout evaluation, suffer (Tables 6 and 8).
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By doing so, we can conduct a fair evaluation where calibration model performance reflects actual
changes in environmental conditions.

Characterize the error types of calibrated values: From the end-user’s perspective it is vital
to recognize the operational range for calibrated measurements [21]. As we showed in Table 10,
variation of features such as temperature, humidity, and a target or other pollutant can disadvan-
tage calibration models and decrease their performance. Conventional evaluation methods do not
bring out these disadvantages (Table 4). As the magnitude of errors can vary considerably across
environmental conditions, it should be possible to identify environmental conditions where the
model accuracy is not guaranteed to be within an acceptable level. This is particularly critical
when the information is presented to decision makers as any actions should be based on accurate
data. Existing work has proposed ways to visualize these errors, e.g., by calculating the expanded
relative uncertainty across the entire pollutant range [32, 46]. Our work offers a mechanism to take
these effects directly account as part of the evaluation and to improve the model’s generalization
performance against such effects.

Using a single short-term continuous period for evaluation is insufficient: Small distribu-
tional differences (Figure 3), strong autocorrelation (Table 2), and uncertain environmental feature
and pollution level variations are among the key reasons to avoid using a single short-term contin-
uous period for evaluating calibration models. If the amount of data is not sufficient for forming
diverse sets, then the next best option is to have a sufficiently large gap between the training and
the testing period. The gap period should not be used as a validation period for optimal param-
eter selection, and the similarity of training and testing data should still be investigated. Results
in Section 5.3 imply that 4 months might be a suitable choice with the dataset used in this work,
but naturally this depends on the location and its pollution characteristics. While having such a
gap alleviates some issues, it does not solve the main problems with conventional evaluation tech-
niques, and using the diverse data selection is a better choice for deriving insights about model
robustness.

7 DISCUSSIONS

Naturally, there is room for further work and improvements. We discuss a few points here.

Improved benchmarking: Low-cost air quality sensors and their machine learning calibration
has been an active research topic for over a decade [8, 34, 51], but highly varying experimental
setups, datasets, metrics, and sensor technologies make it difficult to reliably compare the per-
formance of different calibration models from previous studies. Similarly to other fields, such as
computer vision [42], air quality sensor calibration research would benefit from common datasets
and standardized evaluation protocols that provide a basis for replicating and comparing different
studies and methods. Our work paves the road toward such development by offering guidelines
for ensuring the evaluation protocol addresses model robustness and performance in real-world
conditions.

Amount of data: The diverse data selector performs best when there is a sufficiently long period
of data, as this guarantees the best coverage of different environmental conditions. If sufficient
storage is not available, then our approach can be used in stream-based mode with multiple
different segment lengths. Model training and testing can then be re-run whenever sufficient
amounts of data for a given segment length is available. The algorithm for creating data partitions
is computationally efficient, and, as we have shown, using diverse data can reduce model training
costs by reducing redundancy in the data and offering a more balanced training data for the cali-
bration models. Our results have shown that the use of diverse data significantly improves model
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generality and robustness, and hence we would recommend using diverse data even if the length
of the dataset is smaller but re-evaluating model performance as further data become available.

Sensor limits and evaluation: In our evaluation, we used values of target pollutants and envi-
ronmental variables for partitioning data into training and testing sets. In practice, the sensor val-
ues are dependent on the sensor hardware and the measurement technology used for monitoring
pollutants. For example, some sensors have limited capability in detecting low pollution concen-
trations, whereas others are vulnerable to certain environmental conditions [8]. This suggests that
limitations of sensor technology should also be taken into consideration during evaluation, e.g.,
by placing constraints on the values that are considered reliable or partitioning data into sets that
are within and outside manufacturer specified sensitivity limits.

On deep learning: In our experiments, we included a wide range of machine learning techniques
for sensor calibration, but naturally there are many others that could be considered. For exam-
ple, deep learning solutions based on convolutional or recurrent neural networks are increasingly
being adopted for low-cost air quality sensors and have shown promising results [53]. The key
challenge with deep learning is that it tends to require large amounts of data due to the inherent
model complexity, and understanding their performance limits is difficult to verify without data
from multiple deployments with varying conditions. Recurrent networks additionally require suffi-
ciently continuous data to be able to learn temporal dependencies in the data, and most successful
deep learning models for air quality data leverage these dependencies. For example, some models
even use an input window of 1 week [53], which means that segment length should be at least
1 month to ensure that dependencies between adjacent weeks can be captured. As we have shown
in the article, these long continuous segments easily result in the model emphasising background
pollution levels instead of being able to work robustly across different environmental conditions.
Overcoming these issues requires larger datasets from multiple locations, improved regularisation
and other overfitting control techniques within the deep learning model, and further studies to
ensure the deep learning models are not overfitting or emphasising performance in very limited
set of environmental conditions.

Potential in other application domains: The focus of our work is on the evaluation of calibra-
tion models for low-cost air quality sensors, which is a representative example of sensing domains
where robust evaluation is critical yet difficult. However, the main principle of our solution is
generic and applicable in many other sensing domains where the data have a strong temporal
component and there is a key target variable whose distributional characteristics vary across time.
Indeed, our diverse data selection framework focuses on identifying information rich periods from
continuous measurements and constructing training and testing sets where temporal dependen-
cies between such periods are broken. Examples of other such domains where our framework is
likely to be highly beneficial include activity recognition [22], continuous object recognition from
video [17], acoustic sensing [1], and wireless sensing [55].

8 RELATED WORK

Calibration models: Machine learning calibration focuses on training a model that can mitigate
the effects of environmental conditions and pollutant cross-sensitivities to learn a complex map-
ping from measurements of low-cost sensors to those given by reference instruments [8, 34]. Many
machine learning models have been proposed, with MLR being one of the most popular choices
for the task [24, 33, 46]. More complex and non-linear calibration function can overcome MLR’s re-
striction to linear mapping and currently the state of the art in machine learning air quality sensor
calibration models cover ANN [7, 45, 47, 52, 53], Support Vector Regression [9, 20, 53], Non-linear
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Autoregressive network with exogenous inputs [54, 56], XGB [26, 53], and Random Forest with its
variants [31, 57]. Comparing the approaches is currently challenging, as the evaluations of these
techniques have not been systematic, with the papers considering different validation techniques,
datasets, and environmental conditions [8]. Most papers have used time-based evaluation (holdout
or cross-validation). As we have shown, this is not a good way to evaluate machine learning model
performance. Our article addresses the evaluation of calibration techniques, providing a system-
atic approach for validating models in a way that adheres to regulatory standards and metrological
requirements.

Model evaluation: Previous work has mainly considered the performance of calibration mod-
els through conventional model validation methods. These methods include time-based training-
testing split (ordered holdout) [7, 31, 33, 47, 52, 53], non-temporal training-testing splits (shuffled
holdout) [20, 21, 26, 45, 56], and CV [5, 26, 57]. Instead of selecting a random period for testing,
the evaluation should emphasize the performance in different environmental conditions. Only few
studies have addressed this challenge and most of them have relied on data from multiple deploy-
ment sites. Hagan et al. [21] investigate calibration accuracy in two deployment sites and consider
the effect of changes in the target value’s distribution on calibration errors. They also consider how
using data only from a certain concentration range affects model performance. However, coarse
splitting into sets containing values that are greater or smaller than a selected threshold does not re-
move the problem of adjacent data points leaking information from training data. DeVito et al. [11]
highlight concept drift as one of the main factors for calibration degradation and propose a poten-
tial solution thorough adaptive network calibration [10]. The main issue with this approach is
that evaluating learning with a short time span can result in the model not learning enough and
resulting in the model overfitting on the specific environmental conditions. Vikram et al. [50] con-
duct thorough evaluation by using data from three different deployment sites to analyze the effect
of distribution changes in training and testing site. However, when assessing single-site perfor-
mances the best results might also be caused by their temporally random selection of testing data
points, which is not the correct way to evaluate against time-series data. Their work also presents
a two-stage model structure that compensates pollution concentrations at global and local levels
to achieve higher model generality.

There are also some works that highlight issues with model performance, even if the solu-
tions that have been proposed have only been evaluated with very short-term data. Zimmerman
et al. [57] analyze calibration accuracy as a function of ambient concentration and as a function
of humidity, which stands out in comparison to the more dominant performance estimation as a
function of time. However, similarly to other works, they use randomly selected testing measure-
ments and k-fold cross-validation with small folds, which is known to give optimistic results [22].
Their follow-up work suffers from the same issues [36]. Maag et al. [35] emphasize system per-
formance in different environmental conditions but only consider short-term data comprising less
than 30 days of measurement. Gu et al. [20] highlight that the data are autocorrelated and propose
short-, mid-, and long-term performance estimations as different angles to consider in evaluation.
However, their dataset covers only 1 week’s time span, providing limited insights into long-term
performance. Our work builds on these works, providing a new evaluation framework that allows
for assessing the model’s sensitivity to environmental conditions and distributional differences, in
line with requirements imposed by regulatory standards. The procedure we develop is generic and
can be used equally with single-site and multi-site deployments.

Evaluation issues with time-series data: Our work is also inspired by previous works highlight-
ing evaluation issues with time-series data. The machine learning model evaluation techniques
covered in this work (see Section 4) are among the most common techniques to assess model
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performance. However, their applicability to a domain requires careful consideration. Raschka [40]
points out that these evaluation methods generally make the assumption that all data are indepen-
dent and identically distributed, which does not hold for environmental data. Bergmeir et al. [3]
found techniques like shuffled holdout or cross-validation to be biased, since they effectively peek
into the testing data distribution. Our experiment results in Table 8 are in line with their findings.
Hammerla and Plötz showed how overlapping segments have to be carefully divided into training
and testing data in activity recognition tasks to avoid correlations between them [22]. Although the
domain and problem are different, it highlights the issue of feature information passing from train-
ing to testing data through autocorrelation. Forman et al. [18] show how averaging of less common
error types (e.g., high pollution phenomena in our case) is a problem in model evaluation. These
factors have inspired and driven our work to create a more sophisticated evaluation method that
can assess machine learning calibration model performance with environmental time-series data.

9 CONCLUSIONS AND SUMMARY

Low-cost sensors have significant potential to support air quality research by increasing the res-
olution of data. Before scientific studies can rely on low-cost sensor data, researchers need to be
convinced about the quality and validity of measurements. This requires transparent evaluation
protocols that are able to highlight not only the overall performance of calibration models but
also their limitations and performance bounds. We have contributed a novel evaluation protocol
for machine learning calibration of low-cost air quality sensors that offers a rigorous evaluation
framework that provides better insights into the performance of calibration models in real-world
deployments and can be used to identify conditions where the accuracy of models is sufficient
(or insufficient) for studies. We have also shown how existing approaches, based on conventional
model evaluation techniques, fail in achieving this as they tend to result in test data that are close
to the training data, either temporally or in terms of distributional characteristics, limiting the
insights that can be garnered from model evaluation. Our model overcomes these limitations, cre-
ating testing conditions that better capture the statistical and distributional characteristics of data
without being correlated over time, while at the same time providing better insights into model
performance. Our model can also improve training of calibration models, offering improved ro-
bustness, reduced risk of overfitting, and potential for faster runtime performance. Based on our
results, we derived guidelines for future evaluations to establish a roadmap for the way forward.
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