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This article provides an algebraic study of intermediate inquisitive and dependence 
logics. While these logics are usually investigated using team semantics, here we 
introduce an alternative algebraic semantics and we prove it is complete for all 
intermediate inquisitive and dependence logics. To this end, we define inquisitive 
and dependence algebras and we investigate their model-theoretic properties. We 
then focus on finite, core-generated, well-connected inquisitive and dependence 
algebras: we show they witness the validity of formulas true in inquisitive algebras, 
and of formulas true in well-connected dependence algebras. Finally, we obtain 
representation theorems for finite, core-generated, well-connected, inquisitive and 
dependence algebras and we prove some results connecting team and algebraic 
semantics.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

In this work, we pursue an algebraic study of inquisitive and dependence logic. Although the connection 
between these two logical systems is now firmly established, inquisitive and dependence logic were introduced 
in different contexts and with different research interests in mind.

Inquisitive logic was formally developed by Ciardelli, Groenendijk and Roelofsen in a series of articles, 
most notably in [12,15], where they introduced the so-called “support semantics”. Atomic formulas are as-
signed, under this semantics, to sets of possible worlds in a Kripke model. Inquisitive logic was developed 
hand-in-hand with inquisitive semantics – a linguistic framework that aims at providing a uniform formal 
characterisation of both questions and statements in natural languages. In particular, polar questions ex-
pressing “whether p holds or not” are represented by an operator ?p defined using the inquisitive disjunction 
as ?p := p

� ¬p. The interested reader can refer to [13] for a general introduction to inquisitive semantics.
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Dependence logic, on the other hand, was introduced by Väänänen [32] as an extension of first-order 
logic with dependence atoms. The underlying motivation of dependence logic was to provide a logical 
framework able to capture several relations of dependencies between variables. In its standard formulation, 
dependence logic is defined via team semantics, originally introduced in [22], which generalises standard 
Tarski’s semantics by teams, which are sets of assignments that map first-order variables to elements of the 
domain. In its propositional version, a team is a set of valuations mapping propositional atoms to either 1 
or 0. Propositional dependence logic has been extensively studied by Yang and Väänänen in [34], while in 
[35] they considered several extensions of classical logic using team semantics. Intuitively, the dependence 
atom =(�p, q) expresses the fact that the value of the variable q is uniquely determined by the values of the 
variables �p. The constancy atom =(p) can then be seen as a special case of the dependency atom, saying 
that the value of a variable is constant in the underlying team.

It was soon noticed that, at the propositional level, the team semantics of dependence logic and the state 
semantics of inquisitive logic are in fact equivalent – states of possible worlds are nothing but teams of 
propositional assignments. The close connection between these two approaches was pointed out and devel-
oped e.g. in [10,34]. As a matter of fact, both dependence and inquisitive logic are expressively equivalent 
and they are both complete with respect to the class of all downward closed team properties.

The connection between inquisitive and dependence logic was recently pushed further by Ciardelli 
et al. [14], which introduced versions of propositional inquisitive and dependence logics which are based 
on intuitionistic, rather than classical logic. Here we generalise their approach – also drawing on [29] – and 
we provide an algebraic study of intermediate inquisitive logics InqΛ, which extend the intuitionistic in-
quisitive logic InqI, and intermediate dependence logics InqΛ⊗, which extend the intuitionistic dependence 
logic InqI⊗.

The interest for algebraic semantics of inquisitive and dependence logic is not new and some works in 
the literature already consider the issue. The study in the algebraic interpretations of dependence logic was 
initiated by Abramsky and Väänänen [1] and later developed by Lück [24]. An early work on inquisitive 
logic from an algebraic perspective is [31], while Mann [26] provided an algebraic study of cylindric algebras 
for Independence-friendly logic. More recently, Bezhanishvili, Grilletti and Holliday [5] have introduced an 
algebraic and topological semantics for the system InqB of classical propositional inquisitive logic, while 
Bezhanishvili, Grilletti and Quadrellaro [6,21,30] have further developed this approach and extended it 
to other logics. In a similar fashion, Punčochář [28] has introduced a semantics for several extensions of 
intuitionistic inquisitive logic.

In the general framework of abstract algebraic logic, as described e.g. in [19], logics are described as 
consequence relations which are additionally closed under uniform substitution. However, both inquisitive 
and dependence logic are not closed under uniform substitution and they are thus not logics in this strict 
sense of the word. As a consequence of this fact, we cannot directly apply the standard framework of 
abstract algebraic logic. In fact, the algebraic semantics for versions of inquisitive logics described in [5]
and [28] are quite non-standard: inquisitive logics are shown to be complete with respect to some classes 
of Heyting algebras which are not axiomatisable by means of (quasi-)equations, i.e. which do not form 
algebraic (quasi-)varieties.

In the present work, we aim at providing an algebraic study of inquisitive and dependence logics which is 
closer in spirit to the usual approach of abstract algebraic logic. To this end, we introduce both inquisitive 
and dependence algebras in terms of classical model theory and we show that they form an elementary 
class axiomatised by universal Horn sentences. Therefore, even if they do not form a variety, inquisitive and 
dependence algebras make for an interesting class which is suitable of further model-theoretic investigations. 
Interestingly, the classes of algebras investigated in [5] and in [28] can be then seen as special collections of 
representatives – respectively for the classical and the intuitionistic case.

The main results of this article are the following. Firstly, we prove a full completeness result for inter-
mediate inquisitive and dependence logics, which states that intermediate inquisitive logics are complete 
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with respect to their corresponding class of intermediate inquisitive algebras and that intermediate depen-
dence logics are complete with respect to their corresponding class of intermediate dependence algebras. We 
then investigate several model-theoretic properties of inquisitive and dependence algebras. In particular, we 
show several results concerning finite, core-generated, well-connected inquisitive and dependence algebras 
and we prove two representation theorems for these subclasses of algebras. Finally, we extend these results 
to algebraic models and we obtain some bridge principles between teams and algebraic semantics.

The structure of the present article is the following. In Section 1 we introduce the syntax and the usual 
team semantics of inquisitive and dependence logic. In Section 2, we define inquisitive and dependence 
algebras, we introduce so-called core semantics and we prove using the method of free algebras that this 
semantics is complete for all intermediate inquisitive and dependence logics. In Section 3, we focus on 
the model-theoretic properties of inquisitive and dependence algebras and prove several results concerning 
finite, core-generated, well-connected inquisitive and dependence algebras. Later, in Section 4, we provide 
representation theorems for finite, core-generated, well-connected inquisitive and dependence algebras and 
we prove some results concerning the team and the algebraic semantics of inquisitive and dependence logic. 
Finally, in Section 5, we review our results and highlight some future line of research.

1. Inquisitive and dependence logic

In this section we introduce inquisitive and dependence logics in axiomatic terms and we recall their 
standard team semantics.

1.1. Axiomatic systems

We fix at the outset some propositional signatures for different systems of logic. Throughout this paper 
we shall always denote by AT a fixed set of atomic propositional variables, which we will always assume to 
be countable. We let LIPC be the standard signature of intuitionistic logic LIPC = {∧, ∨, →, ⊥}. With slight 
abuse of notation, we let LIPC also be the set of formulas built recursively from AT in this signature: We let 
φ ∈ LIPC if and only if φ is generated by the following grammar:

φ ::= p | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ;

where p ∈ AT is any propositional variable. Negation is treated as a defined operation and can be introduced 
by letting ¬φ := φ → ⊥.

The intuitionistic propositional calculus IPC – intuitionistic logic for short – is the set of formulas of LIPC

which contains the usual axioms, it is closed under modus ponens (MP) and uniform substitution (US). An 
intermediate logic L is a consistent set of formulas of LIPC which contains IPC and is closed under modus 
ponens and uniform substitution. Intermediate logics are known to form a lattice structure, whose maximal 
element is the classical propositional calculus CPC. We refer the reader to [8] for more on intermediate logics.

In this paper we shall formulate inquisitive logic in the language LIPC – hereby following Ciardelli’s 
original presentation in [9] – and we will adopt the standard disjunction symbol ∨ in place of the more 
common 

� symbol to denote the inquisitive disjunction operation. The reason of this choice is that we want 
to stress that inquisitive disjunction is nothing but intuitionistic disjunction. In fact, as it is often remarked 
in the literature, inquisitive logic is very close to intermediate logics, as it contains IPC and it is contained 
in CPC. However, the fact that inquisitive logic is not closed under uniform substitution means that it is 
not an intermediate logic. In fact, for this very same reason, inquisitive logic does not fit the framework 
of abstract algebraic logic (see e.g. [19]), where logics are defined as consequence operators closed under 
uniform substitutions.

Although inquisitive logic does not admit full substitution, it is closed under a restricted version of 
substitution, namely substitution of ∨-free formulas. This reflects the fact that in inquisitive semantics 
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∨-free formulas correspond to sentences, while formulas containing ∨ are intended to model questions. A 
formula of LIPC is said to be standard if it is ∨-free. We write LCL for the set of all standard formulas and 
also for the signature LCL = {∧, →, ⊥}.

Inquisitive logic is usually presented in semantical terms, as the logic of states of possible worlds. However, 
it is also possible to define it in more syntactical terms. Here we adapt the natural deduction system presented 
in [14] and we present it in a Hilbert-style fashion. We use Greek letters φ, ψ, . . . as meta-variables for 
arbitrary inquisitive formulas and α, β, . . . as meta-variables for arbitrary standard inquisitive formulas. We 
then define intuitionistic inquisitive logic in the following way.

Definition 1.1 (Intuitionistic Inquisitive Logic). The system InqI of intuitionistic inquisitive logic is the 
smallest set of formulas of LIPC such that, for all φ, ψ, χ ∈ LIPC and for all α ∈ LCL, InqI contains the 
following formulas:

(A1) φ → (ψ → φ)

(A2) (φ → (ψ → χ)) → (φ → ψ) → (φ → χ)

(A3) φ ∧ ψ → φ

(A4) φ ∧ ψ → ψ

(A5) φ → (ψ → φ ∧ ψ)

(A6) φ → φ ∨ ψ

(A7) ψ → φ ∨ ψ

(A8) (φ → χ) → ((ψ → χ) → (φ ∨ ψ → χ))

(A9) ⊥ → φ

(A10) (α → (φ ∨ ψ)) → ((α → φ) ∨ (α → ψ))

and in addition it is closed under the rule of modus ponens (MP).

Since the axiom schemas (A1)–(A9) plus modus ponens axiomatise intuitionistic logic, we can think of 
inquisitive logic as a theory extending intuitionistic logic:

InqI := MP(IPC + (A10));

meaning that inquisitive logic is a theory over intuitionistic logic which contains every admissible instance 
of the schema (A10) and is closed under modus ponens. We will often refer to (A10) as the Split axiom.

Similarly to the case of IPC, we can define several extensions of intuitionistic inquisitive logic. We say 
that a set Λ ⊆ LIPC is closed under standard substitution if it is closed under every substitution assigning 
standard formulas to atomic formulas.

Definition 1.2. An intermediate inquisitive logic is any set of formulas InqΛ such that: InqΛ = MP(InqI∪Λ), 
where Λ ⊆ LCL is any set of standard formulas closed under standard substitution.

We notice that this definition differs from the so-called inquisitive superintuitionistic logic∗ defined by 
Punčochář [28], for we do not require intermediate inquisitive logics to satisfy the disjunction property and 
we do not allow non-standard formulas in Λ. It is easily verified that, if InqΛ and InqΔ are intermediate 
inquisitive logics, then also InqΛ ∩ InqΔ and MP(InqΛ ∪ InqΔ) are intermediate inquisitive logics. Hence, 
intermediate inquisitive logics form a lattice whose least element is InqI. An important example of an 
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intermediate inquisitive logic is the classical version of inquisitive logic InqB. This is defined as the extension 
of InqI by the axiom scheme ¬¬α → α, where α ∈ LCL.

Definition 1.3. The system InqB of classical inquisitive logic is defined as:

InqB := MP(InqI ∪ {¬¬α → α}α∈LCL).

It is then easy to see that InqB is the maximal element in the lattice of intermediate inquisitive logics.
Dependence logics extend inquisitive logics in an expanded syntax. Here we shall take a slightly non-

standard approach and formulate dependence logic in the vocabulary L⊗
IPC, which expands LIPC by adding 

the tensor disjunction operator ⊗. Intuitively, the tensor disjunction is meant to be as much as a “classical” 
disjunction as possible in the given intuitionistic framework. We fix the signature of dependence logic 
L⊗
IPC = {∧, ∨, →, ⊗, ⊥} and with slight abuse of notation we let L⊗

IPC be also the set of formulas defined by 
induction in this signature over AT, i.e. φ ∈ L⊗

IPC if and only if φ is generated by the following grammar:

φ ::= p | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | φ⊗ φ,

where p ∈ AT is an arbitrary atomic variable. As it is the case for inquisitive logics, we are often interested 
in formulas which are ∨-free – i.e. which do not contain the ∨ symbol – and we refer to such formulas as 
standard formulas. We write L⊗

CL for the set of standard dependence formulas and also for the restricted 
signature L⊗

CL = {∧, →, ⊗, ⊥}. Clearly LIPC ⊆ L⊗
IPC and LCL ⊆ L⊗

CL.
Negation is defined over L⊗

IPC as in intuitionistic logic, by letting ¬φ := φ → ⊥. More interestingly, we can 
define the so-called constancy and dependency atoms, as partial operations defined only on atomic formulas. 
Intuitively, the former says that the value of an atomic formula is constant, while the latter says that the 
value of an atomic formula is functionally determined by the value of a tuple of other atomic formulas. Let 
�p = p0, . . . , pn, we define them as follows:

=(p) := p ∨ ¬p;

=(�p, q) := (
∧
i≤n

=(pi)) → =(q).

Notice that, since ⊗ does not occur in the definitions above, these operators can be introduced both in 
LIPC and L⊗

IPC. What is specific of dependence logic is the presence of the tensor disjunction rather than the 
dependence operator itself. In fact, it was shown by Barbero and Ciardelli in [11] that although inquisitive 
and dependence logics are both expressively complete with respect to the class of downward closed teams, 
tensor disjunction is not definable in inquisitive logic.

We define intuitionistic dependence logic analogously to how we defined intuitionistic inquisitive logic.

Definition 1.4 (Intuitionistic Dependence Logic). The system InqI⊗ of intuitionistic dependence logic is the 
smallest set of formulas of L⊗

IPC such that, for all φ, ψ, χ, τ ∈ L⊗
IPC and for all α, β, γ ∈ L⊗

CL, InqI⊗ contains 
the formulas (A1)–(A10) of Definition 1.1 and the following:

(A11) α → (α⊗ β)

(A12) (α⊗ β) → (β ⊗ α)

(A13) φ⊗ (ψ ∨ χ) → (φ⊗ ψ) ∨ (φ⊗ χ)

(A14) (φ → χ) → ((ψ → τ) → (φ⊗ ψ → χ⊗ τ))

(A15) (α → γ) → ((β → γ) → (α⊗ β → γ)).
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And in addition it is closed under modus ponens.

We often refer to (A13) as the Dist axioms and to (A14) as the Mon axiom. We can think of InqI⊗ in the 
following way:

InqI⊗ := MP(IPC + (A10 −A15)).

Hence, dependence logic is a theory extending IPC in the language L⊗
IPC.

Intermediate dependence logics are defined as follows. We say that a set Λ ⊆ L⊗
IPC is closed under standard

substitution if it is closed under every substitution assigning standard formulas to atomic formulas.

Definition 1.5. An intermediate dependence logic is any set of formulas InqΛ⊗ such that: InqΛ = MP(InqI⊗∪
Λ), where Λ ⊆ L⊗

CL is any set of standard formulas closed under standard substitution.

If we consider the subset of standard formulas in an intermediate dependence logic InqΛ⊗, what we obtain 
is an intermediate logic with tensor as the disjunction operator. Let IPC⊗ refer to the intuitionistic proposi-
tional calculus in the signature L⊗

CL, i.e. in the syntax where the usual disjunction is replaced by the tensor, 
then for any set Λ ⊆ L⊗

CL we have that IPC⊗ ⊆ InqΛ⊗�L⊗
CL and that InqΛ⊗�L⊗

CL is closed under modus ponens
and uniform substitution, hence InqΛ⊗�L⊗

CL is an intermediate logic. For any intermediate dependence logic 
InqΛ⊗ we let IPC⊗ + Λ be the intermediate logic InqΛ⊗�L⊗

CL.
An important example of intermediate dependence logics is the classical version of dependence logic 

InqB⊗. This is defined as follows.

Definition 1.6. The system InqB⊗ of classical dependence logic is defined as:

InqB⊗ := MP(InqI⊗ + {¬¬α → α}α∈L⊗
CL
).

If CPC⊗ denotes the classical propositional calculus in the signature L⊗
CL, i.e. in a syntax where the usual 

disjunction is replaced by the tensor, then it can be seen that CPC⊗ ⊆ InqB⊗, which shows the sense in which 
dependence logic is an extension of classical propositional logic. As in the case of intermediate inquisitive 
logics, intermediate dependence logics form a bounded distributive lattice, of which InqI⊗ is the least and 
InqB⊗ the greatest element.

1.2. Semantics via teams

Inquisitive and dependence logics are usually introduced via some version of team semantics. In particular, 
Ciardelli et al. [14] have defined a version of team semantics based on Kripke models, while the classical 
version of team semantics dates back to Hodges [22] and was already used in [32] and [9]. We describe here 
the team semantics on Kripke models and we explain how standard team semantics can be seen as a special 
case of it.

Firstly, we recall that an intuitionistic Kripke frame is a partial order F = (W, R), where W is a set 
of possible worlds and R a partial ordering, i.e. a reflexive, transitive, and antisymmetric relation. An 
intuitionistic Kripke model is a pair M = (F, V ), where F is an intuitionistic Kripke frame and V : W →
℘(AT) a valuation of atomic formulas such that, if p ∈ V (w) and wRv, then p ∈ V (v). In this article Kripke 
frames and Kripke models are always meant to be intuitionistic Kripke frames and intuitionistic Kripke 
models. A world in a model can be viewed as a label for a subset of atomic formulas – hence we shall write 
w(p) = 1 if and only if p ∈ V (w). In this sense a world w corresponds to a classical assignment w : AT → 2. 
The notions of team and extension of a team are defined as follows.
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Definition 1.7. Let M = (W, R, V ) be an intuitionistic Kripke model. A team is any subset t ⊆ W of the set 
of possible worlds. A team s is an extension of a team t if s ⊆ R[t].

A team is a set of possible worlds, hence, by our previous considerations, a team can be considered as a 
set of assignments. The team semantics (or support semantics) of the logics InqI and InqI⊗ is defined as 
follows.

Definition 1.8 (Kripke Team Semantics). Let M = (W, R, V ) be an intuitionistic Kripke model. The notion 
of a formula φ ∈ L⊗

IPC being true in a team t ⊆ W is defined as follows:

M, t � p ⇐⇒ ∀w ∈ t (w(p) = 1)
M, t � ⊥ ⇐⇒ t = ∅
M, t � ψ ∨ χ ⇐⇒ M, t � ψ or M, t � χ

M, t � ψ ∧ χ ⇐⇒ M, t � ψ and M, t � χ

M, t � ψ ⊗ χ ⇐⇒ ∃s, r ⊆ t such that s ∪ r = t and M, s � ψ,M, r � χ

M, t � ψ → χ ⇐⇒ ∀s (if s ⊆ R[t] and M, s � ψ then M, s � χ).

We write M � φ if M, t � φ for all t ⊆ W and F � φ if (F, V ) � φ for all valuations V . If C is a class of 
Kripke frames, we write C � φ if, for all F ∈ C, we have that F � φ. We write M � Γ if M � φ for all φ ∈ Γ
and F � Γ if F � φ for all φ ∈ Γ. For Γ ∪ {φ} ⊆ L⊗

IPC, we write Γ � φ if, for all Kripke models M, M � Γ
entails M � φ. We write φ ≡ ψ if φ � ψ and ψ � φ.

Let F = (W, R) and G = (W ′, R′). We recall that a function p : F → G is said to be a p-morphism if (i) 
xRy entails f(x)R′f(y) and (ii) if f(x)R′y then there is z ∈ W such that f(z) = y and xRz. We let KF be 
the category of intuitionistic Kripke frames with p-morphisms.

The following theorem was essentially proved in [14] and it shows that InqI is sound and complete with 
respect to this version of team semantics.

Theorem 1.9 (Ciardelli, Iemhoff, Yang). For any formula φ ∈ LIPC and any formula ψ ∈ L⊗
IPC, we have that:

φ ∈ InqI ⇐⇒ F � φ for all intuitionistic Kripke frames F;

ψ ∈ InqI⊗ ⇐⇒ F � ψ for all intuitionistic Kripke frames F.

Let us now consider the special case of classical inquisitive and classical dependence logic. If a Kripke 
frame F is such that F � InqB or F � InqB⊗ then, for any standard formula α ∈ L⊗

CL:

F � ¬¬α → α.

From this it follows (by Proposition 1.16 and [8]) that F = (W, R) is a classical frame, meaning that its 
underlying order trivialises, i.e. it follows that R = id.

As a consequence of this fact, we can give a simpler description of team semantics in the case of classical 
inquisitive and dependence logics. Since an assignment (also valuation) is a function w : AT → 2, then 2AT
is the set of all classical assignments. A team is then a set of assignments t ⊆ 2AT and ℘(2AT) is the set of all 
teams over AT. Classical Kripke frames can be thus simply seen as sets of possible worlds or, equivalently, as 
sets of classical assignments. Therefore, a classical Kripke frame is simply a team. We then define as follows 
the classical team semantics for InqB and InqB⊗.

Definition 1.10 (Team Semantics of InqB⊗). The notion of a formula φ ∈ L⊗
IPC being true in a team t ∈ ℘(2AT)

is defined as follows:
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t � p ⇐⇒ ∀w ∈ t (w(p) = 1)
t � ⊥ ⇐⇒ t = ∅
t � ψ ∨ χ ⇐⇒ t � ψ or t � χ

t � ψ ∧ χ ⇐⇒ t � ψ and t � χ

t � ψ ⊗ χ ⇐⇒ ∃s, r ⊆ t such that s ∪ r = t and s � ψ, r � χ

t � ψ → χ ⇐⇒ ∀s (if s ⊆ t and s � ψ then s � χ).

The notions of truth and the related ones are defined as in the more general case above.
The following result was proven by Ciardelli and Roelofsen [15] for InqB and extended by Yang and 

Väänänen [34] to InqB⊗.

Theorem 1.11 (Ciardelli, Roelofsen, Yang, Väänänen). For any formula φ ∈ LIPC and any formula ψ ∈ L⊗
IPC, 

we have that:

φ ∈ InqB ⇐⇒ ℘(2AT) � φ;

ψ ∈ InqB⊗ ⇐⇒ ℘(2AT) � ψ.

1.3. Properties of inquisitive and dependence logic

We recall some important properties of team semantics over Kripke models and their special formulation 
in the classical setting. We omit the proofs of these results and refer the interested reader to [14,15,34,35].

Proposition 1.12 (Downward Team Property). For every Kripke model M = (W, R, V ), for every team t ⊆ W

and for every inquisitive or dependence formula φ ∈ L⊗
IPC we have that M, t � φ and s ⊆ R[t] entail M, s � φ. 

For every classical team t and s ⊆ t we have that t � φ entails s � φ.

The next corollary allows us to conclude that a formula φ is satisfiable if and only if it is satisfied by some 
upward-closed team, i.e. by some team t such that R[t] ⊆ t.

Corollary 1.13 (Upset property). For every Kripke model M and for every inquisitive or dependence formula 
φ ∈ L⊗

IPC we have that:

M, t � φ ⇐⇒ M, R[t] � φ.

A second key property of inquisitive and dependence logic is the Empty Team Property, which states 
that every formula is true in the empty team.

Proposition 1.14 (Empty Team Property). For all φ ∈ L⊗
IPC and for every Kripke model M we have that 

M, ∅ � φ. For all φ ∈ L⊗
IPC we have that ∅ � φ.

We also recall that the logics InqI, InqI⊗, InqB, InqB⊗ satisfy the finite model property. It is a non-trivial 
problem whether this property can be extended also to other intermediate inquisitive and dependence logics. 
We will use this fact in Section 4 to give a completeness proof for InqI, InqB, InqB⊗ that does not make 
use of free algebras.

Theorem 1.15 (Finite Model Property).

(i) For all φ ∈ LIPC, if φ /∈ InqI then there is a finite Kripke model M and a finite team t such that 
M, t � φ. If φ /∈ InqB, then there is a finite team t ∈ ℘(2AT) such that t � φ.
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(ii) For all φ ∈ L⊗
IPC, if φ /∈ InqI⊗ then there is a finite Kripke model M and a finite team t such that 

M, t � φ. If φ /∈ InqB⊗, then there is a finite team t ∈ ℘(2AT) such that t � φ.

Finally, we recall the two following results. The next proposition gives an important characterisations of 
standard formulas in team semantics [14, Prop. 3.10].

Proposition 1.16. Let φ ∈ L⊗
IPC, then there is some α ∈ L⊗

CL such that φ ≡ α if and only if the following 
condition holds, for all Kripke model M:

M, t � φ ⇐⇒ M, {w} � φ for all w ∈ t.

The following Disjunctive Normal Form Theorem [14, Thm. 4.9] allows us to express every inquisitive and 
dependence formulas as a disjunction of standard formulas.

Proposition 1.17 (Disjunctive Normal Form). Let φ ∈ L⊗
IPC, then there are standard inquisitive formulas 

α0, . . . , αn ∈ L⊗
CL such that φ ≡

∨
{αi}i≤n.

2. Algebraic semantics for inquisitive and dependence logic

We introduce in this section algebraic semantics of intermediate inquisitive and dependence logics and we 
prove its soundness and completeness. We first define inquisitive and dependence algebras – InqI-algebras 
and InqI⊗-algebras – and we show they are elementary structures axiomatised by universal Horn formulas. 
We then introduce so-called core semantics over such algebras and we prove using free algebras that our 
semantics is complete with respect to every intermediate inquisitive and dependence logic.

2.1. Inquisitive algebras and dependence algebras

Algebras are usually defined as a set together with some operations, i.e. as structures in an exclusively 
functional signature [7]. In order to provide a semantics to inquisitive and dependence logics we need to part 
ways from this definition and make space for a less restricted notion of algebras. In particular, we define 
inquisitive and dependence algebras in an expanded signature, consisting of functional symbols together with 
a unary predicate. Inquisitive and dependence algebras should be thus understood, from a model-theoretic 
perspective, as structures interpreting an algebraic language expanded by a unary predicate symbol.

We use L to refer to an arbitrary first-order language, and we use calligraphic letters A, B, . . . to denote 
first-order structures, in particular we shall use calligraphic letters to refer to standard and inquisitive 
algebras. If A is a structure, then we write dom(A) to refer to its underlying domain or universe. However, 
we shall often use the same symbol to denote a structure and its underlying universe. For all functional 
symbols f ∈ L and all relational symbols R ∈ L, we write fA and RA for their interpretation in A. However, 
when it is not confusing, we abide with the usual conventions and use the same notation for symbols and 
their interpretation.

An L-structure B is a substructure of an L-structure A if (i) dom(B) ⊆ dom(A), (ii) for all n-ary functional 
symbols f ∈ L and n-tuples (b1, . . . , bn) ∈ Bn, fA(b1, . . . , bn) ∈ B, and (iii) for all relational symbols R ∈ L
of arity n, RB = RA ∩ dom(A)n.

If A is an L-structure and X ⊆ dom(A), then 〈X〉 denotes the smallest substructure of A containing X, 
i.e. the closure of X under all the functional operations of L. If we are interested in the closure of X in A
only with respect to some specific operations f0, . . . fn ∈ L, then we write 〈X〉(f0,...fn).

Before defining inquisitive algebras, let us recall some well-known algebraic structures. A Brouwerian 
semilattice B is a bounded meet-semilattice lattice with an extra-operation → such that for all a, b, c ∈ B:
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a ∧ b ≤ c ⇐⇒ a ≤ b → c.

A Heyting algebra H is a bounded distributive lattice with an extra operation → satisfying the former 
equivalence. Given an element a ∈ B, where B is a Brouwerian semilattice, we define its pseudocomplement
¬a as ¬a := a → 0. Pseudocomplements of Heyting algebras are defined analogously. If H is a Heyting 
algebra such that for all a ∈ H it is the case that a ∧ ¬a = 0 and a ∨ ¬a = 1, then we say that H is a 
Boolean algebra. We define inquisitive algebras as follows.

Definition 2.1 (Inquisitive Algebra). An (intuitionistic) inquisitive algebra (or InqI-algebra) is a structure 
A = (A, Ac, ∧, ∨, →, 0) in the vocabulary LIPC ∪ {Ac}, such that:

• Ac ⊆ A;
• (〈Ac〉, ∨, ∧, →, 0) is a Heyting algebra, where 〈Ac〉 is the closure of Ac under the operations {∨, ∧, →, 0};
• (Ac, ∧, →, 0) is a Brouwerian semilattice;
• For all x, y, z ∈ 〈Ac〉 and a ∈ Ac, the following equation holds:

(Split) a → (x ∨ y) = (a → x) ∨ (a → y).

As we have remarked above, inquisitive algebras are algebras in a slightly non-standard sense: while 
algebras are usually defined as first-order structures in a purely algebraic signature, here we are expanding 
the signature by a unary predicate Ac, which we interpret as a “signed” subset of the algebra. The mo-
tivation for the addition of this predicate is that it captures at a semantical level the syntactic difference 
between standard formulas, which can be substituted freely, and non-standard formulas, for which uniform 
substitution fails.

Notice that, with slight abuse of notation, we write Ac both for the predicate symbol in the language and 
for the corresponding subset of A. Given an inquisitive algebra A, we generally refer to this signed subset 
as the core of A, and we also denote it by core(A). By our definition, the core of a InqI-algebra forms a 
Brouwerian semilattice in the signature {∧, →, 0}. We write Ac for the Brouwerian semilattice (Ac, ∧, →, 0)
and we also write 〈Ac〉 in place of 〈Ac〉.

Since 〈Ac〉 is the closure of Ac under all operations in {∧, →, ∨, 0}, it follows that Ac is a subalgebra of 
both A and 〈Ac〉 with respect to the reduct {∧, →, 0}. Negation is defined as ¬x := x → 0 and the top 
element is 1 := 0 → 0. Therefore, A and 〈Ac〉 also agree on their interpretation of negation and 1.

It is important to stress that in our definition of inquisitive algebra every requirement and equation 
has a limited scope, i.e. they refer to elements of Ac or 〈Ac〉 and not to arbitrary elements of A. This 
means that inquisitive algebras are somehow underspecified in their structure. Although this might seem 
as a downside of our definition, it is meant to reflect the distinction between standard and non-standard 
formulas in inquisitive and dependence logics, and the fact that every formula is inductively obtained from 
standard ones.

Dependence algebras are defined in the expanded signature L⊗
IPC ∪ {Ac} in a similar fashion.

Definition 2.2 (Dependence Algebra). An (intuitionistic) dependence algebra (or InqI⊗-algebra) is a structure 
A = (A, Ac, ∧, ⊗, ∨, → 0) in the language L⊗

IPC ∪ {Ac}, such that:

• Ac ⊆ A;
• (〈Ac〉, ∨, ∧, →, 0) is a Heyting algebra, where 〈Ac〉 is the closure of Ac under the operations {∨, ⊗, ∧, →, 0};
• (Ac, ⊗, ∧, →, 0) is a Heyting algebra;
• For all x, y, z, k ∈ 〈Ac〉 and a ∈ Ac, the following equations hold:

(Split) a → (x ∨ y) = (a → x) ∨ (α → y);
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(Dist) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z);

(Mon) (x → z) → (y → k) = (x⊗ y) → (z ⊗ k).

It is clear from our definition that InqI⊗-algebras are InqI-algebras with an extra tensor operator ⊗, which 
satisfies the axioms Dist and Mon and whose core forms a Heyting algebra. We use the same conventions 
as for inquisitive algebras to refer to the underlying universe and to the core of a dependence algebra.

Given our previous considerations on the non-standard definition of such structures, one may wonder 
whether inquisitive and dependence algebras are structures in the first-order meaning of the word. To see 
that this is the case, it suffices to notice that we can use the predicate Ac to express quantification over core 
elements, and we can use first-order-terms over Ac to encode quantification over elements of 〈Ac〉. In this 
way it is straightforward to translate the definitions above into a list of first-order sentences and see that 
inquisitive and dependence algebras are elementary classes. To avoid confusion with the algebra operators, 
we use & and ⊃ as the first-order symbols of conjunction and implication. We use τ, σ, ρ, τ ′, σ′ to denote 
arbitrary terms in the vocabulary LIPC. We use the abbreviations �x := x0, . . . , xn and Ac(�x) :=

∧
i≤n Ac(xi).

Proposition 2.3. (i) A structure A = (A, Ac, ∧, →, ∨, 0) is an inquisitive algebra if and only if it satisfies the 
following axioms and axiom schemas:

(1) ∀x∀y [Ac(x) & Ac(y) ⊃ Ac(x ∧ y)]

(2) ∀x∀y [Ac(x) & Ac(y) ⊃ Ac(x → y)]

(3) Ac(0)

(4) ∀�x [Ac(�x) ⊃ (τ(�x) → τ(�x) = 1)]

(5) ∀�x [Ac(�x) ⊃ (τ(�x) ∧ 0 = 0)]

(6) ∀�x [Ac(�x) ⊃ (τ(�x) → (σ(�x) ∧ ρ(�x))) = (τ(�x) → σ(�x)) ∧ (τ(�x) → ρ(�x))]

(7) ∀�x [Ac(�x) ⊃ (τ(�x) ∧ (τ(�x) → σ(�x))) = (τ(�x) ∧ σ(�x))]

(8) ∀�x [Ac(�x) ⊃ (σ(�x) ∧ (τ(�x) → σ(�x))) = σ(�x)]

(9) ∀�x [Ac(�x) ⊃ (σ(�x) ∨ τ(�x)) = (τ(�x) ∨ σ(�x))]

(10) ∀�x [Ac(�x) ⊃ (τ(�x) ∨ (σ(�x) ∨ ρ(�x))) = (τ(�x) ∨ σ(�x)) ∨ ρ(�x)]

(11) ∀�x [Ac(�x) ⊃ (τ(�x) ∨ τ(�x) = τ(�x))]

(12) ∀�x [Ac(�x) ⊃ (τ(�x) ∨ (τ(�x) ∧ σ(�x))) = τ(�x)]

(13) ∀�x [Ac(�x) ⊃ (τ(�x) ∧ (σ(�x) ∨ ρ(�x))) = (τ(�x) ∧ σ(�x)) ∨ (τ(�x) ∧ ρ(�x))]

(14) ∀�x ∀y[(Ac(�x) & Ac(y) ⊃ (y → (σ(�x) ∨ ρ(�x))) = (y → σ(�x)) ∨ (y → ρ(�x))].

(ii) A structure A = (A, Ac, ∧, ∨, ⊗, → 0) is a dependence algebra if and only if it satisfies the axioms and 
axiom schemas (1) − (14) above and the following:

(15) ∀�x ∀y [Ac(�x) ⊃ τ(�x) ⊗ (σ(�x) ∨ ρ(�x)) = (τ(�x) ⊗ σ(�x)) ∨ (τ(�x) ⊗ ρ(�x))]

(16) ∀�x ∀y [Ac(�x) ⊃ (τ(�x) → τ ′(�x)) → (σ(�x) → σ′(�x)) = (τ(�x) ⊗ σ(�x)) → (τ ′(�x) ⊗ σ′(�x))].

Proof. Firstly we notice that the lists of axioms above are just an immediate translation of Definitions 2.1
and 2.2 into first-order logic.

(i) (⇒) Axioms 4–13 guarantee that 〈Ac〉 is a Heyting algebra. Axioms 1–3 ensure that Ac is closed 
under {∧, →, 0}, hence it is a Bouwerian semilattice. Finally, Axiom 14 corresponds to the Split axiom. (⇐)
Analogous.
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(ii) Immediate by (i) and the correspondence of Axiom 15 to Dist and Axiom 16 to Mon. �
Since every formula in the lists above is a Horn formula, it follows that inquisitive and dependence algebras 
are elementary classes axiomatised by Horn formulas. Notice, however, that since axioms 4 – 16 are schemas, 
with τ, σ, ρ, τ ′, σ′ being arbitrary terms, it follows that such axiomatisation is not finite.

Since InqI-algebras and InqI⊗-algebras are first-order structures, we can apply to our context the usual 
model-theoretic definitions of embedding, isomorphism, etc. In particular, we will often be interested in 
homomorphisms between inquisitive or dependence algebras. We say that a function h : A → B between two 
InqI-algebras is an inquisitive homomorphism, or a InqI-homomorphism, if h commutes with the operators 
∧, ∨, →, ⊗, 0 and, in addition, we have that h[Ac] ⊆ Bc. A function h : A → B between two InqI⊗-algebras 
is a dependence homomorphism, or a InqI⊗-homomorphism, if it is a inquisitive homomorphism which also 
preserves the tensor operation, i.e. h(x ⊗ y) = h(x) ⊗ h(y) for all x, y ∈ A.

We let InqAlg be the category of inquisitive algebras with InqI-homomorphisms and InqAlg⊗ be the 
category of inquisitive algebras with InqI⊗-homomorphisms.

2.2. Core semantics and translation into Horn formulas

Now that we have defined inquisitive and dependence algebras we can use them in order to give suitable 
algebraic semantics to inquisitive and dependence logics. To this end, we introduce core semantics, where 
valuations are restricted to range over a subset of a structure.

Let A be an inquisitive or dependence algebra, we say that a function μ is a core valuation over A if it 
assigns atomic formulas from AT to elements in Ac, i.e. μ : AT → Ac. Similarly, if A is a dependence algebra, 
a core valuation is a function μ : AT → Ac.

Definition 2.4 (Algebraic Model). An inquisitive algebraic model is a pair M = (A, μ) where A is an inquis-
itive algebra and μ : AT → Ac is a core valuation. A dependence algebraic model is an inquisitive algebraic 
model M = (A, μ) where A is also a dependence algebra.

The interpretation of arbitrary formulas in an algebraic model M is defined recursively as follows. Notice 
that this definition is standard, besides for the fact that atomic formulas can be assigned only to core 
elements of the underlying algebra.

Definition 2.5 (Interpretation of Arbitrary Formulas). Given an inquisitive algebraic model M and a formula 
φ ∈ LIPC, its interpretation �φ�M is defined as follows:

�p�M = μ(p) �⊥�M = 0 �φ ∨ ψ�M = �φ�M ∨ �ψ�M
�φ ∧ ψ�M = �φ�M ∧ �ψ�M �φ → ψ�M = �φ�M → �ψ�M.

Moreover, if M is a dependence model and φ ∈ L⊗
IPC, then its interpretation is defined by the clauses above 

together with the following one:

�φ⊗ ψ�M = �φ�M ⊗ �ψ�M.

If φ is a formula and M is an (inquisitive or dependence) algebraic model, we also write φM for the 
interpretation of φ in the model M. We write M �c φ and say that φ is true in M if φM = 1. We say 
that φ is valid in the inquisitive (or dependence) algebra A and write A �c φ if φ is true in every model 
M = (A, μ) over A. If C is a class of inquisitive (or dependence) algebras, then we say φ is valid in C, 
and write C �c φ, if A �c φ for all A ∈ C. Finally, we say that φ is an algebraic validity of inquisitive (or 
dependence) logic if it is true in all inquisitive (or dependence) models.
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Before we define arbitrary intermediate inquisitive and dependence algebras, we shall first explain how 
to relate validity under core-semantics to standard first-order validity. Recall that an equation in a language 
L is an atomic first-order formula of the form ε = δ, where ε and δ are terms in L. Notice in particular 
that any propositional formula in LIPC is a term in LIPC ∪ {Ac} and vice versa – and clearly the same holds 
for formulas in L⊗

IPC and terms in L⊗
IPC ∪ {Ac}. We can thus associate every formula φ to a corresponding 

equation Θ(φ) := φ = 1. Similarly, to any equation ε = σ – with ε, σ terms in LIPC or L⊗
IPC – we associate 

the formula Δ(ε, σ) := ε ↔ σ, where ε ↔ σ is a shorthand for ε → σ ∧ σ → ε.

Proposition 2.6. Let A be an inquisitive (or dependence) algebra. Then, for all formulas φ(x0, . . . , xn), and 
all equations ε = δ, we have that:

A �c φ ⇐⇒ A � ∀x0, . . . ,∀xn

( ∧
i≤n

Ac(xi) ⊃ Θ(φ)
)
; (1)

A �c Δ(ε, δ) ⇐⇒ A � ∀x0, . . . ,∀xn

( ∧
i≤n

Ac(xi) ⊃ ε(x0, . . . , xn) = δ(x0, . . . , xn)
)
. (2)

Proof. The proof is analogous for inquisitive and dependence algebras. Both (1) and (2) follow by a straight-
forward induction. We prove the base case only and leave the rest to the reader.

Consider first (1). Let φ = p ∈ AT, then we have that if A �c p, then for all core valuations μ : AT → Ac, 
we have that μ(p) = 1. Hence, for all x ∈ Ac, we have that x = 1, therefore A � ∀p

(
Ac(p) ⊃ p = 1

)
. The 

other direction follows analogously.
Consider (2). Let ε = p and δ = q. Then if A �c p ↔ q, then for all core-valuations μ : AT → A, we have 

that M = (A, μ) �c p ↔ q, which means that �p ↔ q�M = 1. Since pM, qM ∈ Ac and 〈Ac〉 is a Heyting 
algebra, this means that pM ≤ qM and qM ≤ pM, which together entail pM = qM. Finally, this means 
that for all x, y ∈ Ac, we have that x = y, hence A � ∀x∀y

(
Ac(x) ∧ Ax(y) ⊃ x = y

)
. The other direction 

follows analogously. �
This theorem gives us an important bridge between standard and core semantics. In particular, it shows 
that the truth of inquisitive (and dependence) formulas is equivalent to the validity under the standard 
Tarski semantics of a corresponding universal Horn formula.

We now use core-semantics to define arbitrary intermediate inquisitive and dependence algebras.

Definition 2.7.

• Let Λ ⊆ LCL be a set of formulas closed under standard substitution, then an inquisitive algebra A is 
said to be an InqΛ-algebra if A �c Λ.

• Let Λ ⊆ L⊗
CL be a set of formulas closed under standard substitution, then a dependence algebra A is 

said to be an InqΛ⊗-algebra if A �c Λ.

We then say that A is an intermediate inquisitive algebra if it is an InqΛ-algebra for some Λ ⊆ LCL. Similarly, 
A is an intermediate dependence algebra if it is an InqΛ⊗-algebra for some Λ ⊆ L⊗

CL. In particular, if 
Λ = {¬¬α → α}α∈LCL and A �c Λ then we say that A is a InqB-algebra. Similarly, if Λ = {¬¬α → α}α∈L⊗

CL

and A �c Λ then we say that A is a InqB⊗-algebra. It is straightforward to verify that InqB⊗-algebras 
are those dependence algebras whose core is a Boolean algebra with ⊗ as their join operator. The class 
of InqB-algebras defined here strictly extends the class of (classical) inquisitive algebras considered in [6]. 
However, as we shall see later, the subclass of core-generated InqB-algebras coincides with the so-called 
regular inquisitive algebras of [6].
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By Proposition 2.6 we have that InqΛ-algebras and InqΛ⊗-algebras are elementary classes of structures. 
In particular, since every formula in their axiomatisation is a Horn formula, it also follows that InqΛ-algebra 
are Horn-axiomatisable. The following proposition is then easy to prove.

Proposition 2.8 (Soundness).

(i) If A is an InqΛ-algebra, then A �c InqΛ.
(ii) If A is an InqΛ⊗-algebra, then A �c InqΛ⊗.

Proof. (i) Let A be a InqΛ-algebra, then by Proposition 2.6 and axioms (1)–(14) from Proposition 2.3 it 
follows immediately that A �c InqI, since the axioms in Definition 1.1 correspond to those of Proposition 2.3. 
We leave to the reader to check this correspondence. Moreover, since InqI-algebras are closed under modus 
ponens and by assumption A �c Λ it follows A �c InqΛ.

(ii) If A is a InqΛ⊗-algebra then our claim follows in the same way, by the fact that the axioms (1)–(16) 
of Proposition 2.3 are equivalent by Proposition 2.6 to the propositional axioms of Definition 1.4. �
We let InqAlgΛ be the category (and the class) of InqΛ-algebras with InqI-homomorphisms. Similarly, we 
let by InqAlgΛ⊗ be the category (and the class) of InqI⊗-algebras with InqI⊗-homomorphisms.

We conclude this section proving some closure properties of the validities of formulas under core-
semantics. If B is an inquisitive (dependence) substructure of A we also say that B is a subalgebra of 
A and we write B � A – notice that this does not mean that B is an elementary substructure of A. Finally, 
if A � B and Ac = Bc, then we say that B is a core-superstructure of A. We now prove the two following 
closure properties.

Proposition 2.9. Let A, B be inquisitive (or dependence) algebras, then:

(i) A �c φ and B � A entail B �c φ;
(ii) A �c φ and A � B, Ac = Bc entail B �c φ.

Proof. (i) Suppose B �c φ(�p), then (B, μ) �c φ(�p) for some core-valuation μ. Since B � A and μ[AT] ⊆ Bc, 
we have �φ(�p)�(A,μ)) = �φ(�p)�(B,μ), therefore (A, μ) �c φ(�p) and A �c φ(�p).

(ii) Suppose B �c φ(�p) and also A � B, Ac = Bc. Then we have (B, μ) �c p for some core-valuation μ
and, by Ac = Bc it follows that μ is a core-valuation over A as well. Finally, since A � B, we have that 
�φ(�p)�(A,μ) = �φ(�p)�(B,μ), therefore (A, μ) �c φ(�p) and A �c φ(�p). �
The following closure properties of InqΛ-algebras and InqΛ⊗-algebras follow directly from the previous 
proposition.

Corollary 2.10.

• For every Λ ⊆ LCL, InqΛ-algebras are closed under subalgebras and core-superstructures.
• For every Λ ⊆ L⊗

CL, InqΛ⊗-algebras are closed under subalgebras and core-superstructures.

If h : A → B is a surjective InqI-homomorphism (or InqI⊗-homomorphism), we say that B is a homo-
morphic image of A and we write h : A � B. Since InqI-homomorphisms and InqI⊗-homomorphisms may 
map non-core elements to core elements, algebraic validities are not closed under homomorphic images. Let 
A and B be the following inquisitive algebras:
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s

1

A

0

s′

1

B

where core(A) = {0, 1} and core(B) = B = {0, s′, 1}. It is easy to verify that with such core both A and B
satisfy the conditions of Definition 2.1 and are inquisitive algebras. Then, the function h : A → B depicted in 
the picture above is clearly a InqI-homomorphism, since it is the identity function over the algebraic reduct 
of A and B and moreover h[Ac] ⊆ Bc. Finally, one can readily check that A �c ¬¬p → p but B �c ¬¬p → p, 
as it is witnessed by the core assignment μ : p �→ s′.

Hence, the validity of core formulas is not preserved by InqI-homomorphisms and InqI⊗-homomorphisms. 
However, we shall prove later that closure under homomorphic images holds in a restricted class of cases.

2.3. Free InqΛ-algebras and algebraic completeness

We introduce in this section free inquisitive and dependence algebras – i.e. Lindenbaum-Tarski algebras 
for inquisitive and dependence logics – in order to prove the completeness of the algebraic semantics that 
we presented above. We refer the reader to [7] and [19] for the standard construction of free algebras.

Recall that AT is a countable set of atomic formulas, LIPC is the set of all formulas of inquisitive logic and 
L⊗
IPC is the set of all formulas of dependence logic. It is useful here to think of LIPC and L⊗

IPC as term algebras, 
whose elements are formulas and whose operations are respectively {∧, ∨, →, 0} and {∧, ∨, →, ⊗, 0}.

Free algebras are generally obtained by quotienting term algebras by suitable congruences. Here, we 
introduce a congruence relation for every intermediate inquisitive logic InqΛ, and one for every intermediate 
dependence logic InqΛ⊗. We define the relations ≡InqΛ⊆ LIPC × LIPC and ≡InqΛ⊗⊆ L⊗

IPC × L⊗
IPC as follows:

φ ≡InqΛ ψ ⇐⇒ φ ↔ ψ ∈ InqΛ;

φ ≡InqΛ⊗ ψ ⇐⇒ φ ↔ ψ ∈ InqΛ⊗.

It is easy to verify that these are equivalence relations. Moreover, since intermediate inquisitive (and de-
pendence) logics are closed under modus ponens one can also verify that ≡InqΛ and ≡InqΛ⊗ are congruences 
over the term algebras LIPC and L⊗

IPC.
Since our setting is non-standard, we need to define free algebras as first-order structures with a core. 

Free algebras for InqΛ are obtained by first quotienting the term algebra LIPC by the congruence relation 
≡InqΛ – in this way we obtain the Heyting algebra FInqΛ = (LIPC/ ≡InqΛ, ∧, ∨, →, 0). To turn such structure 
into an inquisitive algebra, we then need to specify its core. To this end, we say that an equivalence class 
[φ] ∈ FInqΛ = LIPC/ ≡InqΛ is classical if there is some α ∈ LCL such that α ∈ [φ]. We let FΛ be the 
set of classical equivalence classes in FInqΛ. We proceed similarly for dependence algebras: we say that an 
equivalence class [φ] ∈ F⊗

InqΛ = L⊗
IPC/ ≡InqΛ⊗ is classical if there is some α ∈ L⊗

CL such that α ∈ [φ] and we 
let F⊗

Λ denote this set. Then, to obtain the free algebra for InqΛ⊗ we quotient the term algebra L⊗
IPC by the 

congruence relation ≡InqΛ⊗ and we let the set of classical equivalence classes F⊗
Λ be its core. We can thus 

define free inquisitive and dependence algebras as follows.

Definition 2.11. The Free Inquisitive Algebra FInqΛ of the intermediate inquisitive logic InqΛ is the first 
order structure FInqΛ = (LIPC/ ≡InqΛ, FΛ, ∧, ∨, →, 0), where FΛ is the set of classical equivalence classes in 
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LIPC/ ≡InqΛ. The Free Dependence Algebra FInqΛ⊗ of the intermediate inquisitive logic InqΛ is the first order 
structure FInqΛ⊗ = (L⊗

IPC/ ≡InqΛ⊗ , F⊗
Λ , ∧, ∨, ⊗, →, 0), where F⊗

Λ is the set of classical equivalence classes in 
L⊗
IPC/ ≡InqΛ.

Proposition 2.12. Let InqΛ be an intermediate inquisitive logic and InqΛ ⊗ an intermediate dependence 
logic, then FInqΛ is an inquisitive algebra and FInqΛ ⊗ a dependence algebra.

Proof. (i) Since IPC ⊆ InqΛ it follows immediately that FInqΛ is a Heyting algebra. Moreover, since standard 
formulas are closed under meet and implication, it follows that if [α], [β] ∈ FΛ, then [α ∧ β] ∈ FΛ and 
[α → β] ∈ FΛ. It is clear that [⊥] ∈ FΛ. Hence it follows that FΛ is a Brouwerian semilattice. Also, for 
every α ∈ LCL and all φ, ψ ∈ LIPC we have by Axiom (A10) of Definition 1.1 that (α → (φ ∨ ψ)) → ((α →
φ) ∨ (α → ψ)) ∈ InqΛ. Moreover, since (α → (φ ∨ ψ)) ← ((α → φ) ∨ (α → ψ)) ∈ IPC, it follows that:

(α → (φ ∨ ψ)) ↔ ((α → φ) ∨ (α → ψ)) ∈ InqΛ.

Hence,

α → (φ ∨ ψ) ≡InqΛ (α → φ) ∨ (α → ψ).

Therefore, for every [α] ∈ FΛ and all [φ], [ψ] ∈ FInqΛ we have that:

[α] → ([φ] ∨ [ψ]) = ([α] → [φ]) ∨ ([α] → [ψ]),

proving that FInqΛ satisfies Split. Thus FInqΛ is an inquisitive algebra.
(ii) It is proven analogously to (i), by checking that Mon and Dist hold in FInqΛ⊗ . �

The following proposition shows that every inquisitive logic InqΛ is the logic of a free algebra.

Proposition 2.13. Let InqΛ be an intermediate inquisitive logic and InqΛ⊗ an intermediate dependence al-
gebra, then:

φ ∈ InqΛ ⇐⇒ FInqΛ �c φ;

φ ∈ InqΛ⊗ ⇐⇒ FInqΛ⊗ �c φ.

Proof. We prove the claim only for intermediate inquisitive logics, as the proof for dependence logics is the 
same. (⇐) Suppose φ(p0, . . . , pn) /∈ InqΛ where p0, . . . , pn are the propositional variables occurring in φ. 
Then we have that φ ↔ � /∈ InqΛ, hence φ �≡InqΛ � and so 1FInqΛ �= [φ]. Since [φ] = φ([p0], . . . , [pn]) and 
p0, . . . , pn are standard formulas, we can define the (canonical) core-valuation μ : AT → FΛ such that for all 
pi with i ≤ n, μ(pi) = [pi]. It follows immediately:

φ(p0, . . . , pn)FInqΛ = φ([p0], . . . , [pn]) = [φ(p0, . . . , pn)] �= 1FInqΛ .

Which means that FInqΛ �c φ and thus proves our claim. (⇒) Analogously to the previous direction. �
Corollary 2.14. Let InqΛ be an intermediate inquisitive logic and InqΛ⊗ an intermediate dependence logic, 
then FInqΛ is a InqΛ-algebra and FInqΛ⊗ a InqΛ⊗-algebra.

Proof. Immediate by Propositions 2.13 and 2.12 together with the definition of InqΛ-algebras and InqΛ⊗-
algebras. �
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Free InqΛ-algebras thus witness the validity of every formula. By this fact, the algebraic completeness of 
intermediate inquisitive logics follows immediately.

Theorem 2.15 (Algebraic Completeness). Every intermediate inquisitive logic InqΛ is complete with respect 
to the class of InqΛ-algebras and every intermediate dependence logic InqΛ⊗ is complete with respect to the 
class of InqΛ⊗-algebras:

φ ∈ InqΛ ⇐⇒ InqAlgΛ �c φ;

φ ∈ InqΛ⊗ ⇐⇒ InqAlgΛ⊗ �c φ.

Proof. We prove the claim for inquisitive algebras only, as the case for dependence algebras is exactly the 
same. (⇒) Suppose φ ∈ InqΛ and let A ∈ InqAlgΛ. Then by Proposition 2.8 we immediately have that 
A �c φ and therefore InqAlgΛ �c φ. (⇐) Suppose by contraposition that φ /∈ InqΛ, then by Proposition 2.13
we have that FInqΛ �c φ and then, since by Corollary 2.14 we also have that FInqΛ ∈ InqAlgΛ, it follows that 
InqAlgΛ �c φ. �
We thus have shown that the algebraic semantics we introduced for inquisitive and dependence logics is 
both sound and complete. Inquisitive and dependence logic can be then investigated not only from the point 
of view of team semantics, but also from an algebraic perspective.

3. Properties of inquisitive and dependence algebras

In this section we study several properties of inquisitive and dependence algebras. In particular, we try 
to find suitable subclasses of InqAlgΛ and InqAlgΛ⊗ that witness the validity of inquisitive and dependence 
formulas. To this end, we introduce and investigate finite, core-generated and well-connected inquisitive and 
dependence algebras, and we prove several results concerning such structures.

3.1. Core-generated and well-connected inquisitive and dependence algebras

If A is an arbitrary inquisitive (dependence) algebra, there is not much we can say about its structure 
with full generality, for the axioms of inquisitive (dependence) algebras characterise only the substructure 
〈Ac〉 of A. Therefore, it is useful to focus our attention on “small” inquisitive (dependence) algebras, namely 
to those structures A which are generated by their core Ac.

Definition 3.1. An inquisitive or dependence algebra A is core-generated if A = 〈Ac〉.

We shall see in this section that core-generated inquisitive algebras play an important role in the al-
gebraic semantics of InqI. We let InqAlgCG be the category of core-generated inquisitive algebras with 
InqI-homomorphisms and InqAlg⊗CG be the category of core-generated dependence algebras together with 
InqI⊗-homomorphisms. The categories InqAlgΛCG and InqAlgΛ⊗

CG are defined analogously.
We first prove the following Normal Form Theorem, which allows us to express every element of 〈Ac〉 in 

the form of a disjunction of core elements. This theorem is really an algebraic counterpart of the normal 
form result for InqI proved in [14] and recalled earlier in Section §1.3.

Theorem 3.2 (Disjunctive Normal Form). Let A be any inquisitive (dependence) algebra, then for all
x ∈ 〈Ac〉 there are pairwise incomparable elements a0, ..., an ∈ Ac such that x =

∨
ai.
i≤n
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Proof. Firstly, we notice that if x ∈ 〈Ac〉, then x can be expressed as a polynomial over core elements of 
A. We thus have that x = φ(y0, ..., ym), where y0, ..., ym ∈ Ac. It thus suffices to show by induction on the 
complexity of φ that φ =

∨
i≤n ai, for some a0, ...an ∈ Ac.

• If φ = a, then obviously φ =
∨
{a}.

By the induction hypothesis we have ψ =
∨

i≤n ai and χ =
∨

j≤m bj , then:

• If φ = ψ ∧ χ, then:

φ =
∨
i≤n

ai ∧
∨
j≤m

bj =
∨
i≤n

∨
j≤m

(ai ∧ bj).

And since Ac is closed under conjunction, ai ∧ bj ∈ Ac for all i ≤ n, j ≤ m.
• If φ = ψ ∨ χ, then:

φ =
∨
i≤n

ai ∨
∨
j≤m

bj =
∨

{a0, ..., an, b0, ..., bm}.

• If φ = ψ → χ, then:

φ =
∨
i≤n

ai →
∨
j≤m

bj

=
∧
i≤n

(
ai →

∨
j≤m

bj

)
(by 〈Ac〉 being a Heyting algebra)

=
∧
i≤n

( ∨
j≤m

(ai → bj)
)

(by Split)

=
∨

f :[n]→[m]

( ∧
i≤n

(ai → bf(j))
)
.

Where f : [n] → [m] means that f ∈ (m + 1)n+1. Now, since Ac agrees with 〈Ac〉 with respect to the 
reduct {⊥, ∧, →}, it follows that 

∧
i≤n(ai → bf(j)) ∈ Ac.

We have obtained that every x ∈ 〈Ac〉 has a disjunctive representation x =
∨

i≤n ai with ai ∈ Ac for all 
i ≤ n. Let A = {a0, ..., an}, then to obtain a non-redundant representation of x it suffices to take the set 
I = {m ≤ n : am is maximal in A}. Then clearly x =

∨
i≤n ai =

∨
i∈I ai and by construction ai � aj for 

i, j ∈ I such that i �= j.
Finally, if A is a dependence algebra, it suffices to supplement the previous reasoning with the following 

case:

• If φ = ψ ⊗ χ, then by the Dist axiom we have:

φ =
∨
i≤n

ai ⊗
∨
j≤m

bj =
∨
i≤n

∨
j≤m

(ai ⊗ bj).

Hence, since Ac is closed under the tensor disjunction ⊗, it follows that ai⊗ bj ∈ Ac for every i ≤ n, j ≤ m. 
This completes the proof of our claim. �
If A is a core-generated inquisitive or dependence algebra, then the following result follows immediately.
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Corollary 3.3. Let A be a core-generated inquisitive (or dependence) algebra, then for all x ∈ A there are 
pairwise incomparable elements a0, ..., an ∈ Ac such that x =

∨
i≤n ai.

Core-generated algebras play a special role in the theory of inquisitive and dependence algebras, as 
they are algebras for which the inquisitive and dependence axioms hold for all elements of the underlying 
universe. In particular, core-generated structures also have the important role of generators of the class of 
all inquisitive and dependence algebras. This is made precise by the following proposition.

Proposition 3.4. Every inquisitive (and dependence) algebra is a core-superstructure of a core-generated 
inquisitive algebra.

Proof. Let A be an arbitrary inquisitive (dependence) algebra and consider the core-generated algebra 〈Ac〉. 
Clearly 〈Ac〉c = Ac. Hence 〈Ac〉 � A, which proves our claim. �
This gives us a first characterisation of the classes of inquisitive and dependence algebras. For any class C
of InqI-algebras or InqI⊗-algebras, we let:

C↑ := {B : A � B and Ac = Bc for some A ∈ C}.

Moreover, we have the following proposition.

Proposition 3.5. (i) If φ ∈ LIPC and A is an inquisitive algebra, then A �c φ entails 〈Ac〉 �c φ. (ii) If 
φ ∈ L⊗

IPC and A is a dependence algebra, then A �c φ entails 〈Ac〉 �c φ.

Proof. This is an immediate consequence of Proposition 2.9(ii). �
It follows by the previous propositions that InqAlgΛ = (InqAlgΛCG)↑ and InqAlgΛ⊗ = (InqAlgΛ⊗

CG)↑. We thus 
obtain that core-generated InqΛ-algebras generate the class of InqΛ-algebras under the core superalgebra 
operator defined above. Similarly, core-generated InqΛ⊗-algebras generate the class of InqΛ⊗-algebras. This 
result is similar to what was obtained in [6] for so-called DNA-varieties, though there core superalgebras of 
core-generated inquisitive algebras were assumed to be always Heyting algebras.

As we have seen, if an inquisitive or dependence algebra A is core-generated, then we can talk about 
arbitrary elements of A and describe its full structures. With a similar motivation, we introduce well-
connected inquisitive and dependence algebras, as these are algebras for which we can give a characterisation 
of their core elements.

A Heyting algebra H is well-connected if for all x, y ∈ H, if x ∨ y = 1 then x = 1 or y = 1. We say that 
an inquisitive (or dependence) algebra A is well-connected if 〈Ac〉 is well-connected. We say that x ∈ H
is join-irreducible if, for all a, b ∈ H, x = a ∨ b entails x = a or x = b. Notice that in every distributive 
lattice, and thus in every Heyting algebra, join-irreducible elements coincide with the join-prime elements, 
i.e. those elements x ∈ H such that for all a, b ∈ H, if x ≤ a ∨ b then x ≤ a or x ≤ b. For any inquisitive (or 
dependence) algebra A, we say that an element x ∈ 〈Ac〉 is join-irreducible (join-prime) if x is join-irreducible 
(join-prime) in 〈Ac〉. We let Aji be the subset of join-irreducible members of 〈Ac〉.

The following proposition provides a characterisation of core elements of well-connected, inquisitive and 
dependence algebras.

Proposition 3.6. Let A be a well-connected, inquisitive or dependence algebra, then Ac = Aji

Proof. (⊆) Let a ∈ Ac and suppose that for some x, y ∈ 〈Ac〉 we have that a ≤ x ∨ y. It follows that 
a → x ∨y = 1 and therefore, by Split, (a → x) ∨ (a → y) = 1. Since A is well-connected, either a → x = 1 or 
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a → y = 1, which entails a ≤ x or a ≤ y. Hence a ∈ Aji. (⊇) Suppose x ∈ Aji, then by definition x ∈ 〈Ac〉. 
Hence by Theorem 3.2 we have that x =

∨
i≤n ai with ai ∈ Ac for all i ≤ n. Since x is join-irreducible there 

is some i ≤ n for which x = ai, which yields x ∈ Ac. �
Corollary 3.7. Let A be a well-connected, core-generated inquisitive or dependence algebra, then A is gen-
erated by its subset of join-irreducible elements.

We have thus obtained an important characterisation of core elements of well-connected inquisitive and 
dependence algebras. This fact will be important in our duality results of Section 4. Here, we can immediately 
prove an important result, showing that the validity of formulas is preserved under homomorphic images of 
well-connected, core-generated inquisitive and dependence algebras.

Proposition 3.8. Let A be a core-generated, well-connected inquisitive or dependence algebra such that A �c φ

and h : A � B, then B �c φ.

Proof. The proof is the same for inquisitive and dependence algebras. We firstly show that Bc ⊆ h[Ac]. 
Suppose y ∈ Bc and let h(x) = y, then since A is core-generated we have that x =

∨
i∈I ai and ai ∈ Ac for 

all i ≤ n. It follows that y =
∨

i≤n h(ai) and since y ∈ Bc we have that y is join-irreducible, which yields 
y = h(ai) for some i ≤ n.

Now, let �p := p0, . . . , pn and suppose towards contradiction that A �c φ(�p) and B �c φ(�p). Then (B, μ) �c

φ(�p) for some core-valuation μ. Let ν : AT → Ac be such that for all p ∈ AT, ν(p) ∈ h−1(μ(p)) ∩ Ac. 
Notice that μ is well-defined by the considerations of the previous paragraph. Since (A, ν) �c φ(�p) then 
�φ(�p)�(A,ν) = 1A and since h is a InqI-homomorphism:

1B = h(1A) = h(�φ(�p)�(A,ν)) = �φ(�p)�(B,μ),

which entails (B, μ) �c φ(�p), contradicting our assumption. �
3.2. A Birkhoff-like theorem for inquisitive algebras

An important result proven by Birkhoff for varieties of algebras states that an equation is true in a variety 
if and only if it is true in its subclass of subdirectly irreducible algebras. Here we prove a similar result 
for a suitable subclass of inquisitive algebras. We shall deal separately in the next section with dependence 
algebras, as that case involves further complications.

Firstly, we prove some preliminary results concerning finite inquisitive algebras. In the standard setting 
of universal algebra [7, p. 69], we say that an algebra A is locally finite if for every X ⊆ dom(A) such that 
|X| < ω we have |〈X〉| < ω. A class of algebras C is locally finite if every A ∈ C is locally finite. We recall 
the following well-known facts. We refer the reader to [17] and [20] for a proof of the following statements.

Theorem 3.9 (Diego, Folklore).

(i) The class of Brouwerian semilattices is locally finite;
(ii) The class of bounded distributive lattices is locally finite.

To make sense of this property in our context, we should consider only subsets X ⊆ core(A). We say that 
an inquisitive algebra A is locally finite if for every X ⊆ core(A) such that |X| < ω we have |〈X〉| < ω. A 
class of InqI-algebras C is locally finite if every A ∈ C is locally finite. The following theorem shows that 
InqΛ-algebras are locally finite.
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Theorem 3.10. InqΛ-algebras are locally finite.

Proof. Let A be a InqΛ-algebra and let X ⊆ Ac. We first close X under the Brouwerian semilattice 
operations {∧, →, 0} and we obtain the subalgebra Y = 〈X〉(∧,→,0) of Ac. It follows by Diego’s Theorem 
that Y is finite. Secondly, we close Y under meet and join, and we obtain the set Z = 〈Y 〉(∧,∨). Since 
(A, ∧, ∨) is a bounded distributive lattice, it follows from the previous theorem that Z is finite as well.

To obtain an inquisitive algebra, we need to supplement Z with a Heyting implication. Notice that, for all 
x, y ∈ Z, we have that x = φ(�a) and y = ψ(�b) for some tuples �a = a0, . . . , an ∈ X and �b = b0, . . . , bm ∈ X. 
By reasoning as in Theorem 3.2, we can put φ and ψ in disjunctive form and show that for all x, y ∈ Z, 
x =

∨
i≤n ci and y =

∨
j≤m dj for ci, dj ∈ Y . We define:

x→̇y :=
∨

f :[n]→[m]

[ ∧
i≤n

(ci → df(j))
]
.

By proceeding again as in the proof of the Normal Form Theorem, we see that for all x, y ∈ Z, x→̇y = x → y, 
hence (Z, ∧, ∨, →, 0) is a well-defined Heyting subalgebra of 〈Ac〉.

Since X ⊆ Ac and Ac is a Brouwerian semilattice, it follows that Y � Ac and that B = (Z, Y, ∧, ∨, →̇, 0)
is an inquisitive subalgebra of A. Since by construction Z = 〈X〉, it follows that B is the smallest subalgebra 
of A containing X, i.e. B is the subalgebra of A generated by X. By the closure of InqΛ-algebras under 
subalgebras we then have that B is a InqΛ-algebra. Finally, by what we have argued above, |Z| < ω, hence 
A is locally finite and thus InqΛ-algebras are locally finite. �

We then obtain the algebraic version of the finite model property.

Theorem 3.11 (Finite Model Property). Suppose A is a InqΛ-algebra and A �c φ, then there is a finite 
InqΛ-algebra B such that B �c φ.

Proof. Let A be a InqΛ-algebra such that A �c φ, then for some core valuation μ and M = (A, μ) we 
have M �c φ. Let At(φ) = {p0, . . . , pn}, then by Theorem 3.10 above 〈At(φ)〉 is finite. The structure 
B = (〈At(φ)〉, 〈At(φ)〉(∧,→,0), ∧, ∨, →̇, 0) is then a finite inquisitive subalgebra of A. By Corollary 2.10, B is 
a InqΛ-algebra and since (B, μ) �c φ it follows that B �c φ. �

We use the former results to prove a version of Birkhoff’s Theorem for inquisitive algebras. In the 
standard setting, Birkhoff’s result [7, Thm. 9.6] says that every algebra in a variety is a subdirect product 
of subdirectly irreducible algebras. As a consequence, this means that an equation holds in a variety of 
algebras if and only if it holds in its subclass of subdirectly irreducible elements. Here we prove a similar 
result for the class of InqΛ-algebras: the next theorem specifies a class of representatives which witness the 
truth and falsity of formulas in inquisitive algebras.

Recall that a Heyting algebra H is subdirectly irreducible if and only if it has a second greatest element. 
Also, if H is finite, then H is subdirectly irreducible if and only if H is well-connected. Finally, we also recall 
the following fact, originally due to Wronski.

Proposition 3.12 (Wronski). Let H be a Heyting algebra and 1 �= x ∈ H. Then there is a surjective Heyting 
homomorphism h : H � B such that B is a subdirectly irreducible Heyting algebra and h(x) = sB, where sB
is the second greatest element in B.

We refer the reader to [18] and [33] for the proofs of the previous claims.

Theorem 3.13. Suppose A is a InqΛ-algebra and A �c φ, then there is a finite, core-generated, well-connected 
InqΛ-algebra B such that B �c φ.
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Proof. Suppose A is a InqΛ-algebra such that A �c φ. By Theorem 3.11 above there is a finite InqΛ-algebra 
D such that D �c φ and, by Proposition 3.5, it follows that 〈Dc〉 �c φ. Hence there is some core-valuation 
μ such that M �c φ, where M = (〈Dc〉, μ). By Proposition 3.12, there is a surjective homomorphism 
h : 〈Dc〉 � C such that C is a subdirectly irreducible Heyting algebra and h(φM) = sC , where sC is the 
second greatest element in C. Now let B = (h[〈Dc〉], h[Dc], ∧, ∨, →, 0) and let ν : AT → Bc be the core 
assignment ν := h ◦ μ. Then from the fact that 〈Dc〉 �c φ, we obtain (B, ν) �c φ and therefore B �c φ. It 
thus suffices to verify that B is a finite, core-generated, well-connected InqΛ-algebra.

Clearly B is a Heyting algebra and by the fact that Bc is homomorphic image of Dc under h, it follows 
that Bc = h[Ac] is a Brouwerian semilattice. Since D is finite and B = h[〈Dc〉], we have that B is finite. 
Moreover, since B = h[〈Dc〉] and Bc = h[Dc], B is clearly generated by Bc.

We next claim that B is well-connected. By construction, B�{→, ∧, ∨, 1, 0} = C is a subdirectly irreducible 
Heyting algebra and, since it is finite, it is also well-connected.

To see that B validates the Split axiom, let a ∈ Bc, x, y ∈ 〈Bc〉. Since h[〈Dc〉] = B and h[Dc] = Bc, there 
are a′ ∈ Dc, x′, y′ ∈ 〈Dc〉 such that h(a′) = a, h(x′) = x and h(y′) = y. Since 〈Dc〉 is an inquisitive algebra 
we then obtain:

a′ → (x′ ∨ y′) = (a′ → x′) ∨ (a′ → y′)

=⇒ h[a′ → (x′ ∨ y′)] = h[(a′ → x′) ∨ (a′ → y′)]

=⇒ h(a′) → (h(x′) ∨ h(y′)) = (h(a′) → h(x′)) ∨ (h(a′) → h(y′))

=⇒ a → (x ∨ y) = (a → x) ∨ (a → y),

hence B is a InqI-algebra.
Finally, we can show in exactly the same way that for Λ ⊆ LCL, D �c Λ entail B �c Λ, meaning that B

is a InqΛ-algebra. It follows that B is a finite, core-generated, well-connected InqΛ-algebra and that B � φ, 
which proves our theorem. �

The previous theorem shows why finite, core-generated, well-connected inquisitive algebras are of special 
importance in the theory of inquisitive algebras. In fact, by the former result, they witness the validity of 
inquisitive formulas. We write InqAlgFCGW for the category (and the class) of finite, core-generated, well-
connected inquisitive algebras with InqI-homomorphisms.

3.3. A Birkhoff-like theorem for dependence algebras

We prove in this section a theorem analogous to Theorem 3.13 for the class of dependence algebras. In 
this case we will show only a weaker version of our former result: We prove that finite, core generated, 
well-connected dependence algebras witness the validity of formulas true in the class of well-connected 
dependence algebras. We conclude this section by proving a stronger version of this result for the case of 
locally tabular intermediate dependence logics.

Firstly, we prove the following lemma, which shows that every surjective map between core-generated 
algebras which preserves the Heyting operations also preserves the tensor disjunction.

Lemma 3.14. Suppose f : A → B is a surjective Heyting homomorphism between two core-generated InqI⊗-
algebras A and B, then it follows that for all x, y ∈ A, f(x ⊗ y) = f(x) ⊗ f(y).

Proof. Since f preserves the operations in {0, ∧, →}, f�Ac is a Brouwerian semilattice homomorphism. 
By Lemma 2.4 in [23] (see also [4, Lemma 2]) surjective Brouwerian semilattices homomorphisms preserve 
existing join, hence for all a, b ∈ Ac, f(a ⊗ b) = f(a) ⊗ f(b).
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We extend this result to arbitrary elements of A. Let x, y ∈ A, then, by the Normal Form Result 
x =

∨
i≤n ai and y =

∨
j≤m bj , where ai, bj ∈ Ac, for all i ≤ n and j ≤ m. We obtain:

f(x) ⊗ f(y) = f
( ∨

i≤n

ai

)
⊗ f

( ∨
j≤m

bj

)

=
∨
i≤n

f(ai) ⊗
∨
j≤m

f(bj) (by f homomorphism)

=
∨

{f(ai) ⊗ f(bj) : i ≤ n, j ≤ m and ai, bj ∈ Ac} (by Dist)

=
∨

{f(ai ⊗ bj) : i ≤ n, j ≤ m and ai, bj ∈ Ac} (by ai, bj ∈ Ac)

= f
[∨

{ai ⊗ bj : i ≤ n, j ≤ m and ai, bj ∈ Ac}
]

(by f homomorphism)

= f
( ∨

i≤n

ai ⊗
∨
j≤m

bj

)
(by Dist)

= f(x⊗ y).

Hence for all x, y ∈ A, f(x ⊗ y) = f(x) ⊗ f(y), proving our claim. �
Corollary 3.15. Suppose h : A → B is a surjective InqI-homomorphism and that A and B are core-generated 
dependence algebras, then h is a InqI⊗-homomorphism.

While Brouwerian semilattices are locally finite, Heyting algebras are not, hence the proof we gave to 
Theorem 3.10 cannot be replicated in the setting of dependence algebras. We can then prove only a limited 
version of the Finite Model Property: we show that if a formula is falsified by a well-connected dependence 
algebra, then it is falsified by a finite dependence algebra.

Theorem 3.16. Suppose A is a well-connected InqI⊗-algebra and A �c φ, then there is a finite InqI⊗-algebra 
B such that B �c φ.

Proof. We adapt to our context the strategy of the proof of the finite model property for the variety of 
Heyting algebras. Given a well-connected dependence algebra A such that A �c φ, the main idea of this 
proof is to generate a finite distributive lattice B � A such that the tensor is well-defined over Bc and 
B �c φ. Then, using the fact that A is well-connected, we define a “fake” heyting implication and we lift 
the tensor join to the whole of B, so that we turn B into a suitable dependence algebra.

Suppose that A �c φ and A is well-connected. Let μ be a core valuation such that (A, μ) �c φ and let 
M = (A, μ). By the Normal Form Theorem 1.17 for InqI⊗, we can assume without loss of generality that 
φ =

∨
i≤n αi, where αi is a standard formula for all i ≤ n. We let Sub(φ) be the set of subformulas of φ.

Consider the set X = {τM : τ ∈ Sub(α)}. Since every αi is standard, we clearly have that X ⊆ Ac. 
By closing X under all operations in {∧, ⊗, 0} we obtain Y = 〈X〉(∧,⊗,0). Since Ac�{∧, ⊗, 0} is a bounded 
distributive lattice it follows that Y is a finite {∧, ⊗, 0}–subalgebra of Ac. We then close Y under the 
operations {∧, ∨} and obtain Z = 〈Y 〉(∧,∨,0). Since Y is finite and A�{∧, ∨, 0} is a bounded distributive 
lattice it follows that Z is finite.

Claim. Let x ∈ Z, then x =
∨

i≤n bi and bi ∈ Y for all i ≤ n.

Proof. The claim follows by induction over {∧, ∨, 0} as in the Normal Form Theorem 3.2. �
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Now, in order to obtain an InqI⊗-algebra B such that dom(B) = Z and core(B) = Y , it suffices to extend 
the tensor operator to arbitrary elements of Z and define a Heyting implication over such structure. To this 
end, we define:

x⊗ y :=
∨

{a⊗ b : a ≤ x, b ≤ y and a, b ∈ Y }.

For all x, y ∈ B, we have by the previous claim that x =
∨

i≤n ai and y =
∨

j≤m bj with ai, bj ∈ Y , hence 
by the finiteness of Y , the former definition is equivalent to x ⊗ y =

∨
i≤n

∨
j≤m(ai ⊗ bj) with ai, bj ∈ Y . 

Similarly, we proceed by defining a new “fake” implication →̇ as follows:

x→̇y :=
∨

{c ∈ Z : c ∧ x ≤ y}.

Notice that, since Z is finite, →̇ is well-defined. We now prove the following claims.

Claim. The structure B = (Z, Y ∩ Ac, ⊗, ∨, ∧, →̇, 0) is an InqI⊗-algebra.

Proof. Firstly, since dom(B) = Z and (Z, ∧, ∨, 0) is a bounded distributive lattice, we have that 
(dom(B), ∧, ∨, →̇, 0) is a bounded distributive lattice together with a well-defined Heyting implication, 
hence it is a Heyting algebra. Similarly, core(B) = Y ⊆ Ac, hence since Ac is a bounded distributive lattice 
and Y is closed under {∧, ⊗}, it follows that core(B) is also a bounded distributive lattice. We have by the 
previous claim:

x→̇y :=
∨

{c ∈ B : c ∧ x ≤ y}

=
∨{ ∨

i≤n

ai :
∨
i≤n

ai ∧ x ≤ y and ai ∈ core(B) for all i ≤ n
}

=
∨

{ai ∈ core(B) : ai ∧ x ≤ y for all i ≤ n}.

Hence →̇ is a well-defined Heyting implication and core(B) is a Heyting algebra.
It then remains to check the axioms Dist, Split and Mon. We check Dist and Split only as the case for 

Mon is analogous.
(Dist). Let x, y, z ∈ B, then there are ai, bj , ck ∈ Y for all i ≤ n, j ≤ m, k ≤ l such that x =

∨
i≤n ai, 

y =
∨

j≤m bj and z =
∨

k≤l ck. By the definition of the tensor, we then have:

x⊗ (y ∨ z) =
( ∨

i≤n

ai) ⊗ (
∨
j≤m

bj ∨
∨
k≤l

ck

)

=
( ∨

i≤n

ai) ⊗ (
∨
i≤n

∨
j≤m

(bj ∨ ck)
)

=
( ∨

i≤n

∨
i≤n

∨
j≤m

(ai ⊗ (bj ∨ ck))
)
.

And since ai, bj , ck ∈ Y , it follows that: ai ⊗B (bj ∨ ck) = ai ⊗A (bj ∨ ck). Thus, since the Dist axiom holds 
in A we then obtain the following:

∨
i≤n

∨
i≤n

∨
j≤m

(ai ⊗ (bj ∨ ck)) =
∨
i≤n

∨
j≤m

∨
k≤l

((ai ⊗ bj) ∨ (ai ⊗ ck))

=
( ∨

i≤n

ai ⊗
∨
j≤m

bj

)
∨
( ∨

i≤n

ai ⊗
∨
k≤l

ck

)

= (x⊗ y) ∨ (x⊗ z).
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(Split). Let a ∈ Bc and y, z ∈ B, then by our previous claim we have that y =
∨

j≤m bj and z =
∨

k≤l ck
such that bj , ck ∈ Y for all j ≤ m, k ≤ l. By A well-connected, we have:

a→̇(y ∨ z) =
∨

{c ∈ B : c ∧ a ≤ (y ∨ z)}

=
∨

{c ∈ core(B) : c ∧ a ≤
( ∨

j≤m

bj ∨
∨
k≤l

ck

)
}

=
∨

{c ∈ core(B) : c ∧ a ≤
∨
j≤m

bj} ∨
∨

{c ∈ core(B) : c ∧ a ≤
∨
k≤l

ck}

= (a→̇y) ∨ (a→̇z).

It follows that B is an InqI⊗-algebra. �

Recall that μ is a core valuation such that (A, μ) �c φ and that by the Normal Form Theorem 1.17 we 
assume without loss of generality that φ =

∨
i≤n αi with each αi being standard.

Claim. Let ν : AT → B be a core-valuation such that ν�{p0, . . . , pn} = μ�{p0, . . . , pn}, then (B, ν) �c φ.

Proof. We first prove by induction that for any standard formula β(p0, . . . , pn), �β�(A,μ) = �β�(B,ν).

• If β = p is atomic, then �p�(B,ν) = �p�(A,μ) by definition of ν.
• If β = ψ ⊗ χ, then by the fact that ψ and χ are standard formulas, we have that �ψ�(A,μ) ∈ Y and 

�χ�(A,μ) ∈ Y , hence ψ ⊗B χ = ψ ⊗A χ. We obtain:

�ψ ⊗ χ�(A,μ) = �ψ�(A,μ) ⊗A �χ�(A,μ) = �ψ�(B,ν) ⊗B �χ�(B,ν) = �ψ ⊗ χ�(B,ν).

• If β = ψ ∧ χ, we proceed analogously.
• If β = ψ → χ, we have:

�ψ → χ�(B,ν) =
∨

{ai ∈ core(B) : ai ∧ �ψ�(B,ν) ≤ �χ�(B,ν)}

≤
∨

{ai ∈ core(A) : ai ∧ �ψ�(A,μ) ≤ �χ�(A,μ)}

= �ψ → χ�(A,μ).

Since by construction �ψ → χ�(A,μ) ∈ Ac ∩X ⊆ Bc, it follows that:

�ψ → χ�(A,μ) ∈ {ai ∈ core(B) : ai ∧ �ψ�(A,μ) ≤ �χ�(A,μ)}

=⇒ �ψ → χ�(A,μ) ≤
∨

{ai ∈ core(B) : ai ∧ �ψ�(A,μ) ≤ �χ�(A,μ)},

and therefore �ψ → χ�(B,ν) = �ψ → χ�(A,μ).

Now, we have that for all i ≤ n, �αi�(A,μ) = �αi�(B,ν) and since ∨A = ∨B, it follows that 
� ∨

i≤n

αi

�(A,μ)
=

� ∨
i≤n

αi

�(B,ν)
. Therefore, since (A, μ) �c φ, we have (B, ν) �c φ. �

Finally, we have obtained a finite InqI⊗-algebra B such that B �c φ, which completes the proof of our 
theorem. �
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The next proposition integrates the previous one and it allows us to obtain, starting from a finite InqI⊗-
algebra A such that A �c φ, a finite, core-generated and well-connected InqI⊗-algebra B such that B �c φ.

Proposition 3.17. Suppose A is a finite InqΛ⊗-algebra and A �c φ, then there is a finite, core-generated, 
well-connected InqΛ⊗-algebra B such that B �c φ.

Proof. The proof follows the same strategy of the proof of Theorem 3.13. Suppose A �c φ where A is a finite 
dependence algebra. By Proposition 3.5, we obtain that 〈Ac〉 �c φ, hence there is some core-valuation μ for 
which M �c φ, where M = (〈Ac〉, μ). Now, by Proposition 3.12, there is a surjective Heyting homomorphism 
h : 〈Ac〉 � B such that B is a subdirectly irreducible Heyting algebra and h(φM) = sB , where sB is the 
second greatest element in B.

To prove our claim, we specify a tensor operator and a subset of core elements of B, thus obtaining a 
dependence algebra. Let Bc := h[Ac], then since h is a Heyting homomorphism in the signature {∧, ∨, →, 0}
we have that Bc is a homomorphic image of Ac�{∧, →, 0}, hence it is a Brouwerian semilattice. Also, notice 
that Bc is an ordered structure, where the order a ≤Bc

b is defined by:

a ≤Bc
b ⇐⇒ a ∧Bc b = a.

We augment Bc with a join operator so that it becomes a Heyting algebra: we define, for all a, b ∈ Bc, 
a ⊗ b :=

∧
{x ∈ Bc : x ≥ a, b} and we write B⊗

c for the expansion of Bc with this new operation. Notice that 
a ⊗ b always exists by the finiteness of Bc. It is easy to verify that B⊗

c is a Heyting algebra.
We can now use the tensor operator defined over B⊗

c to extend B to a dependence algebra B⊗. We 
let B⊗ = (dom(B), B⊗

c , ∧, ∨, ⊗, →, 0), such that B⊗�{∧, ∨, →, 0} = B and where the tensor operator is 
interpreted in B⊗ as follows:

• For all a, b ∈ B⊗
c we let a ⊗ b :=

∧
{x ∈ B⊗

c : x ≥ a, b}, as we defined above.
• For all x, y ∈ B⊗ \ B⊗

c we let x ⊗ y :=
∨
{a ⊗ b : a ≤ x, b ≤ y and a, b ∈ B⊗

c }.

Claim. B⊗ is a finite, core-generated and well-connected InqΛ⊗-algebra.

Proof. Since A is finite and B⊗ = h[〈A〉], it follows that B⊗ is finite. Also, since B⊗ = dom(B) = h[〈A〉]
and B⊗

c = h[Ac], we have that B⊗ = 〈B⊗
c 〉. That B⊗ is well-connected follows from the fact that B is finite 

and subdirectly irreducible.
We next verify that B satisfies the conditions of Definition 2.2. By construction, both B⊗ and B⊗

c are 
Heyting algebras, so it suffices to verify that B⊗ also satisfies the additional axioms Dist, Split and Mon. 
We only check Dist, as the proof that Split holds is the same of Theorem 3.13 and Mon follows similarly.

Since B is generated by its core Bc, we have for x, y, z ∈ 〈B⊗
c 〉 that y =

∨
i≤n ki and z =

∨
j≤m lj . We 

then obtain:

x⊗ (y ∨ z) =
∨

{a⊗ b : a ≤ x, b ≤ y ∨ z and a, b ∈ B⊗
c }

=
∨

{a⊗ b : a ≤ x, b ≤
∨
i≤n

ki ∨
∨
j≤m

lj and a, b ∈ B⊗
c }.

Now, by the Split axiom, together with the fact that B is well-connected, it follows as in Proposition 3.6
that b is join-irreducible, hence b ≤

∨
i≤n ki ∨

∨
j≤m lj if and only if b ≤ ki or b ≤ lj for some i ≤ n, j ≤ m. 

Proceeding from the former equalities, we obtain:

=
∨

{a⊗ b : a ≤ x, b ≤
∨

ki, a, b ∈ B⊗
c } ∨

∨
{a⊗ b : a ≤ x, b ≤

∨
lj , a, b ∈ B⊗

c }

i≤n j≤m
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=
∨

{a⊗ b : a ≤ x, b ≤ y and a, b ∈ B⊗
c } ∨

∨
{a⊗ b : a ≤ x, b ≤ z and a, b ∈ B⊗

c }

= (x⊗ y) ∨ (x⊗ z).

Thus B⊗ validates Split. Now, since h : A → B⊗
c is a surjective Heyting homomorphism and h[Ac] ⊆ Bc, 

it follows from Corollary 3.15 that h is a InqI⊗-homomorphism. Then, by Proposition 3.8, we have that h
preserves the validity of every φ ∈ Λ and that B⊗ is a InqΛ⊗-algebra. �

Finally, let ν = h ◦ μ, then since h(φA) = sB we have (B⊗, ν) �c φ, which shows B⊗ �c φ. Since B⊗ is a 
finite, core-generated and well-connected InqI⊗-algebra, this proves our theorem. �

By combining the two previous results we obtain the following theorem, which is a restricted version 
of Theorem 3.13 for dependence algebras. We let InqAlg⊗W be the category of well-connected dependence 
algebras and InqI⊗-homomorphisms.

Theorem 3.18. Suppose InqAlg⊗W �c φ, then there is a finite, core-generated and well-connected dependence 
algebra D such that D �c φ.

Proof. Suppose InqAlg⊗W �c φ, then there is some well-connected InqI⊗-algebra A such that A �c φ. Then, 
by Theorem 3.16, there is a finite InqI⊗-algebra B such that B �c φ, and by Proposition 3.17 we can then 
find a finite, core-generated and well-connected InqI⊗-algebra D such that D �c φ. �

We say that a dependence algebra A is locally finite if for every X ⊆ core(A) such that |X| < ω we 
have |〈X〉| < ω. A class of InqI⊗-algebras C is locally finite if every A ∈ C is locally finite. We say that an 
intermediate dependence logic InqΛ⊗ is locally tabular if InqAlgΛ⊗ is locally finite. When InqΛ⊗ is locally 
tabular, we can replicate the proof that InqΛ-algebras are locally finite for the setting of InqΛ⊗-algebras.

Theorem 3.19 (Finite Model Property). Suppose A is a locally finite InqΛ⊗-algebra such that A �c φ, then 
there is a finite InqΛ⊗-algebra B such that B �c φ.

Proof. The proof of this theorem is the same to that of Theorems 3.10 and 3.11, by using the fact that A
is locally finite in place of Diego’s theorem. �
Together with Proposition 3.17, this provides us a stronger result for locally tabular intermediate dependence 
logic.

Theorem 3.20. Suppose InqΛ⊗ is locally tabular and InqAlgΛ⊗ �c φ, then there is a finite, core-generated, 
well-connected inquisitive algebra D such that D �c φ.

Proof. By Proposition 3.17 and Theorem 3.19. �
4. Canonical constructions and representation of inquisitive and dependence algebras

In the previous section we have proved several model-theoretic properties of inquisitive and dependence 
algebras and we studied finite, core-generated inquisitive and dependence algebras. In this section we focus 
on these classes and we prove some duality results.

Firstly, we prove that the category of finite posets with Köhler morphisms is dually equivalent to the 
category of finite, core-generated, well-connected inquisitive algebras. Then, we prove that the category 
of finite posets with p-morphisms is equivalent to the category of finite, core-generated, well-connected 
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dependence algebras. These two results give an important representation of finite, core-generated and well-
connected inquisitive and dependence algebras in terms of appropriate downset algebras.

In the second part of this section we then extend these categorical equivalences to teams over Kripke 
frames and models over inquisitive and dependence algebras. We conclude by remarking that, in this way, 
we obtain an alternative proof of algebraic completeness for some intermediate inquisitive and dependence 
logics.

4.1. Birkhoff, Köhler, and Esakia duality

We say that two categories C and D are equivalent if there are functors F : C → D and G : D → C
such that F ◦ G ∼= 1D and G ◦ F ∼= 1C. If C and D are equivalent, we also write C ∼= D. We say that two 
categories C and D are dually equivalent and we write C ∼=op D if C ∼= Dop, namely if C is equivalent to the 
dual category of D. We refer the reader to [25] for a precise definition of these categorical notions and to 
[16] for a discussion of several duality results.

We recall some important representation results that we shall use later in our proofs. Firstly, we recall 
the following theorem by Birkhoff, which allows us to represent finite bounded distributive lattices in terms 
of suitable downsets algebras.

Theorem 4.1 (Birkhoff). Every finite bounded distributive lattice L is isomorphic to the algebra of nonempty 
downsets of some finite poset: L ∼= (Dw+(P ), ∧, ∨, 0) for some poset P . In particular, P is the poset of all 
join-irreducible elements of L and h : x �→ {y ∈ Lji : y ≤ x} is the underlying isomorphism.

We shall not discuss here how to extend the previous representation result to suitable morphisms, as we will 
only need the previous version of Birkhoff’s result in the subsequent on this section. We refer the interested 
reader to [7,16] for more details about Birkhoff’s theorem. See also the notes by Morandi [27] on dualities 
in lattice theory for the extension of the previous result to a full categorical equivalence.

Let F and G be posets (i.e. intuitionistic Kripke frames) with orders R, R′ respectively, then we say that 
a partial function p : F → G is a Köhler map if the following hold:

(i) ∀x, y ∈ dom(p) [xRy ⇒ p(x)R′p(y)];

(ii) ∀x ∈ dom(p), ∀y′ ∈ G [p(x)R′y′ ⇒ ∃y ∈ F such that xRy and p(y) = y′].

Thus a Köhler map is essentially a partial p-morphism. Notice that here we followed Bezhanishvili and 
Jansana [2] and we rephrased Köhler’s original conditions with their equivalent conditions for the dual of 
his order. The reason is that, like Bezhanishvili and Jansana, we prefer to work with upsets of posets rather 
than downsets. We then denote by Pos the category of all posets (i.e. intuitionistic Kripke frames) with 
Köhler morphisms. Although posets and Kripke frames are the same objects, we usually talk of posets 
when the underlying morphisms are Köhler maps, and of Kripke frames when the underlying morphisms 
are p-morphisms.

Theorem 4.2 (Köhler). The category PosF of finite posets and Köhler maps is dually equivalent to the category 
BSF of finite Brouwerian semilattices and Brouwerian homomorphisms.

We let O : PosF → BSF and Pf : BSF → PosF be the underlying functors of Köhler’s duality. For any poset 
F, we write Up(F) for its collection of upward-closed sets. It is easy to see that Up(F) forms a Bouwerian 
semilattice under the subset ordering ⊆. Then, for any objects F, G ∈ PosF and any Köhler map p : F → G, 
we have:
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O : F �→ Up(F);

O(p) : Up(G) → Up(F); U �→ R[p−1(U)].

Notice that, since p is a partial map, p−1(U) does not need to be upward-closed and thus we explicitly close 
it under R.

Conversely, we let Pf : BSF → PosF be the functor from finite Brouwerian semilattices to finite posets 
which acts as follows. We say that a subset of a Brouwerian semilattice F ⊆ B is a prime filter if F is 
a proper filter such that, for all filters P, Q, P ∩ Q ⊆ F entails P ⊆ F or Q ⊆ F (See [3]). Then, if A
is a Brouwerian semilattice, Pf(A) denotes the poset of its prime filters. For all Brouwerian semilattices 
A, B ∈ BSF and for all Brouwerian homomorphisms h : A → B, we then have:

Pf : A �→ Pf(A);

Pf(h) : Pf(B) → Pf(A); : x �→ h−1[G].

We refer the reader to the original presentation by Köhler in [23] for the proof that these maps are both 
well-defined and that they prove that BSF ∼= PosF. However, notice that our maps differ from Köhler’s 
ones as we are working with their duals and following [2]. At the same time, our maps are simpler than 
Bezhanishvili’s and Jansana’s maps as we are simply adapting Köhler’s duality, while they generalise it to 
infinite Brouwerian semilattices and infinite posets. See also [2, §6].

Finally, let us recall the following finite version of Esakia duality.

Theorem 4.3 (Esakia). The category KFF of finite Kripke frames and p-morphisms is dually equivalent to 
the category HAF of finite Heyting algebras and Heyting homomorphisms.

In one direction, we send finite Kripke frames (i.e. posets) to the Heyting algebra of their upsets with reverse 
ordering, exactly as we did for Köhler’s duality. In the case of maps, however, the functor has a simpler 
description, since the preimage p−1(U) of some upsets U under a p-morphism p is always an upset. For any 
objects F, G ∈ KFF and any p-morphism p : F → G, we have that:

O : F �→ Up(F);

O(p) : Up(G) → Up(F); U �→ p−1[U ].

In the converse direction, we define the functor in the following way: if L is a bounded lattice, then a subset 
F ⊆ dom(L) is a prime filter if F is a proper filter and, for all x ∨ y ∈ F , either x ∈ F or y ∈ F . We let 
Pf(H) be the set of all prime filters over H. It is easy to check that this forms a poset under the subset 
ordering. We then define the functor Pf : BSF → PosF by letting, for all A, B ∈ HAF, and for all Heyting 
homomorphisms h : A → B:

Pf : A �→ Pf(A);

Pf(h) : Pf(B) → Pf(A); G �→ h−1[G].

We refer the reader to [18] for a proof that these functors do indeed provide the category equivalence 
KFF ∼= HAF.

4.2. Duality between posets and inquisitive algebras

We prove in this section that PosF ∼=op InqAlgFCGW. We first describe how, from a finite intuitionistic 
Kripke frame, one can obtain a finite, core-generated, well-connected inquisitive algebra. Our construction 
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builds on Köhler’s and Esakia’s dualities. Given a poset F = (W, R), we first build the set of all R-upsets 
Up(F) and we then consider the set Dw+(Up(F)) of all non-empty downsets of Up(F) ordered by inclusion.

Given any poset F, we define the set Up(F) as follows:

Up(F) := {t ⊆ W : if x ∈ t and xRy then y ∈ t}.

Namely, Up(F) is the set of R-upsets over W . If we think of subsets of W as teams, then Up(F) can be viewed 
as the set of all R-closed teams over W . One can then check by a routine argument that (Up(F), ∩, ∪, ∅)
forms a bounded distributive lattice, where the underlying order is the subset relation. Also, if we add to 
this structure a Heyting implication in the usual way, we obtain a Heyting algebra (Up(F), ∧, ∨, →, 0).

To obtain an inquisitive algebra, we now construct two algebras starting from Up(F). Firstly, we consider 
the following set:

Dw+(Up(F)) := {x ⊆ Up(F) : x �= ∅ and if s ⊆ t ∈ x then s ∈ x}.

Elements of Dw+(Up(F)) are downward closed collections of R-upsets over F. It is immediate to check 
that the structure (Dw+(Up(F)), ∪, ∩, {∅}) is a bounded distributive lattice under the subset ordering. This 
algebra can then be turned into a Heyting algebra in the usual way, by defining x → y ≤ z ⇐⇒ x ∧y ≤ z, for 
all x, y ∈ Dw+(Up(F)). We use the symbols ∧, ∨, →, 0 to refer to the underlying operations over Dw+(Up(F)).

Secondly, we consider the set of principal downward closed collections of R-upsets. Recall that a downset 
x over the poset Up(F) is principal if there is some t ∈ Up(F) such that:

x = {s ∈ Up(F) : s ≤ t}.

If x is principal and x = {s ∈ Up(F) : s ≤ t}, we then write x = {t}↓. Notice, in particular, that since 
the underlying order of Up(F) is the subset relation, we have that s ≤ t if and only if s ⊆ t, hence 
{t}↓ = ℘(t) ∩ Up(F). We define:

Dwp(Up(F)) := {{t}↓ : t ∈ Up(F)}.

The poset (Dwp(Up(F)), ⊆) forms a bounded distributive lattice and can be augmented by a Heyting impli-
cation in the same way as we did for the previous lattices. The next proposition shows that Dwp(Up(F)) is 
isomorphic to Up(F).

Proposition 4.4. The following Heyting algebras are isomorphic: Dwp(Up(F)) ∼= Up(F) under the map h :
x �→ {x}↓.

Proof. Consider the map h : Up(F) → Dwp(Up(F)) such that h(x) = {x}↓. It follows by the definition of 
principal downset that this map is both surjective and injective. The, since s ⊆ t if and only if {s}↓ ⊆ {t}↓, 
it follows that h is a isomorphism. �

In particular, the previous proposition allows us to characterise operations in Dwp(Up(F)) by operations 
in Up(F). We have that, for all {a}↓, {b}↓ ∈ Dwp(Up(F)):

{a}↓ ∧ {b}↓ = {a ∧ b}↓ {a}↓ ∨ {b}↓ = {a ∨ b}↓ {a}↓ → {b}↓ = {a → b}↓.

It is clear that Dwp(Up(F)) ⊆ Dw+(Up(F)). We now claim that (Dwp(Up(F)), ∧, →, 0) is a subalgebra of 
Dw+(Up(F)) with respect to the operations ∧, →, 0. We prove the following proposition.

Proposition 4.5. Dwp(Up(F)) is a Brouwerian semilattice subalgebra of Dw+(Up(F)).
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Proof. We first prove that Dwp(Up(F)) is closed under ∧, →, 0. By construction, 0 = {∅}, and {∅} ∈
Dwp(Up(F)), since ∅ ∈ Up(F) and {∅} = {∅}↓.

For all x, y ∈ Dwp(Up(F)) we have that x = {a}↓ and y = {b}↓ for some a, b ∈ Up(F). Since Dwp(Up(F)) ∼=
Up(F), we have {a}↓∧{b}↓ = {a ∧ b}↓ and {a}↓ → {b}↓ = {a → b}↓. Therefore, x ∧ y, x → y ∈ Dwp(Up(F)), 
showing that Dwp(Up(F)) is closed under ∧ and →. Since Dw+(Up(F))�{∧, →, 0} is a Brouwerian semilattice, 
it follows that Dwp(Up(F)) is a Brouwerian subalgebra of Dw+(Up(F)). �

We can represent the relations between the algebras that we have constructed by the following diagram:

F Up(F) Dw+(Up(F))

Dwp(Up(F))

Up(·) Dw+(·)

Dwp(·) ⊆

We can now use the algebras constructed above to obtain a finite, core-generated, well-connected inquis-
itive algebra. We first prove that Dwp(Up(F)) generates the algebra Dw+(Up(F)).

Proposition 4.6. Dw+(Up(F)) is generated by its subset Dwp(Up(F)).

Proof. If x ∈ Dw+(Up(F)) then, since F is finite, x ⊆ Up(F) is finite too. Let a0, . . . , an be maximal 
upsets in x – they exist by the finiteness of x. Then, {a0}↓, . . . , {an}↓ are principal downsets, whence 
{a0}↓, . . . , {an}↓ ∈ Dwp(Up(F)). We obtain:

x =
⋃

{{a0}↓, . . . , {an}↓} =
∨

({a0}↓, . . . , {an}↓);

which means that x ∈ 〈Dwp(Up(F))〉 and thus Dw+(Up(F)) = 〈Dwp(Up(F))〉. �
Finally, the next result shows that the structure: A := (Dw+(Up(F)), Dwp(Up(F)), ∧, ∨, →, 0) is a finite, 

core generated, well-connected, inquisitive algebra.

Proposition 4.7. The structure A = (Dw+(Up(F)), Dwp(Up(F)), ∧, ∨, →, 0) is a finite, core-generated, well-
connected, inquisitive algebra.

Proof. By construction, (Dw+(Up(F)), ∧, ∨, →, 0) is a Heyting algebra and, by Proposition 4.5, Ac =
(Dwp(Up(F)), ∧, →, 0) is a Brouwerian semilattice. Also, we have by Proposition 4.6 that Dw+(Up(F)) =
〈Dwp(Up(F))〉, hence A is core-generated. It follows immediately by our construction, together with the fact 
that F is finite, that A is finite as well.

We now prove that A is well-connected. Since A is a finite Heyting algebra, it suffices to show that it 
has a second greatest element. Let W be the set of all worlds in F and let s = {W}↓ \W . It is clear that 
s ∈ Dw+(Up(F)) and that s �= {W}↓ = 1. Now suppose x ∈ Dw+(Up(F)) and x �= 1, then for all R-upsets 
t ∈ x, we have that t �= W , hence t ∈ s and x ≤ s. Thus s is the second greatest element of A and A is 
well-connected.

Finally, we check that A verifies the Split axiom. Let a ∈ Ac, then a = {t}↓ for some t ∈ Up(F). If 
{t}↓ ⊆ x ∨ y, it follows from the fact that x, y are downward closed that either {t}↓ ⊆ x or {t}↓ ⊆ y, 
showing that a is join-irreducible. By reasoning as in the proof of Proposition 3.6, it follows that a →
(x ∨ y) = (a → x) ∨ (a → y), which proves that A satisfies the Split axiom and therefore that A is a finite, 
core-generated, well-connected, inquisitive algebra. �
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Following the construction described so far, we have seen how to obtain, from a finite poset F, a finite, 
core-generated, well-connected inquisitive algebra F (F). To obtain a functor F : PosF → InqAlgFCGW, it 
remains to extend this assignment to morphisms between posets, i.e. to Köhler maps. The following proof 
follows easily from Köhler’s duality.

Proposition 4.8. Suppose p : F → G is a Köhler map, then the function F (p) : F (G) → F (F) such that:

F (p) :
⋃

{{t0}↓, . . . {tn}↓} �−→
⋃

{{R(p−1[t0])}↓ . . . {R(p−1[tn])}↓}

is a inquisitive homomorphism.

Proof. Firstly, notice that since F (G) is core-generated, then every element x ∈ F (G) is of the form 
x =

∨
i≤n ai where ai ∈ F (G)c for all i ≤ n. Hence, since F (G) is a downset inquisitive algebra, every 

element x ∈ F (G) is of the form x =
⋃
{{t0}↓, . . . {tn}↓}, which means that F (p) is total. Moreover, since 

by construction R(p−1[t]) is an R-upset, it follows that F (p) is well-defined.
To see that F (p) is core preserving it suffices to notice that, for all {t}↓ ∈ F (G)c:

F (p)({t}↓) = {R(p−1[t])}↓ ∈ Dwp(Up(F)) = F (F)c.

Now, since p is a Köhler map, it follows by Köhler’s duality that O(p) : Up(G) → Up(F) such that 
O(p) : t �→ R[p−1(t)] is a Brouwerian semilattice homomorphism. Since Up(F) ∼= Dwp(Up(F)) and Up(G) ∼=
Dwp(Up(G)), it immediately follows that F (p)�Dwp(Up(G)) is a Brouwerian semilattice homomorphism. To 
verify that it is a InqI-homomorphism, it suffices by Theorem 3.2 to check that F (p) preserves joins of core 
elements. Then, for any {t}↓, {s}↓ ∈ F (G)c, we immediately have by our definition:

F (p)({t}↓ ∨ {s}↓) = {R[p−1(t)]}↓ ∪ {R[p−1(s)]}↓ = F (p)({t}↓) ∨ F (p)({s}↓).

Which proves our claim. �
In particular, it follows from the proof of the proposition above that F (p) is always total, even if p is 
not. In fact, if R(p−1[ti]) = ∅ for all i ≤ n, then {R(p−1[ti])}↓ = {∅} for all i ≤ n and therefore 

F (p)
(⋃

{{t0}↓, . . . {tn}↓}
)

= {∅}. It is routine to check that the map F : PosF → InqAlgFCGW is func-
torial.

Now, in order to establish the equivalence between PosF and InqAlgFCGW, we need to proceed in the 
opposite direction, and define a functor G which associates a finite poset to every finite, core-generated, 
well-connected inquisitive algebra. We employ Köhler’s duality to prove a representation theorem for finite, 
core-generated, well-connected, inquisitive algebras.

Proposition 4.9. Let A be a finite, core-generated, well-connected inquisitive algebra, then there is a finite 
Kripke frame F such that:

A ∼= (Dw+(Up(F)),Dwp(Up(F)),∧,∨,→, 0).

Proof. Suppose A is a finite, core-generated, well-connected inquisitive algebra, and let Aji be its subset 
of join-irreducible elements. By Proposition 3.6 we have that Aji = Ac. Hence, by the fact that A is an 
inquisitive algebra, it follows Aji is a Brouwerian semilattice in the signature {∧, →, 0}. By Theorem 4.2, 
we have that Aji

∼= Up(F) for some finite poset F – here we shall think of F as an intuitionistic Kripke 
frame, where the underlying ordering is the accessibility relation R between worlds. We let g : Aji → Up(F)
be the function witnessing such isomorphism.
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Now, let B = (Dw+(Up(F)), Dwp(Up(F)), ∧, ∨, →, 0) be the canonical InqI-algebra obtained from the 
frame F using the construction outlined in the previous section. It follows by Proposition 4.7 that B is an 
inquisitive algebra. We show that A ∼= B.

By Theorem 4.1 the function h : A → Dw+(Aji) such that h(x) = {y ∈ Aji : y ≤ x} is a lattice 
isomorphism. Moreover, since Dw+(Aji) is a finite bounded distributive lattice, we can expand it with a 
Heyting implication and obtain the Heyting algebra (Dw+(Aji), ∧, ∨, →, 0). Since h is an order-preserving 
bijection, it is also a Heyting algebra isomorphism and thus we obtain that A ∼= Dw+(Aji).

Let ĝ : Dw+(Aji) → B be defined by lifting g to the algebra Dw+(Aji):

ĝ : {a0, . . . , an}↓ �→
⋃

{{g(a0)}↓, . . . , {g(an)}↓}.

By the fact that g is a isomorphism, together with the fact that B is core-generated, it follows that ĝ is a 
bijection. Moreover, if {a0, . . . , an}↓ ⊆ {b0, . . . , bm}↓ we then clearly have that 

⋃
{{g(a0)}↓, . . . , {g(an)}↓} ⊆⋃

{g(b↓0), . . . , g(b↓m)}, since g is order preserving. Then, ĝ is order preserving and, since it is a bijection, it is 
a Heyting algebra isomorphism as well.

We then let f := ĝ ◦ h : A → B. Since h and ĝ are both Heyting algebra isomorphisms, it follows that f
is also a Heyting algebra isomorphism. Moreover, since A is core-generated and well-connected, it follows 
by Proposition 3.6 that Ac = Aji and thus, for all a ∈ Ac, h(a) = {a}↓ and:

f(a) = ĝ ◦ h(a) = ĝ ({a}↓) = {g(a)}↓ ∈ Dwp(Up(F)).

Therefore, f is a bijective, core-preserving, Heyting algebra homomorphism between A and B, which means 
that f is a InqI-homomorphism and thus that A ∼= B. �

While the previous theorem gives a representation of finite, core-generated, well-connected, inquisitive 
algebras, the following proposition provides a representation of the maps between them. Our proof follows 
easily from Köhler’s duality (see in particular [23, Lemma 3.2]).

Proposition 4.10. Let h : A → B be a InqI-homomorphism between finite, core-generated, well-connected 
InqI-algebras, then there is a Köhler map p : G → F such that h = F (p), A = Dw+(Up(F)) and B =
Dw+(Up(G)).

Proof. Suppose h : A → B is a InqI-homomorphism between finite, core-generated, well-connected 
InqI-algebras. By Proposition 4.9 we assume without loss of generality that A = Dw+(Up(F)) and 
B = Dw+(Up(G)) for some finite Kripke frames F and G.

Let k : Up(F) → Up(G) be the map such that k(t) = s if and only if h({t}↓) = {s}↓. Since h�Dwp(Up(F))
is a Brouwerian semilattice homomorphism, we obtain by Proposition 4.4 that k is a Brouwerian semilattice 
homomorphism as well. By Köhler’s duality there is a unique Köhler’s map p : G → F such that O(p) = k. 
In addition, for any 

⋃
{{t0}↓, . . . {tn}↓} ∈ Dw+(Up(F)):

F (p)
(⋃

{{t0}↓, . . . {tn}↓}
)

=
⋃

{{R(p−1[t0])}↓ . . . {R(p−1[tn])}↓}

=
⋃

{{O(p)(t0)}↓ . . . {O(p)(tn)}↓}

=
⋃

{{k(t0)}↓ . . . {k(tn)}↓}

=
⋃

{h({t0}↓) . . . h({tn}↓)}

= h
⋃

{{t0}↓ . . . {tn}↓},

which completes the proof of our claim. �
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Now, let G : InqAlgFCGW → PosF be the functor defined as follows. On objects, we let G(A) = F, where F is 
a finite poset such that A ∼= F (F). On some inquisitive homomorphism h : A → B, we let G(h) = p : G → F

where G(A) = F, G(B) = G and F (p) = h. It follows by this very construction that G is functorial and that 
together with F it forms a dual equivalence between PosF and InqAlgFCGW.

Theorem 4.11. The category of finite posets with Köhler maps is dually equivalent to the category of finite, 
core-generated, well-connected inquisitive algebras with InqI-homomorphisms:

PosF ∼=op InqAlgFCGW.

Proof. Let F : PosF → InqAlgFCGW and G : InqAlgFCGW → KFF be the functors defined above. It follows from 
Proposition 4.7 and Proposition 4.8 that F is well-defined and from Proposition 4.9 and Proposition 4.10
that G is well-defined. By our definitions of F and G we have that F ◦G ∼= id and G ◦ F ∼= id. Therefore, 
F and G describe a dual categorical equivalence between PosF and InqAlgFCGW. �
4.3. Duality between Kripke frames and dependence algebras

In the previous section we have proved that the category of finite posets is dually equivalent to the category 
of finite, core-generated, well-connected inquisitive algebras. Here we prove that the category InqAlg⊗FCGW
of finite, core-generated, well-connected dependence algebras is equivalent to KFF, thus obtaining a similar 
result for dependence algebras.

We first describe the functor F : KFF → InqAlg⊗FCGW. For any finite Kripke frame F, we let F (F) be 
the InqI⊗-algebra obtained by adding a tensor operator ⊗ to the inquisitive algebra Dw+(Up(F)). For all 
a, b ∈ Dwp(Up(F)), we have a = {t}↓ and b = {s}↓ for some t, s ∈ Up(F). We then let:

a⊗ b = {t ∪ s}↓.

And we lift such operation to all x, y ∈ Dw+(Up(F)) as follows:

x⊗ y :=
∨

{a⊗ b : a ≤ x, b ≤ y and a, b ∈ Dwp(Up(F))}.

The next result shows that F is well-defined on objects.

Proposition 4.12. The structure A = (Dw+(Up(F)), Dwp(Up(F)), ∧, ∨, →, ⊗, 0) is a finite, core-generated, 
well-connected, dependence algebra.

Proof. Firstly, we have by Proposition 4.7 that A is a finite, core-generated, well-connected, inquisitive 
algebra. Hence it suffices to show that A is also a dependence algebra.

Now, by Proposition 4.4, we have that a ⊗ b = {t ∨ s}↓ is a well-defined join operator over Dwp(Up(F)), 
hence the core (Dwp(Up(F)), ∧, ⊗, →, 0) is a Heyting algebra.

It remains to verify that A validates the axioms Dist and Mon. We only show that Dist holds, as 
Mon is easily checked in a similar way. By Theorem 3.2 we have y =

∨
i≤n ki and z =

∨
j≤m lj with 

ki, lj ∈ Dwp(Up(F)) = Ac for all i ≤ n, j ≤ m. We then obtain:

x⊗ (y ∨ z) =
∨

{a⊗ b : a ≤ x, b ≤ y ∨ z and a, b ∈ Ac}

=
∨

{a⊗ b : a ≤ x, b ≤
∨
i≤n

ki ∨
∨
j≤m

lj and a, b ∈ Ac}.
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Now, since by Proposition 3.6 core elements of well-connected dependence algebras are join-irreducible, we 
have that b ≤

∨
i≤n ki ∨

∨
j≤m lj if and only if b ≤ ki or b ≤ lj for some i ≤ n, j ≤ m. Then, proceeding 

from the former equalities:

=
∨

{a⊗ b : a ≤ x, b ≤
∨
i≤n

ki, a, b ∈ Ac} ∨
∨

{a⊗ b : a ≤ x, b ≤
∨
j≤m

lj , a, b ∈ Ac}

=
∨

{a⊗ b : a ≤ x, b ≤ y and a, b ∈ Ac} ∨
∨

{a⊗ b : a ≤ x, b ≤ z and a, b ∈ Ac}

= (x⊗ y) ∨ (x⊗ z).

Hence A is a InqI⊗-algebra. �
Now, let p : F → G be a p-morphism. We proceed as in the case of inquisitive algebras and we show how 

to obtain a canonical dependence homomorphism F (p).

Proposition 4.13. Suppose p : F → G is a p-morphism, then the function F (p) : F (G) → F (F) such that:

F (p) :
⋃

{{t0}↓, . . . {tn}↓} �−→
⋃

{{p−1[t0]}↓ . . . {p−1[tn]}↓}

is a dependence homomorphism.

Proof. The proof is analogous to that of Proposition 4.8, by using Esakia’s duality in place of Köhler’s 
duality. �

It is then easy to verify that F is functorial. Then, to obtain a categorical equivalence, we prove the 
following representation results.

Proposition 4.14. Let A be a finite, core-generated, well-connected dependence algebra, then there is a finite 
Kripke frame F such that A ∼= F (A).

Proof. By proceeding exactly as in the proof of Proposition 4.9, using Esakia’s duality instead of Köhler’s 
duality, we obtain that there is a finite Kripke frame F such that the following map is a isomorphism:

f : A → (Dw+(Up(F)),Dwp(Up(F)),∧,∨,→, 0);
∨
i≤n

ai �→
⋃

{{g(a0)}↓, . . . , {g(an)}↓},

where g : Aji → Up(F) is a isomorphism of Heyting algebras. Therefore, we have that for all a, b ∈ Aji = Ac: 
g(a ⊗ b) = g(a) ⊗ g(b) = g(a) ∪ g(b), thus:

f(a⊗ b) = {g(a⊗ b)}↓ = {g(a)}↓ ∪ {g(b)}↓,

which proves that f preserves the tensor disjunction of core elements.
Then, since for all x, y ∈ A, we have that x =

∨
i≤n ai and y =

∨
j≤m bj for ai, bj ∈ Ac for all i ≤ n, j ≤ m, 

one can proceed as in the proof of Lemma 3.14 and verify that f(x ⊗ y) = f(x) ⊗ f(y) for all x, y ∈ A. �
Similarly, we have the following representation of p-morphisms.

Proposition 4.15. Let h : A → B be a InqI⊗-homomorphisms between finite, core-generated, well-connected 
InqI⊗-algebras, then there is a p-morphism p : G → F such that h = F (p), A = F (F) and B = F (G).
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Proof. The proof is the same as the proof of Proposition 4.10, by using Esakia’s duality instead of Köhler’s 
duality. �

Then, let G : InqAlg⊗FCGW → KFF be the functor defined as follows. On objects, we let G(A) = F, 
where F is a finite Kripke frame such that A ∼= F (F). On some InqI⊗-homomorphism h : A → B, we let 
G(h) = p : G → F where G(A) = F, G(B) = G and F (p) = h. It follows that G is functorial and that 
together with F it forms a dual equivalence between KFF and InqAlg⊗FCGW.

Theorem 4.16. The category of finite Kripke frames with p-morphisms is dually equivalent to the category 
of finite, core-generated, well-connected InqI⊗-algebras with InqI⊗-homomorphisms:

KFF ∼=op InqAlg⊗FCGW.

Proof. By the definition of the functors F and G, and by Propositions 4.14 and 4.15, we have that F ◦G ∼= id

and G ◦ F ∼= id. Hence, F and G together describe a dual categorical equivalence. �
4.4. Equivalence of team and algebraic semantics

We use the categorical equivalences of the previous section to obtain some results on the equivalence of 
team and algebraic semantics of inquisitive and dependence logics. The equivalence of the two semantics can 
be proved from the former duality results in the case of inquisitive algebras, while in the case of dependence 
logics we only show a limited version for well-connected algebras. However, a full semantic equivalence for 
dependence algebras can be proved relying on our former algebraic completeness result. Notice that, since 
in this section we will not consider maps between algebras, we shall talk about Kripke frames both in the 
context of inquisitive and dependence algebras.

We start by providing canonical core-valuations to the canonical inquisitive and dependence algebras 
described above. With a slight abuse of notation we indicate by AF both the inquisitive and the dependence 
algebra dual to the finite Kripke frame F. If M = (F, V ) is a finite Kripke model, we then obtain an 
inquisitive (dependence) model corresponding to M by defining the canonical core-valuation μV : AT → F

as follows:

μV : p �→ {V −1(p)}↓.

In this way we supplement AF with a core-valuation, and we obtain a model MV
F := (AF, μV ) for inquisitive 

(dependence) logic. We say that MV
F is the dual inquisitive (dependence) algebraic model to the Kripke model 

M = (F, V ). We also recall that if F is a Kripke frame and s is an R-upset, then Fs denotes the subframe 
F�s = (W ∩ s, R�s). We proceed by first proving the following technical lemma.

Lemma 4.17. Let M = (F, V ) be a Kripke model and F = (W, R). For all s, t ∈ Up(F) the following facts 
hold:

(i) s ∈ �φ�MV
Fs ⇐⇒ MV

Fs
�c φ.

(ii) If t ⊆ s, then �φ�MV
Ft = �φ�MV

Fs ∩ {t}↓.
(iii) If s, ti ∈ Up(F) for all i ∈ I, then {s}↓ =

⋃
{{ti}↓ : i ∈ I} ⇐⇒ ti = s for some i ∈ I.

Proof. (i) By construction, �φ�MV
Fs ⊆ {s}↓ and, since �φ�MV

Fs is downward closed, s ∈ �φ�MV
Fs entails 

{s}↓ ⊆ �φ�MV
Fs . Then s ∈ �φ�MV

Fs if and only if {s}↓ = �φ�MV
Fs if and only if MV

Fs
�c φ.

(ii) By induction on the complexity of φ.
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– If φ = p, then �p�MV
Ft = {V −1(p) ∩ t}↓ = {V −1(p)}↓ ∩ {t}↓ = �p�MV

Fs ∩ {t}↓.
– If φ = ⊥, then �φ�MV

Ft = {∅} = �φ�MV
Fs .

– If φ = ψ ∨ χ or φ = ψ ∧ χ, then our claim follows directly from the induction hypothesis.
– If φ = ψ → χ, then:

�ψ → χ�MV
Ft =

⋃
{x ∈ MV

Ft
: x ∩ �ψ�MV

Ft ⊆ �χ�MV
Ft}

=
⋃

{x ∈ MV
Ft

: x ∩ (�ψ�MV
Fs ∩ {t}↓) ⊆ (�χ�MV

Fs ∩ {t}↓)} (by i.h.)

=
⋃

{x ∈ MV
Fs

: x ∩ �ψ�MV
Fs ⊆ �χ�MV

Fs} ∩ {t}↓

= (�ψ�MV
Fs → �χ�MV

Fs ) ∩ {t}↓

= �ψ → χ�MV
Fs ∩ {t}↓.

– If φ = ψ ⊗ χ, then we first notice that, since Dwp(Up)(F) is a Heyting algebra with the tensor as 
join, we have for all t0, t1, t2 ∈ Up(F):

(∗) ({t0}↓ ∩ {t2}↓) ⊗ ({t1}↓ ∩ {t2}↓) = ({t0}↓ ⊗ {t1}↓) ∩ {t2}↓.

Now, we let �ψ�MV
Fs =

⋃
i≤n{ki} and �χ�MV

Fs =
⋃

j≤m{zj}. We obtain:

�ψ ⊗ χ�MV
Ft = �ψ�MV

Ft ⊗ �χ�MV
Ft

= (�ψ�MV
Fs ∩ {t}↓) ⊗ (�χ�MV

Fs ∩ {t}↓) (by i.h.)

=
⋃
i≤n

({ki}↓ ∩ {t}↓) ⊗
⋃
j≤m

({zj}↓ ∩ {t}↓)

=
⋃

i≤n,j≤m

[({ki}↓ ∩ {t}↓) ⊗ ({zj}↓ ∩ {t}↓)] (by Dist)

=
⋃

i≤n,j≤m

[({ki}↓ ⊗ {zj}↓) ∩ {t}↓)] (by (*))

=
( ⋃

i≤n

{ki}↓ ⊗
⋃
j≤m

{zj}↓
)
∩ {t}↓ (by Dist)

= (�ψ�MV
Fs ⊗ �χ�MV

Fs ) ∩ {t}↓

= �ψ ⊗ χ�MV
Fs ∩ {t}↓.

(iii) (⇒) Suppose ti �= s for all i ∈ I. If there is some i ∈ I and some element yi ∈ ti \ s, then Ryi /∈ {s}↓
but Ryi ∈

⋃
{{ti}↓ : i ∈ I}, proving our claim. Otherwise, for each ti there is an element xi such that 

xi ∈ s \ ti, hence Rxi ∈ {s}↓ \ {ti}↓. It follows that {Rxi}i∈I ⊆ {s}↓ but {Rxi}i∈I �
⋃
{{ti}↓ : i ∈ I}, 

showing {s}↓ �=
⋃
{{ti}↓ : i ∈ I}. (⇐) Obvious. �

By using the previous lemma we obtain the following proposition, which we shall use later in the proof of 
Theorem 4.19.

Proposition 4.18. Let M = (F, V ) be a Kripke model and s, t ∈ Up(F) such that t ⊆ s. Then MV
Ft

�c φ if 
and only if t ∈ �φ�MV

Fs .
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Proof. For any s, t ∈ Up(F) such that t ⊆ s, we have:

t ∈ �φ�MV
Fs ⇐⇒ t ∈ �φ�MV

Fs ∩ {t}↓

⇐⇒ t ∈ �φ�MV
Ft (by Lemma 4.17(ii))

⇐⇒ MV
Ft

�c φ, (by Lemma 4.17(i))

which proves our claim. �
The next theorem finally shows that any inquisitive or dependence formula is true in a finite Kripke 

model if and only if it is valid, under the canonical core-valuation, in its dual inquisitive algebraic model.

Theorem 4.19. Let M = (F, V ) be a finite Kripke frame and MV
F = (AF, μV ) its dual inquisitive (depen-

dence) algebraic model. Then M � φ if and only if MV
F �c φ.

Proof. By induction on the complexity of φ.

• For p ∈ AT we have that:

M � p ⇐⇒ ∀w ∈ W (w(p) = 1)

⇐⇒ W = {w ∈ W : w(p) = 1}
⇐⇒ {W}↓ = {w ∈ W : w(p) = 1}↓

⇐⇒ 1MV
F

= μV (p)

⇐⇒ MV
F �c p.

• For φ = ⊥ we have:

M � ⊥ ⇐⇒ W = ∅ ⇐⇒ {W}↓ = {∅}↓ ⇐⇒ 1MV
F

= 0MV
F
⇐⇒ MV

F �c ⊥.

• For φ = ψ ∨ χ we have:

M � ψ ∨ χ ⇐⇒ M � ψ or M � χ

⇐⇒ 1MV
F

= �ψ�MV
F or 1MV

F
= �χ�MV

F (by induction hypothesis)

⇐⇒ 1MV
F

= �ψ�MV
F ∨ �χ�MV

F (by well-connectedness of AF)

⇐⇒ 1MV
F

= �ψ ∨ χ�MV
F

⇐⇒ MV
F �c ψ ∨ χ.

• For φ = ψ ∧ χ the claim follows by straightforward application of the induction hypothesis.
• For φ = ψ → χ we have:

M � ψ → χ ⇐⇒ ∀t (if t ⊆ W and M, t � ψ then M, t � χ)
Prop. 1.13⇐=====⇒ ∀t (if t ∈ Up(F) and M, t � ψ then M, t � χ)
by i.h.⇐====⇒ ∀t (if t ∈ Up(F) and MV

Ft
�c ψ then MV

Ft
�c χ)

⇐⇒ {W}↓ = {t ∈ Up(F) : MV
F �c ψ ⇒ MV

F �c χ}

t t
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⇐⇒ {W}↓ =
⋃

{x ∈ AF : t ∈ x ⇒ [MV
Ft

�c ψ ⇒ MV
Ft

�c χ]}
Prop. 4.18⇐=====⇒ {W}↓ =

⋃
{x ∈ AF : t ∈ x ⇒ [t ∈ �ψ�MF ⇒ t ∈ �χ�MV

F ]}

⇐⇒ {W}↓ =
⋃

{x ∈ AF : x ∩ �ψ�MV
F ⊆ �χ�MV

F }

⇐⇒ 1MV
F

= �ψ → χ�MV
F .

If MV
F is an algebraic dependence model, we need to check also the case for the tensor disjunction.

(⇒) Suppose M � ψ⊗χ, then by Proposition 1.13 there are two upsets t, r ∈ Up(F) such that t ∪ r = W

and M, t � ψ, M, r � χ. By induction hypothesis, we obtain that MV
Ft

�c ψ and MV
Fr

�c χ, thus by 

Proposition 4.18 t ∈ �ψ�MV
F and r ∈ �χ�MV

F . Now, since W = t ∪ r, we have:

�ψ ⊗ χ�MV
F =

⋃
{{u ∪ v}↓ : u ∈ �ψ�MV

F and v ∈ �ψ�MV
F }

=
⋃

{{t ∪ r}↓}

= {W}↓.

Hence MV
F �c ψ ⊗ χ.

(⇐) Now suppose MV
F �c ψ ⊗ χ, then we have that:

{W}↓ =
⋃

{{u ∪ v}↓ : u ∈ �ψ�MV
F and v ∈ �ψ�MV

F }.

By Lemma 4.17(iii) there are r, t ∈ Up(F) such that {W}↓ = {t ∪ r}↓, t ∈ �ψ�MV
F and r ∈ �χ�MV

F . Then, 
it follows that t ∈ �ψ�MV

F ∩ {t}↓ and r ∈ �χ�MV
F ∩ {r}↓, hence by Lemma 4.17(ii) we have t ∈ �ψ�MFt and 

r ∈ �χ�MV
Fr , thus by Lemma 4.17(i) MV

Ft
�c ψ and MFr

�c χ. By induction hypothesis, we have M, t � ψ

and M, r � χ, which together with r ∪ t = W yields M � ψ ⊗ χ. �
The previous theorem establishes that a formula is true in a Kripke model if and only if it is true in 

its dual algebraic model. Now we proceed in the converse direction and we prove that a formula is true in 
an algebraic model if it is true in its corresponding dual Kripke model. As we did above, we proceed by 
defining canonical valuations over Kripke frames dual to finite, core-generated, well-connected inquisitive 
(or dependence) algebras.

Given an algebraic model M = (A, μ) such that A is a finite, core-generated, well-connected inquisitive 
(dependence) algebra, we can find by Proposition 4.9 (and Proposition 4.15), a finite Kripke frame F such 
that A ∼= AF. Let h : A → AF be a isomorphism and let μ′ = h ◦ μ. We define the canonical valuation 
V : W → ℘(AT) over the frame F as follows:

V : w �→ {p ∈ AT : {R[w]}↓ ⊆ μ′(p)}.

It is straightforward to verify that V is a suitable valuation, i.e. that if wRv and p ∈ V (w), then p ∈ V (v). 
We say that the Kripke model M = (F, V ) is the dual of M = (A, μ). We show that M validates exactly 
the same formulas of the original algebraic model.

Proposition 4.20. Let M be a finite, core-generated, well-connected inquisitive (dependence) algebraic model 
and let M be its dual Kripke model, then M �c φ if and only if M � φ.

Proof. We prove this theorem for inquisitive algebraic models only, as the proof for dependence models is 
the same, using the corresponding duality result.
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Let M = (A, μ) be an inquisitive algebraic model with A ∈ InqAlgFCGW and let M = (F, V ) be its dual 
Kripke model. By Theorem 4.11 we have that A ∼= AF. Let h : A → AF witness this isomorphism and 
consider the canonical algebraic downward team model MV

F = (AF, νV ). Then, since μ′(p) = h ◦μ(p) = {t}↓
for some t ∈ Up(F), we have:

νV (p) = {V −1(p)}↓ = {w ∈ F : {R[w]}↓ ⊆ μ′(p)}↓ = {w ∈ F : w ∈ t}↓ = h ◦ μ(p).

Then, since h is a isomorphism and for all p ∈ AT νV (p) = h ◦ μ(p), it follows that for all φ ∈ LIPC, 
h�φ(�x)�(A,μ) = �φ(�x)�(AF,ν). Therefore, we have that for all φ ∈ LIPC, M �c φ if and only if MV

F �c φ. By 
Theorem 4.19 we have MV

F �c φ if and only if M � φ. Finally, this entails M �c φ if and only if M � φ, 
which proves our claim. �

The previous results show that the dual equivalences that we studied in the previous section also pre-
serve the validity of inquisitive and dependence formulas. Now, for any intermediate inquisitive logic InqΛ
we let KFΛ be the class of Kripke frames F such that F � Λ, and we let KFΛF be its subcollection of finite 
frames. We let InqAlgΛFCGW be the subcategory of InqAlgΛ consisting finite, core-generated, well-connected 
intuitionistic inquisitive algebras. We define analogously KFΛ⊗, InqAlgΛ⊗

F and InqAlgΛ⊗
FCGW for every inter-

mediate dependence logic InqΛ⊗. We obtain the following corollary of Theorem 4.19 and Proposition 4.20.

Corollary 4.21. For every intermediate inquisitive logic InqΛ, and every intermediate dependence logic 
InqΛ⊗, we have the following:

F ∈ KFΛF ⇐⇒ AF ∈ InqAlgΛFCGW;

F ∈ KFΛ⊗
F ⇐⇒ AF ∈ InqAlgΛ⊗

FCGW.

Finally, we use the results of this section to prove the following theorems, which show the equivalence 
between team and algebraic semantics.

Theorem 4.22 (Semantic Equivalence I).

(i) The class of InqI-algebras is semantically equivalent to the class of all Kripke frames, i.e. for all 
φ ∈ LIPC:

KF � φ ⇐⇒ InqAlg �c φ.

(ii) The class of well-connected InqI⊗-algebras is semantically equivalent to the class of all Kripke frames, 
i.e. for all φ ∈ L⊗

IPC:

KF � φ ⇐⇒ InqAlg⊗W �c φ.

Proof. (i) (⇒) Suppose InqAlg �c φ, then by Theorem 3.13 there is a finite, core-generated, well-connected 
InqI-algebra such that A �c φ. Hence, for some core-valuation μ, we have that (A, μ) �c φ and then, by 
Proposition 4.20, it follows that for some finite Kripke model M we have that M � φ and thus KF � φ. 
(⇐) Suppose KF � φ then, by Theorem 1.15, there is a finite Kripke frame F = (F, V ) such that M � φ. 
By Theorem 4.19 we have MV

F �c φ, where MV
F = (AF, μV ) and AF ∈ InqAlgFCGW. Finally, this shows that 

InqAlg �c φ.
(ii) Analogous to (i), by using Theorem 3.18. �
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We have already remarked in Section 2 that a Kripke frame F such that F � InqB or F � InqB⊗ is 
classical and it can be viewed as a set of assignments. We can then prove the following result for the logics 
InqB and InqB⊗. We let Team be the class of all classical teams, InqBAlg be the class of all InqB-algebras 
and InqBAlg⊗ be the class of all InqB⊗-algebras.

Theorem 4.23 (Semantic Equivalence II).

(i) The class of InqB-algebras is semantically equivalent to the class of all teams, i.e. for all φ ∈ LIPC:

Team � φ ⇐⇒ InqBAlg �c φ.

(ii) The class of InqB⊗-algebras is semantically equivalent to the class of all teams, i.e. for all φ ∈ L⊗
IPC:

Team � φ ⇐⇒ InqBAlg⊗ �c φ.

Proof. (i) Analogous to the Proof of Theorem 4.22(i) using the finite model property of InqB. (ii) Since 
InqB⊗�LCL = CPC is locally tabular we apply Theorem 3.20 and proceed otherwise as in the Proof of 
Theorem 4.22(i). �

Notice that the previous theorems were proven using only the results of this section, together with 
the finite model property and the completeness of team semantics. In particular, they do not rely on the 
algebraic completeness theorem of Section 2. This is interesting, as we can provide an alternative proof of 
the algebraic completeness for some inquisitive and dependence logics.

Corollary 4.24 (Algebraic Completeness).

(i) For all φ ∈ LIPC, φ ∈ InqI ⇐⇒ InqAlg �c φ.
(ii) For all φ ∈ LIPC, φ ∈ InqB ⇐⇒ InqBAlg �c φ.
(iii) For all φ ∈ L⊗

IPC, φ ∈ InqB⊗ ⇐⇒ InqBAlg⊗ �c φ.

Proof. (i) By Theorem 1.9 we have that φ ∈ InqI if and only if KF � φ and, by Theorem 4.22, this is 
equivalent to InqAlg �c φ. (ii) and (iii) are proven analogously using Theorems 1.11 and 4.23. �
We then obtained an alternative proof of the algebraic completeness for the logics InqI, InqB and InqB⊗. 
Whether this method could be used to prove the algebraic completeness of other intermediate inquisitive 
and dependence logics should be object of further investigations.

Finally, we conclude this section by remarking that, using the algebraic completeness theorem of Section 2, 
the following result follows:

Theorem 4.25 (Semantic Equivalence III). The class of InqΛ⊗-algebras is semantically equivalent to the 
class of all Kripke frames, i.e. for all φ ∈ L⊗

IPC:

KF � φ ⇐⇒ InqAlg⊗ �c φ.

Proof. By Theorem 1.9, KF � φ holds if and only if φ ∈ InqI⊗. By Theorem 2.15 the former is equivalent 
to InqAlg⊗ �c φ. �
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5. Concluding remarks and open problems

In this article we studied intermediate inquisitive and dependence logics from an algebraic perspective. 
We presented in Section 1 an axiomatisation of inquisitive and dependence logics, and we introduced in 
Section 2 algebraic semantics using so-called inquisitive and dependence algebras. We then adapted the 
standard method of free algebras to our setting, and we used it to prove that every intermediate inquisitive 
and dependence logic is algebraically complete.

We then considered, in Section 3, several model-theoretic properties of the classes of inquisitive and 
dependence algebras. We defined core-generated and well-connected inquisitive and dependence algebras and 
we proved several properties concerning them. Most importantly, we then focused on finite, core-generated, 
well-connected inquisitive and dependence algebras. In the inquisitive case we proved a version of Birkhoff’s 
theorem, showing that InqAlgΛ �c φ if and only if InqAlgΛFCGW �c φ. Differently, in the dependence case, we 
proved two weaker versions of this result: one stating that InqAlgΛ⊗

W �c φ if and only if InqAlgΛ⊗
FCGW �c φ

and a second one stating that, if Λ is locally tabular, InqAlgΛ⊗ �c φ holds if and only if InqAlgΛ⊗
FCGW �c φ

holds.
Finally, in Section 4, we focused on the relation between frames and algebras, and the relation between 

algebraic and team semantics. To this end, we proved that the category PosF is dual to InqAlgFCGW, and that 
KFF is dual to InqAlg⊗FCGW. We then derived several results concerning the equivalence of team and algebraic 
semantics and we provided an alternative proof of algebraic completeness for the logics InqI, InqB, InqB⊗.

The main goal of this article was to provide a workable algebraic framework for inquisitive and dependence 
logics. The results we obtained show that standard algebraic methods can be adapted and used to study 
these logics, even despite the fact that they are non-standard systems where uniform substitution fails. The 
present work also suggests some possible directions for future investigations.

Firstly, as we have already remarked, the version of Birkhoff’s theorem that we proved for dependence 
logics differs from the version we proved for inquisitive logics. Is it possible to prove a stronger result and 
show that, for any intermediate dependence logic InqΛ⊗ and any formula φ ∈ L⊗

IPC, InqAlgΛ⊗ �c φ if and 
only if InqAlgΛ⊗

FCGW �c φ?
It should also be considered for what intermediate inquisitive and dependence logics we can give a 

completeness proof using duality, as we did in Section 4 for InqI, InqB and InqB⊗. Interestingly, this 
problem relates to the question whether all intermediate inquisitive and dependence logics are complete 
with respect to some class of Kripke frames, and whether they all have the finite model property.

It is also natural to investigate whether the representation theorems for InqAlgFCGW and InqAlg⊗FCGW can 
be extended to the infinite case, namely to InqAlgCGW and InqAlg⊗CGW. Since the representation of infinite 
algebraic structures also involves topological dualities, this issue also relates to the question whether it is 
possible to give a topological semantics to intermediate inquisitive and dependence logics. This problem 
has been considered in [5] for InqB, but it has not been investigated in the general case of all intermediate 
inquisitive and dependence logics.

Finally, we should consider whether it is possible to prove that the algebraic semantics outlined in this 
articles is in any sense unique – as it happens for the standard algebraic semantics of CPC and IPC and for 
every standard algebraizable logics. This would require to develop a framework for algebraisability for logics 
without uniform substitution. We leave this and the previous problems to future investigations.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that 
could have appeared to influence the work reported in this paper.



D.E. Quadrellaro / Annals of Pure and Applied Logic 173 (2022) 103143 43
Acknowledgements

I am very grateful to Fan Yang for many helpful conversations and for her constant support and advice. 
I would like to thank Georgi Nakov, Gianluca Grilletti, Tommaso Moraschini and Nick Bezhanishvili for 
helpful discussions. Finally, I am also thankful to two anonymous referees for their careful reading and useful 
comments and suggestions. This research was supported by grant 336283 of the Academy of Finland and 
Research Funds of the University of Helsinki.

References

[1] S. Abramsky, J. Väänänen, From If to Bi, Synthese 167 (2009) 207–230.
[2] G. Bezhanishvili, R. Jansana, Esakia style duality for implicative semilattices, Appl. Categ. Struct. 21 (2011) 181–208.
[3] G. Bezhanishvili, R. Jansana, Priestley style duality for distributive meet-semilattices, Stud. Log. 98 (2011) 83–122.
[4] N. Bezhanishvili, D. Coumans, S.J. van Gool, D. de Jongh, Duality and universal models for the meet-implication fragment 

of IPC, in: Logic, Language, and Computation, Springer, Berlin, Heidelberg, 2015, pp. 97–116.
[5] N. Bezhanishvili, G. Grilletti, W.H. Holliday, Algebraic and topological semantics for inquisitive logic via choice-free 

duality, in: R. Iemhoff, M. Moortgat, R. de Queiroz (Eds.), Logic, Language, Information, and Computation. WoLLIC 
2019, in: Lecture Notes in Computer Science, vol. 11541, Springer, 2019, pp. 35–52.

[6] N. Bezhanishvili, G. Grilletti, D.E. Quadrellaro, An algebraic approach to inquisitive and DNA-logics, Rev. Symb. Log. 
(2022) 1–39.

[7] S.N. Burris, H. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981.
[8] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997.
[9] I. Ciardelli, Inquisitive Semantics and Intermediate Logics, MSc Thesis, University of Amsterdam, 2009.

[10] I. Ciardelli, Dependency as Question Entailment, Birkhäuser, 2016, pp. 129–181.
[11] I. Ciardelli, F. Barbero, Undefinability in inquisitive logic with tensor, in: Logic, Rationality, and Interaction, Springer, 

Berlin, Heidelberg, 2019, pp. 29–42.
[12] I. Ciardelli, J. Groenendijk, F. Roelofsen, Attention! Might in inquisitive semantics, in: S. Ito, E. Cormany (Eds.), Pro-

ceedings of Semantics and Linguistic Theory (SALT XIX), 2009.
[13] I. Ciardelli, J. Groenendijk, F. Roelofsen, Inquisitive Semantics, Oxford University Press, Oxford, 2018.
[14] I. Ciardelli, R. Iemhoff, F. Yang, Questions and dependency in intuitionistic logic, Notre Dame J. Form. Log. 61 (2020) 

75–115.
[15] I. Ciardelli, F. Roelofsen, Inquisitive logic, J. Philos. Log. 40 (2011) 55–94.
[16] B. Davey, H. Priestley, Introduction to Lattices and Orders, Cambridge University Press, Cambridge, 1990.
[17] A. Diego, Sur les algèbres de Hilbert, Collection de logique mathématique, Gauthier-Villars, Paris, 1966.
[18] L. Esakia, Heyting Algebras: Duality Theory (Trends in Logic), Springer, Cham, 2019.
[19] J.M. Font, Abstract Algebraic Logic, College Publication, London, 2016.
[20] G. Grätzer, Lattice Theory: Foundation, Springer, Basel, 2011.
[21] G. Grilletti, D.E. Quadrellaro, Lattices of intermediate theories via ruitenburg’s theorem, in: A. Özgün, Y. Zinova (Eds.), 

Language, Logic, and Computation, Springer International Publishing, Cham, 2022, pp. 297–322.
[22] W. Hodges, Compositional semantics for a language of imperfect information, Log. J. IGPL 5 (1997) 539–563.
[23] P. Köhler, Brouwerian semilattices, Trans. Am. Math. Soc. 268 (1981) 103–126.
[24] M. Lück, Team Logic; Axioms, Expressiveness, Complexity, PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover, 

2019.
[25] S. Mac Lane, Categories for the Working Mathematician, Springer, New York, 1978.
[26] Allen L. Mann, Independence-friendly cylindric set algebras, Log. J. IGPL 17 (6) (2009) 719–754.
[27] P. Morandi, Dualities in lattice theory, Available from http://web .nmsu .edu /~pamorand /Notes /Duality.pdf, 2005.
[28] V. Punčochář, Inquisitive heyting algebras, Stud. Log. 109 (2021) 995–1017.
[29] V. Punčochář, Algebras of information states, J. Log. Comput. 27 (2016) 1643–1675.
[30] D.E. Quadrellaro, Lattices of DNA-logics and algebraic semantics of inquisitive logic, MSc Thesis, University of Amsterdam, 

2019.
[31] F. Roelofsen, Algebraic foundations for the semantic treatment of inquisitive content, Synthese 190 (2013) 1–24.
[32] J. Väänänen, Dependence Logic, Cambridge University Press, 2007.
[33] A. Wronski, Intermediate logics and the disjunction property, Rep. Math. Log. 1 (1973) 39–51.
[34] F. Yang, J. Väänänen, Propositional logics of dependence, Ann. Pure Appl. Log. 167 (2016) 557–589.
[35] F. Yang, J. Väänänen, Propositional team logics, Ann. Pure Appl. Log. 168 (2017) 1406–1441.

http://refhub.elsevier.com/S0168-0072(22)00058-6/bibFC1E82B9A18586B50EB40C3867A61BC9s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibD52AC66E1088DFF5AB65FF527D78688As1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibA6D5BC86EDE3514BCB176F488B66358Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibDDEAB0C88996EAB4002DB62A5659CF2Fs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibDDEAB0C88996EAB4002DB62A5659CF2Fs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib1DAF490F7F5C287A0E105A945B030436s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib1DAF490F7F5C287A0E105A945B030436s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib1DAF490F7F5C287A0E105A945B030436s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibC08F5B43A6AB32B9B93D8F1BEFDAF293s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibC08F5B43A6AB32B9B93D8F1BEFDAF293s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib8553D901AB1368530E91906E413BE092s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib8AB2D52A6CFC6CF881F35B70BEA14114s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib5454E8345017159EC177F7CFDDC4E495s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib59975A6FA011AEA5AFDC3B3E48988B56s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibB273709469E1A145AD324B09B7F80514s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibB273709469E1A145AD324B09B7F80514s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib5A0A20A9234A925203135A29B0918367s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib5A0A20A9234A925203135A29B0918367s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib79D913539E3047ACB4E1BB505426DD8Ds1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib9ED6CF18A7625473FACB9C290AAE045As1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib9ED6CF18A7625473FACB9C290AAE045As1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibEE0988A659958E4F4B106D71D74B22BEs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib1F6F13244A80B33ED017FF7339065CD1s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib298ADDAD2C6CFA1BCBF00025F5160ACFs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibF3C518A27638323282EF23159269594Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib5F535FDE59C36A41A7D00C9163665EE4s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib3DA3D600584A0CB23A21EEB1B606999As1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibC07E67485412D679F2DCBE818A1C6B2Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibC07E67485412D679F2DCBE818A1C6B2Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibE7886E89CE5AAF4286357763E975B982s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib4B3F3E3682D1211FEC74EE23C236D1C6s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibA2181E5C9365A838BADCC644D7125E8Es1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibA2181E5C9365A838BADCC644D7125E8Es1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib41E63292EBDC47B757CA26B9BCC23547s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib9DFB94A000581B95FA6A31ABE9CD62A2s1
http://web.nmsu.edu/~pamorand/Notes/Duality.pdf
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib7435A5E7DDC5C7F5B799DD0F0833BE49s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibBB8F48224EEE03622F11E7C8A1A0CD3Cs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibC29756E7FC4AC37BFB8BB4354332492Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibC29756E7FC4AC37BFB8BB4354332492Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib53E3DA24FAEC6338E8D7AB8A3ECF4D7Bs1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibAED2FB52294A5B452D5A735265FD23E7s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bibB86175D6BF648B238412711EF6875670s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib689FB59DB0E9887DED87CEA7BABA58B8s1
http://refhub.elsevier.com/S0168-0072(22)00058-6/bib68D720ADFDFCCDE0C273537D5D24E085s1

