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ARTICLE

Antibody response to oral biofilm is a biomarker for
acute coronary syndrome in periodontal disease
Mariliis Jaago1,2, Nadežda Pupina1, Annika Rähni 1,2, Arno Pihlak1, Helle Sadam1,2, Nihal Engin Vrana3,

Juha Sinisalo 4, Pirkko Pussinen 5 & Kaia Palm 1,2✉

Cumulative evidence over the last decades have supported the role of gum infections as a risk

for future major cardiovascular events. The precise mechanism connecting coronary artery

disease (CAD) with periodontal findings has remained elusive. Here, we employ next gen-

eration phage display mimotope-variation analysis (MVA) to identify the features of dys-

functional immune system that associate CAD with periodontitis. We identify a fine

molecular description of the antigenic epitope repertoires of CAD and its most severe form -

acute coronary syndrome (ACS) by profiling the antibody reactivity in a patient cohort with

invasive heart examination and complete clinical oral assessment. Specifically, we identify a

strong immune response to an EBV VP26 epitope mimicking multiple antigens of oral biofilm

as a biomarker for the no-CAD group. With a 2-step biomarker test, we stratify subjects with

periodontitis from healthy controls (balanced accuracy 84%), and then assess the risk for

ACS with sensitivity 71–89% and specificity 67–100%, depending on the oral health status.

Our findings highlight the importance of resolving the immune mechanisms related to severe

heart conditions such as ACS in the background of oral health. Prospective validation of these

findings will support incorporation of these non-invasive biomarkers into clinical practice.

https://doi.org/10.1038/s42003-022-03122-4 OPEN

1 Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia. 2 Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618
Tallinn, Estonia. 3 Spartha Medical, 14B Rue de la Canardiere, 67100 Strasbourg, France. 4 Heart and Lung Center, Helsinki University Hospital, and Helsinki
University, Helsinki, Finland. 5 Oral and Maxillofacial Diseases, University of Helsinki, FI-00014 Helsinki, Finland. ✉email: kaia@protobios.com

COMMUNICATIONS BIOLOGY |           (2022) 5:205 | https://doi.org/10.1038/s42003-022-03122-4 |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03122-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03122-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03122-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03122-4&domain=pdf
http://orcid.org/0000-0002-2826-4636
http://orcid.org/0000-0002-2826-4636
http://orcid.org/0000-0002-2826-4636
http://orcid.org/0000-0002-2826-4636
http://orcid.org/0000-0002-2826-4636
http://orcid.org/0000-0002-0169-5137
http://orcid.org/0000-0002-0169-5137
http://orcid.org/0000-0002-0169-5137
http://orcid.org/0000-0002-0169-5137
http://orcid.org/0000-0002-0169-5137
http://orcid.org/0000-0003-3563-1876
http://orcid.org/0000-0003-3563-1876
http://orcid.org/0000-0003-3563-1876
http://orcid.org/0000-0003-3563-1876
http://orcid.org/0000-0003-3563-1876
http://orcid.org/0000-0001-9981-3180
http://orcid.org/0000-0001-9981-3180
http://orcid.org/0000-0001-9981-3180
http://orcid.org/0000-0001-9981-3180
http://orcid.org/0000-0001-9981-3180
mailto:kaia@protobios.com
www.nature.com/commsbio
www.nature.com/commsbio


Coronary artery disease (CAD) is the leading cause of
morbidity and mortality worldwide1 caused by metabolic
disorders in lipid oxidation promoting inflammatory

alterations on the endothelium2,3 and culminating in plaque
rupture4,5. The heritability of CAD and its familial clustering are
well established6. Genome-wide association studies (GWAS) have
identified a number of causal CAD-associated genes and loci7.
These findings highlight the largely polygenic nature of the
inheritability of CAD8,9, rendering some individuals more sus-
ceptible or resilient to developing atherosclerosis10. CAD has
been associated with the unhealthy lifestyle placing it among
“immunoinflammatory” diseases11. While remarkable progress
has been made in understanding the mechanisms of atherogen-
esis as robust methods of identifying high‐risk atherosclerosis via
genomics and imaging are at hand, highly sensitive and specific
biomarkers for CAD have remained elusive. Importantly, as
much as 30% of control populations are thought to unknowingly
include subjects with CAD, impacting power and accuracy of
clinical biomarker studies12–14.

Periodontitis, a major oral dysbiosis-driven inflammatory dis-
ease, is associated with increased risk of atherosclerotic cardio-
vascular diseases15. Up to 700 bacterial species have been
identified in the oral cavity (Human Microbiome Project Con-
sortium). Intriguingly, DNA of periodontal pathogens (e.g., Por-
phyromonas gingivalis) and live bacteria have been detected in
atherosclerotic lesions16–18. The microbial composition of gut
microflora of patients with CAD has been found to be more
inflammatory than in healthy patients19. Similarly, the oral
microbiome of CAD patients may be altered20. Host-microbe
interaction in the periodontium can initiate or even aggravate
atherosclerotic processes through the activation of innate
immunity, bacteremia, and direct involvement of cytokines and
inflammatory proteins of oral microbiota21–23.

Recent research suggests that abnormal changes to the gut
microbiota flora may also contribute extensively to the progres-
sion of CAD24. As the microbiome plays a central role in the
balance between immune activation and immune tolerance25 and
in the light of dysbiosis in microflora, it is no surprise that
atherosclerosis has a strong autoimmune component26. First,
CAD risk locus includes the major histocompatibility complex
(MHC) containing a dense cluster of genes involved in inflam-
mation, immunity, and self‐recognition21,27. Furthermore, a

depletion of T or B cells leads to an attenuation of
atherosclerosis22. Although T cells seem to be essential, B cells
and antibodies play an accelerating and perpetuating role23. Thus,
atherosclerosis is a chronic inflammatory disease with an auto-
immune component26. Antibodies against oxidized low-density
lipoproteins (oxLDL) positively correlated with the disease28.
Besides oxLDL/ApoB, heat shock proteins (HSPs) and some
foreign peptides from pathogens including cytomegalovirus
(CMV), hepatitis C virus (HCV), HIV, human papillomavirus
(HPV), and others have been proposed as atherosclerosis-
relevant antigens29. However, the relation between antibodies
and atherosclerotic disease burden and progression has remained
unclear.

Here we used MVA30,31, an unbiased, high‐throughput, com-
prehensive approach based on next-generation phage display, to
identify biomarkers of periodontal conditions associated with
stable coronary artery disease and progression to acute coronary
syndrome.

Results
Shared immunoreactivity to epitopes linked to periodontal
pathogens. We used MVA immunoprofiling analysis of sera
samples of 96 individuals from the Corogene cohort32 to identify
peptide antigens related to antibody immune response in peri-
odontal disease and CAD. Characteristics of the subjects
according to their CAD and periodontal status are presented in
Fig. 1 (Fig. 1a, Supplementary Table S1). Within the cohort, the
proportion of ex- or active smokers was significantly higher in
patients with periodontitis than in the rest of the cohort (Chi2,
p < 0.01, Supplementary Table S1, Fig. 1b, Supplementary
Fig. S2).

Altogether we identified 14.5 million distinct peptide epitopes
from the MVA immunoprofiles across the whole study cohort
and converged these to 8088 most abundant and shared antigenic
epitopes by clustering analysis (Supplementary Fig. S3). Given the
gum disease background of the samples33,34, we first examined
whether we could detect from the immunoprofiles of the study
samples the immunoreactivity to the 7 most common periodontal
pathogens (Porphyromonas gingivalis, Tannerella forsythia, Pre-
votella intermedia, Fusobacterium nucleatum, Campylobacter
rectus, Aggregatibacter actinomycetemcomitans, and Porphyromo-
nas endodontalis). Data analysis showed that antibody response

Fig. 1 Characteristics of the clinical cohort. a Subjects divided in three groups based on CAD diagnosis (no-CAD, stable-CAD (s-CAD), or ACS). Total,
size of the group. Each of the three CAD groups included subjects with different periodontal health diagnosis: periodontally healthy (H), patients with
gingivitis (G) – a transient gum inflammation –, or patients with periodontitis (P). N, size of the sub-group. b Significant association between periodontal
diagnosis and smoking is observed in the study cohort. Frequency distribution graphs of subjects (n= 96) in groups with coronary artery health condition
(no-CAD, stable-CAD, or ACS) or periodontal condition (H, G, P). Statistically significant difference in prevalence of cigarette smoking was observed in
periodontal condition groups, being highest among the periodontitis group subjects, but not within CAD groups (Chi2 test, p value < 0.05, n= 96
independent subjects). x-axes – clinical subgroups; y-axes – number of subjects; color-fill – yes, active cigarette smoker (orange); ex-smoker, has quit cigarette
smoking (yellow); never, no history of cigarette smoking (blue).
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to antigens of P. gingivalis and A. actinomycetemcomitans was
the highest, whereas F. nucleatum antigens were on average
significantly less recognized (Mann–Whitney U, ****p < 0.0001,
two-sided) (Fig. 2a). By analyzing the sequences of the bacterial
antigens, several dominant core epitopes shared by these antigens
were identified, among which multiple types were derivatives of a
common signature P.T.[P][R] (Types 2, 4 and 5), Fig. 2b,
Supplementary Table S2). Interestingly, P..T.[P][R] patterns (i.e.,
Type 2, 4, or 5) were present in 45% and 30% of P. gingivalis and
A. actinomycetemcomitans immunodominant antigens, respec-
tively, whereas only 10% among F. nucleatum antigens (Fig. 2c).
Shared antibody response patterns to bacterial antigen epitopes
(target types, clustering on left) were observed as specific for

certain clinical heart and dental conditions (grouping on top)
(Fig. 2d, Supplementary Fig. S4). Notably, the majority of subjects
(5/9) with high immune reactivity to these pathogenic period-
ontal bacteria (indicated with dots under intensity plot) belonged
to the no-CAD group (Fig. 2d, Supplementary Fig. S5). Overall, in
subjects (n= 9) with the highest immunoreactivity to these
pathogens, P..T.[P][R] containing-epitopes (Types 2, 4, and 5)
were the most prevalent and on average recognized at higher
levels as compared to epitopes of Type 1 and 3 (Fig. 2e).
Altogether, these data showed that immune response against a
dominant core epitope P..T.[P][R], which was associated with
common pathogenic oral bacteria, correlated with a differential
risk of ACS.
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Different clinical groups share common features in the
immunoprofiles. Given the findings that the immune response
against oral pathogenic bacteria was associated with the clinical
diagnosis, we next analyzed the difference of immune response to
each of the 8088 epitopes in CAD or periodontal disease groups
using ROC analysis with specific criteria: sensitivity ≥ 50% and
specificity ≥ 70%, Kruskal–Wallis test p < 0.05. Clustered analysis
based on sequence similarity arrived at 62 group-differentially
targeted epitope clusters with shared core patterns (Supplemen-
tary Fig. S6, Supplementary Table S3). When we correlated the 62
epitope clusters based on average abundances in clinical diagnosis
groups, clusters with similar response patterns were seen group-
ing together (Fig. 3a). Pearson correlation-based analysis united
the 62 clusters further into five major epitopes (A to E), where the
largest epitope A shared the core pattern P..T.PR (Fig. 3b, c,
Supplementary Fig. S7). The epitope pattern P..T.PR includes
P..T.[P][R], the one also observed as predominant among peri-
odontal pathogens (Fig. 2b, Supplementary Table S2). We found
that differential antibody response patterns against epitopes A to
E were diagnosis group-specific (Fig. 3a, b, Supplementary
Figs. S7 and S8). Specifically, stronger response to epitope A was
specific to periodontitis and no-CAD cohorts (red outline),
whereas stronger response to epitope B was detected in period-
ontitis and smoking subgroups (green outline) (Fig. 3a, b, Sup-
plementary Fig. S8a, b). Stronger antibody response to epitope C,
on the other hand, was characteristic to periodontally healthy
patients but with an ACS diagnosis (blue outline), epitope D was
more targeted in subjects with gingivitis (yellow outline), and
epitope E in subjects with gingivitis but not in CAD (pink outline)
(Fig. 3a, b, Supplementary Fig. S8c–e). In conclusion, these five
major epitopes (A-E) were targeted by the strongest and differ-
ential antibody response across diagnosis groups.

Microbial mimicry of the P..T.PR core epitope that is common
to periodontitis encompasses the highly antigenic epitope of
EBV VP26. Our analyses highlighted a strong response to epitope
A with the core pattern P..T.PR (Figs. 2d, 3c), which we have
previously mapped to EBV VP26 protein encompassing 153-
176aa30,31. When aligning all individual MVA immunoprofile-
derived peptides of the current study cohort to the primary
sequence of EBV VP26, we observed that subjects within the
periodontitis group exhibited high immunoreactivity to this

C-terminal epitope (Mann–Whitney U, *p < 0.05, two-sided,
Fig. 4a, b). Independent validation was performed using dot
ELISA analysis, where sera samples from the current clinical
cohort were exposed to phage particles displaying the C-terminal
VP26 epitope sequence (Fig. 4c). Patients predicted as ser-
opositive against the P..T.PR epitope by MVA (MVA+) were
observed with significantly higher immunoreactivity to the dis-
played EBV VP26 epitope in the dot ELISA analysis (Fig. 4c,
Mann–Whitney U, ****p < 0.0001, two-sided). Therefore, these
results further confirmed the MVA findings of specific seror-
eactivity mapping of epitope A (with the core pattern P..T.PR) to
EBV VP26 (Fig. 4c). As we found that many antigens of the
periodontal bacteria shared features of the epitope A (Fig. 2b, d,
Supplementary Table S2) and could thus mimic the epitope of
EBV VP26 antigen, we determined using annotation analysis that
these could include a transmembrane protein signal peptidase I
(100-129 aa, Uniprot accesssion Q7MTG1) and a cytosolic
transcription termination factor Rho (160-189 aa, Q7MX79) of P.
gingivalis, and isoleucine-tRNA ligase (770-789aa, C9R644) in A.
actinomycetemcomitans (Supplementary Table S2). Also, epitope
B was annotated to the tandem repeat (3 × 13 aa) in the
C-terminal part (741-779 aa) of EBV nuclear antigen 6 (EBNA6)
protein (Supplementary Fig. S9), in harmony with other studies
reporting this region as highly immunogenic35,36. In conclusion,
strong antibody response to EBV, in particular to VP26 and
sequence-mimicking bacterial antigens, was distinguishing sub-
jects with periodontitis from periodontally healthy controls.

Biomarkers to predict ACS risk from periodontal disease. To
examine whether the delineated five epitopes (A-E) could act as
biomarkers stratifying periodontitis and/or CAD conditions,
multi-variable models were built and fitted using antibody
response to epitopes as predictive biomarkers. Firstly, it was
confirmed that immune response to epitopes A-E had no sig-
nificant correlations with age or gender (Supplementary
Fig. S10). The optimal model including immune response to
epitopes A, B, and C to differentiate periodontitis from healthy
showed a balanced accuracy of 81% for the training subset (80%
of samples) and 84% for the validation subset (20% of samples)
(Fig. 5a and Supplementary Fig. S11). As a whole, strong
response to epitopes A and B was characteristic to the period-
ontitis group, whereas response to epitope C was more common

Fig. 2 Shared immunoreactivity to epitopes linked to periodontal pathogens detected by MVA from immunoprofiles of the study cohort. Group-wide
top 8088 epitopes from the MVA immunoprofiles were aligned onto proteomes of the most common periodontal pathogens (n= 7). Based on how many
epitopes aligned and how enriched were the epitopes in MVA immunoprofiles for individual sample separately, top 40 fragments with highest alignment
loads were selected per pathogen. a Antibody response to top 40 antigens for P. gingivalis and A. actinomycetemcomitans was the highest, whereas antibody
response to F. nucleatum antigens was found to be low. Pair-wise Mann–Whitney U, two-sided, ****p < 0.0001, p values not adjusted for multiple
comparisons. y-axis – alignment load, representing how many MVA immunoprofile epitopes aligned onto protein sequences and how abundantly were they
seen in MVA immunoprofiles (in log2). b Unsupervised clustering identified most abundant epitopes with consensus sequences from alignments on target
fragments. Type 1: KP.L in 1033 fragments; type 2: P..T.[P]R in 833 fragments; type 3: N[ST]F.K in 421 fragments; type 4: P[AYS][LI]TA.[REQ][GT][LDK] in
150 fragments; type 5: PQ[DN]T[RIV]P[MIR][GRT][MRK] in 107 fragments. Outline – type 2, 4, and 5 epitopes share similar core pattern P..T.[P][R].
c Proportions of antigenic epitope types across the antigens of the seven periodontal pathogens. y-axis – proportion (%) among top 40 antigen fragments
(cumulative), data labels on bars - proportion (%), x-axis – oral pathogen species, target type (fill color) – epitope pattern type (from sequences in b).
d Shared antibody response patterns to bacterial antigen epitopes (target types, clustering on left) were observed as specific for certain clinical heart and
dental conditions (grouping on top). Immunoreactivity profiles against top 40 antigens in F. nucleatum, P. gingivalis, and A. actinomycetemcomitans are shown.
Profiles were clustered row-wise according to epitope types (type, sequences in b). Subjects (in lanes) with highest immunoreactivity to top antigens
(Supplementary Fig. S5) are marked with asterisks (*) under intensity plots. Vertical lanes – individual samples (n= 96), categorized based on CAD (no-
CAD, s-CAD, ACS) and periodontal diagnoses (periodontally healthy (H), gingivitis (G), periodontitis (P)); rows – each row represents a distinct 20-aa
antigenic region of protein primary sequence; blue color-scale – intensity of blue represents the alignment load of individual sample; target type – epitope
type (sequences in b). e Distribution of subjects with low (n= 87) or high (n= 9) immune response (by Supplementary Fig. S5) to different targeted
epitopes. Taken together, Types 2, 4, and 5 were more common to high-response subjects, as compared to other target types. Pair-wise Mann–Whitney
U, two-sided, ****p < 0.0001, p values not adjusted for multiple comparisons. y-axis – alignment load in log2, response – high-response subjects (n= 9) or
low-response subjects (n= 87), type – target epitope type (sequences in b).
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in the periodontally healthy group (Fig. 5a). Response to epitopes
D and E did not provide additional useful information when
discriminating between periodontitis diagnosis groups (Supple-
mentary Fig. S12a).

Next, by characterizing immune features that were CAD-
specific, we discovered that periodontally healthy subjects shared
a strong response against epitope C that was high in ACS
subgroup (with statistically significant trends, Mann–Whitney U,
p= 0.097, two-sided, Fig. 5b). In subjects with gingivitis, a
transient inflammation condition, response against epitope A was
differentiating between CAD groups, being high in ACS as
compared to no-CAD (Mann–Whitney U, *p < 0.05, two-sided,
Fig. 5b). In the periodontitis group of subjects with chronic
periodontal inflammation, antibody response to two independent
markers (epitopes A and E) was identified as significant for the
no-CAD cohort (Mann–Whitney U, *p < 0.05, **p < 0.01, two-
sided, Fig. 5b). Response to epitopes B and D was not

differentially linked to no-CAD or ACS diagnosis (Supplementary
Fig. S12b). ROC analysis was used to set thresholds for each of the
3 epitopes (A, C and E) in discriminating between clinical
subgroups (Fig. 5c). As a result, when first classifying subjects
based on their periodontal findings (epitopes A, B and C) and
then assessing response to epitopes A, C, and E which
differentiate between CAD diagnoses, it was possible to predict
the ACS risk in periodontal disease and ascertain the no-CAD
phenotype (Fig. 5c). In conclusion, MVA immunoprofiling
provided useful blood-biomarkers to predict ACS risk from
periodontal disease.

Discussion
Here, we report the detailed antibody epitope delineation study
identifying a set of immunogenic features associated with peri-
odontal pathogens and CAD.

Fig. 3 MVA immunoprofiles of subjects with different CAD conditions, periodontal disease severity, cigarette smoking behavior, and diabetes
diagnosis. a 62 epitope clusters with group-specific MVA immunoprofile features across clinical classifiers. Although 19% of the subjects were diagnosed
with diabetes (either type I or type II, not specified further), no significant association of diabetes with either CAD or periodontal diagnosis was found
(Supplementary Fig. S2). Average abundance, calculated as mean of peptides containing the epitope within a given group and normalized with the mean
values across all groups (color-coded from purple to yellow). Colored outlines with capital letters refer to epitopes in panel c. Clustering distance: Pearson
correlation coefficient; clustering method: ward.D2. 57/62 clusters with high mean abundance (>150) across groups are shown. “−” under smoking
designates subjects without any exposure to smoking, “+” depicts subjects with a history of exposure (ex-smoker) or currently actively smoking. CAD -
coronary artery disease, no-CAD - no CAD diagnosis, s-CAD - stable CAD diagnosis, ACS - acute coronary syndrome, H -periodontally healthy controls,
G - patients with gingivitis diagnosis, P - patients with periodontitis diagnosis, DM - diabetes mellitus. b Similar behavior-based clustering of 62 epitope
clusters (x- and y-axis) using peptide abundance values (in log10) across the study cohort. Pearson R correlation indices (color-scale) were calculated and
visualized in a correlation matrix. Five distinct large clusters were identified and defined as epitopes A to E. c Core consensus patterns of epitopes A to E,
identified in Supplementary Fig. S7.
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The remarkable heterogeneity in antigenic immune response
between individuals has been noted previously, also by our recent
studies30,31. One of the factors shaping the individual hetero-
geneity of immune response is associated with microbial sym-
biosis with the host and their antagonistic to mutualistic
associations37. Among oral bacteria, these include health-
associated early-stage, moderately pathogenic medium-stage and
highly pathogenic late-stage colonisers of periodontal biofilm37,38.
Our data reveal that many strongly targeted epitopes could
potentially mimic and the antibodies could cross-react with the
antigens of periodontal bacteria (Fig. 2, Supplementary Table S2,
Supplementary Fig. S4). Other factors influencing individual
variability in immune response to pathogens are age, lifestyle
(diet, smoking, exercise etc), previous immune history (viral,
bacterial), and the specific HLA-alleles that affect the presentation
of major antigenic epitopes39. As some of these periodontal
bacteria belong to orange or red complex groups of pathogenic
oral species, the observed potential cross-reactivity of the anti-
body immune response (Fig. 2, Supplementary Fig. S4) could
contribute to the dysbiosis of oral microbiota and thereby peri-
odontal health.

We identified immunoprofiles stratifying the individuals with
ACS from individuals with no CAD or stable CAD (Fig. 3). Our
dataset has the advantage that we could identify and compare the
presence of potential immunological markers in different CAD
types, even in a limited study cohort. When the host’s B cell

response is inefficient against re-surfacing of latent infections, this
may cause endothelial inflammation which in turn can contribute
to the formation of atherosclerotic plaques and their instability40.
Furthermore, differences were also observed in antibody response
against epitopes in specific pathogens, including herpesviruses, in
gingivitis, smoking or diabetes subgroups (Fig. 3, Supplementary
Fig. S8). Diabetes along with smoking are two big risk factors for
periodontal disease41. Thus, despite the small scale of the study
and varied pathology background, our results provide proof of
principle that different stages of CAD may be identifiable by
different features of systemic immunoprofiles, which also include
antibody response against highly antigenic epitopes of oral
microbiota and common viruses.

Our data show that patients with progressing gingivitis through to
periodontitis have increasing levels of antibodies to the highly anti-
genic epitope mimicking EBV VP26 (Figs. 3c and 4a, b). On the
other hand, within subjects with periodontitis, a strong response to
the EBV VP26 epitope is characteristic to healthy subjects, but not to
ACS patients, suggesting its protective role against ACS (Fig. 5b). A
few studies have directly addressed the role of herpesvirus infections
in susceptibility to secondary oral bacterial infections. Relatedly, it is
known that A. actinomycetemcomitans and P. gingivalis might
require support from active herpesviruses for periodontal destruction,
whereas the stable periodontal lesions may be devoid of viruses42.
The herpesviral–bacterial hypothesis of periodontitis proposes that
the herpesvirus infection triggers a release of proinflammatory

Fig. 4 Immunoreactivity to epitope on VP26 EBV and alike mimicking features stratifies patients with periodontitis. a Individual immunoreactivity
profiles (n= 96) of the study cohort against EBV protein VP26, shown for different clinical groups: periodontally healthy (H), gingivitis (G), or periodontitis
(P). All peptides from individual immunoprofiles were aligned (with≥ 6 matching amino acid positions) to primary sequence of EBV VP26 protein along
with random reference. Peptide epitope abundance (as signal-to-noise ratio, red color-scale) is visualized per subject (in rows, separated into periodontal
diagnosis groups) and per amino acid position (on x-axis). Ctrl – samples with negative EBV-viral capsid antigen serology (n= 9). b Highly antigenic P..T.PR
epitope is differentially targeted across periodontal groups shown as box plots of abundance of peptides containing the epitope (Mann–Whitney U, two-
sided, p values not corrected for multiple comparisons, *p < 0.05, ns p > 0.05, n= 96 independent patients), Supplementary File S6. a, b Abbreviations and
group sizes: H periodontally healthy (n= 21 patients (3 × 7)), G gingivitis (n= 27 (3 × 9)), P periodontitis (n= 48 (3 × 16)), no-CAD no CAD diagnosis
(n= 32), s-CAD stable CAD (n= 32), ACS acute coronary syndrome (n= 32). c Anti-P.DT.PR epitope-like immune response identified by MVA was in
high correlation with data from independent dot ELISA validations. Phage particles displaying peptides with P.DT.PR or mutant P.DA.PR sequences were
used for dot ELISA. Of the 52 randomly tested samples, those with a positive signal to anti-P.DT.PR response detected by MVA (>1200 abundance of
P.DT.PR containing peptides,MVA+) showed significantly higher signals in dot ELISA (y-axis, signal-to-background arbitrary unit (AU)) compared to samples
with a negative response from MVA data (MVA-, Mann–Whitney U test, two-sided, ****p < 0.0001, n= 52 independent subjects).
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cytokines to activate osteoclasts and matrix metalloproteinases
(MMPs) to impair antibacterial immune mechanisms, causing an up-
growth of periodontopathic bacteria42. Given that the extracellular
matrix (ECM) breakdown represents a crucial factor in the period-
ontal pathophysiology, periodontitis confounded diagnostics of ACS
has been proposed by measuring serum levels of MMP-943, while
serum MMP-8 and TIMP-1 levels were found to be associated with
incident44 and especially fatal cardiovascular events45. Overall, this
indicates immune hyperresponsiveness to dysbiosis, typical to the
pathogenesis of periodontitis46. On the other hand, periodontal
herpesviruses themselves may disseminate via the systemic circula-
tion to non-oral sites (including arteries) and thus represent a major
link between periodontitis and cardiovascular diseases41. A recent
meta-report described a world-wide association of EBV infection
with periodontal disease47. Here we have investigated this observa-
tion further and fine-mapped the EBV VP26 epitope, against which
the immunologic response could link periodontitis and associated
CAD conditions. However, herein we show that it mimics antigens of
periodontal bacteria (Fig. 2d, Supplementary Table S2). Microbial
epitope similarity with pathogens, allergens and auto-antigens has
been reported before, as it can elicit tolerogenic or inflammatory
immune reactivity48. For example, different periodontopathogenic
species share mimicry in their GroEL antigen, which in turn results
in cross-reactivity with the human heat-shock proteins (HSP)
expressed on the endothelial cell leading to endothelial dysfunction49

and atherosclerosis50. This suggests that further studies of the
herpesviral-bacterial-host epitope mimicry are warranted, in parti-
cular for improved diagnostics and therapy of dental health asso-
ciated heart conditions.

Here we built a two-step biomarker model based on immune
response to 4 epitopes that allows a) to classify subjects based on
their periodontal diagnosis and b) to predict ACS risk and
establish the no-CAD phenotype with 71–89% specificity (Fig. 5).
Specific periodontitis-associated biomarkers for CAD could be
beneficial in discerning ACS from other cardiac events. These
data indicate that periodontitis, and ultimately putative progres-
sing to ASC due to periodontitis, is the result of a partial response
or lack of an efficient combined response against viral and bac-
terial infections landing on self-proteins.

Taken together, our findings clearly illustrate the power of
MVA for the immunopathological analysis of oral health-related
cardiac conditions, and we predict that the widespread use of this
technology at scale will enhance the current understanding of
chronic disease mechanisms, in particular cardiovascular diseases,
and can lead to improved diagnostic accuracy and new markers.

Limitations of the study. We could not evaluate the prognostic
value of these predicted biomarkers due to the clinical study design.
Because of genetic and socioeconomic status variabilities in dif-
ferent study populations, it is hard to extrapolate the findings. This
was a study on Finnish adults. New studies with other cohorts are
needed. Also, the pathogenetic importance of the specific oral
bacterial microbiota antigens remains firmly to be established.

Methods
Ethics statement. The study was conducted in accordance with the guiding
principles of the Declaration of Helsinki and the study participants gave written
informed consent before enrollment. The study was approved by the ethics

Fig. 5 Immune response to epitope biomarkers to predict the ACS risk in periodontal disease and ascertain the no-CAD phenotype. a Strength of
immune response to three epitopes (in rows) across study subjects (n= 96, in lanes), grouped by periodontal (H, G, or P) and CAD diagnosis (no-CAD,
s-CAD, or ACS) shown as intensity plots. Relative abundance of immunoprofile features is shown in blue color-scale. These epitope biomarkers in a
3-biomarker generalized logistic model differentiate P group from H (Supplementary Fig. S11). Vertical lanes – subjects (n= 96); rows – epitopes; blue
color-scale – normalized relative epitope-containing peptide abundance values (using 97.5th percentile values per feature and capped at value 1). b Different
immunoprofile features (above boxplots) stratified ACS with periodontal diagnosis. y-axes: immunoreactivity to epitopes in individual immunoprofiles, shown as
abundance of peptides containing the epitope. Mann–Whitney U test, two-sided, p values not corrected for multiple comparisons, **p < 0.01, *p < 0.05. H:
n= 21 independent patients; G: n= 27 independent patients; P: n= 48 independent patients. c Sensitivity and specificity measures of using biomarkers from B
in separate periodontal groups (sub-group) to predict CAD diagnoses (either no-CAD or ACS). Diagnosis ≥ threshold – diagnosis group into which patient was
classified if immune response was over threshold. a–c Abbreviations and group sizes: H -periodontally healthy (n= 21), G -gingivitis (n= 27), P -periodontitis
(n= 48), no-CAD -no CAD diagnosis (n= 32), s-CAD - stable CAD (n= 32), ACS - acute coronary syndrome (n= 32). Data in File S7.
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committees of the Helsinki University Central Hospital (approval reference
number 106/2007) and The National Institute for Health Development, Estonia
(approval number 1045).

Clinical cohort description. The cohort (n= 96) was selected from the initial
Corogene study (n= 5294) and divided into 3 subgroups: periodontally healthy (H,
n= 21), gingivitis positive (G, n= 27), and periodontitis (P, n= 48). The diag-
nostic features on clinical and radiographic findings have been described in detail
earlier51,52. Periodontally healthy patients had no alveolar bone loss (ABL) and
bleeding on probing (BOP) did not exceed 10%. Gingivitis was registered in
patients without ABL but with BOP > 10%. Patients were diagnosed with period-
ontitis when the ABL exceeded the cervical third of the root. Coronary artery
disease diagnosis (no coronary artery disease (no-CAD, n= 32), stable coronary
artery disease (stable-CAD, n= 32), or acute coronary syndrome (ACS, n= 32))
was based on the degree of stenosis in the coronary arteries during the angio-
graphy, typical electrocardiographic changes, chest pain, and levels of cardiac
biomarkers32. The age and gender proportions, along with other relevant clinical
history, are in Supplementary Table S1.

Statistics and reproducibility. The statistical analyses performed during the study
were accompanied by measures of statistical significance. The study was non-
blinded and non-randomized and included n= 96 independent study subjects.
Group-wise parameters, such as median values, were visualized alongside intra-
group range using violin- or boxplots. Reproducibility of Mimotope Variation
analysis was confirmed by establishing the correlation coefficient of two replicates
as R= 0.87 (p < 0.0001).

Statistical analysis of clinical characteristics of samples. Differences in pro-
portions of genders, diabetes condition and smoking status were assessed in clinical
sub-groups using Chi2 test (MedCalc, 19.7.2, MedCalc Software Ltd, Ostend,
Belgium; https://www.medcalc.org). For statistical analysis, two-sided
Mann–Whitney U test was used for comparing two groups or two-sided
Kruskal–Wallis test for >2 groups using R package “ggpubr”53 and “ggplot2”54.

Mimotope variation analysis. Peptide antigens were selected from random peptide
phage modified library (PhD12, NEB) with 109 different 12-mer peptide
sequences30,31. Two μl of serum/plasma samples, previously precleared to plastic and
E. coli/wt M13 phage lysates were incubated with 2.5 μl library (~5 × 1011 phage
particles) and immunoglobulin G (IgG) fraction was recovered using protein G-coated
magnetic beads (S1430S, NEB). Captured phage DNA was analyzed by Illumina HiSeq
sequencing of 50-bp single end reads using barcoded primers for sample multiplexing.
Peptide abundance correlation coefficient (R) in two replicates by Pearson analysis was
0.87 (p < 0.0001) (Supplementary Fig. S1) (R package “ggpubr”53). For further data
analysis, sequencing errors and known artefacts were eliminated.

Selecting peptides. Group-enriched peptides (TopPeptide sets) were selected for
clinical sub-groups (Supplementary Table S1). Peptides were selected for no-CAD
(n= 292,667), stable-CAD (n= 279,020), and ACS (n= 308,445), and period-
ontally healthy (n= 450,531 peptides), gingivitis (n= 450,590), and periodontitis
(n= 342,261) groups, using the criteria that these were to be identified in ≥10%
individual samples of the group with abundance threshold ≥10 sequence counts in
at least one sample.

Sequence-based unsupervised clustering of peptide antigens. Exhaustive
sequence pattern search tool SPEXS2 was used (http://egonelbre.github.io/spexs2/)
for sequence-based unsupervised clustering of peptide antigens. Starting from the
292,667 group-enriched peptides (TopPeptide set) identified for no-CAD group, all
were used as input to SPEXS2 in random order with the search criteria: peptide
coverage threshold: ≥4; motif coverage threshold: ≥4 fixed amino acid positions;
hyper-geometric P value <10−5). Sequence pattern searches were performed in 2
iterative runs, where peptides from which a consensus was identified in the first run
were excluded from the subsequent run. As a result, 4366 distinct motif consensus
sequences were identified, which were contained in 29.0% or 84,873 of the original
292,667 peptides. Therefore, 4366 unique consensus motifs were identified for no-
CAD (covering 29.0% of input peptides), similarly 2771 motifs were calculated for
stable-CAD (27.0%), 4405 for ACS (30.5%), 6275 for periodontally healthy (4
iterative SPEXS2 runs due to greater starting peptide set) (42.8%), 9560 for gingivitis
(4 runs) (44.4%), and 5936 for periodontitis group (4 runs) (27.7%) were defined.

Selecting for group-differentiating motifs. The epitope motifs contained high
degree of redundancy, therefore stricter criteria (hyper-geometric P value <10−8 or
query/reference ratio ≥10) were imposed to select for characteristics with high
significance and statistical power. Altogether 8088 unique motif sequences fit those
criteria were selected for further analyses as the TopMotif set. Of 8088 distinct
motif features, 995 were designated as group-differential. The 995 motifs satisfied
all the criteria that 1) the average abundance value in each clinical sub-group was
>3 greater than in another relevant sub-group, 2) the abundance-based separation
of relevant clinical sub-groups was with ≥50% sensitivity and ≥70% specificity, and 3)

group-separation was statistically significant (Mann–Whitney U test, p value < 0.05,
two-sided).

Alignment profiles on periodontal bacteria. The TopMotif set of 8088 motifs
was aligned to proteomes of the periodontal pathogen species: Porphyromonas
gingivalis (UniProt accession: UP000000588), Tannerella forsythia (UP000005436),
Prevotella intermedia (UP000010099), Fusobacterium nucleatum (UP000002521),
Campylobacter rectus (UP000003082), Aggregatibacter actinomycetemcomitans
(UP000002569), and Porphyromonas endodontalis (UP000004295) (accessed 20-
21.12.2019). Only exact alignments where all fixed amino acid positions of a motif
(minimum of 4 positions) to match with the target were allowed. The pathogen
database comprised of 15,928 proteins, of which 15,116 matched at least with one
epitope motif. For each pathogen, the individual alignment load was calculated per
20-amino acid fragment of the protein, in two frameshifts (0 and −10 aa), yielding
in 10 aa overlaps between considered fragments. Altogether we analyzed ~480,000
distinct 20 amino acid fragments. The top 40 fragments for each bacterial species,
from any frameshifts, with the highest total alignment loads were selected based on
the formula:

Alignment load ðper 20aa fragmentÞ ¼ sum of abundance of motifs aligned
count of motifs aligned

If higher alignment loads were encompassing two side-by-side regions (one
with a frameshift), a longer 30-amino acid fragment was considered. Individual
alignment loads (Supplementary Data 1) were compared across pathogen species
using Kruskal–Wallis test for comparing all groups and two-sided Mann–Whitney
U test for pair-wise comparisons. R packages “ggpubr” and “ggplot2” were used for
calculation and visualization.

Identifying target types of potential epitopes of periodontal bacteria. Using
the top 40 antigen fragments of periodontal pathogens, 12mer substrings were
extracted for each aligned epitope motif (of the TopMotif set), whereas substrings
shorter than 12mer were discarded (33 were found). Altogether 1691 substrings
were selected, position weight matrices were built and the resulting enriched amino
acid positions were visualized as sequence logos, all using a custom in-house tool
with WebLogo55,56 integration (parameters: no counts, distance cut-off 9,
10 minimum unique substrings in a cluster, similarity index 15). The analysis
yielded 26 target types with consensus sequences, of which top 5 most prevalent are
shown on Fig. 2b.

Amino acid-based clustering of group-differential epitopes. Sequence homol-
ogy clustering analysis reduced 705 out of 995 epitope motifs into 62 clusters of
similar epitopes (≥3 identical amino acid positions) whereas 290 out of 995 epitope
motifs either formed too small clusters (<3 motifs in a cluster) or were not similar
enough with any other epitope (<3 identical amino acid positions). Additional R
packages used in data analysis and visualization were: “readr”, “dplyr”57.

Based on the selected peptides, position weight matrices were built and the
resulting enriched amino acid positions were visualized as sequence logos, all using
a custom in-house tool with WebLogo55,56 integration.

Group-specific analysis of 62 clusters. The average abundance for each of the 62
clusters with the defined sequence logo was calculated across clinical sub-groups.
Abundance values in clinical sub-groups were normalized with average abundance
across all groups (Supplementary Data 2). Clusters with average abundance values
of <150 were left out of further analysis. Next, hierarchical clustering was per-
formed based on the normalized abundance values using Pearson correlation
coefficients for clustering distance and ward.D2 clustering method (R package
“pheatmap”)58. R packages used in data analysis and visualization included “readr”,
“dplyr”, “forcats”, “reshape2”54,57, and “viridis”59.

Individual-based clustering of 62 clusters. Abundance of peptides in individual
immunoprofiles was calculated for each cluster. Using log10 values of the abun-
dances, Pearson correlation coefficients R were calculated pair-wise for all 62
clusters (Supplementary Data 3). The clusters were subsequently grouped using R
package “pheatmap” with ward.D2 as clustering method and Pearson correlation
coefficients as clustering distance. Five distinct larger groups were identified and
defined as epitopes A-E. For each of the epitopes A-E, the containing clusters were
compared to determine consensus sequences describing the core epitopes (Sup-
plementary Data 7).

Alignment on EBV VP26. Epitope A has been previously mapped to Epstein-Barr
virus (EBV) protein VP2630. To validate the mapping in the current clinical cohort,
epitopes from individual immunoprofiles (n= 96) were aligned to the primary
sequence of EBV protein VP26, a component of the viral capsid antigen (VCA)
(UniProt accession code Q3KSU9, EBV strain GD-1, date accessed: 25.11.2020).
Signal-to-random ratio for each sample was calculated across primary sequence of
EBV VP26, where signal represented the count of aligned (≥6 matching amino acid
positions) unique peptides defined by MVA and random represented the count of
aligned random peptides (≥6 matching), generated by sequence scrambling of
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peptides (Supplementary Data 4). As controls (Ctrl), peptides from EBV CA ser-
onegative subjects (n= 9) were analyzed similarly.

ELISA. CMV and EBV serostatus was measured from serum samples with ISO/IEC
17025 accredited methods. In brief, serological analyses were performed with anti-
CMV IgG ELISA method (EUROIMMUN EI 2570-9601G) and with anti-EBV CA
(capsid antigen) IgG ELISA method (EUROIMMUN EI 2791-9601G) according to
manufacturer’s specifications. Absorbance was measured at 450 nm with Spec-
traMax Paradigm (Molecular Devices).

Dot ELISA. MVA analysis findings were validated by dot ELISA analysis. For that,
M13K phages displaying peptides with either the EBV VP26 epitope-containing
sequence TLPMDTSPRAHW or the mutant sequence TLPMDASPRAHW as parts
of the pIII protein were printed onto nitrocellulose (NC) slides (ArrayIt, US).
Unspecific binding was reduced by blocking for 1 h at room temperature with 5%
non-fat dried milk in 1xPBS-Tween20-0.05%. Human serum samples were pre-
cleared to reduce unspecific binding to M13K phages, to E. coli bacterial proteins
and to plastic. Preclearing step was performed in mix of 60 µl 2.5% skimmed milk-
1xPBS-0.05% Tween20+ 30 µl Preabsorption Solution+ 1:50 serum, at 4 °C
overnight. Following this, the slides were incubated with either precleared serum
1:50 solutions (n= 54) or with 1:5000 mouse anti-M13 antibody (#27-9420-01, GE
healthcare) in 2.5% skimmed milk in 1xPBS-0.05% Tween20 (GE Healthcare) for
1 h at room temperature. The anti-M13K antibodies were used to quantify phages
printed on NC slides. Multiple washes were performed with 5% skimmed milk in
1xPBS-0.05% Tween20. For visualization, the secondary antibodies used were
1:1000 rabbit anti-human HRP-conjugated antibody (#ab6759, Abcam) (for
human serum samples) in 2.5% skimmed milk in 1xPBS-0.05% Tween20 or 1:1000
rabbit anti-mouse HRP-conjugated antibody (#ab6728, Abcam) (for anti-M13K) in
2.5% skimmed milk in 1xPBS-0.05% Tween20, incubated for 1 h at room tem-
perature. After multiple washes, the presence of bound human sera/plasma IgG
antibodies was detected via reaction with HRP substrate DAB chromogen diluted
in substrate buffer (1:100). The slides were digitally scanned and the signals were
quantified using ImageQuantTL (version 8.1) (Supplementary Data 5). Results of
27/54 samples were validated in an independent similar experiment (in total n= 2
experiments) (including all samples which showed high signal-to-background
ratios).

Predicting periodontitis and CAD diagnoses. Generalized linear model was fit to
80% of subjects’ data (with 5x cross-validation) to classify different case-subgroups
based on their immunoprofile features. Using model’s prediction probabilities for
subjects in the training set, receiver operating characteristic (ROC) analysis was
performed. The model’s area under the receiver operating characteristic curve
(AUROC) was 0.843 with 95% CI (0.738…0.948). The model was validated on the
validation subset (20% of samples).

Data visualization. Box and whisker plots were generated in the style of Tukey
with R packages “ggpubr” or “ggplot2”. Upper, middle and lower boxplot lines
represent the 75th, 50th and 25th percentiles, while whiskers represent the largest
or smallest value within 1.5 times interquartile range above the 75th percentile or
below the 25th percentile, respectively. Individual data points without outliers are
visualized.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data analyzed during the study was generated by MVA analysis. We provided
the relevant data underlying the main findings in the Supplementary data. The whole
datasets generated and/or analyzed during the current study are not publicly available
due to containing sensitive clinical information but are available from the corresponding
author on reasonable request.

Code availability
The code used during the current study is not publicly available due to its proprietary
nature, but detailed explanation of the analysis approaches is available from the
corresponding author on reasonable request.
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