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A Contribution to Ninety Years of Glivenko’s Theorem

Abstract. Alongside the analogy between maximal ideals and complete theories, the
Jacobson radical carries over from ideals of commutative rings to theories of propositional
calculi. This prompts a variant of Lindenbaum’s Lemma that relates classical validity and
intuitionistic provability, and the syntactical counterpart of which is Glivenko’s Theorem.
The Jacobson radical in fact turns out to coincide with the classical deductive closure. As a
by-product we obtain a possible interpretation in logic of the axioms-as-rules conservation
criterion for a multi-conclusion Scott-style entailment relation over a single-conclusion one.

§1. Introduction. Glivenko’s theorem from 1929 says that if a proposi-
tional formula ϕ is provable in classical logic, then its double negation ¬¬ϕ
is provable in intuitionistic logic. In 1933 Gödel extended this to predicate
logic, which move required to admit on the intuitionistic side the scheme of
double negation shift. With Gödel’s and Gentzen’s negative translation in
place of double negation, both from 1933, one can even get by with minimal
logic in place of intuitionistic logic. More than one related proof translation
saw the light of the day, e.g., Kolmogorov’s (1925) and Kuroda’s (1951).

Glivenko’s theorem thus stood right at the beginning of a fundamental
change of perspective: that classical logic can be embedded into intuitionistic
or even minimal logic, rather than the latter being a limited version of
the former. Together with the revision of Hilbert’s Programme ascribed
to Kreisel and Feferman, this has led to the much broader quest for
the computational content of classical proofs, today culminating in agile
areas such as dynamical algebra, formal topology, program extraction from
proofs, proof analysis, proof mining and proof translations. The growing
success of these approaches suggests that customary mathematics, with
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164 GIULIO FELLIN ET AL.

classical logic and set theory, might eventually prove to be much more
constructive than widely thought.

In 1930 Tarski ascribed to Lindenbaum the theorem that in classical
logic any given theory T equals the intersection of all the complete theories
containing T. Its typical use for Gödel’s Completeness Theorem aside, this
Lindenbaum Lemma is one of several theorems from that period which
describe the intersection of all the ideal objects extending a given concrete
object. Those intersection theorems, in their full generality recognised as
forms of the Axiom of Choice (AC), are often put by contraposition as
extension or separation theorems. Apart from Lindenbaum’s, prominent
cases are known by the names of Artin–Schreier, Hahn–Banach, Krull and
Szpilrajn. The case in algebra closest to Lindenbaum’s Lemma, however,
gained prominence only in 1945, when Jacobson pointed out the relevance
of the intersection of all the maximal ideals of a given ring, i.e., of what is
now known as the Jacobson radical.

In the present note we follow the analogy between maximal (proper)
ideals and complete (consistent) theories to carry over the Jacobson radical
from ideals of commutative rings to theories of propositional calculi
(Section 5.2), where it turns out to coincide with the stable closure or with the
closure with respect to classical logic (Proposition 3 and Corollary 1). This
prompts a variant of Lindenbaum’s Lemma that relates classical validity and
intuitionistic provability (Proposition 2), and the syntactical counterpart
of which happens to be Glivenko’s Theorem in the form recalled above
(Theorem 2).

As a by-product we obtain a possible interpretation in logic (Theorem 3)
of the axioms-as-rules conservation criterion (Theorem 1) for a multi-
conclusion Scott-style entailment relation � over a single-conclusion one �.
This criterion has proved to be the common core of many a syntactical
counterpart of a semantic conservation theorem corresponding to one
of the aforementioned intersection theorems. Typically any such case of
conservation means reduction to a special case characterised by additional
axioms with (possibly empty) disjunctions in positive position. Applying
the criterion means to eliminate the additional axioms for � by way of the
corresponding disjunction elimination rules for �. The latter equally suffice
for proof practice, and have proved admissible in all mathematical instances
yet considered.

Our interpretation of the conservation criterion in propositional logic
(Theorem 3) is tantamount to Glivenko’s Theorem (Theorem 2). As for the
latter, disjunction elimination plays a central role in the proof of the former,
together with some notorious features of (double) negation in intuitionistic
logic and of provability in classical propositional logic (Lemmas 1 and 2).

§2. Preliminaries. Unless specified otherwise, we work in a suitable
fragment of Aczel’s Constructive Zermelo–Fraenkel Set Theory (CZF)
[1–5] based on intuitionistic first-order predicate logic. While in general
the concepts of this paper are elementary and the proofs are direct anyway,
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we still pin down CZF as metatheory if only rather for convenience’s sake; in
fact much less might suffice. Likewise, when we occasionally need to invoke
a fragment of the principle of Excluded Middle or even a form of the AC,
and thus go beyond CZF, we simply switch to ZF and ZFC, respectively,
and indicate this accordingly.

For example, the Restricted Law of Excluded Middle (REM) is not a
principle of CZF. This REM means ϕ ∨ ¬ϕ for every set-theoretic formula
ϕ that is, bounded in the sense that only set-bounded quantifiers of the types
∀x ∈ y and ∃x ∈ y occur in ϕ. As is common in this context, negation is a
defined connective: ¬ϕ ≡ ϕ → ⊥.

By a finite set we understand a set that can be written as a1, ... , an for
some n ≥ 0. Given any set S, let Pow(S) (respectively, Fin(S)) consist of
the (finite) subsets of S. We refer to [92] for further provisos to carry over
to the present note.1

Convention. By an intermediate logic we mean an intermediate proposi-
tional calculus obtained by adding to the axioms of intuitionistic logic some
classically valid propositional formulas [37].

We write � to denote (deducibility in) any such intermediate logic in a
propositional language S.

The subsequent properties of (double) negation are due to Brouwer for
intuitionistic logic [11, 12, 45, 109, 110] and carry over to an arbitrary �:

Lemma 1. For any given intermediate logic � in a propositional language S,

¬¬¬� � ¬�
Γ, ϕ � ¬�

Γ,¬¬ϕ � ¬� �¬¬(� ∨ ¬�),

for every Γ ∈ Pow(S) and all ϕ,� ∈ S.

We refer to [55] and [77, p. 27] for a deeper discussion with earlier
references of the following:

Lemma 2. Let � and � stand for classical logic and an intermediate logic,
respectively, in a propositional language S. If Γ ∈ Pow(S) and � ∈ S, then
Γ � � if and only if Γ,Δ � � for a suitable finite subset Δ of

TND0(Γ, �) = {ϕ ∨ ¬ϕ : ϕ propositional variable occurring in Γ or �},
i.e., the set of relevant instances of tertium non datur for propositional variables.

A theory of an intermediate logic � is a subset T of the underlying
propositional language S that is, deductively closed with respect to �:

∀ϕ ∈ S(T � ϕ ⇒ T � ϕ).

As usual, a theory T of � is

1For example, we deviate from the terminology prevalent in constructive mathematics and
set theory [4, 5, 8, 9, 64, 69]: to reserve the term ‘finite’ to sets which are in bijection with
{1, ... , n} for a necessarily unique n ≥ 0. Those exactly are the sets which are finite in our
sense and are discrete too, i.e., have decidable equality [69].
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— consistent if ⊥ /∈ T , which is to say that T = S;
— complete if

∀ϕ ∈ S(T � ϕ ∨ ¬T � ϕ);

— stable if

∀ϕ ∈ S(T � ¬¬ϕ ⇒ T � ϕ).

As an immediate consequence of Lemmas 1 and 2 we have the following:

Lemma 3. Let � be an intermediate logic in a propositional language S. The
following statements are equivalent for any given subset T of S:

1. T is deductively closed with respect to classical logic.
2. T is a stable theory of �.
3. T is a theory of � that contains all instances of excluded middle ϕ ∨ ¬ϕ

with ϕ ∈ S.
4. T is a theory of � that contains all ϕ ∨ ¬ϕ where ϕ is a propositional

variable of S.

In particular, if a theory T of an intermediate logic � is complete, then T is
stable.

§3. Entailment relations. Entailment relations, both in their single- and
multi-conclusion variant, are at the heart of this note. We briefly recall the
basic notions, to which end we closely follow [91, 92].

3.1. Consequence. Let S be a set and � ⊆ Pow(S) × S. Once abstracted
from the context of logical formulas, all but one of Tarski’s axioms of
consequence [106] can be put as

U � a
U � a

(R)
∀b ∈ U (V � b) U � a

V � a
(T)

U � a
∃U0 ∈ Fin(U )(U0 � a)

(A)

where U,V ⊆ S and a ∈ S. These axioms also characterise a finitary
covering or Stone covering in formal topology [95];2 see further [17, 19,
72, 73, 97, 98]. The notion of consequence has allegedly been described first
by Hertz [49–51]; see also [7, 59].

We do not employ the one of Tarski’s axioms by which he required that S be
countable. This aside, Tarski has rather characterised the set of consequences
of a set of propositions, which corresponds to the algebraic closure operator
U �→ U� on Pow(S) of a relation � as above where

U� ≡ {a ∈ S : U � a}.

3.2. Single-conclusion entailment. Rather than with Tarski’s notion, we
henceforth work with its (tantamount) restriction to finite subsets, i.e., a

2This is from where we have taken the symbol �, used also [16, 112] to denote a
‘consecution’ [88].
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single-conclusion entailment relation. This is, a relation� ⊆ Fin(S) × S such
that

U � a
U � a

(R)
V � b V ′, b � a

V,V ′ � a
(T) U � a

U,U ′ � a
(M)

for all finite U,U ′, V, V ′ ⊆ S and a, b ∈ S, where as usual U,V ≡ U ∪ V
and V, b ≡ V ∪ {b}. Our focus thus is on finite subsets of S, for which we
henceforth reserve the letters U,V,W, ...; we also sometimes write a1, ... , an
in place of {a1, ... , an} even if n = 0. Redefining

T� ≡ {a ∈ S : ∃U ∈ Fin(T )(U � a)}, (1)

for arbitrary subsets T of S gives back an algebraic closure operator
on Pow(S). By writing T � a in place of a ∈ T�, the single-conclusion
entailment relations thus correspond exactly to the relations satisfying
Tarski’s axioms above.

3.3. Multi-conclusion entailment. Let S be a set and � ⊆ Fin(S) ×
Fin(S). Scott’s [102] axioms of entailment can be put as

U �W
U �W (R)

V �W,b V ′, b �W ′

V,V ′ �W,W ′ (T) U �W
U,U ′ �W,W ′ (M)

for finite U,U ′, V, V ′,W,W ′ ⊆ S and b ∈ S, where U �W means that U
and W have an element in common [97]. Any such � is a multi-conclusion
entailment relation, where ‘multi’ includes ‘empty’. In practice, � and � are
inductively generated by the axioms of the intended models, which procedure
we here take for granted [14, 31]; see also [3, 87, 92, 94].

This fairly general notion of entailment has been introduced by Scott
[101–103], building on Hertz’s and Tarski’s work (see above), and of
course on Gentzen’s sequent calculus [43, 44]. Shoesmith and Smiley
[104] trace multi-conclusion entailment relations back to Carnap [13], and
Popper apparently had related ideas [85, 86].3 Before Scott, Lorenzen had
developed analogous concepts formally [65–68]; he even listed [66, pp. 84–
85] counterparts of the axioms (R), (T) and (M) for single- and multi-
conclusion entailment [27, 81].4 As compared with Gentzen’s and Lorenzen’s
approaches, Scott’s entailment relation follow the contexts-as-sets paradigm,
which has caused reservations [78, 79]. The relevance of the notion of
entailment relation to point-free topology and constructive algebra has
been pointed out in [14], and has been used very widely, e.g., in [20–22,
24, 25, 29, 32, 80, 89, 93, 100, 114, 115]. Consequence and entailment have
further caught interest from various other angles [6, 35, 41, 52–54, 83, 99,
104, 117].

§4. Conservation. Again following [91, 92], we sketch the concept of
conservative extension of a multi-conclusion entailment relation � over

3David Binder has kindly hinted us at Popper’s work.
4Stefan Neuwirth has kindly pointed this out to us.
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a single-conclusion entailment relation � on the same set S. After that
we extract from [90]—based on [18]—possible interpretations limited to
classical logic.

4.1. Conservation in syntax and semantics. Let S be a set, and let a, b, c, ...
and U,V,W, ... range over the elements of S and Fin(S), respectively. Given
a multi-conclusion entailment relation � and a single-conclusion entailment
relation � on the same set S, we throughout assume Extension:

Ext
U � a

U � a
Of major interest to us is the converse, alias Conservation:

Con
U � a
U � a

The trace of any given � is the single-conclusion entailment relation ��
defined by

U �� a ≡ U � a,
for which Ext and Con are tantamount to� ⊆ �� and� ⊇ ��, respectively.

An arbitrary subset P of S is a model of � if

P ⊇ U ⇒ V � P whenever U � V.
The notion of model carries over to single-conclusion � in the apparent
manner, such that the models of � are exactly the P ∈ Pow(S) which are
closed under �, i.e., for which P� = P. Let Mod(�) and Mod(�) consist
of the models of � and �, respectively. By Extension, Mod(�) ⊆ Mod(�),
which in ZFC is equivalent to Extension [92, Lemma 9].

Now Con follows from the Generalised Krull–Lindenbaum (GKL) Lemma,
viz.

GKL ∀P ∈ Mod(�)(P ⊇ U ⇒ a ∈ P) =⇒ U � a,

the converse of which holds by Extension. Again by Extension, GKL implies
the Trace Completeness Theorem (TCT), viz.

TCT ∀P ∈ Mod(�)(P ⊇ U ⇒ a ∈ P) =⇒ U � a,
the converse of which holds by the definition of a model of �. This TCT is
a fragment of AC that implies REM [92, Corollary 5].5

In ZFC, GKL and Con are equivalent [92, Theorem 6]. In CZF we can
make this more precise:

Remark 1. In the presence of Ext, GKL is equivalent to the conjunction
of Con and TCT.

In all, GKL is semantic conservation, and Con is its syntactical
counterpart.

5The proof of [92, Proposition 4] goes equally through with TCT in place of full CT.

https://doi.org/10.1017/bsl.2021.66 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.66


THE JACOBSON RADICAL OF A PROPOSITIONAL THEORY 169

4.2. Conservation in proof practice. In proof practice, GKL is useful
for reductions to special cases, by making possible to use � in proofs
about �, but GKL is of semantic nature, entails REM and requires some
AC. In comparison, Con is equally sufficient for that kind of reduction,
is syntactical and has elementary proofs. Many such cases are known in
point-free topology such as locale theory and formal topology [14, 15, 20,
23, 70, 71]; in constructive algebra, especially with dynamical methods [26,
33, 61–64, 116, 118, 119]; and in the proof theory of order relations [78, 80].
Most of those cases concern algebra at large. But what about logic? One may
think of Gentzen’s classical multi-succedent sequent calculus as extending
his intuitionistic single-succedent variant [43, 44, 77, 105]. As we will see,
this thought goes in the right direction.

A typical situation is as follows: Let the single-conclusion entailment
relation � on a set S be generated by axioms. Then the multi-conclusion
entailment relation � on the same set S is generated by the axioms of �, of
course with � in place of �, and by additional axioms

a1, ... , ak � b1, ... , b� ,

where k, � ≥ 0. In any such situation we say that � extends �, and list the
additional axioms if needed. This is legitimate inasmuch as if � extends �,
then Ext is satisfied. What about Con?

The following most versatile conservation criterion [91, 92], which in fact
gathers together many of the cases of Con mentioned before, will also help
to understand Con for logic:

Theorem 1. Let � extend � with certain additional axioms of the form

a1, ... , ak � b1, ... , b� , (2)

where k, � ≥ 0. Then � and � satisfy Con if and only if

W,b1 � c ··· W,b� � c

W, a1, ... , ak � c
(3)

for every additional axiom (2), all c ∈ S and everyW ∈ Fin(S).

This swiftly follows [92, Theorem 2] from a sandwich criterion for
conservation given by Scott [102], and also is a corollary of cut elimination
for entailment relations [94] as related to cut elimination in the presence of
axioms [76].

Quite a few instances of GKL can be classified by the two cases named
Universal Krull (UK) and Universal Lindenbaum (UL) in [92], for which S
is a set with

UK : a distinguished element e of S and a binary operation ∗ on S.
UL : a unary operation ∼ on S.

The additional axioms for � extending � are

UK : e � a ∗ b � a, b,
UL : a,∼a � � a,∼a,
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170 GIULIO FELLIN ET AL.

where a, b ∈ S. The corresponding conservation criteria (Theorem 1) read

UK :
W, e � c

W, a � c W, b � c

W, a ∗ b � c

UL :
W,a,∼a � c

W, a � c W,∼a � c
W � c

where W ∈ Fin(S) and a, b, c ∈ S.6 We refer to [91, 92] for details and
references.

4.3. The case of classical logic. Building upon [18], in [90] the instances of
GKL in the cases UK and UL have been considered for the following data:
S consists of the sentences of a logical language, � stands for deducibility
with classical logic, e is absurdity ⊥, the operator ∗ is disjunction ∨, and ∼
is negation ¬. While the models of � are the stable theories of �, the models
of � are the complete consistent theories in S. Hence GKL is Lindenbaum’s
Lemma [106], and Con is provable but little interesting, simply because � is
classical logic already. Let’s try to get more by relativising �.

Now let� denote (deducibility in) an intermediate logic in a propositional
language S; whence the models of � are the theories of �.7 Let � extend �

with the following additional axioms:

⊥ � � ϕ,¬ϕ (ϕ ∈ S).

The models of � are exactly the complete consistent theories of �, and the
corresponding conservation criteria (Theorem 1) read

Γ,⊥� �

Γ, ϕ � � Γ,¬ϕ � �

Γ � �

with Γ ∈ Fin(S) and ϕ,� ∈ S. While the first criterion holds for any given
intermediate logic �, the second one amounts to � satisfying �ϕ ∨ ¬ϕ,
which is to say that � be classical logic. Hence Con in this case simply means
that conservatively adding � ϕ,¬ϕ is equivalent to requiring �ϕ ∨ ¬ϕ. This
of course is well known and of relatively little interest either. Can’t we do
better?

§5. Jacobson radicals.

5.1. The Jacobson radical in algebra. Let S = R be a commutative ring
with 1, and let� stand for generation in R, i.e.,U � ameans that a is a linear
combination with coefficients from R of the elements of U. A model of � is
nothing but an ideal of R, i.e., a subset closed under linear combination. An
ideal J of R is

— proper if 1 /∈ J , which is tantamount to J = R and

6The criteria for UK have occurred [90] as ‘e is convincing for �’ and ‘� satisfies Encoding’.
7For the related covering of formulas [30, 96], the saturated sets rather are the complements

of the theories.
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— complete if modulo J any given r ∈ R is either 0 or invertible, that is,

∀r ∈ R(J � r ∨ J, r � 1). (4)

Every proper complete ideal is a maximal ideal, i.e., maximal among the
proper ideals, and vice versa in ZF. With the current notation, the Jacobson
radical of an ideal J can be defined as

Jac(J ) = {a ∈ R : ∀b ∈ R (a, b � 1 ⇒ J, b � 1)}. (5)

We thus carry over to commutative rings the first-order definition of the
Jacobson radical for distributive lattices [10, 28, 58] rather than using the
more common one for commutative rings present e.g., in [64]. The latter
reads

Jac(J ) = {a ∈ R : ∀b ∈ R ∃c ∈ R (1 – (1 – ab)c ∈ J )}, (6)

which is to say that any given a ∈ R belongs to Jac(R) precisely when 1 – ab
is invertible modulo J for every b ∈ R. We give precedence to (5) over (6)
because the former, unlike the latter, can be transferred to logic without
further ado (Section 5.2).

Just as (6), the first-order definition we employ (5) is anyway equivalent
in ZFC to the following more customary second-order characterisation of
the Jacobson radical [57]. Although the proof is of course similar to the one
with (6) in place of (5) and for maximal rather than complete ideals, see
e.g., [64], we detail this one because it carries over to logic (Proposition 2).

Proposition 1 (ZFC). For every ideal J of a commutative ring R,
⋂

ComJ (R) = Jac(J )

where ComJ (R) consists of the complete ideals c in R with J ⊆ c.

Proof. Let a ∈ Jac(J ), and let c be a complete ideal such that c ⊇ J .
Either c � a or c, a � 1. In the former case we are done. In the latter case
there is b ∈ R such that c � b (in particular, b ∈ c) and a, b � 1. Since
a ∈ Jac(J ), we get J, b � 1. As J ⊆ c and b ∈ c, this implies c � 1. Hence
c = R, by which again c � a.

Conversely, if a /∈ Jac(J ), then there is b ∈ R for which a, b � 1 holds
but J, b � 1 fails, and thus (J, b)� lacks a. Zorn’s Lemma yields an ideal
c maximal among the ones that contain (J, b)� yet miss a. Any such c
is complete: if c � b, then c, b � a by maximality, and thus c, b � 1 by
a, b � 1. �

It obviously is irrelevant whether the intersection ranges over the only
improper ideal R as well.

5.2. The Jacobson radical in logic. Let again � stand for (deducibility in)
an intermediate logic in a propositional language S. That a (consistent)
theory T of � be complete can equivalently be put as

∀ϕ ∈ S(T � ϕ ∨ T,ϕ �⊥). (7)
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This move makes fully evident the analogy between complete ideals (4) and
complete theories (7), which rests upon the following brief (and necessarily
incomprehensive) dictionary:

propositional logic commutative algebra

language ring
deduction � generation �

theory ideal
absurdity ⊥ unit 1
consistent theory proper ideal
complete theory complete ideal

With this at hand we translate (5) into a definition of the Jacobson radical
of a theory T :

Jac(T ) = {α ∈ S : ∀� ∈ S (α, � �⊥ ⇒ T, � �⊥)}.

This is obviously equivalent to the following characterisation:

Jac(T ) = {α ∈ S : ∀� ∈ S(α � ¬� ⇒ T � ¬�)}.

Mutatis mutandis the proof of Proposition 1 proves what we would like to
provisionally call the Intermediate Lindenbaum Lemma:

Proposition 2 (ZFC). For every theory T of an intermediate logic � in a
propositional languageS,

ILL
⋂

ComT (S) = Jac(T ),

where ComT (S) consists of the complete (consistent) theories C in S with
T ⊆ C .

As for Proposition 1, it is irrelevant whether the intersection includes the
only inconsistent theory S.

Since every complete theory is stable (Lemma 3), the left-hand side of ILL
is as for the original Lindenbaum Lemma [106] in the form

⋂
ComT (S) = T,

for every stable theory T in S. Hence the left-hand side of ILL equals in
ZFC the classical deductive closure of T. What about the right-hand side of
ILL?

Proposition 3. For every theory T of an intermediate logic � in a
propositional language S,

Jac(T ) = {α ∈ S : T � ¬¬α}.

Proof. Letα ∈ Jac(T ). Sinceα � ¬¬α, we getT � ¬¬α. Conversely, let
α ∈ S be such that T � ¬¬α. If � ∈ S is such that α � ¬� , then ¬¬α � ¬�
and thus T � ¬� . �
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With Lemma 3 at hand we obtain the following:

Corollary 1. Jac(T ) is the least stable theory of � which contains the
given theory T of �; in other words, Jac(T ) equals the deductive closure of T
with respect to classical logic.

So ILL for any intermediate logic � whatsoever is nothing but the original
Lindenbaum Lemma!

Now let � be intuitionistic logic �i , and write �c for classical logic,
always in the given propositional language S. In this case and by the above,
Lindenbaum’s Lemma in the form of ILL is the semantics of Glivenko’s
Theorem [46], which in turn is well known as purely syntactical:

Theorem 2 (Glivenko 1929). Let S be a propositional language. For all
Γ ∈ Fin(S) and ϕ ∈ S,

Γ�cϕ ⇒ Γ�i¬¬ϕ.
For example, this follows from Corollary 1. We hasten to add that the

latter rests upon Lemmas 1 and 2, which of course are the main ingredients
of a very common proof of Glivenko’s theorem. Recent literature about
Glivenko’s Theorem includes [36, 39, 42, 48, 56, 60, 74, 75, 82, 84].8

§6. Glivenko’s theorem as syntactical conservation. Once more let �i and
�c stand for intuitionistic and classical logic in a propositional language S.
For Γ,Δ ∈ Fin(S) and ϕ ∈ S, set

Γ�gϕ ≡ Γ�i¬¬ϕ and Γ �c Δ ≡ Γ�c
∨

Δ,

which defines a single- and a multi-conclusion entailment relation, respec-
tively. Of course the trace of �c is nothing but �c ; so Glivenko’s Theorem
(Theorem 2) can be rephrased as the following syntactical conservation:

Theorem 3. The extension �c of �g is conservative, that is,

Gli Γ�cϕ ⇒ Γ�gϕ,

for all Γ ∈ Fin(S) and ϕ ∈ S.

To see how Theorem 1 applies in this context, we now prove Theorem 3
in detail. Clearly this proof will otherwise have the main ingredients of any
proof of Glivenko’s Theorem (Theorem 2). By Lemma 2, �c extends �i , and
thus �g , with the following additional axioms:

⊥ �c �c ϕ,¬ϕ (ϕ ∈ S). (8)

The corresponding conservation criteria (3) read

Γ,⊥�g�

Γ, ϕ�g� Γ,¬ϕ�g�
Γ�g�

(9)

with Γ ∈ Fin(S) and ϕ,� ∈ S.

8This list is by no means meant exhaustive.
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To prove Theorem 3, in view of Theorem 1 it thus is (necessary
and) sufficient to verify (9). Writing �i¬¬ for �g this goes as follows.
Needless to say, Γ,⊥�i¬¬�. If both Γ, ϕ�i¬¬� and Γ,¬ϕ�i¬¬�,
then Γ, ϕ ∨ ¬ϕ�i¬¬� by disjunction elimination. By Lemma 1 we get
Γ,¬¬(ϕ ∨ ¬ϕ)�i¬¬� and thus Γ�i¬¬� as desired.

As the models of �c are exactly the complete consistent theories, ILL
for T ≡ Γ�i with Γ ∈ Fin(S) is to Gli just as GKL is to Con for �≡�c
and � ≡ �g . Although �c equally extends �i with the same additional
axioms (8), and the first conservation criterion of (9) also holds for �i in
place of �g , this of course is not the case in general for the second one, e.g.,
if � ≡ ϕ ∨ ¬ϕ.

We conclude by a relativised version of Glivenko’s Theorem as syntactical
conservation. Let Γ ⊆ Fin(S) and� ∈ S. With TND0(Γ, �) as in Lemma 2,
for every propositional variable ϕ ∈ S consider the conservation criterion
from Theorem 1 for �c ϕ,¬ϕ over �i :

Criϕ(Γ, �) :
Γ,Δ, ϕ�i� Γ,Δ,¬ϕ�i�

Γ,Δ�i�
or, equivalently,

Γ,Δ, ϕ ∨ ¬ϕ�i�
Γ,Δ�i�

for all finite subsets Δ of TND0(Γ, �).

Proposition 4. For arbitrary but fixed Γ ⊆ Fin(S) and � ∈ S, the
following items are equivalent:

1. Criϕ(Γ, �) for all propositional variables ϕ ∈ S occurring in Γ or �.
2. Γ�c� ⇒ Γ�i�, i.e., �c is conservative over �i for the given Γ and �.

While the first implies the second item by Lemma 2 and Theorem 1, the
converse is evident.

Glivenko’s Theorem 2 is the case of the second item in which Γ is arbitrary
but � is a negated formula, in which case the first item obtains by Lemma 1.
Other cases include the one in which Γ ∪ {�} is made of negative formulas
only; see e.g., [34, 107, 108].

§7. Complements. We briefly review some related observations recently
made about double negation [39] in the more general context of a nucleus j
in place of ¬¬.

First, for any given intermediate propositional logic � the following are
equivalent:

A. Γ �c ϕ ⇒ Γ � ¬¬ϕ for all Γ, ϕ and
B. ϕ → ¬¬� � ¬¬(ϕ → �) for all ϕ,�.

Now B is well-known to hold whenever � is intuitionistic logic �i (see,
e.g., [111, Lemma 6.2.2]), in which case A becomes Glivenko’s theorem. A
posteriori B holds for any intermediate logic � whatsover, as any such �

extends �i .
Next, if � is an intermediate predicate logic, then A is equivalent to B in

conjunction with the double negation shift for �:

C. ∀x¬¬ϕ � ¬¬∀xϕ for all formulae ϕ.
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Again if � is intuitionistic logic �i , this yields Gödel’s extension of
Glivenko’s theorem [37, 47].

Now C trivially holds for any existential logic, i.e., without ∀ altogether,
for which A with �i as � is [107, Corollary to Proposition 2.3.8]. For A to
hold it suffices to refrain from using the ∀–introduction rule or right rule
R∀, which in fact is the only rule that can cause issues in this setting [39].
To be able to avoid R∀ it is enough that the sequent under consideration
have no positive occurrences of ∀, because derivations of such sequents by
classical logic can be cleared from that rule (see, e.g., [74]).
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