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a b s t r a c t

Depression is a prevalent mental disorder. Current clinical and self-reported assessment
methods of depression are laborious and incur recall bias. Their sporadic nature often
misses severity fluctuations. Previous research highlights the potential of in-situ quan-
tification of human behaviour using mobile sensors to augment traditional methods of
depression management. In this paper, we study whether self-reported mood scores
and passive smartphone and wearable sensor data could be used to classify people as
depressed or non-depressed. In a longitudinal study, our participants provided daily
mood (valence and arousal) scores and collected data using their smartphones and
Oura Rings. We computed daily aggregations of mood, sleep, physical activity, phone
usage, and GPS mobility from raw data to study the differences between the depressed
and non-depressed groups and created population-level Machine Learning classification
models of depression. We found statistically significant differences in GPS mobility,
phone usage, sleep, physical activity and mood between depressed and non-depressed
groups. An XGBoost model with daily aggregations of mood and sensor data as predictors
classified participants with an accuracy of 81.43% and an Area Under the Curve of 82.31%.
A Support Vector Machine using only sensor-based predictors had an accuracy of 77.06%
and an Area Under the Curve of 74.25%. Our results suggest that digital biomarkers are
promising in differentiating people with and without depression symptoms. This study
contributes to the body of evidence supporting the role of unobtrusive mobile sensor
data in understanding depression and its potential to augment depression diagnosis and
monitoring.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Depression is a prevalent mental disorder that affects more than 260 million people worldwide [1,2]. People affected
ith depression typically experience recurrent episodes of symptoms which may include sadness and guilt, psychomotor
etardation and agitation, unusual sleep changes, low energy levels, social and physical isolation, and loss of interest
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in daily activities [1,3]. Depression could lead to adverse health outcomes or suicide if not diagnosed and treated [1,2].
Additionally, depression has an adverse impact on the course of physical diseases such as stroke, cancer and increases the
medical costs of many conditions [2,4]. Depression is the leading cause of global disease disability and morbidity; hence
timely and effective mental health interventions have become an urgent priority [1,5–7].

While effective pharmacotherapy and psychotherapy for depression exist, inadequate assessment methods, un-
vailability of trained professionals, personal attitudes towards treatments and social stigma, among others, are all
dentified as barriers to the diagnosis and treatment of depression [1,8]. Clinician-rated or self-reported depression
ssessment methods [9–13] are applied typically with long assessment intervals, thus missing out on the temporal
hanges in symptoms of depression between assessment intervals [14–16]. Additionally, depression assessment methods
re affected by recall biases in reconstructing past events and the tendency of respondents to provide socially desirable
nswers [17–19]. The ability to quantify in-situ (naturalistic environment and outside laboratories) psychological and
patial–temporal behaviour to augment traditional depression assessments has been a key research area in pervasive and
obile computing [3,18,20,21]. Such approaches are seen as promising in enabling early detection, effective diagnosis,
nd unobtrusive monitoring of depression (See Tables 1 and 2).
This study examines the potential of digital biomarkers and mood ratings as in-situ parameters in differentiating

etween participants with symptoms of depression (depressed group) and participants without symptoms of depression
non-depressed group). In this context, digital biomarkers refer to quantifiable human behavioural patterns (physiological,
ehavioural routines, and rhythms) that are passively and unobtrusively measured using smartphones and wearable
evices [22,23]. Mood ratings refer to proactive assessments of the mood of participants using self-reports triggered
t various times throughout the day. We analysed a dataset from a longitudinal study that combined smartphone and
earable sensing data to investigate the following questions:

1. Are there statistically significant digital biomarkers and mood differences between depressed and non-depressed
participant groups?

2. Can digital biomarkers and mood ratings predict depressed or non-depressed groups?
3. What are the most important digital biomarkers and mood ratings in differentiating depressed from the non-

depressed group?

. Related work

.1. Smartphone and wearable computing in mental health

Today, smartphones have become ubiquitous and have permeated every facet of our society [20,24–26]. Smartphones
ave embedded sensors (accelerometer, Bluetooth, GPS, Gyroscope, among others) that allow for the continuous and
nobtrusive collection of datasets that provide insights into human behaviour [19]. Similarly, wearable devices like the
ura ring or Fitbit wristbands have embedded sensors that enable the collection of physiological datasets that provide
ranular measurements of sleep, heart rate variability (HRV), body temperature, Electrodermal Activity (EDA), and physical
ctivity [19,21]. Smartphones and wearable devices also enable the collection of additional contextual information from
sers in naturalistic settings through Experience Sampling Methods (ESM) [17]. ESMs are proactive self-reports typically
riggered throughout the day at multiple times, based on specific events or contexts [17].

Mobile Computing and Mental Health researchers have developed several mobile sensing applications such as
WARE [27], Beiwe [20], and Insights [24], given the opportunities that smartphones and wearables provide. These mobile
ensing applications enable continuous, passive, unobtrusive data collection from smartphones and wearable embedded
ensors or active data collection from users via ESM. These mobile sensing applications, coupled with the advancement of
uman behaviour modelling through statistical analysis and machine learning methods, have enabled the quantification
f digital biomarkers [22,23,28], for the detection and monitoring of mental health symptoms and the development of
imely mental health interventions [19].

A growing body of research in mental health has resulted in identifying digital biomarkers for the symptoms of mental
isorders (Major depressive disorder, Bipolar disorder, Seasonal affective disorder, Post-traumatic stress disorders, and
thers). For instance, Location-based biomarkers, such as circadian rhythm [6,14], location regularity [18,29], time spent
t home, time spent at specific location clusters, and location variance [6], inferred from GPS, WiFi, and Bluetooth sensors,
as been shown to be related to symptoms of depression. In a large scale study with N = 1765 participants (mean age
18.94 ± 2.22, 60.49% female) over a two weeks, Müller et al. [29] investigated the relationship between depression

nd digital biomarkers of GPS mobility behaviours (distance travelled, entropy, and irregularity). The results of the study
emonstrated a negative correlation (r = −0.12 95% CI[−0.20, −0.04], p = 0.003) and a negative association between
epression and irregularity in mobility patterns.
It has been shown that sleep disturbances (such as insomnia, hypersomnia, irregular sleep time and wake-up time)

re common manifestations of mental disorders [30,31]. Decades of sleep studies in mental health research using
olysomnography have resulted in digital sleep biomarkers such as Total Sleep Time (TST), Random Eye Movement
REM), and Wake After Sleep Onset (WASO) [30]. Wang et al. [32], in their study with 48 participants over ten weeks,

ound statistically significant correlations between depression and sleep duration (r = −0.360, p = 0.025). In addition
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Table 1
Summary of previous work on the relationship between digital biomarkers and depression in comparison to the current study.
Study Demographics Data Findings

Müller et al. [29] N = 1765, mean age =

18.94 ± 2.22, 60.49%
female

GPS mobility Location irregularity has a negative association with
depression

Saeb et al. [7] N = 28, 20 females, 8
males, age range 19–58

GPS mobility Circadian movement, variance in the location visited are
negatively correlated with depression. Significant
differences in mobility patterns and phone usage
between depressed and non-depressed participants

Opoku Asare et al. [39] N = 629, from 56
countries, ICC 0.7584

Phone usage Entropy of smartphone screen unlocks has a positive
association with depression

Moshe et al. [15] N = 55, age range
24–68, 25 males, 30
females

GPS mobility Variance in locations visited has a negative association
with depression. Total sleep time and time in bed has a
positive association with depression

Wang et al. [32] N = 48, 10 females, 38
males

Sleep, accelerometer and
GPS mobility

Distance Travelled had a positive correlation with
depression. Sleep duration and physical activity duration
had a negative correlation with depression

Rozgonjuk et al. [37] N = 101, mean age =

19.53 ± 4.31, 77 females
Mood ratings, Phone
usage

Mood ratings has a positive correlated with depression

Wang et al. [3] N = 83, mean age
20.13 ± 2.31, 40 male
and 43 female

Phone usage and
accelerometer

Stationary time and phone unlock duration have a
positive correlation with depression. A significant
difference in phone unlock duration between depressed
and non-depressed participants

Current study N = 54, mean age
43.04 ± 11.58, 30
females, 24 males

Sleep, Physical activity,
Phone Usage, GPS
location

Participants with symptoms of depression showed less
mobility, more sleep time, less physical activity, and
low mood. GPS mobility and Mood ratings showed the
highest effect size in the statistically significant
difference between depressed and non-depressed
participants

to sleep disturbances, it is known that psychomotor retardation, restlessness and reduced mobility are associated with
mental disorders [1,3]. Previous research has quantified these symptoms of depression from datasets such as smartphone
keystrokes, touch screen patterns, accelerometer, and voice analysis [33,34].

Finally, previous research has demonstrated that mood changes are related to depression [35–38]. Several depression
cales identify mood changes as a common symptom of depression. For example, the Patient Health Questionnaire
PHQ) [11] measures mood with questions such as Little interest or pleasure in doing things?, Feeling down, depressed, or
hopeless?. The Depression Anxiety and Stress Scale (DASS) [10] has similar questions such as I could not seem to experience
any positive feeling at all. Bowen et al. [38], in a study with 137 participants (59 in the non-depressed group and 78 in
the depressed group), found that average mood ratings correlated with depression scores in the depressed group (r=0.38
5% CI[0.17, 0.55]). With the advancement of mobile computing, wearable technologies and ESMs, it is possible to collect
ood ratings multiple times in a day, triggered periodically, or based on other contextual information like location or
umber of phone screen unlocks.
Taken together, previous work suggests that moment-to-moment smartphone and wearable datasets have the potential

o show insightful trends in understanding depression. In addition to correlations, it is possible to understand the
ignificant differences in digital biomarkers when comparing depressed and non-depressed participants. For example,
n [7], the study found statistically significant differences in mobility patterns and phone usage frequency when comparing
epressed and non-depressed participants. Similarly, in [3], the study found significant differences in phone usage (mean
hone unlock duration and mean phone unlock duration at study places) when comparing depressed and non-depressed
articipants. We summarise key previous work on the relationship between digital biomarkers and depression in Table 1.

.2. Predicting depression with mood and digital biomarkers

Beyond understanding the relationship between digital biomarkers, mood ratings and depression, previous work
as demonstrated the feasibility of predicting depression symptom severity and depression status using statistical and
achine learning analysis of digital biomarkers and mood ratings (See Table 2). In predicting depression symptom
everity, previous studies have used statistical methods such as Linear mixed models or machine learning methods
uch as Random Forest Regression to predict depression severity in a continuum rather than a dichotomy. For example,
ulueta et al. [34], in their study with 16 participants (mean age 48.67 ± 9.63, 8 females) collected smartphone keystroke
etadata and accelerometer datasets for 8 weeks. Clinicians rated the depression symptom severity of participants at

eekly intervals using the 17-item Hamilton Depression Scale (HDRS) [40] and the Young Mania Rating Scale (YMRS) [13].
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Table 2
Summary of previous work on predicting depression with mood ratings and digital biomarkers compared to the current study. RF = Random Forest,
R = Logistic Regression, KNN = K-Nearest Neighbour, SVM = Support Vector Machine, XGB = XGBoost.
Study Demographics Data Analysis method Results

Zulueta
et al. [34]

N = 16, mean age
48.67 ± 9.63, 8 females

HDRS, YMRS, 8 weeks of
phone keystrokes

Linear Mixed-Effect
model

Keystroke pattern predicted
depression

Pedrelli
et al. [21]

N = 31, age range
19–73, mean age
33.7 ± 14

HDRS, 9 weeks of phone
usage, GPS, HRV,
temperature, and EDA

AdaBoost with RF
regression

Smartphone and physiological
datasets predicted the
clinician-rated HDRS
depression

Farhan et al.
[41]

N = 79, age range
18–25, 73.9% female, and
26.1% male

PHQ, GPS, Physical
activity

SVM and RF classifiers GPS location and Physical
activity biomarkers could
predict participants’ baseline
depression status

Jacobson
et al. [42]

N = 23, mean age
42.8 ± 11.0, 57% male)

MADRS, 2 weeks of
Actigraphy data

XGB classifier Actigraphy based biomarkers
predicted baseline depression
status with high accuracy and
correlation

Jacobson
and Chung
[36]

N = 31, age range
18–27, mean age 19.13,
64.52% females

PANAS , DASS, 8 days of
GPS, phone calls,
weather, HRV

XGB classifier and RF
regression

Population-level and
participant level models with
biomarker could predict
observed depressed mood at a
high correlation

Mastoras
et al. [33]

N = 25,mean age
23.86 ± 4.44, 10
women, 15 men

PHQ, 124 days of
smartphone keystroke
patterns

SVM, RF and Gradient
Boosting classifiers

Typing based biomarkers could
predict participants’ depression
status

Kim et al.
[35]

N = 47, mean age
78 ± 5.24

HDRS, 2 weeks of
Actigraphy data

LR, Decision Tree,
Boosted Trees, RF
classifiers

Actigraphy based biomarkers
predicted baseline depression
status at high accuracy

Xu et al.
[16]

N = 138 BDI, 106 days of Phone
usage, Call, Bluetooth,
GPS, Sleep, and Steps

AdaBoost with Decision
Tree classifiers

Smartphone-based, sleep and
steps biomarkers predicted
depression at high accuracy.

Current
Study

N = 54, mean age
43.04 ± 11.58, 30
females, 24 males

DASS, 30 days of mood
ratings, Sleep, Physical
activity, Phone Usage,
GPS location

SVM, LR, RF, KNN, XGB
classifiers

Digital biomarkers predict
depression status as good as
actively assessed mood plus
digital biomarkers

Statistical analysis (Linear mixed-effects models) of participants’ keystroke patterns showed a strong relationship between
depression and smartphone keystroke metrics (R squared = 0.63, p = 0.01).

Likewise, in predicting depression status, previous studies train classification based models such as Support Vector
achine, Random Forest, Logistic Regression to classify participant’s depression status. For example, Xu et al. [16] collected
martphone screen, call, Bluetooth, GPS location and Fitbit sleep and step count datasets from 138 participants in a
tudy that lasted for 106 days. Participants provided self-reported symptoms of depression severity using the Beck
epression Inventory (BDI) [9] at the beginning and end of the study. AdaBoost (with Decision Tree classifiers) could
redict participants’ end-of-study depression status with an accuracy of 81.3%, precision of 84.3%, recall of 86.6% and F1
f 84.3%.
To sum up, the findings from previous work suggests the feasibility of applying machine learning and statistical

ethods to digital biomarkers quantified from smartphone and wearable sensors and mood ratings collected via ESMs,
or the automatic classification of depression status and the continuous monitoring of depression symptoms severity. We
ummarise key previous work on predicting depression with digital biomarkers in Table 2.

. Methods

In this paper, we obtained and further analysed the raw dataset from the study by Moshe et al. [15]. Moshe et al. [15]
nalysed the data to understand the correlation and predictive effect of digital biomarkers and mood on depression,
nxiety and stress symptoms severity, using Pearson’s correlation analysis and Multilevel regression model. This paper
nalyses the dataset to understand the statistically significant differences and effect sizes of mood and digital biomarkers
hen comparing depressed and non-depressed participants. Additionally, we employ machine learning methods to
redict depression status with mood and digital biomarkers. We also use feature importance analysis to understand the
ost important biomarkers when differentiating depression status (depressed and non-depressed). In the subsequent
aragraphs, we explain the data collection procedures and our analysis methods.
4
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3.1. Participants

We briefly recap the participant recruitment protocol in [15]. Moshe et al. [15] recruited an initial batch of 60
articipants with posts on online communities. The inclusion criteria were participants who: (1) owned an Oura ring,
2) were 18 years and above, (3) owned an iPhone with access to the internet, and (4) could read, understand and speak
nglish.
Participants were taken through an informed consent process, in which they voluntarily signed an online informed

onsent form. An email was then sent to the participants with a URL to install a custom iOS application (study application)
eveloped with AWARE [27] on their iPhone for 30 days. Participants’ demographic data was collected via the study
pplication after joining the study. Five (5) participants withdrew from the study: (2 for the burden of data collection, 1
or privacy reasons and 2 for unknown reasons). However, for the analysis in this article, we excluded one (1) additional
articipant because of insufficient data after data cleaning (described later in 3.4). Thus, we included 54 participants in
ur analysis.

.2. Mental health measures

The symptoms of depression of participants were assessed, via the study application, at the study onboarding (baseline),
t 2-weeks into the study (mid-point), and at the end of the study (end-point) via a self-reported 21-item DASS [10] .
ASS has three subscales for assessing depression, anxiety and stress in the past week with example items such as ‘‘I felt
hat I had nothing to look forward to’’, ‘‘I was unable to become enthusiastic about anything ’’. All items are rated on a 4-point
ikert scale (0 = Did not apply to me at all, 3=Applied to me very much or most of the time). The score of each DASS subscale
anges from zero(0) to twenty-one (21), with higher scores indicating more severe symptoms. The internal consistency
f DASS has been demonstrated with Cronbach’s alpha of 0.96 for depression and 0.97 for the total scale [36,37].
This study used the DASS depression subscale score to measure depression symptom severity. We created two

articipant groups based on the baseline DASS depression scores with cut-offs proposed in the DASS protocol [10]. The
articipant groups were the non-depressed group (baseline DASS depression score 0–9) and the depressed group (baseline
ASS depression score greater than 9). To capture the participants’ depression status for the entire duration of the study,
e examined the baseline, mid-point and end-point DASS depression scores. We observed that 8 out of 54 participants’
epression status moved between depressed and non-depressed status during the study. We assigned each of these 8
articipants to their most common depression status.

.3. Daily mood ratings

For the dataset, daily mood ratings were collected with the Circumplex Model of Affect (CMA) [43]. The CMA
onceptualises mood in two dimensions, that is, Valence (Negative/Positive) and Arousal (Negative/Positive), with each
imension rated on a 9-point Likert scale from −4 to 4 (low to high). An ESM notification was sent to participants’ phones
ia the study application at approximately 9:00, 14:30 and 20:00 during the day. The ESM had a single item question, ‘‘How
re you feeling right now?’’ with two Likert response scales (−4 to 4, zero as default mode) for Valence and Arousal. For
ur analysis in this study, we aggregate (average) the Valence and Arousal rating separately per day for each participant.

.4. Digital biomarkers from smartphone and wearable sensor data

During the 30-day data collection period, participants were required to wear their Oura ring all the time. After the
tudy, participants shared their Oura ring data for the 30-day duration with the research team. The Oura ring dataset
ncluded day level aggregate biomarkers of Sleep: Total Sleep Time (TST), Rapid Eye Movement (REM), Sleep Onset Latency
SOL), Wake After Sleep Onset (WASO), Sleep Efficiency (SE), Heart Rate Variability (HRV), Physical activity: Step count
nd Metabolic Equivalent for Task (MET). Within the same 30-day data collection period, the study application passively
ollected time-stamped GPS location every 5 min, phone screen unlocks (phone usage as detected by AWARE), and the
articipants’ timezone every 60 min. Detailed information about the sensors (permissions, configuration), data encryption
nd obfuscation, secure data transfers over SSL from the participant’s device to a secured MySQL database server, and user
uthentication can be found in the AWARE framework documentation [27].
For our analysis in this study, we computed 52 day-level (24 h from midnight to midnight) biomarkers from the

assively sensed smartphone dataset using RAPIDS [28] — a tool for data pre-processing and biomarker computation.
or GPS mobility biomarkers, we computed Location Variance, Total Distance, Location Entropy, Normalised Location
ntropy [6,29], Log Location Entropy, Average speed, Circadian Movement, Number of Significant Places, Radius of
yration, Moving to Static Ratio, Time at home [14,16], and Location Regularity (routine) Index [18,29]. From Phone screen
nlock events, we computed Phone Usage Duration and Phone Usage Frequency. We applied the Circadian Rhythm [6,14],
nd Regularity Index [29,44] methods to compute Screen Regularity Index and Screen Circadian Rhythm (for weekdays,
eekends and all days) [29].
We first excluded all features with zero variance and more than 15% of missing data to clean the computed biomarkers.
e then dropped the entire participants’ data with less than 15 days of data. We dropped days of participants with more

han 30% of missing data. After the data cleaning process, we had 54 participants with 1556 days (mean 28.81, range 21–30

er participant) and 49 biomarkers. On average, participants were missing 7.56% (range 0% −12.98%) of data values.

5
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3.5. Statistical analysis

First, we tested the normal distribution assumptions of the features with the Shapiro–Wilk test. Two-sided Mann–
hitney’s U test, a non-parametric test, was used to test the statistically significant difference between the depressed

nd non-depressed group in mood ratings, GPS mobility, Phone Usage, and Wearable sensor biomarkers. We use the
ootstrapping method with 1 million iterations and resampling of biomarkers with replacement as a non-parametric
ethod of computing the differences in the group means. We also tested whether the confidence intervals for both groups’
ean overlapped with the bootstrapping method. The difference between groups was assumed to be valid if the 2.5% and
7.5% quantiles of the resampled group means did not overlap. With the bootstrapping method, we also computed the
ffect size (Cohen’s d) and the confidence interval of the effect size.

.6. Predictive analysis with machine learning

In our predictive analysis with machine learning, we modelled (1) participant groups (depressed group with label 1 and
on-depressed group with label 0) as a function of mood ratings (Valence and Arousal), Demographics (Gender and Age)
nd digital biomarkers (GPS mobility, Phone usage, Sleep, and Physical activity), and (2) participant groups as a function
f demographics and digital biomarkers without mood ratings. We labelled each participant’s daily digital biomarkers,
ood ratings, age and gender with their depression status. Supplementary Figure 1 shows a diagrammatic representation
f the data labelling.
To this end, we created population-based models leveraging five (5) supervised machine learning (ML) algorithms:

upport Vector Machines (SVM), Random Forest (RF), XGBoost (XGB), K-Nearest Neighbour (KNN), and Logistic Regression
LR) [19]. We chose these ML algorithms because they are widely used in supervised classification, easy to train,
nterpretable [19]. These ML algorithms have also been used in previous related mental health research in Table 2.

We followed a robust ML model training approach with nested cross-validation to reduce the chances of model
verfitting. We used a time-series aware leave-one-participant-day-out and stratified three-fold cross-validation for the
uter and inner cross-validation, respectively. For each iteration of the nested cross-validation, one participant’s day is
esignated as the test set, and the rest of the participants’ dataset are designated as the training set. For time-series
wareness, all training set samples recorded after the test set are removed from the training set. This ensures that future
ataset is not used to predict the past, as this scenario is untenable in the real world.
The inner cross-validation was for missing data imputation, feature scaling, feature selection and hyperparameter

ptimisation of the classifiers. We optimised the hyperparameters of the classifiers using grid search over a predefined
et of parameters, listed in Supplementary Table 3. Missing data imputation was done separately for each nested cross-
alidation iteration. We imputed missing data in the train set (participants’ data for training the model) separately per
articipant. For training set imputation, we used a Bayesian Ridge Regression iterative feature imputation process [45]
hat uses all other features with no missing data as predictors. Gender was converted from a categorical to a numerical
eature using one-hot encoding. We imputed missing values in the test set (i.e. one record of a participant’s day) with the
ean of the corresponding feature in the training set. Similar imputation of the test set and training set has been done

n Low et al. [46] and Poulos et al. [47].
All features were scaled with min–max scaling. We applied feature scaling on the test set using the min–max

arameters of the training set [46,47]. To mitigate biases in the output of the ML models, we handled the imbalanced
raining set by oversampling the minority class with the synthetic minority over-sampling technique (SMOTE). We
hen selected the 45 best features based on the mutual information between the features and the target (participants’
epression status). We used the SHAP (SHapley Additive exPlanations) [48] method to compute feature importance.
We evaluated the predictive performance of the ML models, with the area under the receiver operating characteristic

urve (AUC), F1, F1 Macro, Accuracy, Recall, and Precision metrics. We used three (3) baseline classifiers as a benchmark for
he performance of the ML algorithms. The baseline classifiers were: (1) a naive classifier that predicts only the Majority
lass (MC), (2) a Decision Tree (DT) classifier trained (same training approach as ML classifiers) with only the demographic
ataset, and (3) a Random Weighted Classifier (RWC), that is, ten thousand randomly generated predictions according to
he multinomial distribution of the depression and non-depressed group labels. We report the F1, Precision, Recall metrics
or depressed (F11, Precision1, Recall1) and non-depressed groups (F10, Precision0, Recall 0).

.7. Ethical considerations

The data collection and management followed all the local ethical guidelines in research. This study was exempt from
ormal ethical review board approval, based on the local ethical review board guidelines [49], since (1) the dataset used
n this study follows the informed consent process; (2) all participants were above 18 years old; (3) the study does
ot intervene in the physical integrity of the participants; (4) our study does not expose participants to strong stimuli;
5) there is no intervention or a foreseeable potential for mental harm to the participants that exceed the limits of the

articipant’s everyday life.

6
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Table 3
Participants (N = 54) demographic. Participant groups were compared with a two-sided Mann–Whitney U test, except
for Gender, which was compared with the Chi-squared test (χ2). Group means for Age, and Cohen’s d effect size were
computed with the bootstrapping method.
Factors Depressed group Non-depressed group P Effect size

(N = 14) (N = 40) Cohen’s d or Phi

Age, M 38.51 44.39 <0.001 −0.53

Gender 1(χ2) 0.00 (phi)

Female, n(%) 8 (57.14) 22 (55)
Male, n(%) 6 (42.86) 18 (45)

4. Results

4.1. Participants

Of N = 54 participants (mean age 43.04 ± 11.58, range 24–68), 30 (55.6%) were females and 24 (44.4%) were
males. Participant groups included 14 participants (8 females, 6 males) in the depressed group (see Section 3.2) and
40 participants (22 females, 18 males) in the non-depressed group. Table 3 details the participant demographics. When
participant groups were compared, we found a statistically significant difference in age (p < 0.001, d = −0.53). There
as no statistically significant difference in gender.

.2. Statistical difference between participant groups

The digital biomarkers and mood ratings were not normally distributed (Shapiro–Wilk test: p < 0.05). Table 4 details
he statistically significant difference and effect sizes of digital biomarkers when comparing participant groups. Table 4
nly presents digital biomarkers that showed; (1) significance difference (p < 0.05) between depressed and non-depressed
roups in the two-sided Mann–Whitney’s U test, (2) non-overlapping confidence intervals of the depressed and non-
epressed group means, and (3) small to high effect size (absolute cohen’s d >0.2). Extended results of the Shapiro–Wilk
est for normality, the Two-sided Mann–Whitney’s U significant difference test is shown in Supplementary Table 1. In
ddition, the extended results of the Mean difference and Effect Sizes in biomarkers between the Depressed group and
he Non-Depressed group are shown in Supplementary Table 2.

Of 49 digital biomarkers, GPS mobility biomarkers showed the largest effect size, with location routine index having d
0.66 95%CI[0.550, 0.766], followed by physical activity, with step count having d = −0.486 95%CI[−0.589, −0.383]. The

epressed group showed statistically significantly less mobility than participants in the non-depressed group. Particularly,
he depressed group tends to have lower location entropy (i.e. location entropy, MDiff = −0.237, p < 0.001, d = −0.504
5%CI[−0.617, −0.391]), visits fewer different locations (i.e. numberofsignificantplaces, MDiff = −2.861, p < 0.001, d =

0.486 95%CI[−0.582, −0.389]) and spends more time at single location clusters (i.e. meanlengthstayatclusters, MDiff
128.406, p < 0.001, d = 0.439 95%CI[0.310, 0.572]). For mood ratings, the depressed group showed statistically

ignificantly lower Valence (MDiff = −1.172, p < 0.001, d = −0.803 95%CI[−0.941, −0.669]) and significantly lower
rousal (MDiff = −0.867, p < 0.001, d = −0.488 95%CI[−0.609, −0.369]). In addition, the depressed group showed
tatistically significantly more total sleep time (MDiff = 916.377, p = 0.039, d = 0.218 95%CI[0.089, 0.345]) and time in bed
MDiff = 1424.033, p < 0.001, d = 0.296 95%CI[0.169, 0.422]). The depressed group also showed statistically significantly
ess physical activity (Table 4).

.3. Predicting participants’ depression status

The predictive performance of ML classifiers trained with demographics, mood ratings and digital biomarkers and the
erformance of the three baseline models are summarised in Table 5. Only the XGB and SVM classifiers outperformed all
hree baseline models. The XGB was the best performing classifier. XGB could predict whether a participant belongs to
he group with symptoms of depression at 81.43% accuracy (AUC=82.31%, Precision1 = 69.97%, Recall1 = 50.49%, F11 =

8.66%, Precision0 = 84.09%, Recall0 = 92.35%, F10 = 88.02%). Likewise, SVM could predict whether a participant belongs
o the group with symptoms of depression at an 75.90% accuracy (AUC=74.89%, Precision1 = 69.97%, Recall1 = 48.77%,
11 = 51.36%, Precision0 = 82.54%, Recall0 = 85.48%, F10 = 83.98%).
The predictive performance of ML classifiers trained with demographics and digital biomarkers only (without mood

atings) are also summarised in Table 5. Only the XGB and SVM classifiers outperformed all three baseline models.
ompared with ML classifier performances when mood ratings were included as features, the SVM classifier obtained
arginal improvements in performance while the XGB obtained decreases in performance (AUC = −1.6%, Precision1
−5.68%, Recall1 = −5.68%, F11 = −4.66%). However, the XGB was still the best performing classifier. Feature

mportance analysis showed that while valence was the 12th most important feature in SVM, valence was the 8th most
7
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Table 4
Mean difference in biomarkers between Depressed group (DG) and Non-Depressed group (NDG). Two-sided Mann–Whitney test showed p < 0.001
or all biomarkers except TST (p = 0.039).

Biomarkers Depressed group Non-depressed group Mean difference Effect size
MDG [95% CI] MNDG [95% CI] MDiff Cohen’s d [95% CI]

GPS location
locationroutineindex 6.086 [5.142, 7.100] 2.454 [2.325, 2.589] 3.632 0.66 [0.550, 0.766]
loglocationvariance −5.628 [-5.839, −5.416] −4.552 [-4.657, −4.446] −1.076 −0.561 [−0.690, −0.434]
location entropy 0.338 [0.296, 0.382] 0.575 [0.548, 0.603] −0.237 −0.504 [−0.617, −0.391]
normalizedlocationentropy 0.176 [0.157, 0.197] 0.283 [0.270, 0.295] −0.106 −0.498 [−0.613, −0.384]
numberofsignificantplaces 5.07 [4.615, 5.539] 7.931 [7.575, 8.296] −2.861 −0.486 [−0.582, −0.389]
meanlengthstayatclusters 282.678 [248.453, 318.123] 154.272 [139.221, 169.933] 128.406 0.439 [0.310, 0.572]
numberlocationtransitions 11.367 [9.930, 12.919] 19.325 [18.124, 20.575] −7.957 −0.402 [−0.495, −0.305]
maxlengthstayatclusters 600.891 [572.273, 629.632] 496.931 [482.685, 511.303] 103.96 0.399 [0.275, 0.526]
minlengthstayatclusters 202.942 [165.803, 241.514] 88.508 [72.897, 104.889] 114.434 0.37 [0.240, 0.503]
outlierstimepercent 0.019 [0.016, 0.022] 0.031 [0.029, 0.033] −0.011 −0.343 [−0.445, −0.237]

Mood
valence 0.931 [0.762, 1.098] 2.103 [2.019, 2.186] −1.172 −0.803 [−0.941, −0.669]
arousal 0.204 [0.027, 0.381] 1.071 [0.963, 1.179] −0.867 −0.488 [−0.609, −0.369]

Sleep
TIB 30810.06 [30257.282, 31381.813] 29386.026 [29102.752, 29668.928] 1424.033 0.296 [0.169, 0.422]
WASO 4257.23 [4034.579, 4487.724] 3749.391 [3609.507, 3892.737] 507.838 0.226 [0.107, 0.348]
TST 26552.725 [26062.355, 27052.295] 25636.348 [25389.039, 25882.485] 916.377 0.218 [0.089, 0.345]

Physical activity
step_count 8344.938 [7886.364, 8813.376] 11090.244 [10723.914, 11460.563] −2745.306 −0.486 [−0.589, −0.383]
MET 1.454 [1.435, 1.473] 1.568 [1.552, 1.585] −0.115 −0.462 [−0.555, −0.368]

Phone usage
screen_firstuseafter 13594.697 [12157.786, 15058.356] 18173.29 [17387.954, 18961.385] −4578.593 −0.329 [−0.451, −0.208]

Table 5
Performance of population models classifying depression status. The model performances are compared with three baseline classifiers (MC = Majority
lass, RWC = Random Weighted Classifier, DT = Decision Tree).
Models Accuracy AUC FI macro Precision1 Recall1 F11 Precision0 Recall0 F10

% % % % % % % % %

Baseline1: MC 74.07 50.00 42.55 0.00 0.00 0.00 74.07 100.00 85.11
Baseline2: DT 59.26 46.96 46.96 21.43 21.43 21.43 72.50 72.50 72.50
Baseline3: RWC 61.68 50.13 49.88 26.07 26.14 25.75 74.15 74.12 74.01

Models with Demographics, Digital biomarkers and Mood ratings as features
Logistic regression 64.91 67.26 60.30 38.71 59.11 46.78 82.26 66.96 73.83
Random forest 70.82 68.08 62.11 44.06 43.84 43.95 80.21 80.35 80.28
K-nearest neighbours 68.25 69.35 64.12 42.93 65.76 51.95 85.12 69.13 76.30
Support vector machine 75.90 74.89 67.67 54.25 48.77 51.36 82.54 85.48 83.98
XGBoost 81.43 82.31 73.34 69.97 50.49 58.66 84.09 92.35 88.02

Models with Demographics and Digital biomarkers features
Logistic regression 63.50 65.74 58.58 36.81 55.67 44.31 80.89 66.26 72.85
Random forest 69.60 67.07 61.41 42.26 45.07 43.62 80.14 78.26 79.19
K-nearest neighbours 69.22 64.80 63.25 43.02 55.42 48.44 82.48 74.09 78.06
Support vector machine 77.06 74.25 68.67 57.10 48.52 52.46 82.74 87.13 84.88
XGBoost 79.31 80.71 70.33 64.29 46.55 54.00 82.81 90.87 86.65

important feature in XGB and hence the changes in performance when mood ratings were removed from the features
(See Supplementary Figure 2).

The twenty (20) most important biomarkers for XGB and SVM classifiers in the models with no mood ratings are
llustrated in Fig. 1. The most important biomarkers also included phone usage (sum, average, standard deviation of
creen unlock duration, and count of screen unlocks), GPS mobility (mean length of stay at significant places, number
f significant places, location routine index, and normalised location entropy), and Sleep (TST, SE). Fig. 1 lists the digital
iomarkers on the y-axis in descending order of importance on the model’s output. Each dot represents the SHAP value
f one participant’s biomarker, with blue and red colours representing low and high values of that biomarker.
Worthy of note is that the interpretation of digital biomarker importance and impact as illustrated with the SHAP

alues does not denote causal relationships between the digital biomarkers and the classifier output. Furthermore, Fig. 1
nly interprets the models at the population level, and the interpretation when looking at individual participants may
iffer. Finally, feature importance is dependent on the machine learning classifier [50]. An important feature for SVM
8
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Fig. 1. Density scatter plot of SHAP values for XGBoost (a) and SVM (b) models, illustrating biomarker importance and impact on the model output.
The biomarkers are listed in descending order of importance.

may be unimportant or less important in XGBoost. As seen in Fig. 1 the important digital biomarkers and the order of
importance differs for both SVM and XGBoost. Therefore, it is recommended to use multiple explanation techniques, in
our case multiple classifiers for global interpretation and local interpretation of individual classification, to enhance the
overall trust in digital biomarker importance in classification [50].

For instance, SHAP dependence plots in Fig. 2 reviewed interesting interactions between important digital biomarkers,
which further enhances the understanding of the impact of the biomarkers on the model’s output. Each subplot in Fig. 2
is a scatter plot that shows the biomarker on the X-axis and the SHAP values on the Y -axis. The red and blue colour
orresponds to a second biomarker that interacts with the X-axis biomarker. In Fig. 2(a), the number of significant places
as a negative correlation with the model’s output. For most participants, a lower number of significant places and
ncreased average length of stay in significant places increased the likelihood for the classifiers to classify the participant
nder the group with symptoms of depression.
Location routine index, in Fig. 2(b), has a positive correlation with the model’s output. Participants who usually stay at

he same significant location, at the same time of day, across several days (high location routine index) with high location
ntropy are more likely to be classified under the depressed group. Similarly, Normalised location entropy in Fig. 2(c), has
negative correlation with the model’s output. Participants who, on average, spend time at different locations within a day
high normalised location entropy) with a high location routine index are more likely to be classified as non-depressed.

Similar interactions between biomarkers were also observed in phone usage. For example, in Fig. 2(d), an increased
umber of screen unlocks per day with a lower average unlock duration per unlock increases the likelihood of the
articipant being classified as depressed. Conversely, participants who unlock their phones less in a day and spend more
creen time per unlock were more likely to be classified as non-depressed.

. Discussion

This paper analysed a longitudinal dataset with statistical and machine learning methods to investigate the relationship
etween digital biomarkers, mood ratings, and depression. We investigated whether digital biomarkers and mood ratings
re different between depressed and non-depressed participants. To reflect on the research questions (see the end of the
ntroduction section), we found statistically significant differences in mood ratings and digital biomarkers of sleep, physical
ctivity, phone usage and GPS mobility when depressed and non-depressed participants are compared (see Statistical
ifference between participant groups and Table 4). We show that it is possible to accurately predict the depression
tatus of participants using only digital biomarkers as predictors or using both digital biomarkers and mood ratings as
redictors. (see Predicting participants’ depression status and Table 5). Finally, the most important digital biomarkers in
ifferentiating depressed and non-depressed participants were related to phone usage, GPS mobility, and sleep.
Our findings are consistent with previous research on the relationship between digital biomarkers and depression

see Table 1). Previous work found statistically significant differences in mood and digital biomarkers when comparing
epressed and non-depressed participants. More specifically, people with symptoms of depression showed significantly
ower mood [35,37,38], reduced physical activity [35,51], longer sleep time [16], reduced location mobility [7] and
ncreased phone usage [3,7] compared to people without symptoms of depression. In our findings, the magnitude of
ignificant differences (effect size) in digital biomarkers between the depressed and non-depressed participants are
9



K. Opoku Asare, I. Moshe, Y. Terhorst et al. Pervasive and Mobile Computing 83 (2022) 101621

i
d
q
a
p
u
p
a
p
b
b
t
8
w

d
a
d
h
w
m
b
m

Fig. 2. SHAP dependence plots showing interactions between important biomarkers of the XGBoost model.

nterpreted as small to medium effect sizes (see Section 4.2). In line with our findings, medium effect sizes of significant
ifferences in physical activity biomarkers have been reported in [51]. Our results suggest that digital biomarkers
uantified from passively sensed smartphone and wearable data could be used to differentiate between the depressed
nd non-depressed to support current clinical care by recognising and monitoring depression without relying on the
atient’s ability to recall their behaviour and mood. Our findings are in line with previous research on the potential of
sing Machine Learning models to predict depression with digital biomarkers and mood ratings (see Table 2). The best
erforming classifier could predict the depression status at 81.43% accuracy and AUC of 82.31% when digital biomarkers
nd mood ratings are used as predictors. Alternatively, using digital biomarkers alone, the best performing classifier could
redict depression status at 79.31% accuracy and AUC of 80.71% . The ability to predict depression status with only digital
iomarkers offer a better user experience because self-reported mood ratings may pose a considerable data collection
urden on participants, and that affects participant retention and increases study drop-out rate [17]. Our findings mirror
he results of previous studies on predicting depression status with a reported accuracy of 72.7% [42], 81.8% [16], and AUC
0.9% [3] and 75.4% [35]. These findings suggest that digital biomarkers quantified from passively sensed smartphone and
earable datasets could be used to predict depression status to augment the current depression diagnosis methods.
The findings also demonstrate that it is feasible to understand which digital biomarkers influence the participant’s

epression status. For instance, our findings suggest that phone usage, GPS mobility, and sleep digital biomarkers were
mong the most important in predicting depression status. Phone usage, GPS mobility were reported among the important
igital biomarkers associated with brain functionalities known to be associated with depression [52]. Phone usage
as been associated with depression in previous studies [3,21,32,39]. Likewise, GPS mobility has also been associated
ith depression [7,29,32]. These findings could be useful in clinical implementations to augment current diagnosis and
onitoring of depression symptom trajectories, and course of treatment [22,23]. For instance, knowing which digital
iomarkers influence a person’s depression status could help clinicians personalise interventions for improving a patient’s
ental health, for example, with actionable goals like improving physical activity and step count per day.
10
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We acknowledge several limitations in the study. First, the participants in our dataset (N = 54, average 28.21 days
f data per participant) are from a non-clinical population, with an unequal distribution of gender, depressed and non-
epressed groups. However, about 25.9% of the participants belonged to the depressed group. A systematic analysis [5]
f the disease burden in 195 countries from the year 1990 to 2017 showed that there is a high prevalence of depression
ven in general populations. Moreover, the participants were recruited in 2019 during the first wave of the coronavirus
isease (COVID-19) [15]. The COVID-19 is known to have contributed to an increase in the prevalence rate of mental
ealth conditions in general populations [53].
Second, we focused on building population-based models given the limited sample size. Future work could replicate

his study with a clinical population and a balanced sample in terms of gender, depressed and non-depressed groups to
nvestigate whether the results of this study generalises in both population and individual models. The dynamics in the
elationship between digital biomarkers and depression for individuals and similar participant subgroups based on gender,
ge group, or personality trait would be interesting to investigate, leading to a deeper understanding for personalised
ental health interventions. It would be relevant to understand how different digital biomarkers, combinations of digital
iomarkers, and the number of monitored days of these digital biomarkers differ in predictive power for depression status
cross age groups, gender, level of education, personality traits and time.
Third, the 21-item DASS scale used in assessing the depression symptoms of our participants is not a direct diagnostic

ool compared to the Patient Health Questionnaire (PHQ) [11,54]. However, the DASS scale is predominantly used as
screening tool for accessing the severity of Depression, Anxiety and Stress in clinical settings [54,55]. We used the
stablished cut-off subscales of the DASS-21 proposed by Lovibond and Lovibond [10] for categorising the participants
nto depression groups. The depressed and non-depressed groups are not clinical diagnoses of depression but participants
ith or without symptoms of depression. While these categorisations are not a clinical diagnosis of depression, studies
ave established a high correlation between the DASS depression subscale and clinical diagnostics of depression with
HQ [54].
The strengths of this study include the use of longitudinal and passively collected smartphone and wearable data,

n addition to daily mood ratings in a naturalistic setting outside the confinements of a laboratory. We quantified
igital biomarkers of sleep, physical activity, phone usage and GPS mobility from our longitudinal dataset. We utilised
obust statistical methods to analyse the statistical differences in participant demographics and digital biomarkers from
articipants with or without depression. We trained our Machine Learning models with state-of-the-art cross-validation
ethods (time series awareness, within-fold imputation, scaling and feature selection). We use feature importance
nalysis to understand the importance and impact of digital biomarkers on the model predictions.
This study demonstrates that digital biomarkers and mood ratings could be useful in differentiating and predicting

he depression status of individuals. The current study builds upon previous research and contributes to the compelling
vidence that digital biomarkers and mood ratings could be continuously collected and monitored to understand the
omplex vectors of depression and augment the traditional depression assessment method for effective diagnosis and
onitoring of depression.
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