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E C O LO G Y  

Coextinctions dominate future vertebrate losses from 
climate and land use change 
Giovanni Strona1,2* and Corey J. A. Bradshaw3 

Although theory identifies coextinctions as a main driver of biodiversity loss, their role at the planetary scale has 
yet to be estimated. We subjected a global model of interconnected terrestrial vertebrate food webs to future 
(2020–2100) climate and land-use changes. We predict a 17.6% (± 0.16% SE) average reduction of local verte-
brate diversity globally by 2100, with coextinctions increasing the effect of primary extinctions by 184.2% (± 
10.9% SE) on average under an intermediate emissions scenario. Communities will lose up to a half of ecological 
interactions, thus reducing trophic complexity, network connectance, and community resilience. The model 
reveals that the extreme toll of global change for vertebrate diversity might be of secondary importance com-
pared to the damages to ecological network structure. 
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INTRODUCTION 
The planet has entered the sixth mass extinction (1–5). There are 
multiple causes underlying the rapid increase in observed and 
modeled extinction rates in recent times, of which land-use 
change, overharvesting, pollution, climate change, and biological 
invasions figure as dominant processes (6). However, assessing 
the relative importance and the realistic impact of such drivers at 
the global scale remains a challenge. Another aspect rendering as-
sessment difficult are the synergies between drivers—a species 
might go extinct for multiple, simultaneous reasons, and in such 
contexts, ecological interactions play a fundamental role in predict-
ing its fate (7). Growing recognition of the importance of species 
interactions in promoting the emergence of biodiversity in 
complex natural communities implies that an additional, funda-
mental component of biodiversity loss is represented by the ampli-
fication of primary extinctions across ecological networks. 
Coextinction—the loss of species caused by direct or indirect 
effects stemming from other extinctions—is now recognized as a 
major contributor to global biodiversity loss, strongly amplifying 
the effect of primary (e.g., climate-driven) extinctions (8–11). 

Networks of ecological interactions are central to global patterns 
of diversity loss not only because coextinctions can be triggered by 
other extinction drivers, but also because network structure and dy-
namics might modulate several processes that can either reduce or 
increase extinction rate. For example, it is intuitive that a species’ 
success in colonizing a new area depends strongly on its ability to 
exploit local resources while simultaneously escaping enemies 
(predators and parasites). The addition of the new species might 
also initiate substantial changes to and have important cascading 
effects in the local network. Ignoring the structure of ecological net-
works and how they reconfigure as their constituent diversity 
changes therefore gives a possibly misleading view of the future of 
global diversity. 

Previous attempts to predict the future of global diversity in the 
face of climate change and habitat modification have only consid-
ered the direct effects of these drivers on species (typically on single 
taxonomic groups), without explicitly accounting for ecological in-
teractions. For instance, Thomas et al. (12) used projections of 
species’ distributions and species-area relationships to predict ex-
tinction rates for 20% of Earth’s surface, and Malcolm et al. (13) 
applied both species-area and endemic-area relationships to predic-
tions of biome shift under climate change in Biodiversity Hotspots. 
van Vuuren et al. (14) also applied species-area relationships to vas-
cular plants to project extinctions under different land-use and 
climate-change scenarios within the Millennium Ecosystem Assess-
ment, and Jetz et al. (15) used a similar approach for birds. Others 
have applied analogous techniques to many other taxa, including 
lizards (16), crop wild relatives (17), chelonians (18), bird, amphib-
ians, and corals (19). Later, Warren et al. (20) applied point-process 
and global circulation models to predict climate change–induced 
shifts in species’ distributions, and Urban (21) did a meta-analysis 
(including many of the studies cited above) to predict extinction 
rates of various taxa under several climate-change scenarios. 
Despite this extensive research foundation, future inferences of bio-
diversity’s fate over the coming century are likely to underestimate 
extinctions arising from global change (11). 

Apart from the obvious modeling and computational challenges 
to incorporate interactions among species, the main reason why 
there are few studies accounting for interactions is that obtaining 
sufficient data in most communities is intractable. Therefore, 
global-scale modeling of entire ecosystems appears to be the only 
viable solution, even if a challenging one (11, 22). Recent develop-
ments in network approaches have shown that potential ecological 
interactions can be derived by applying different techniques (e.g., 
machine learning) to available datasets on species distribution 
and ecology (23, 24). In previous work (11), we built on that idea 
to generate global-scale models of biodiversity by including 
species interactions using virtual species constructed to follow 
real-world archetypes. In such synthetic approaches, a virtual 
species is a plausible ecological entity that has a combination of eco-
logical traits consistent with real-world species despite not corre-
sponding exactly to them. 
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There are several advantages in using virtual species in this 
manner. The first is that once the rules have been set to generate 
virtual species, current gaps and biases in biodiversity sampling 
cease to be a limitation; we can use virtual species to populate the 
entire Earth and generate plausible ecological communities, even in 
areas where data on local diversity are scarce or missing. Second, 
virtual species avoid preconceptions (and biases) about current bio-
diversity patterns, permitting instead a focus on the processes in-
volved in change. Here, we can populate an entire virtual planet 
with species, let them develop communities based on a modest 
set of realistic ecological rules and assumptions, and then explore 
the emerging patterns. With such an approach, real-world data 
serve as a template for generating the virtual species and for iden-
tifying the basic ecological rules controlling community dynamics 
and as a benchmark with which to validate the realism of modeled 
predictions. 

We previously demonstrated how coextinctions increase the 
pace of annihilation of life on Earth by up to 10 times relative to 
primary extinctions, but only in the face of catastrophic, no- 
return environmental change modeled as either extreme planetary 
heating or cooling (11). Although an instructive proof of concept, 
that model contained many simplifications and was applied to 
(hopefully) unrealistic scenarios of global change. Building on 
that original approach, here we developed a more complex, and eco-
logically realistic dynamic model to represent all terrestrial verte-
brate communities with which we project future biodiversity 
trends. By accounting for both primary extinctions and their result-
ing coextinctions, the model predicts the cumulative toll on global 
biodiversity of different climate and land-use change projections up 
to 2100 at a spatial scale of 1° × 1° and at a monthly temporal res-
olution. In addition to providing estimates of potential global diver-
sity loss, the model quantifies the relative contribution of the 
different extinction drivers at the global scale for the first time. 

RESULTS 
A limited set of assumptions regarding species’ ecology (niche + in-
teractions) in the model generates a realistic map of initial (i.e., 
2015) terrestrial vertebrate diversity that matches contemporary di-
versity patterns at the global scale (Fig. 1 and figs. S1 to S3; in all 
climate-projection scenarios, Pearson’s r > 0.6 and a slope ≈ 1 
when regressing species richness in the model in each 1° × 1° cell 
in the global grid against a proxy for “true” diversity obtained by 
overlaying distributional ranges of 21,143 real-world vertebrate 
species; see Materials and Methods for details). The consistency 
in observed versus simulated global diversity patterns provides 
support for the ecological realism of our network model, showing 
that it can reproduce plausible, broad-scale patterns of diversity. 
Notably, our modeled diversity map shows a finer-grained variation 
in diversity patterns derived from the interplay of climate, land use, 
and ecological interactions compared to maps of range overlap. The 
model also produced realistically structured networks and a plausi-
ble regional distribution of species body masses (figs. S4 and S5). 

Our model predicted global biodiversity to experience local 
losses by 2050 ranging [across different CMIP6 carbon-emissions 
scenarios (25)] from 6.0% (± SE = 0.1%, SSP2-4.5) to 10.8% (± 
0.1%, SSP5-8.5) on average compared to initial diversity (and 
from 13.0 ± 0.1% to 27.0 ± 0.2% by 2100; Fig. 2, left column). In 
all climate scenarios, climate change was directly responsible (see 

also Discussion) for the most substantial fraction of local extinction 
events (62.1 ± 7.2% SD in the intermediate SSP4-6.0 scenario), fol-
lowed by secondary extinctions (20.3 ± 5.4%), local extirpations due 
to overcompetition by colonizers (13.9 ± 4.1%), and land-use 
change (3.7 ± 3.1%; see fig. S8 and table S1). 

Tracking network structure as it varied through time, we could 
also quantify how the loss of species resulted in the loss of network 
interactions (edges). This loss of edges was substantial, averaging 
23.6 ± 0.2% by 2050 in the worst-case scenario (47.0 ± 0.3% by 
2100; Fig. 2, middle column). The high rate of loss of network 
edges resulted in an overall strong reduction in network connec-
tance (computed as number of edges ÷ squared number of nodes, 
because we are not preventing any interaction from occurring a 
priori, including cannibalistic interactions). Specifically, connec-
tance declined 18.2 ± 0.2% by 2050 on average in the worst-case 
climate-change scenario (26.7 ± 0.2% by 2100; Fig. 2, right 
column). This result is consistent with the expectation that the vul-
nerability of species to climate change will be insensitive to their po-
sition and role in local networks, making the observed trajectories 
of network disassembly worse than those expected under stable 
conditions (see fig. S9). 

Networks also became “shorter” in diameter (the longest of all 
the shortest paths connecting any two nodes in a network), with a 
reduction of 11.7 ± 0.1% by 2050 and 26.0 ± 0.2% by 2100 in the 
worst-case scenario ( fig. S10A), and increasingly fragmented, 
with a loss of 12.8 ± 0.1% by 2050 (23.5 ± 0.1% by 2100) of the frac-
tion of nodes in the largest, weakly connected component of the 
network (i.e., the largest cluster of nodes having at least one path 
to one of the nodes in the same cluster) in the worst-case climate- 
change scenario (fig. S10B). In terms of community structure and 
composition, we observed a moderate reduction in the average and 
maximum trophic level in local communities (12.0 ± 0.1% and 
13.2 ± 0.1%, respectively, by 2100 in the worst-case climate- 
change scenario), and a large reduction in the average and 
maximum body mass of local (vertebrate) species (26.0 ± 0.2% 
and 38.3 ± 0.2%, respectively; fig. S8). As expected, larger species 
in high trophic levels will be the most threatened by future 
climate and land use changes. The reduction in body size and 
trophic level will be mainly driven by coextinction processes, with 
weaker patterns in the control simulations where we modeled 
primary extinctions only (i.e., those occurring due to climate and 
land-use change, and biological invasions), but not their cascading 
effects through trophic links (fig. S11). 

When we compared the simulations including coextinction 
events to the controls that only accounted for primary extinctions, 
the average effects of coextinctions (measured as the percentage de-
crease in biodiversity between the coextinction and control simula-
tions) were 27.5 ± 1.5%, 39.2 ± 2.5%, and 21.8 ± 0.6% by 2050 
(27.1 ± 2.0%, 34.0 ± 4.0%, and 18.1 ± 0.7% by 2100) in the three 
climate-change scenarios SSP2-4.5, SSP4-6.0, and SSP5-8.5, respec-
tively (Fig. 3, left column). However, a potentially overoptimistic as-
sumption of the model is that herbivores and invertebrate feeders 
never run out of plant and insect biomass. Our model treats 
insects and plants as nondepletable resources, despite growing evi-
dence for invertebrate declines globally (26). This implies that both 
consumers capable of only using vertebrates and those also using 
invertebrates (insectivores and omnivores) are “invulnerable” to 
bottom-up coextinctions—extinctions of consumers triggered by 
resource depletion, which is the most common expectation for 
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the mechanism underlying secondary extinctions (8–11)—and 
could therefore go extinct “only” due to climate and land-use 
change, as well as top-down network effects and outcompetition 
by new colonizers. 

Focusing instead on “vulnerable” species only—those at a 
trophic level higher than strict herbivores and insectivores—to 
avoid potentially underestimating the effect of coextinctions, diver-
sity loss and the differences between the coextinction and control 
scenarios rise substantially (Fig. 3, right column). Here, the effect 
of coextinctions amplified biodiversity loss relative to the 
primary-extinction scenario by 115.3 ± 3.9%, 148.0 ± 6.3%, and 
107.8 ± 4.3% by 2050 (173.7 ± 9.4%, 184.2 ± 10.9%, and 
144.4 ± 6.1% by 2100) in the three climate-change scenarios, with 
90th percentiles of 191.2, 223.7, and 172.4% by 2050 (250.0, 237.3, 
and 223.2% by 2100), respectively. In all climate change scenarios 

(and in both the simulations accounting for coextinctions and 
those not), the average rate of diversity loss was higher from 2020 
to 2050 than from 2051 to 2100 (Fig. 2, bottom left panel, and fig. 
S12). Consequently, the greatest changes in diversity and network 
structure are already appreciable before 2050 (fig. S13), highlighting 
how the bleakest time for natural communities might be imminent 
and that the next few decades will be decisive for the future of global 
biodiversity. 

Intriguingly, the strongest coextinction effect is predicted in the 
intermediate-severity SSP4-6.0 scenario. These relatively lower pre-
dicted losses in the worst-case SSP5-8.5 climate change projection 
are explained by the greater number of species in that scenario that 
are wiped out by primary extinctions arising directly from intoler-
ance to climate change compared to milder climate-change projec-
tions, a characteristic that slightly reduces the relative importance of 
coextinctions therein (Fig. 3, right column). 

When we examine network diversity and structure among 
biomes, most of the expected losses are predicted to occur in 
areas with the highest species richness. This shows that Biodiversity 
Hotspots not only have more species under threat and hence will 
lose more species (27, 28) but that they will also experience the 
highest rates of loss due to coextinctions over the coming decades 
(Fig. 4). In general, and regardless of biogeographical region, diver-
sity loss tended to increase with initial diversity (fig. S14). Consis-
tent patterns were also predicted in the decline of network 
interactions (fig. S15) and connectance (fig. S16). 

Fig. 1. Observed versus modeled vertebrate diversity in 2020 in the CMIP6 
SSP4-6.0 scenario. Observed diversity (A) is calculated by overlaying distribution-
al ranges of all vertebrates used as an ecological mold for the virtual species (see 
Materials and Methods). Modeled diversity (B) corresponds to the loge-trans-
formed number of virtual species per locality (averaged across 100 model repli-
cates). The distribution of the virtual species does not result directly from the 
distribution of real-world vertebrates. Instead, the modeled diversity is an emer-
gent property of the simulated system, stemming from the interaction between 
virtual species and the local virtual community/food web and environment. 
Map resolution is 1° × 1°. Maps for initial diversity in the other climate scenarios 
(CMIP6 SSP2-4.5 and SSP5-8.5), consistent with this one, are provided in figs. S2 
and S3. 

Fig. 2. Simulated, relative local loss of terrestrial vertebrate diversity, inter-
actions, and connectance by 2100 compared to 2020 under different climatic 
projections. Maps show local loss in 2100 relative to initial conditions, while plots 
show the average loss across all Earth localities per year from 2020 to 2100. In both 
maps and plots, results are the average of 100 replicates (for the plots, first, we 
averaged local loss in the 100 replicates and then averaged local loss values 
across all localities. Shaded areas are 95% confidence intervals, showing the vari-
ation across localities in the average map obtained with 100 simulations). 
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DISCUSSION 
Our virtual-Earth model reveals the magnitude of and mechanisms 
driving biodiversity loss expected from climate change and land 
conversion this coming century. These results not only suggest a 
much greater loss than previously anticipated (21), they also dem-
onstrate that biodiversity loss will be accompanied by an additional 
weakening of community resilience via erosion of the connectance 
of ecological networks. 

An important caveat is that while our virtual species are func-
tionally realistic, they do not have taxonomic or phylogenetic 
meaning. Hence, our results reveal local changes in species diversity 
but do not provide information on global species extinctions per se. 
Neither does the model claim to produce an Earth replica, but 
instead aims to build an ecologically plausible Earth. Hence, the 
model cannot forecast Earth’s future but instead projects relative 
potential scenarios based on different assumptions (mainly 
carbon emissions) and reveals the underlying processes leading to 
those outcomes. 

Examining the different drivers of extinction, our model reveals 
that the effect of climate change at the global scale is dominant, 
while land-use change played a comparatively minor role ( fig. 
S8). However, in no way does that result refute the conclusion 
that land-use change is a major element of biodiversity loss; 
rather, it emphasizes that climate change is becoming more impor-
tant. This emerges from two aspects of the model. First, we only 
considered relative land-use change from 2020 onward, meaning 
that the results reflect the relative future impact of land-use 
change, and not its dominant historical impact on biodiversity 
loss (3). Second, a strength of our model is that it can map extinc-
tions everywhere on Earth. Even considering the extent of current 
human impacts, human presence and land-use change still directly 
affect only a small fraction of the total land inhabited by species. The 
area of primary and secondary cumulative land projected to be lost 

from 2020 to the end of the century for the worst-case climate 
change scenario (SSP5-8.5) is 8,000,000 km2 in total; however, 
this value represents only 6.5% of the global area in the simulation 
inhabited by at least one species in 2020 (~ 130,000,000 km2) 
(fig. S17). 

It is also important to consider that the climatic projections take 
into account land-use change as one of the inputs to derive climatic 
variables. Therefore, the contribution of climate change to diversity 
loss also includes, in principle, the indirect effect of land-use change 
on climate. Our model does take this into account, as well as other 
potential indirect, detrimental effects of land-use change, such as 
increasing fragmentation and then possible alterations to species 
dispersal and colonization patterns. However, our analysis of the 
relative importance of extinction drivers focuses exclusively on 
the direct effects of climate change, land-use change, coextinctions, 
and biological invasions. Under these caveats, the direct contribu-
tion of habitat loss to global extinction is still high, albeit relatively 
lower than what climate change will occasion. 

These results are also robust to different assumptions regarding 
the local impact of land-use change on diversity; these different 
choices do not change our overall conclusions (figs. S6, S7, and 
S18). The main results presented here refer to a model where we 
assumed a linear relationship between the fraction of primary and 
secondary land lost at each step in a given locality and the resulting 
loss of local diversity. More pessimistic scenarios assuming high di-
versity loss following moderate changes in land use led to more ex-
tinctions globally (with a threshold effect observed for SLUC > 0.2; 
see Materials and Methods and fig. S27), but did not change our 
conclusions on the relative disproportionate importance of 
climate change. 

By modeling food webs explicitly, our approach reveals synergies 
among extinction drivers (7), thereby confirming that overexploita-
tion of resources by novel colonizers combined with climate change 
(i.e., biological invasions) will become a major cause of diversity 
loss worldwide (29, 30). Our model therefore provides the first 
global quantitative assessment of the impacts of biological invasions 
on planetary diversity over the coming century. 

An interesting outcome from the sensitivity analyses is that in-
creasing the frequency and intensity of acclimation events in local 
populations can counterintuitively lead to a higher global extinction 
rate. The “adaptation” mechanism implemented in our model (see 
Materials and Methods) assumes that species can shift their niches 
to match the climate of the preceding year. Such a mechanism—al-
though reducing the risk of extinction for species capable of adapt-
ing under a stable climatic regime—does not necessarily ensure 
protection against future changes. When we assume a high proba-
bility of adaptation (e.g., 0.5% of species shift their niche in all lo-
calities every year), the net effect is a reduction in average 
persistence of global diversity. This suggests that a strong and wide-
spread adaptation to local conditions might both increase robust-
ness toward steady conditions while simultaneously increasing 
vulnerability to change. This outcome is consistent with predictions 
based on a completely different approach (artificial life evolution 
simulations) showing that as ecological networks become more re-
silient to stable environmental conditions, they also become in-
creasingly susceptible to change (31). 

Our results confirm that coextinctions are fundamental drivers 
of mass extinctions (5–11) and suggest that previous large extinc-
tion events revealed from the fossil record would likely have been 

Fig. 3. Coextinction effect by 2050. This is quantified as the percentage increase 
in diversity loss in the coextinction scenario compared to the reference ( primary 
extinctions only) scenario. To ease visualization and comparisons, we set the 
maximum value of the color bar to 2 (i.e., 200% increase), but black pixels indicate 
all values ≥ 200%. 
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exacerbated beyond their primary environmental drivers via the 
negative feedbacks arising from ecological dependencies. Unless 
conservation practitioners rapidly start to incorporate the complex-
ity of ecological interactions and their role in extinction processes in 
their planning, averting the ongoing biodiversity crisis will become 
an unachievable target. 

MATERIALS AND METHODS 
Model synopsis 
Our simulated world consists of a data-driven system of intercon-
nected terrestrial communities composed of virtual, yet ecologically 
plausible, vertebrate species whose ecology and functional traits 
obey rules that we derived from combining several large, real- 
world datasets. The virtual vertebrates in each locality are organized 
into food webs according to their trophic ecology, diet breadth, and 
functional traits, with links assigned on the basis of trophic rules 
derived from empirical data. This generates a dynamic, global- 
scale system where the patterns and process of food webs are an 
emerging property of ecological mechanisms inferred from empir-
ical data. Our implementation of the networks’ responses to 
changes in species composition permits modeling and tracking 
communities at high spatial and temporal resolution, without the 
prohibitive challenge of modeling multispecies population dynam-
ics and ecological interactions in thousands of sites hosting hun-
dreds of species. 

We tracked the future development of the virtual life planet from 
2020 to 2100 at a spatial resolution of 1° × 1° latitude following three 
climate-projection scenarios [Coupled Model Intercomparison 
Project Phase 6 (CMIP6): Shared Socioeconomic Pathway (SSP) 
2-4.5, SSP4-6.0, and SSP5-8.5] (25), running 100 replicates for 
each future climate-projection scenario. The model runs at a tem-
poral increment of 1 month for climate and 1 year for spatially 

explicit land-use changes and food-web dynamics. We allowed 
species to disperse among localities, with the probability of coloni-
zation success depending on the geographic distance between the 
source and the target locality, compatibility between species’ toler-
ance limits and the environmental conditions (species-specific suit-
ability) of the target locality, and the ability of a species to enter the 
local food web at the target site. Last, the model includes a function 
allowing for some species-specific adaptation to changing climate 
conditions (see Materials and Methods for all modeling details). 

During the simulations, species went extinct owing to direct 
effects of environmental change (i.e., when no longer capable of tol-
erating local climatic conditions or following loss of primary land) 
or indirect (either bottom-up or top-down) effects propagating 
through network links. When a species went extinct, we explicitly 
accounted for the cascading effect of that extinction on its corre-
sponding local food web. That is, interaction networks in the 
model continuously adapt and respond to changes in community 
composition. As species go extinct, and new species enter a local 
food web from different localities, nodes and links are added and 
removed, and interaction weights are recalculated on the basis of 
the new conditions. 

Recalculating weights permits simulating ecological mecha-
nisms fundamental for food web functioning, such as changes in 
a consumer’s diet and realized specialization driven by resource 
availability. The initial weights of a network are rescaled depending 
on resource availability and on the diversity of consumers having 
access to the different resources. Whenever something changes in 
the network (e.g., species are added or removed), weights are adjust-
ed to reflect the new ecological setting. Thus, a consumer that was 
initially consuming a particular resource might switch a substantial 
proportion of interaction weight to a novel (more compatible) re-
source (note that such change is reversible—the consumer can re-
allocate interaction weights to the initial resource should the 

Fig. 4. Diversity loss predicted to be higher in highly diverse biomes and lower in the Palearctic and Nearctic. Diversity loss is the % loss in species number per 
locality compared to 2020. We first averaged local loss in 100 replicates and then averaged local loss values across all localities in a given region. Solid and dashed lines are 
average values, while shaded areas indicate 95% confidence intervals, showing the variation across localities within a region in the average map obtained with 100 
simulations. Equivalent maps for loss of interactions and connectance are provided in the Supplementary Materials. 
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situation return to a previous state). Similarly, the diet breadth (in 
terms of the distribution of interaction weights from a consumer to 
the set of available resources) might change substantially when 
species are either lost or added to the network. This might 
involve one species initially preying mostly on vertebrates to 
switch its interactions to invertebrates only. In this way, our 
model can simulate species’ plasticity in response to altered condi-
tions, with the coextinction risk of species changing as communities 
reorganize themselves in response to environmental and ecological 
change. The same set of rules permits simulating both positive and 
negative effects of colonizers, either rescuing local populations or 
increasing local diversity (see the Supplementary Materials), or 
driving local species to extinction due to overexploitation by 
the invader. 

As a control in each simulation to assess the net effect of coex-
tinctions on global diversity loss, we also ran a parallel experiment 
where we did not model coextinctions and the other network- 
related events, while maintaining all other ecological processes 
(primary extinctions, dispersal, and adaptation; also see the discus-
sion in the Supplementary Materials). Further, model outputs were 
robust to assumptions of adaptive capacity (Supplementary Materi-
als, figs. S6 and S7). 

Species climatic niche 
We collected all available vertebrate ranges from the International 
Union for the Conservation of Nature (32) and BirdLife Interna-
tional (33). We rasterized the ranges on a 1° × 1° global grid and 
then retained only the species occurring in > 5 cells (terrestrial 
mammals: 4452; reptiles: 3903; amphibians: 3040; birds: 9748; 
total = 21,143). We referred to the CMIP6 global circulation 
model for temperature and precipitation predictions, using three 
different scenarios: SSP2-4.5, SSP4-6.0, and SSP5-8.5 (approximate-
ly equivalent to updated versions of CMIP5 scenarios RCP4.5, 
RCP6.0, and RCP8.5, respectively) (25). In particular, we used the 
multimodel ensembles provided by the Canadian Centre for 
Climate Modelling and Analysis (34), at a spatial resolution of 
1° × 1° latitude/longitude degrees and at a monthly temporal 
resolution. 

We modeled species’ niches independently in each climatic sce-
nario by identifying all temperature and precipitation values in the 
target scenario intersecting a species’ range at a monthly interval 
from 2015 to 2019. We defined suitability ( p) of a species to the 
target climatic condition x (a temperature or precipitation value) as 

p ¼
1 � 1

1þe� cðx� dÞ ; if x � x
1

1þe� aðx� bÞ ; otherwise

(

where x is the average of the monthly measures of the target climatic 
condition across all 1° × 1° localities within the species’ range in the 
period January 2015 to December 2019. For each species, we esti-
mated the a, b, c, and d parameters so that 

v ¼ vmin _ v ¼ vmax ! p ¼ pthresh ¼ 0:95 

where vmin and vmax are the maximum and minimum recorded 
values, respectively, of the target climatic condition in the species’ 
range within the reference time interval, and pthresh is an arbitrarily 
selected probability of species survival at the edges of the species 
tolerance limits. Here, we conservatively chose pthresh = 0.95 assum-
ing that a given species would have this probability of surviving 

when the local temperature equals either vmin or vmax. To derive 
the a, b, c, and d parameters, we first set a = 0.0001 

and b ¼
log pthresh

1� pthresh

� �
þavmax

a . 
We then incremented a progressively by 0.01 per step until 
1

1þe� aðx� bÞ ≤ 0.001. Similarly, we set c = 0.0001 and 

d ¼
log 1� pthresh

pthresh

� �
þcvmin

c , and we then incremented c progressively by 
0.01 per step until 1

1þe� cðx� dÞ ≥ 0.9998. This procedure generates an 
asymmetric, bell-shaped probability curve that has values close to 
0 when conditions are optimal, a probability of extinction = 1 − 
pthresh = 0.05 when the species is at its tolerance limits, and then 
it declines rapidly as the local variable of interest departs from the 
species’ tolerance. The two curves obtained for temperature and 
precipitation define a bidimensional niche where at any given set 
of climate values, the probability of survival is given by the 
minimum probability of survival for both variables (fig. S19). 

This approach can be considered as an advanced take on the idea 
of bioclimatic envelopes (35) because it produces a progressive 
probability of local extinction as temperature and precipitation ap-
proach the most extreme conditions experienced in the species’ 
range. During model development, we compared the probability 
of extinction from our niche model with those from other 
methods using nonlinear approaches to identify suitability. Such 
tests showed that our approach produced a more plausibly progres-
sive increment in extinction risk as local environmental conditions 
approach the hypothetical tolerance limits compared to the niches 
produced by other techniques. For instance, we compared the ex-
tinction risks produced by either our approach or a RandomForest 
regressor on a random sample of 100 vertebrate species across a con-
tinuous range of temperature and precipitation values (for a total of 
400 unique combinations of temperature and precipitation covering 
all the ideal space from the minimum to the maximum values re-
corded on Earth in the reference period 2015–2019). Although we 
found overall consistency between the risk estimates yielded by the 
two approaches (Spearman’s ρ = 0.41; P << 2.2 × 10−16), Random-
Forest produced an unrealistic representation of the bidimensional 
niche space with abrupt jumps from low to high extinction proba-
bility (such as classical bioclimatic envelopes) (fig. S20). 

Although related to concepts typical of ecological niche models 
that aim to predict species distributions from environmental/cli-
matic variables, our approach does not suffer from their common 
limitations. Our derived niches model the risk of local disappear-
ance based on temperature and precipitation, and not to predict 
species distribution. While subtle, the distinction makes our 
model robust to the most common weakness associated with eco-
logical niche models (36). A major limitation is that climatic suit-
ability is just one of the many factors determining species presence, 
yet correlative niche models often ignore biogeographic history, the 
presence of other species, and stochastic events. However, while a 
species might not occur in a perfectly suitable area, it almost cer-
tainly does not occur/persist in unsuitable locations. In contrast, 
our modeled species occurrences are the combined and explicit 
result of niche, dispersal, and interactions with other species—i.e., 
our model is not affected by the potential biases that might be 
derived from equating suitability with presence. Instead, our 
model applies the robust and logical assumption that species 
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cannot persist in an unsuitable area to determine the risk of local 
extinction. 

Our definition of local extinction risk in this context has a com-
munity-level interpretation: Niche predictions do not identify the 
most extreme conditions tolerable before physiological failure; 
rather, they are the likelihood that a local population will decline 
and eventually disappear when exposed to unfavorable conditions. 
This logic precluded deriving thermal tolerances directly from da-
tabases such as GlobTherm (37), as we did previously (11), because 
empirically derived limits probably overestimate the true popula-
tion-level responses implicit in our model. However, the distribu-
tion of thermal tolerances we generated is consistent with that 
from GlobTherm (fig. S21), even if slightly shifted toward lower 
temperatures (a desirable attribute). 

Species trophic level and body-mass relationship 
We obtained body mass for 31,098 species combining information 
from different sources (38–41). For a subset of those species, we also 
obtained data on trophic interactions by extracting all available re-
source-consumer interaction data from the GloBI online database 
(42) (714,465 at the time of the analysis retrieved from  
globalbioticinteractions.org/data). For a given species, we used the 
interaction data to identify both the maximum trophic level (mea-
sured as the maximum distance from a basal resource) and its 
trophic breadth (variation in trophic level of the consumed resourc-
es). We combined this information to generate two datasets: The 
first included body mass and environmental niche (temperature/ 
precipitation tolerance) for 17,238 species; the second included 
trophic level, trophic breadth, and body mass for 1449 species. 
The second dataset gives a distribution of trophic level per body- 
size interval for each taxonomic group (fig. S22), which assigns 
trophic level to a given species according to its body size and 
major phylogenetic grouping by sampling randomly from the dis-
tribution of trophic level observed in similar-sized species within 
the same taxon (described in the following section). 

Creating virtual species 
To incorporate as much plausible variation as possible in this sto-
chastic model, we generated an independent set of virtual species at 
the beginning of each global-extinction simulation according to the 
following procedure. We extracted species from the dataset associ-
ating species’ niches to the respective body mass, with the sampling 
structured to match known relative vertebrate diversity according to 
the IUCN (32) (i.e., 5513 mammals, 7302 amphibians, 10,425 birds, 
and 10,038 reptiles). We then compared the body size of the selected 
species with all body sizes from the body-size and trophic datasets 
(in random order) until we found a species belonging to the same 
taxonomic grouping and with “matching” body size (see below), 
and then we associated the trophic information to the target 
species. In this way, we accounted for potential relationships 
between ecological niche, body mass, trophic level, and taxonomic 
group. 

We considered that two body sizes were a match if 

max½m1;m2� � min½m1;m2�

max½m1;m2�
, rthresh 

where m1 and m2 are the body size of the two species, and rthresh- 
= 0.01, a threshold for each species. If no match was found with 

this threshold, we progressively increased the threshold at steps of 
0.01 until a match emerged. The average of final thresholds within a 
simulation was 0.065 ± 0.11 with a maximum of 0.96. The largest 
thresholds are associated with the smallest species, so that the 
average absolute difference in body mass between matched 
species is < 300 g. 

We then sampled trophic level and breadth corresponding to 
body-size class and taxonomic group. From this point, the taxo-
nomic identity of a species is no longer maintained in the simula-
tions. We added functional traits to the species following Strona and 
Bradshaw (11) in the form of a random string of letters (sampled 
from the standard, 26-letter English alphabet) of size varying sto-
chastically between 1 and 10, ideally corresponding to the virtual 
species phenotype. 

At the beginning of each simulation, we created a 26 × 26 adja-
cency matrix filled with real numbers varying randomly between 
the limits of −1 and 1, indicating the compatibility between any 
two functional traits (alphabet letters) when considered in isolation. 
We quantified the compatibility between any two phenotypes by 
summing all the compatibility values obtained by all pairwise com-
binations of letters in each phenotype. We then normalized these 
values between 0 and 1 (by estimating the minimum and 
maximum potential compatibility of two random phenotypes for 
a given trait-adjacency matrix; this is done by comparing 106 

pairs of phenotypes generated at random according to the same cri-
teria used in the virtual species-generation process). 

The concept behind this approach is well-grounded in theoreti-
cal ecology because it corresponds to generating an ideal global 
square matrix of species-by-species compatibility [e.g., similar to 
stability-complexity matrices (43)]. Adding explicit traits from 
another matrix of trait-by-trait compatibility adds realism by ensur-
ing that phenotypic compatibility is spatially and temporally consis-
tent. It also reduces the computational burden by providing an 
efficient way to assess compatibility of any two species in the 
world without needing to retain a large compatibility matrix; the 
approach also provides different degrees of specialization (as ob-
served in real-world networks). Although this approach precludes 
comparing our functional traits to real-world traits, the mechanism 
produces realistic networks (fig. S4). The final step in the generation 
of a virtual species requires attributing a random real value between 
0 and 1 to it to indicate its adaptive capacity to changing conditions 
(see the “Adaptation” section below and fig. S23). 

Populating a virtual Earth 
We obtained land-use projections at annual temporal resolution 
from 2006 to 2100 from Chini et al. (44). We used projections cal-
ibrated using Integrated Assessment Model scenarios with radiative 
forcing by 2100, consistent with the SSP scenarios used for climate 
projections—4.5 W m−2, 6 W m−2, and 8.5 W m−2. The original 
data were at a resolution of 0.5° × 0.5°, which we rescaled to our 
1° × 1° grid. We did not consider all land-use categories; instead, 
we computed for each cell in our grid the fraction of primary and 
secondary land in a given year. We report the loss of primary and 
secondary land by 2050 and 2100 under the different climatic sce-
narios (fig. S24). Here, “primary” land is defined as natural vegeta-
tion that has never been affected by humans (e.g., agriculture or 
wood harvesting), while secondary land is natural vegetation recov-
ering from previous anthropogenic disturbance (44). 
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We assigned 4500 × u species to each locality at random, where 
u is the proportion of primary + secondary land in the locality ac-
cording to the target SSP scenario in 2019. We then reduced the 
local community to the set of species capable of persisting in the 
local climate as all those species for which the combined probability 
of extinction under local temperature and precipitation conditions 
is < 0.05 for the entire period 2015–2019 (with probability comput-
ed monthly). Last, we arranged these species into food webs (see the 
next section), keeping only the species participating in the network. 

Building networks 
For a given pool of species, all potential pairwise interactions are 
considered, and a directional link is drawn from a candidate re-
source to a candidate consumer if (i) the trophic level of the con-
sumer is greater than the trophic level of the resource, and the 
trophic level of the resource is within the trophic breadth of the con-
sumer (i.e., not less than the minimum trophic level of a species pos-
sibly consumed by the consumer); (ii) the ratio between the body 
size of the resource and that of the consumer is greater than ll < lu, 
with those limits assigned specifically to each combination of re-
source-consumer taxa (i.e., birds consumed by mammals are as-
signed different values than birds consumed by reptiles); and (iii) 
functional compatibility (cf; see above) is > 0.55. To obtain ll and 
lu, we computed the ratio between prey and predator body mass 
for each prey-predator interaction recorded in GloBI (42); this pro-
vided a distribution of prey-predator body-mass ratios. We then 
derived ll and lu as the lower and upper 90% confidence limits of 
the distribution, respectively. We applied this procedure separately 
for each combination of vertebrate classes, such that we obtained a 
distribution of prey-predator body mass ratios for mammals eating 
birds, another one for birds eating mammals, another one for 
mammals eating reptiles, etc. 

Functional compatibility is then readjusted to cf ¼ 1 � 1� cf
1� 0:55 

and assigned as a weight to the target link. We chose the functional 
compatibility threshold (cf = 0.55) and the number of random 
species assigned to each locality (4500) after calibration experiments 
as the best values permitting realism in terms of local diversity and 
network structure (figs. S1 to S4). See also low sensitivity of model 
outputs to variation in cf (Supplementary Materials). 

Colonization 
At each step of the simulation, a species attempts dispersal from 
each locality to neighboring localities. A distance (in degrees) of dis-
persal is first randomly extracted from a log-Normal distribution 
with mean = 0 and SD = 1 (fig. S25). We added 1 to that distance 
to ensure that in the shortest-distance case, a species can still move 
to an adjacent cell in the grid. One cell in the grid at the randomly 
selected dispersal distance is chosen at random. Then, the potential 
colonizer species moves to the target locality with a probability 
computed by testing a species’ niche against the climatic condition 
of the target locality (in the same way as extinction probability is 
evaluated). 

Such a basic treatment of movement of species from one locality 
to another could conceivably increase diversity indefinitely. 
However, in the coextinction scenario where we modeled food 
webs explicitly, the process is realistically constrained because 
species need to find their place in the food web that is conducive 
to survival. This is modeled so that when a new species enters a 
community based solely on climate compatibility, the local food 

web is rebuilt (according to the same rules described above), 
taking the new species into account. This might lead to different 
outcomes in each case. 

For example, if the candidate colonizer is not a primary consum-
er and cannot find suitable resources, it cannot enter the food web, 
and colonization fails (i.e., it goes locally extinct). If a candidate col-
onizer does find a position in the food web, it can become associated 
with some resources and possibly become a resource for local con-
sumers itself without driving those resources to extinction. Alterna-
tively, if a candidate colonizer finds a position in the food web but 
ends up overexploiting one or more resources, it can lead to extinc-
tion of the resources and potentially itself and other species via ex-
tinction cascades. 

However, if a candidate colonizer is a “primary” consumer (i.e., a 
vertebrate capable of consuming plants and/or invertebrates), it will 
always be able to find a position in the food web and become a re-
source for local consumers, producing an ecologically unrealistic 
accumulation of diversity and resources. This is because of the spe-
cific architecture of the model, where we assumed herbivores and 
insectivores are the “basal” components of the networks (i.e., we 
assumed continued and unlimited availability of their resources). 
For this reason, we treated the incidences of insectivores and herbi-
vores moving to a new locality as a particular case. Here, candidate 
herbivore and insectivore colonizers are added to the local commu-
nity up to a maximum number of species, defined as the initial her-
bivore/insectivore diversity for that locality. If the diversity of 
insectivores and herbivores exceeds that number, the (herbivore 
and/or insectivore) species with least compatibility to local condi-
tions are removed (i.e., considered as outcompeted by the 
other species). 

In the scenario not accounting for coextinctions (i.e., not mod-
eling food webs explicitly), we applied the same criterion but ex-
tended to all species in the locality, regardless of their trophic 
ecology (with the only other criterion for colonization success 
being climatic compatibility) (see the Supplementary Materials 
for caveats). In this way, we treat the null expectation of primary 
extinctions only as a conservative case. 

Adaptation 
We assumed that species have a certain capacity to adapt to local 
(and changing) climates unrelated to the traits defining phenotype. 
For this, each species has the opportunity with probability padp- 
= 0.001 of shifting the center of its niche closer to the average 

local conditions at yearly intervals (i.e., a species during year y 
can move its niche to fit conditions recorded in year y−1). Here, 
both the average and upper/lower tolerance limits for both temper-
ature and precipitation are shifted along the segment connecting the 
center of the species’ niche and the mean local temperature and pre-
cipitation of the preceding year at a length given by the formula 
Cadp × A × dN, where Cadp is an overall simulation adaptation 
factor that we set to 0.01 (fixed for all simulations), A is species-spe-
cific adaptability (a random value between 0 and 1 assigned when 
creating the virtual species), and dN is the total distance between the 
center of the species’ niche and mean local conditions (see fig. S26). 
After that, the niche is recomputed on the basis of the updated pa-
rameters as described in the “Species climatic niche” section. 

We also explored the sensitivity of results to the choice of the 
adaptation parameters padp and Cadp (see the “Sensitivity analyses” 
section and figs. S6 and S7). Our goal in implementing adaptation 
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was not to model this process explicitly, which would be unfeasible 
due to the countless unknowns associated with the process. Rather, 
we wanted to increase the conservativeness of our model by provid-
ing species and communities with an additional mechanism to cope 
with climate change. Such a mechanism mimics local acclimation 
(with species shifting their niches to match local climate, as de-
scribed in fig. S26) and does not necessarily entail any evolutionary 
process. 

Coextinction 
We developed an original, intuitive model for simulating coextinc-
tions that accounts for both bottom-up and top-down effects of di-
versity loss. The model is applied to weighted, directed networks 
(with weights corresponding to species’ functional compatibility; 
see the previous section). Such networks can be represented in 
the form of a square adjacency matrix A of size n × n (where n is 
the total number of species in the network), with each entry Ai,j 
(with i,j in [1, …, n]) representing the interaction strength 
between the ith resource and the jth consumer. Thus, Σ(Ai,1:n) rep-
resents the total consumer pressure on resource i. Each value in row 
i is divided by the total consumer pressure and then multiplied by 
its original value to obtain a standardized weight accounting for 
competition for that resource. For example, if one resource is 
used by three consumers with respective weights 0.5, 0.2, and 0.1, 
the rescaled values are as follows: 0.5 × (0.5/0.8) = 0.3125, 
0.2 × (0.2/0.8) = 0.050, and 0.1 × (0.1/0.8) = 0.0125. 

The overall idea behind this step is to account for both the overall 
competition on a certain resource and resource-consumer compat-
ibility. Let us call the rescaled matrix A′. The column sum of the 
rescaled values, Σ(A′1:n,j), gives the amount of resource available 
to consumer j. If that amount falls below a certain threshold, the 
consumer goes extinct. Similarly, the row sum of the rescaled 
values, Σ(A′i,1:n), indicates the pressure of consumers on resource 
i. Should this pressure go beyond a given threshold (see below), 
then resource i goes extinct due to overconsumption. 

Species can also go extinct whenever they become disconnected 
from basal resources (in our case, corresponding to being detached 
from herbivores or insectivores). For each network, thresholds for 
consumer extinctions correspond to the minimum observed Σ(A′1: 

n,j) for any species i,j in the network at the time the network is gen-
erated. Similarly, thresholds for extinctions of resources following 
overconsumption are set to the maximum observed Σ(A′i,1:n) for 
any species i,j in the network at the time the network is generated. 
The thresholds are then updated after the burn-in phase (see the 
“Simulations” section) to ensure that networks are at equilibrium 
once the global-change simulation starts, and coextinction events 
can only be generated by removing some species from the 
network. Our initial, conservative assumption here is that no 
species goes extinct if conditions do not change (i.e., if environmen-
tal conditions remain stable and no species immigrate from differ-
ent locations). However, this does not prevent new species from 
entering the system and increasing local diversity. This assumption 
also necessarily gives a conservative estimate of total extinction rates 
given that our model does not explicitly incorporate existing extinc-
tion lags before each simulation beginning (45). 

The threshold for consumer coextinctions is assigned specifically 
to each network by referring to the most exploited resource in the 
system. This conservative assumption provides substantial opportu-
nity increase in consumer diversity (following species immigration 

from other localities) before top-down coextinctions are triggered. 
The top-down regulation mechanism serves two main purposes: (i) 
It accounts for the potential detrimental effects of alien colonizers 
on both native resources and potential competitors (with outcom-
petition processes treated with specific model rules; see the “Colo-
nization” section),and (ii) it accounts for decreasing resource 
diversity in a food web eliciting two different, concomitant 
effects: less-efficient consumers might be outcompeted by more ef-
ficient ones, and resources targeted by many different consumers 
might be overexploited. There are clearly ecological settings where 
these processes can be buffered or even reversed, but the rapid en-
vironmental and ecological change we modeled here is more likely 
to destabilize than to stabilize systems, consistent with increasing 
empirical evidence of ongoing global ecosystem collapse (2–5, 46). 

Our dynamic implementation of network weights also compen-
sates for the choice (dictated by the insurmountable computational 
challenge of modeling multispecies population dynamics for almost 
20,000 networks at a temporal span of nearly a century) of not track-
ing explicitly species abundances. Our implementation of weights is 
conceptually linked to species abundances in that the total interac-
tion weight of a consumer (which eventually determines its risk of 
going extinct following ecological change in the community/food 
web) increases with the availability of suitable resources and de-
clines with diversity of competitors. At the same time, the total pres-
sure on a resource determining its extinction risk increases with 
diversity of (compatible) consumers. It is reasonable to assume 
that when the consumer’s population has access to a large variety 
of suitable resources and it has few competitors, it will be larger 
than a population able to access fewer resources shared among 
many consumers. Similarly, the population of a resource (and 
hence, its availability to consumers) will decrease with increasing 
consumer pressure. It is therefore also reasonable to consider 
weights in our networks as a proxy for abundances, accounting 
for multispecies population dynamics in the global model without 
explicitly implementing them. 

Simulations 
We ran 100 simulations per climate-projection scenario. In each 
simulation, we generated a pool of species, and we populated a 
virtual Earth as described in previous sections. We did a burn-in 
phase where we permitted species to disperse to new areas over 
100 time steps. At each step of the burn-in and for each locality, 
we sampled one species and moved it to a randomly selected locality 
following a dispersal kernel of the form 1 + logN�[0,1]. We then 
evaluated a species’ survival probability under the climate condi-
tions from 2015 to 2020, keeping it in the simulation only if the 
probability of extinction pext < 0.05. We rebuilt food webs every 
10 steps. If the number of basal species increased because of colo-
nizers exceeding the initial number of basal species (i.e., at the be-
ginning of the simulation), we evaluated climatic suitability of all 
basal species, removing species in increasing order of local adapta-
tion until we restored the initial number of basal species. The burn- 
in phase provided our simulated systems with biogeographical 
realism, giving species a chance to colonize contiguous areas if cli-
matically suitable (and within a food web permitting the coloniza-
tion). In addition, it increased the robustness of networks to local, 
current (2015–2020) climatic conditions through the potential re-
placement of basal species with better-adapted colonizers. Last, it 
ensures that the initial changes recorded in the model run are not 
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biased by the short-range movements of species from the initial 
random pools assigned to each locality. 

We then simulated climate and land-use changes from 2020 to 
2100. At monthly steps and for each locality, we evaluated which 
species went extinct according to their suitability to withstand 
local temperature and precipitation conditions. We considered 
that species with pext ≤ 0.05 never went extinct (we used this prob-
ability to assign species to localities). In this way, we avoided 
“random” extinctions, such that extinctions only occurred because 
of climate and/or land-use change. We also assumed that in each 
year and in a given locality, a fraction of the species identical to 
the fraction of primary and secondary land lost from the previous 
year went extinct (see the next paragraph for additional details). 
Last, we simulated coextinctions in food webs due to primary ex-
tinctions and then updated the networks. We replicated the same 
simulations in a control scenario not accounting for networks 
and secondary extinctions. The two scenarios (coextinction and 
control) started from the same initial virtual Earth (after the 
burn-in, predispersal/colonization phase) but then ran each 
independently. 

The choice of using a monthly time step for climate change and 
yearly time steps for the land-use change was driven by the different 
temporal resolutions of the selected dataset. However, the different 
temporal resolutions are also well-suited to model the two different 
processes, considering the potential high variability of temperature 
and precipitation patterns on a relatively short time scale compared 
to the slower and usually nonreversible (at least in the short term) 
losses of primary land. 

Effect of land-use change on species diversity 
Land use change might have complex and case-specific effects on 
vertebrate communities. The response of local vertebrate diversity 
to the intensity of land-use change—measured as the fraction of 
primary and secondary land lost at each yearly step in the simulation 
compared to the previous year—might assume different shapes. 
Those ideally range from cases where small land-use changes 
result in disproportionately high diversity loss to the opposite 
where diversity persists in the face of severe losses of primary 
and/or secondary habitat. We opted for an intermediate scenario 
where the loss of species diversity is linearly proportional to land 
conversion. However, we also explored the potential effects on 
model outcomes of simulating different forms and magnitudes of 
response of local diversity to land use change. 

Specifically, we explored the potential impact on results of using 
different response curves of biodiversity loss versus relative land-use 
change of the following form 

loss ¼ 1 � ð1 � PLUCÞ
R1 if R2 ¼ � 1; or loss ¼ PR1

LUC if R2 ¼ 1 

where loss is the fraction of biodiversity lost following habitat loss 
via land-use change; PLUC is the fraction of primary and secondary 
land lost at a given time step compared to the previous one; R1 is a 
random number in the range {0,1}; and R2 is sampled from {−1,1} 
with equal probability. 

The two parameters R1 and R2 can be combined into a single 
parameter SLUC = R2(1 − R1), which describes the response 
curves of diversity loss in a continuous way from 1 (full diversity 
loss occurs even with no habitat loss) to −1 (diversity loss is 

invariant to full habitat loss), with SLUC = 0 representing the 
linear response we used in the main simulations (fig. S27). 

The effect of land-use change could also affect species differently 
depending on body size and trophic level (themselves partially de-
pendent properties). However, the mechanisms by which the 
impact of land-use change might reach different species in a com-
munity could be complex. Our model already accounts for such 
complexity. The expectation that large-bodied animals are more 
susceptible to the effects of climate and land use change results 
from observation of patterns, but the underlying mechanisms are 
unclear. This is where our model offers another unique advantage 
compared to existing studies—climate and land-use change are pre-
dicted to cause a global reduction in vertebrate body size (fig. S11) 
even without any initial assumption of an intrinsic relationship 
between body size and species vulnerability. That is, our model 
offers a mechanistic explanation of the process—body size reduc-
tion is mainly a consequence of how diversity loss propagates 
through food webs. That this well-known pattern arises naturally 
as an emergent property of “simple” rules provides strong addition-
al support of our model’s ecological realism. Nevertheless, we also 
explored the potential impact on our results of assuming an a priori 
relationship between vertebrate body sizes and vulnerability to land- 
use change in the sensitivity analyses (see below), devising a proce-
dure controlled by a single parameter (VLUC) as follows: Consider a 
local community with S species—at a given step, loss × S species will 
go extinct due to land-use change (with loss being the fraction of 
biodiversity lost following habitat loss via land-use change, comput-
ed as described above). To identify such species within the local 
species pool, we first sorted species by decreasing size. We then it-
erated the procedure of randomly switching the position of two 
species in the ordered list VLUC × S times. Last, we identified the 
first loss × S species in the sorted list as extinct. When VLUC = 0, 
the largest species always go extinct due to land-use change at 
each step, while increasing VLUC leads progressively toward 
random extinctions (fig. S28). 

Sensitivity analyses 
We explored the potential sensitivity of our model outputs to differ-
ent combinations of parameter values by devising a global sensitiv-
ity analysis where we modified (i) the number of steps in the burn- 
in phase (sb-i), (ii) the threshold for functional compatibility (cf ), 
(iii) species adaptation probability ( padp), (iv) species adaptation 
factor (Cadp), (v) the shape of the response curves of local diversity 
versus land-use change (SLUC), and (vi) the potential relationship 
between vertebrate body mass and vulnerability to land-use 
change (VLUC). Here, we ran an additional set of 100 simulations 
per future climatic scenario where we randomly sampled (uniform-
ly) sb-i from 0 to 1000, cf from 0.45 to 0.65, padp from 0 to 0.005, Cadp 
from 0 to 0.05, SLUC from −1 to 1, and VLUC from 0 to 1. For each 
simulation, we recorded the percentage loss of diversity as the re-
sponse for each climate change scenario. We then applied a 
machine-learning emulator—boosted-regression trees (47)—im-
plemented using the dismo R library (48) and its function 
gbm.step to examine the relative importance of each of the four var-
iables considered on the response. We set the error distribution 
family as Gaussian, the bag fraction to 0.75, the learning rate to 
0.001, the tolerance to 0.0001, and the tree complexity to 2 (i.e., 
first-order interactions only). To assess the relative effect of each 
variable on initial diversity, we calculated the boosted regression 
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tree metrics of relative influence (relative influence I is defined as 
the relative influences of the individual inputs xj on the variation 
of the function that maps the explanatory variables x to the response 
variable y) (49). 
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