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Abstract

Having a quick look at contemporary quantum mechanics, we immediately
see that the study of open quantum systems is of great relevance both for
fundamental reasons and for the development of quantum technologies that
will be able to display quantum advantage. An open quantum system is defined
in a very general way as a non-isolated quantum system that is interacting
with one or more external environments. This picture can give us a valuable
insight, for instance, into how a single superconducting qubit of a quantum
computer that is subject to thermal fluctuations loses its coherences, or into
the thermodynamics of an atom immersed in the electromagnetic field. Hence,
improving our understanding of the dynamics and characterization of open
quantum systems is a crucial challenge in the second quantum revolution, as
well as a fascinating step forward in the study of the deepest concepts in
Physics, such as the quantum to classical transition.

Motivated by renewed studies on dissipative collective effects, by new dis-
coveries about the features of noise in quantum computers, and by recent
experiments focused on many-qubit systems, the interest in multipartite open
quantum systems has recently risen. A dissipative collective effect may be
defined as the coherent interference of the emissions (and/or absorptions) of
many quantum particles interacting with external environments. Multipar-
tite open quantum systems are open systems made of multiple subsystems,
which can interact with each other and at the same time may be coupled
to local and/or collective environments. This type of open quantum systems
plays a crucial role, for instance, in the study of “crosstalk errors” in quantum
information processors, in the thermodynamic analysis of spin or harmonic
oscillator chains, as well as in the description of collective phenomena such as
superradiance and quantum synchronization. The characterization and simu-
lation of the dynamics of multipartite open quantum systems is the topic of
this doctoral dissertation.

This thesis consists of six original research articles and an introduction to
their methodology, scope, and significance. The first two publications explore
the validity and features of the so-called global and local master equations
(i.e., the equations of motion for open quantum systems), which are widely
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employed in quantum thermodynamics. In particular, these papers are fo-
cused on a particular type of master equation based on the “partial secular
approximation”, which is shown to be accurate in all regimes of validity of the
standard Markovian master equation. Moreover, the symmetry properties of
these master equations are discussed. The third scientific article shows how
the most common examples of multipartite open quantum systems can be
simulated through a platform of superconducting qubits coupled to a resistor
emitting thermal noise. The fourth publication studies how different collective
effects, such as quantum synchronization, subradiance and entanglement gen-
eration, can emerge in a model of two detuned qubits coupled to a common
bath. The fifth research paper introduces a quantum algorithm based on a
collision model that is able to simulate the most general Markovian multi-
partite quantum dynamics, and proves that this algorithm can be efficiently
simulated on a quantum computer. Finally, the sixth publication presents the
experimental implementation of this algorithm on a near-term quantum com-
puter, and assesses both theoretically and experimentally the features of noise
on the algorithm.

In conclusion, this thesis brings some relevant contributions to the field of
multipartite open quantum systems, not only regarding methodological ques-
tions, but also phenomenological predictions and experimental implementa-
tions on a quantum computer. These contributions include the description
and characterization of a general master equation for Markovian multipartite
open quantum systems, and some new procedures for the analog and digital
quantum simulation thereof.
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Resumen

Echando un vistazo rápido a la mecánica cuántica contemporánea, vemos de
inmediato que el estudio de los sistemas cuánticos abiertos es de gran relevan-
cia tanto por razones fundamentales como para el desarrollo de tecnologías
cuánticas que podrán mostrar “ventaja cuántica”. Un sistema cuántico abier-
to se define de manera muy general como un sistema cuántico no aislado que
interactúa con uno o más entornos. Este concepto puede llevarnos a compren-
der, por ejemplo, cómo un solo qubit superconductor de una computadora
cuántica que está sujeta a fluctuaciones térmicas pierde sus coherencias, o
la termodinámica de un átomo inmerso en el campo electromagnético. Por
lo tanto, mejorar nuestra comprensión de la dinámica y caracterización de
los sistemas cuánticos abiertos es un desafío crucial en la segunda revolución
cuántica, así como un fascinante paso adelante en el estudio de los conceptos
más profundos de la Física, como la transición del mundo cuántico al clásico.

Motivado por nuevos estudios sobre los efectos colectivos disipativos, por
nuevos descubrimientos sobre las características del ruido en computadoras
cuánticas y por experimentos recientes centrados en sistemas de muchos qu-
bits, el interés en los sistemas cuánticos abiertos y multipartitos ha crecido
recientemente. Un efecto colectivo disipativo puede definirse como la interfe-
rencia coherente de las emisiones (y/o absorciones) de muchas partículas cuán-
ticas que interactúan con entornos externos. Los sistemas cuánticos abiertos
y multipartitos son sistemas abiertos formados por múltiples subsistemas, que
pueden interactuar entre sí y al mismo tiempo pueden acoplarse a entornos
locales y/o colectivos. Este tipo de sistemas cuánticos abiertos juega un papel
crucial, por ejemplo, en el estudio de “errores de crosstalk” en los procesado-
res de información cuántica, en el análisis termodinámico de cadenas de espín
o osciladores armónicos, así como en la descripción de fenómenos colectivos
como la superradiancia y la sincronización cuántica. La caracterización y si-
mulación de la dinámica de sistemas cuánticos abiertos y multipartitos es el
tema de esta tesis doctoral.

Esta tesis consta de seis artículos de investigación originales y una introduc-
ción a su metodología, alcance y significado. Las dos primeras publicaciones
exploran la validez y las características de las ecuaciones maestras globales y lo-
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cales (es decir, las ecuaciones de movimiento para sistemas cuánticos abiertos),
que son ampliamente empleadas en la termodinámica cuántica. En particular,
estos artículos se centran en un tipo particular de ecuación maestra basada
en la “aproximación secular parcial”, que se puede demonstrar ser precisa en
todos los regímenes de validez de la ecuación maestra markoviana estándar.
Además, se discuten las propiedades de simetría de estas ecuaciones maestras.
El tercer artículo científico muestra cómo se pueden simular los ejemplos más
comunes de sistemas cuánticos abiertos y multipartitos a través de una plata-
forma de qubits superconductores acoplados a una resistencia que emite ruido
térmico. La cuarta publicación estudia cómo pueden surgir diferentes efectos
colectivos, como la sincronización cuántica, la subradiancia y la generación de
entrelazamiento cuántico, en un modelo de dos qubits desafinados acoplados
a un baño común. El quinto trabajo de investigación presenta un algoritmo
cuántico basado en un modelo de colisiones que es capaz de simular la diná-
mica cuántica multipartita y markoviana más general y demuestra que este
algoritmo se puede simular de manera eficiente en una computadora cuántica.
Finalmente, la sexta publicación presenta la implementación experimental de
este algoritmo en una computadora cuántica “near-term” y evalúa de manera
tanto teórica como experimental las características del ruido en este algoritmo.

En conclusión, esta tesis presenta algunas contribuciones relevantes en el
campo de los sistemas cuánticos abiertos y multipartitos, no solo con respecto
a las cuestiones metodológicas, sino también a las predicciones fenomenoló-
gicas y a las implementaciones experimentales en una computadora cuántica.
Estas contribuciones incluyen la descripción y caracterización de una ecuación
maestra general para sistemas cuánticos abiertos y multipartitos markovia-
nos, y algunos nuevos procedimientos para la simulación cuántica analógica y
digital de los mismos.
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Resum

Donant un cop d’ull a la mecànica quàntica contemporània, immediatament
reconeixem que l’estudi dels sistemes quàntics oberts és de gran rellevància
tant per raons fonamentals com per al desenvolupament de tecnologies quàn-
tiques que podran mostrar avantatges quàntiques. Un sistema quàntic obert
es defineix d’una manera molt general com un sistema quàntic no aïllat que
està interactuant amb un o més entorns externs. Aquesta imatge ens pot
donar una visió valuosa, per exemple, de com un únic qubit superconduc-
tor d’un ordinador quàntic que està subjecte a fluctuacions tèrmiques perd
les seves coherències, o de la termodinàmica d’un àtom immers en el camp
electromagnètic. Per tant, millorar la nostra comprensió de la dinàmica i la
caracterització dels sistemes quàntics oberts és un repte crucial en la segona
revolució quàntica, així com un pas endavant fascinant en l’estudi dels con-
ceptes més profunds de la Física, com ara la transició de la física quàntica a
clàssica.

Motivat per nous estudis sobre efectes col·lectius dissipatius, per nous
descobriments sobre les característiques del soroll en ordinadors quàntics i per
experiments recents centrats en sistemes de molts qubits, l’interès pels sistemes
quàntics oberts multipartits ha augmentat recentment. Un efecte col·lectiu
dissipatiu es pot definir com la interferència coherent de les emissions (i/o
absorcions) de moltes partícules quàntiques que interactuen amb entorns ex-
terns. Els sistemes quàntics oberts multipartits són sistemes oberts formats
per múltiples subsistemes, que poden interactuar entre ells i al mateix temps
es poden acoblar a entorns locals i/o col·lectius. Aquest tipus de sistemes
quàntics oberts tenen un paper crucial, per exemple, en l’estudi dels “errors
per acoblaments” en els processadors d’informació quàntica, en l’anàlisi ter-
modinàmica de cadenes d’oscil·ladors harmònics o de spin, així com en la
descripció de fenòmens col·lectius com la superradiància, i la sincronització
quàntica. La caracterització i simulació de la dinàmica de sistemes quàntics
oberts multipartits és el tema d’aquesta tesi doctoral.

Aquesta tesi consta de sis articles de recerca originals i una introducció
a la seva metodologia, abast i importància. Les dues primeres publicacions
exploren la validesa i les característiques de les anomenades equacions mestres
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globals i locals (és a dir, les equacions de moviment per a sistemes quàntics
oberts), que són àmpliament emprades en termodinàmica quàntica. En par-
ticular, aquests articles es centren en un tipus particular d’equació mestra
basada en l’“aproximació secular parcial”, que es demostra que és precisa en
tots els règims de validesa de l’equació mestra de Markoviana estàndard. A
més, es discuteixen les propietats de simetria d’aquestes equacions mestres. El
tercer article científic mostra com es poden simular els exemples més comuns
de sistemes quàntics oberts multipartits mitjançant una plataforma de qubits
superconductors acoblats a una resistència que emet soroll tèrmic. La quarta
publicació estudia com diferents efectes col·lectius, com ara la sincronització
quàntica, la subradiància i la generació d’entrellaçament, poden sorgir en un
model de dos qubits desajustats acoblats a un bany comú. El cinquè treball
de recerca introdueix un algorisme quàntic basat en un model de col·lisió
que és capaç de simular la dinàmica quàntica multipartita de Markoviana més
general, i demostra que aquest algorisme es pot simular de manera eficient en
un ordinador quàntic. Finalment, la sisena publicació presenta la implemen-
tació experimental d’aquest algorisme en un ordinador quàntic a curt termini,
i avalua tant teòricament com experimentalment les característiques del soroll
a l’algorisme.

En conclusió, aquesta tesi aporta algunes contribucions rellevants al camp
dels sistemes quàntics oberts multipartits, tant en qüestions metodològiques,
prediccions fenomenològiques com també una implementació experimental en
un ordinador quàntic. Aquestes contribucions inclouen la descripció i caracte-
rització d’una equació mestra general per a sistemes quàntics oberts multipar-
tits de Markov, i alguns nous procediments per a la seva simulació quàntica
analògica i digital.
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Tiivistelmä

Kun tarkastellaan nopeasti nykyaikaista kvanttimekaniikkaa, huomaamme he-
ti, että avoimien kvanttijärjestelmien tutkiminen on erittäin tärkeää sekä pe-
rustavanlaatuisista syistä että kvanttietujen näyttämisen mahdollistavien kvant-
titeknologioiden kehittämisen kannalta. Avoin kvanttijärjestelmä määritellään
yleisellä tavalla eristämättömäksi kvanttijärjestelmäksi, joka on vuorovaiku-
tuksessa yhden tai useamman ulkoisen ympäristön kanssa. Tämä kuva voi
antaa meille arvokkaan käsityksen esimerkiksi siitä, kuinka lämpövaihteluil-
le riippuvainen suprajohtava kubitti kvanttitietokoneessa menettää koherens-
sinsa tai sähkömagneettiseen kenttään upotetun atomin termodynamiikasta.
Näin ollen ymmärryksemme parantaminen avoimien kvanttijärjestelmien dy-
namiikan ja karakterisoinnin suhteen on ratkaiseva haaste toisessa kvantti-
vallankumouksessa sekä kiehtova edistysaskel fysiikan syvimpien käsitteiden,
kuten kvanttimekaniikan ja klassisen mekaniikan rajan, tutkimisessa.

Uusiutuneiden dissipatiivisten kollektiivisten vuorovaikutusten tutkimus-
ten, kvanttitietokoneiden kohinan ominaisuuksista tehtyjen uusien löytöjen ja
viimeaikaisten monikubittisiin järjestelmiin keskittyneiden kokeiden seurauk-
sena kiinnostus moniosaisiin avoimiin kvanttijärjestelmiin kohtaan on viime
aikoina lisääntynyt. Dissipatiivinen kollektiivinen vuorovaikutus voidaan mää-
ritellä monien ulkoisen ympäristön kanssa vuorovaikutuksessa olevien kvant-
tihiukkasten emission (ja/tai absorption) koherentiksi häiriöksi. Moniosaiset
avoimet kvanttijärjestelmät ovat avoimia järjestelmiä, jotka koostuvat useista
osajärjestelmistä, jotka voivat olla vuorovaikutuksessa toistensa kanssa ja sa-
malla kytkeytyä paikallisiin ja/tai kollektiivisiin ympäristöihin. Tämän tyyp-
pisillä avoimilla kvanttijärjestelmillä on ratkaiseva rooli esimerkiksi kvanttitie-
tojen prosessorien “ylikuulumisvirheiden” tutkimuksessa, spin- tai harmonis-
ten oskillaattoriketjujen termodynaamisessa analyysissä sekä kollektiivisten
ilmiöiden, kuten supersäteilyn ja kvanttisynkronoinnin kuvauksessa. Monio-
saisten avoimien kvanttijärjestelmien dynamiikan karakterisointi ja simulointi
on tämän väitöskirjan aiheena.

Tämä opinnäytetyö koostuu kuudesta alkuperäisestä tutkimusartikkelis-
ta ja johdannosta niiden metodologiaan, laajuuteen ja merkitykseen. Kak-
si ensimmäistä julkaisua tutkivat niin kutsuttujen globaalien ja paikallisten
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pääyhtälöiden (eli avoimien kvanttijärjestelmien liikeyhtälöiden) pätevyyttä
ja ominaisuuksia, joita käytetään laajalti kvanttitermodynamiikassa. Erityi-
sesti nämä artikkelit keskittyvät tietyntyyppiseen pääyhtälöön, joka perustuu
osittaiseen maalliseen approksimaatioon, joka on osoitettu olevan tarkka kai-
kissa standardin Markovin pääyhtälön kelpoisuusjärjestelmissä. Lisäksi käsi-
tellään näiden pääyhtälöiden symmetriaominaisuuksia. Kolmas tieteellinen ar-
tikkeli osoittaa, kuinka yleisimpiä esimerkkejä moniosaisista avoimista kvant-
tijärjestelmistä voidaan simuloida suprajohtavien kubittien alustalla, joka on
kytketty lämpökohinaa lähettävään vastukseen. Neljännessä julkaisussa tutki-
taan, kuinka erilaiset kollektiiviset efektit, kuten kvanttisynkronointi, subra-
dianssi ja takertuminen, voivat syntyä mallissa, jossa kaksi viritettyä kubittia
on kytketty yhteiseen kylpyyn. Viides tutkimusartikkeli esittelee törmäysmal-
liin perustuvan kvanttialgoritmin, joka pystyy simuloimaan yleisintä Marko-
vin moniosaista kvanttidynamiikkaa ja todistaa, että tämä algoritmi voidaan
simuloida tehokkaasti kvanttitietokoneella.

Lopuksi, kuudes julkaisu esittelee tämän algoritmin kokeellisen toteutuk-
sen lähiajan kvanttitietokoneella ja arvioi sekä teoreettisesti että kokeellisesti
algoritmin kohinan ominaisuuksia. Yhteenvetona voidaan todeta, että tämä
opinnäytetyö tuo olennaisia panoksia moniosaisten avoimien kvanttijärjestel-
mien alaan ei pelkästään metodologisessa mielessä, mutta myös fenomenolo-
gisia ennusteita kokeellisille toteutuksille kvanttitietokoneella. Nämä panokset
sisältävät yleisen pääyhtälön kuvauksen ja karakterisoinnin Markovin monio-
saisille avoimille kvanttijärjestelmille ja uusia menetelmiä niiden analogisille
ja digitaalisille kvanttisimulaatioille.
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Chapter 1

Introduction

The perfect preparation, manipulation and measurement of individual quanta
are the Holy Grail of the second quantum revolution, which would lead to
a scalable fault-tolerant quantum computer and to quantum advantage on
a plethora of tasks, including the simulation of the dynamics of many-body
quantum systems. However, since the very early days of quantum information
and computing scientists discovered that it is impossible to isolate a single
quantum system from its surroundings. The quantum particle we aim to
manipulate quickly gets entangled with many other quantum systems with
which it inevitably interacts, leading to a phenomenon known as decoherence
[7]. This jeopardizes the local “quantumness” of the quantum particles, and
therefore hinders the quantum operations we need to perform in order to
achieve advantage with respect to applications based on systems operating in
the classical regime. These considerations boosted the study of the theory of
open quantum systems [8], although the origins of this field can be traced back
to the very early days of modern quantum mechanics [9].

An open quantum system interacts with some (or many) quantum parti-
cles around it, which are usually referred to as “the environment”. For this
reason, the dynamics of the state of the system alone is not characterized by
the standard Schrödinger equation anymore, but it needs a more sophisticated
description. A typical example of an open quantum system is a single trapped
ion or an individual superconducting qubit interacting with the external elec-
tromagnetic field.

The theory of open quantum systems is nowadays a well-consolidated
framework whose fruitful results have been collected in different books on
the topic [8, 10–14]. The Markovian and non-Markovian dynamics of, for in-
stance, a single spin or a bosonic field immersed in a thermal or squeezed bath
is well understood [8]. A less studied problem is the evolution of a multipartite
open quantum system. That is, a structured open quantum system composed
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of multiple subsystems that interact with local and/or collective baths. The
characterization and quantum simulation of this kind of open quantum sys-
tems is the subject of this doctoral thesis.

The interest in multipartite open quantum systems has grown in recent
years due to a number of reasons. For instance, “cross-talk errors” have been
found to play a relevant role in the noise of quantum computers [15–17]. These
are non-local errors that affect more than one qubit at a time and may be due
to the operations performed on distant qubits. To properly characterize the
noise that generates cross-talk errors, we inevitably have to describe the qubits
of the quantum computer as a multipartite open quantum system interacting
with a highly non-local bath.

The characterization of the environment as an enemy for quantum compu-
tation is not the only motivation for the study of multipartite open quantum
systems. Indeed, already twenty years ago it was shown that the environment
can also act as a friend: if engineered in a proper way, a collective environment
on multiple subsystems can generate decoherence-free-subspaces [18, 19], i.e.,
subspaces of the Hilbert space of the multipartite open quantum system where
the dynamics is fully unitary, and dissipation and decoherence do not emerge.

Multipartite open quantum systems are also of great interest for the grow-
ing study of dissipative collective phenomena, such as superradiance [20–22] or
subradiance [23] in a structured atomic system, the dissipation-driven synchro-
nization of quantum particles [24], or dissipative quantum phase transitions
[25]. Last but not least, the study of multipartite open quantum systems is
particularly relevant for quantum thermodynamics. Understanding how heat,
work and entropy are exchanged in structured open systems, and how the
latter reach thermalization depending on their internal interaction and on the
non-locality of the thermal baths they are immersed in, is not a trivial task.
For instance, an important discussion has arisen few years ago (and it is still
partially ongoing) on which master equations are suitable for the description
of multipartite open quantum systems, and, specifically, on which of them
fulfill the laws of quantum thermodynamics [26–30].

Building a complete and comprehensive theory of multipartite open quan-
tum systems is a formidable task that will require a collective effort of the
scientific community for some decades. This thesis is intended to provide a
solid contribution to this effort. More specifically, the research questions we
will address are the following:

1. What is a sufficiently general class of Markovian master equations for
the accurate description of multipartite open quantum systems? What
are their properties? What are their symmetries, if any? What are the
physical systems to which they apply?

2. Are there some interesting collective effects that are captured by this
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class of master equations?

3. How can we simulate some examples of multipartite open quantum sys-
tems using a superconducting qubit platform?

4. Can we find a general algorithm to simulate multipartite open quantum
systems on a quantum computer?

5. How is the performance of such an algorithm on the currently available
near-term quantum computers? What are the noise limitations thereof?

Publication I and Publication II address the first research question. In par-
ticular, they discuss the validity of a Markovian master equation derived un-
der the so-called partial secular approximation, and they explore its physical
and mathematical properties. Publication III deals with the third research
question and, inspired by the experimental works of collaborators at Aalto
University, shows how resistive elements in superconducting circuits can be
employed to engineer an analog simulation of multipartite open quantum sys-
tems immersed in thermal baths. Publication IV builds on the results of Pub-
lications I, II and III and, addressing the second research question, shows
how subradiance, quantum synchronization and environment-mediated entan-
glement generation can be observed on a pair of superconducting transmon
qubits coupled to a common resistor. Publication V provides a complete and
satisfactory answer to the fourth research question by putting forward an al-
gorithm based on a so-called collision model that is able to simulate the most
general Markovian dynamics of a multipartite open quantum system. The
relevance of the multipartite collision model is not restricted to quantum sim-
ulation, as this protocol may be of interest also for the kinetic description of
the thermalization of a multipartite open quantum system and for the study of
its quantum thermodynamic properties. Finally, the experimental results on
a near-term quantum computer presented in Publication VI answer the fifth
research question. Moreover, Publication VI provides a both theoretical and
experimental noise analysis for the errors of the multipartite collision model.

The structure of this doctoral dissertation is the following. In Chapter 2
we briefly introduce the most relevant theoretical tools to study multipartite
open quantum systems, so as to provide the reader with the necessary notions
to go through the results of this thesis. The scope and the findings of the
research papers that are part of this dissertation are discussed in Chapter 3
without getting into the details, roughly following the research questions that
we have listed above. Chapter 3 also quickly discusses the background of
these research questions and the most recent developments in the field. Some
concluding remarks are drawn in Chapter 4. Finally, the original publications
that are part of this doctoral thesis are attached at the end of this manuscript,
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and the reader can find there the details and the derivations of all the results
of this dissertation.
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Chapter 2

Theoretical methods

In this chapter, we introduce the main theoretical tools that we need to study
the characterization and simulation of multipartite open quantum systems.
First, we will quickly present the concept of quantum dynamical maps1, which
is at the basis of the theory of quantum information and quantum computa-
tion. We will then discuss how we can introduce different figures of merit to
determine how different two quantum maps are. After that, we will present
the general structure of a Markovian master equation for the dynamics of an
open quantum system. We will also focus on how the ideas of “symmetry”
and “conserved quantity” can be introduced in the evolution generated by this
master equation. After reviewing the formalism of open system quantum me-
chanics in the Liouville space, we will see how a Markovian master equation
can be derived starting from the microscopic model of an open quantum sys-
tem weakly coupled to an external environment. Finally, we will observe that
the same kind of master equation can be simulated through a very particular
type of quantum maps, namely the collision models.

2.1 Quantum states and quantum dynamical maps

Following textbook quantum mechanics [31, 32], we postulate that the state
of a quantum system is completely described by its density matrix ρ, which
lives in the convex set S(H) characterized as:

S(H) = {ρ ∈ B(H) such that ρ ≥ 0, Tr[ρ] = 1}, (2.1)

1Equivalently, we will also employ the terms “quantum operation” and “quantum chan-
nel”. Although their definitions may vary depending on the textbook and scientific com-
munity, in this thesis we will make use of these terms and of “quantum map” as if they
were synonyms. In particular, for simplicity we will assume they all refer to trace-preserving
maps.

5



Marco Cattaneo

where B(H) is the space of bounded operators on the Hilbert space of the
system H. For simplicity, the investigation throughout the thesis will involve
only finite-dimensional system Hilbert spaces H, therefore ρ has always a well-
defined trace. Since ρ is a semi-positive operator, it can always be diagonalized
and written as

ρ =
d∑

j=1
cj |vj⟩⟨vj | , (2.2)

where d = dim(H) and cj ≥ 0,
∑d

j=1 cj = 1. Eq. (2.2) provides us with a
convenient interpretation of the density matrix: the most general description
of a quantum system can be thought of as a convex “incoherent” combination
of a set of physical states |vj⟩ ∈ H, each of them picked with a probability cj .
In this way, we are putting forward a fully probabilistic interpretation of the
density matrix as a mathematical object to describe our classical uncertainty
(i.e., the probabilities {cj}d

j=1) on the “real” physical state of the system,
which is characterized by a vector in H.

After introducing the general description of the state of a quantum system,
we run into another crucial postulate of quantum mechanics. The evolution
of the density matrix ρ in time for a closed quantum system, ρ(t), is driven
by the von Neumann equation, at least if no measurements are performed on
the quantum system [31]:

d

dt
ρ(t) = − i

ℏ
[H, ρ(t)], (2.3)

where H is the system Hamiltonian, which, for simplicity, is time-independent.
The dynamics of ρ(t) can also be expressed as:

ρ(t) = U(t)[ρ(0)] = U(t)ρ(0)U †(t), (2.4)

where U(t) is a unitary operator derived from Eq. (2.3), which can be written
as:

U(t) = e− i
ℏHt. (2.5)

U(t) is a linear operator acting on B(H), therefore we will refer to it as a
superoperator.

Let us now consider the quantum state of a subsystem of H only. This is
obtained through a mathematical operation called partial trace [7, 8], which
can be thought of as the generalization of the marginal probability distribution
in classical statistical mechanics to quantum physics:

ρS(t) = TrE [ρ(t)], (2.6)

where we label as “S” the subsystem we are interested in, and as “E” all the
complementary subsystems in H, such that we can decompose the latter as
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H = HS ⊗ HE . This conceptual separation of the Hilbert space of the overall
quantum system H is at the basis of the theory of open quantum systems [8].
Indeed, from now we will refer to S as the “(open) system” and to E as the
“environment” into which S is immersed. Typically, we are interested in the
dynamics and characterization of S only, while we do not aim to monitor the
state of the environment at each instant of time.

A key issue of the theory of open quantum systems is the fact that we
cannot write an evolution driven by the von Neumann master equation as
in Eq. (2.4) for the reduced state ρS(t). A quick look at Eq. (2.6), indeed,
reveals that the evolution of ρS(t) is in general non-unitary. We therefore have
to introduce a more general set of operations beyond the unitary superoperator
U(t) to be able to describe the evolution of an open quantum system. We will
refer to this as the set of quantum maps2 ϕ : B(HS) → B(HS), defined by the
following three properties:

Linearity Recalling the interpretation of a density matrix as a classical av-
erage of pure quantum states in Eq. (2.2), making the overall density
matrix ρS evolve must correspond to implementing the evolution of each
pure state |vj⟩ in the convex combination ρS and then taking the clas-
sical average of the evolved states. That is, the map must be linear:

ϕ[A + B] = ϕ[A] + ϕ[B] for all A, B ∈ B(HS). (2.7)

Trace-Preserving When we apply the evolution ϕ on a physical quantum
state, we expect to obtain another physical quantum state. Density
matrices associated with physical states have trace equal to 1, therefore
we assume:

Tr[ϕ[A]] = Tr[A] for all A ∈ B(HS). (2.8)

Complete positivity Following the same reasoning as for the trace-preserving
property, the output of a quantum map applied to a physical state must
be a semipositive-definite density matrix (i.e., the map must be posi-
tive). Moreover, the same must hold when we consider the quantum
map ϕ ⊗ IC on a general dilation of the Hilbert space of the system
only. Indeed, a local evolution of an entangled state living in both S and
the dilated space C must still yield a physical density matrix. This is
captured by a property called complete positivity:

ϕ ⊗ ICk×k ≥ 0 for all k ≥ 0. (2.9)
2Note that, for simplicity, we are defining both the domain and codomain of ϕ as the

space of bounded operators on HS . We will see that this will be particularly convenient
when solving the dynamics of an open quantum system. However, physically we should
always think of ϕ as being applied to density matrices in S(HS) and returning density
matrices.
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Because of these properties, the quantum maps are also often called “com-
pletely positive trace preserving (CPTP) maps”.

The “physical version” [7, 33] of a well-known theorem by Stinespring [34]
on completely positive maps states that every quantum map can be written
as:

ϕ[ρS ] = TrE [UIρS ⊗ ρEU †
I ], (2.10)

where HE is a Hilbert space, ρE is a density matrix in S(HE) and UI is a
suitable unitary operator acting on the dilated Hilbert space H = HS ⊗ HE .
By making UI depend on time t, we can therefore think of any quantum map
ϕ(t) describing the evolution of the state of the system at time t as coming
from a suitable unitary dynamics between the state of the system and the
state of some external environment as in Eq. (2.6), and viceversa.

Finally, we provide yet another useful characterization of a quantum map
ϕ by introducing the Choi matrix Φ [35]. It can be shown that there is an
isomorphism between any CPTP quantum map ϕ acting on the operators on
a dS-dimensional Hilbert space HS and a positive definite d2

S × d2
S matrix Φ

defined by:

Φ =

 ϕ(|e1⟩⟨e1|) . . . ϕ(|e1⟩⟨edS
|)

... . . . ...
ϕ(|edS

⟩⟨e1|) . . . ϕ(|edS
⟩⟨edS

|)

 , (2.11)

where {|ej⟩}dS
j=1 is the canonical basis of HS , i.e., |e1⟩ = (1, 0, . . . , 0)T , and

so on. Analogously, we can write the Choi matrix as Φ =
∑dS

j,k=1 |ej⟩⟨ek| ⊗
ϕ(|ej⟩⟨ek|).

2.2 Distances between quantum maps

As discussed in the previous section, the most general dynamics of an open
quantum system initialized in a state not correlated with the environment is
driven by a CPTP quantum map ϕ. In particular, we may think of implement-
ing a certain quantum simulation algorithm on a quantum computer, and the
ideal evolution until time t simulated by this quantum algorithm may be rep-
resented as a quantum map ϕ(t). When the algorithm will be implemented on
a real quantum computer, however, we will most likely find out that noise and
errors in the device will have affected the accuracy of the quantum simulation
algorithm. As a consequence, the actual evolution until time t will not be
described anymore by the ideal ϕ(t), but by a different quantum map ϕ∗(t)
that characterizes the noisy dynamics. The mismatch between ϕ(t) and ϕ∗(t)
can be thought of as the error of the quantum simulation algorithm due to
the noise on the quantum computer we are using in the laboratory. Hence,
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we are interested in introducing some measures of “how distant” two quantum
channels are. This is what we will briefly study in this section.

First of all, let us quickly define which are the most employed measures of
distance between two quantum states. To do this, we need to introduce the
so-called Schatten norms for operators in B(HS) [36, 37].

Definition 1 (Schatten norms). The Schatten p-norm (where p ∈ [1, ∞]) of
A ∈ B(HS) is given by:

∥A∥p = Tr
[(√

A†A
)p] 1

p
. (2.12)

For our purposes, it is sufficient to focus on the cases p = 1 and p = ∞:

Definition 2 (Trace norm). The trace norm of an operator A ∈ B(HS) is the
Schatten 1-norm:

∥A∥1 = Tr
[√

A†A
]
. (2.13)

Definition 3 (Operator norm). The operator norm (or infinity norm) of A ∈
B(HS) is the Schatten ∞-norm:

∥A∥∞ = max
|v⟩∈HS : ∥v∥=1

∥A |v⟩∥ . (2.14)

The vector norm (without any subscript) ∥v∥ is the standard Euclidean norm
in the Hilbert space HS .

Two key properties of these Schatten norms will be particularly useful for
our discussion [38]:

∥A ⊗ IB∥∞ = ∥A∥∞ , ∥A ⊗ IB∥1 = dB ∥A∥1 ,

∥TrB[XSB]∥∞ ≤ dB ∥XSB∥∞ , ∥TrB[XSB]∥1 ≤ ∥XSB∥1 ,
(2.15)

for all A ∈ B(HS) and all XSB ∈ B(HS ⊗ HB), where we have introduced an
additional Hilbert space HB whose dimension is dB.

By making use of the trace norm, we can introduce one of the most common
measures of distance between quantum states, namely the trace distance:

T (ρ, σ) = 1
2 ∥ρ − σ∥1 , with ρ, σ ∈ S(HS). (2.16)

The trace distance is a well-defined metric on S(HS), it satisfies the inequality
0 ≤ T (ρ, σ) ≤ 1, and it is equal to 1 if and only if ρ and σ are orthogonal states.
It can be employed to estimate the maximum probability of distinguishing
between two quantum states by making proper measurements thereon via
suitable positive operator-valued measures (POVMs) [7].
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Another figure of merit to estimate how different two quantum states are
is the fidelity:

F(ρ, σ) =
∥∥√

ρ
√

σ
∥∥2

1 =
(

Tr
[√√

ρσ
√

ρ

])2
, with ρ, σ ∈ S(HS). (2.17)

If ρ = |ψ⟩ ⟨ψ| is pure, then F(ρ, σ) = Tr[ρσ]. The fidelity of two quantum
states goes from 0 to 1, and it is 1 if and only if ρ = σ. However, the infidelity
1 − F(ρ, σ) is not a well-defined mathematical distance because it does not
satisfy the triangle inequality.

The infidelity and the trace distance between two quantum states are con-
nected through the following inequality:

1 −
√

F(ρ, σ) ≤ T (ρ, σ) ≤
√

1 − F(ρ, σ). (2.18)

Let us now address the distance between two quantum maps ϕ1 and ϕ2.
A quite intuitive figure of merit is based on one-to-one superoperator norm:

Definition 4 (One-to-one superoperator norm).

∥T ∥1→1 = max
∥ρ∥1=1

∥T [ρ]∥1 , (2.19)

where T is a generic linear bounded superoperator (it does not have to be
a quantum map). If we set T = ϕ1 − ϕ2, then we can introduce a proper
mathematical distance between these channels.

According to Eq. (2.15), the 1 → 1 superoperator norm of the tensor prod-
uct between an operator on HS and the identity on an additional Hilbert
space is proportional to the dimension of the latter. This leads us to the quite
counter-intuitive notion that the 1 → 1 distance between two quantum chan-
nels depends on whether or not there is an additional identity channel acting
on an extended Hilbert space. This suggests that we should look for a more
refined distance between quantum maps. We can notice that the definition in
Eq. (2.19) is based on the trace distance between two quantum states, which,
as previously said, is related to the capability of distinguishing between them.
However, a CPTP map is still positive when an additional tensor product with
the identity on a bigger Hilbert space is introduced. Therefore, we can make
use of this property to distinguish between entangled quantum states living
in a dilated Hilbert space. These considerations lead us to the diamond norm
[36, 37]:

Definition 5 (Diamond norm). The diamond norm of a superoperator T is
defined as:

∥T ∥✸ = ∥T ⊗ IA∥1→1 , (2.20)
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where IA is the identity superoperator over a copy of the space B(HS). It can
be shown that ∥T ⊗ IB∥✸ = ∥T ∥✸ for all dilations HB. The diamond norm is
usually computed through a semidefinite program [39].

Starting from the diamond norm, we can introduce the corresponding
mathematical distance between quantum maps:

Definition 6 (Diamond distance). The diamond distance between ϕ1 and ϕ2
is

d✸(ϕ1, ϕ2) = 1
2 ∥ϕ1 − ϕ2∥✸ . (2.21)

Another relevant figure of merit to estimate how far two quantum maps
are is the average gate fidelity, which is very often used for characterizing
quantum computers, and is defined between a unitary superoperator Ug (the
“gate”) and a generic quantum channel ϕ:

Definition 7 (Average gate fidelity). If Ug is the unitary superoperator as-
sociated with a quantum gate and ϕ is a noisy implementation thereof, the
average gate fidelity is [40]:

φ(Ug, ϕ) =
∫

dµ(ψ)F(Ug[|ψ⟩ ⟨ψ|], ϕ[|ψ⟩ ⟨ψ|])

=
∫

dµ(ψ) ⟨ψ|U−1
g ϕ[|ψ⟩ ⟨ψ|]|ψ⟩ ,

(2.22)

where dµ(ψ) is the Haar measure over the pure states of the HS and F is the
fidelity in Eq. (2.17). The average gate infidelity is simply given by r(Ug, ϕ) =
1 − φ(Ug, ϕ).

Note that, in general terms, to find the values of the average gate fidelity, of
the diamond distance between an ideal gate and its noisy implementation, or
of the one-to-one superoperator norm, we need perfect knowledge of the noisy
map ϕ. This is obtained, for instance, by reconstructing the Choi matrix Φ
(see Eq. (2.11)) associated with ϕ. To do this, we typically need to perform a
quite complex quantum task called full process tomography [7, 41].

The average gate fidelity estimates the mismatch between the application
of the physical realization of a quantum gate and of its ideal counterpart
averaged over all the possible initial states. In contrast, if we employ the
diamond distance to estimate the difference between these quantum maps we
are considering the worst-case-scenario error [42], as the diamond norm makes
use of the one-to-one norm, which in turn is computed through a maximization
over all the possible states, as expressed in Eq. (2.19). An upper bound for
the diamond distance based on the average gate infidelity has been introduced
[43]:

d✸(Ug, ϕ) ≤ dS

√
(1 + d−1

S )(r(Ug, ϕ)), (2.23)
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where we recall that dS = dim(HS). Note that the dependence between
average gate infidelity and diamond norm involves a square root, exactly as
between the state infidelity and the trace distance according to Eq. (2.18).
The bound in Eq. (2.23) can be improved if more features of the noise in ϕ
are known, see for instance Ref. [44].

2.3 Markovian dynamics of a quantum system

The most famous and successful result of the theory of open quantum systems
is the description of any Markovian dynamics by means of a well-characterized
master equation. Defining what “Markovianity” means in the context of the
physical evolution of a quantum system is not a trivial task. Extensive studies
on this problem can be found in the literature, e.g., see the reviews in Refs. [45–
47]. For our purposes, we say that a quantum evolution characterized by a
time-labeled family of quantum maps ϕ(t) is Markovian if the latter satisfies
the following semigroup property:

ϕ(t1)ϕ(t2) = ϕ(t1 + t2) ∀t1, t2 ≥ 0. (2.24)

This kind of quantum map is usually referred to as a quantum dynamical
semigroup [8, 10], with the additional physically motivated assumption ϕ(0) =
IS , i.e., without losing generality the dynamics starts at time t = 0.

Under reasonable mathematical assumptions [10], there exists a linear op-
erator L that is the generator of the quantum dynamical semigroup ϕ(t)
through:

ϕ(t) = exp(Lt). (2.25)

In this thesis, we will refer to L as the Liouvillian superoperator. L is given
by:

L = lim
t→0+

ϕ(t) − IS

t
. (2.26)

If the state of the system at time t is obtained through the application
of the quantum dynamical semigroup through ρS(t) = ϕ(t)[ρS(0)], then the
master equation driving the system dynamics can be written as follows:

d

dt
ρS(t) = L[ρS(t)]. (2.27)

Remarkably, the general structure of the master equation above is known
for any L defined as in Eq. (2.26), that is, for any Markovian dynamics of
an open quantum system ρS . It was presented in its generality by Gorini,
Kossakowski and Sudarshan [48] and independently by Lindblad in 1976 [49].
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For this reason, it is broadly known as the Gorini-Kossakowski-Sudarshan-
Lindblad (GKLS) master equation. If the readers are interested in the history
and origin of this master equation, we refer them to Ref. [50].

The non-diagonal form of the GKLS master equation for an open system
living in the Hilbert space HS is given by [8, 48]:

L[ρS(t)] = − i

ℏ
[H, ρS(t)] +

dS
2−1∑

j,k=1
γjk

(
FjρS(t)F †

k − 1
2{ρS(t), F †

k Fj}
)

, (2.28)

with dS = dim(HS). H = H† is a self-adjoint operator that we call effective
Hamiltonian. {Fj}dS

2−1
j=1 with Tr

[
FjF †

k

]
= δjk are some orthonormal traceless

operators that together with the identity form a basis of B(HS). We refer to
them as the Gorini-Kossakowski-Sudarshan (GKS) operators. The coefficients
γjk are the elements of the semipositive Kossakowski matrix γ ≥ 0.

Being semipositive, the Kossakowski matrix can be diagonalized through
a suitable unitary matrix C. Then, if we introduce a new set of operators Lk,
namely the Lindblad operators, through Fj =

∑dS
2−1

k=1 CkjLk, we obtain the
diagonal form of the GKLS master equation [8, 49]:

L[ρS(t)] = − i

ℏ
[H, ρS(t)] +

dS
2−1∑

k=1
Γk

(
LkρS(t)L†

k − 1
2{ρS(t), L†

kLk}
)

, (2.29)

where Γk =
∑dS

2−1
j,j′=1 Ckjγjj′C∗

kj′ are the decay rates of the master equation,
which are the eigenvalues of the Kossakowsky matrix, and therefore they are
non-negative.

We conclude this section by discussing the adjoint master equation. As for
the standard framework of unitary quantum mechanics [32], it may sometimes
be useful to work in the Heisenberg picture, that is, studying the time evolution
of the system observables instead of the system states. Indeed, what we are
interested in are ultimately the mean values of some system operator (say
A ∈ B(HS)) at time t:

TrS [AρS(t)] = TrS [Aϕ(t)[ρS(0)]] = TrS [(ϕ†(t)[A])ρS(0)] = TrS [AH(t)ρS(0)],
(2.30)

where AH(t) is the Heisenberg picture operator. If ϕ(t) is a quantum dynam-
ical semigroup, the GKLS adjoint master equation for the evolution of any
operator AH(t) ∈ B(HS) is [8]:

d

dt
AH(t) =L†[AH(t)] = i

ℏ
[H, AH(t)]

+
dS

2−1∑
k=1

Γk

(
L†

kAH(t)Lk − 1
2{AH(t), L†

kLk}
)

,

(2.31)

13
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where all the operators and coefficients are the same as in Eq. (2.29). The
adjoint Liouvillian superoperator is the generator of the adjoint quantum dy-
namical semigroup through ϕ†(t) = exp

(
L†t

)
.

2.4 Symmetries in open quantum systems

The notion of symmetry is crucial in any field of Physics, and the theory
of open quantum systems makes no exception. Let us suppose that G is
a group and U(g) is a unitary representation thereof acting on the Hilbert
space of the system HS for any g ∈ G. Let us now consider a quantum map
ϕ : B(HS) → B(HS). We say that ϕ is covariant under the action of the group
G if [51–53]:

UgϕU†
g = ϕ ∀g ∈ G, (2.32)

or equivalently [Ug, ϕ] = 0, where we have introduced the superoperator
Ug[A] = U(g)AU †(g) for all A ∈ B(HS). Note that this definition corresponds
to:

ϕ[U(g)ρSU †(g)] = UgϕU†
g [U(g)ρSU †(g)] = U(g)ϕ[ρS ]U †(g), (2.33)

which justifies the term “covariance” for this property.
The notion of covariance has been widely employed to study resource theo-

ries and the constraints they impose on the evolution of open quantum systems
[54–58]. Moreover, it has been observed that, crucially, Noether’s theorem does
not hold anymore for open quantum dynamics [59]. That is, we cannot assign
a conserved quantity of the evolution to each dynamical symmetry given by
Eq. (2.32).

For our purposes, it is of crucial importance to focus on the notion of co-
variance and its relation with conserved quantities for a quantum dynamical
semigroup. This problem has been extensively discussed in two seminal pa-
pers about ten years ago [60, 61]. Given ϕ(t) = eLt, Eq. (2.32) for all t is
transformed into:

UgLU†
g = L or equivalently [Ug, L] = 0 ∀g ∈ G, (2.34)

which is the definition of a quantum dynamical semigroup covariant under the
action of the group G. Eq. (2.34) is usually referred to as a “weak symmetry”
[60] or a “symmetry on the superoperator level” [2, 61].

Let us now suppose that G is an Abelian group that can be characterized as
a continuous symmetry U(g) = exp(igJ), where J is some system observable
and (with abuse of notation) g ∈ R. Similarly, we can write the superoperator
Ug = exp(igJ ) as a one-parameter group generated by J = [J, ·].

14
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We say that J is a conserved quantity of the dynamics if its mean value
is constant along time, which can be rewritten as L†[J ] = 0, where we have
used the adjoint GKLS master equation in Eq. (2.31). A well-known result
of unitary quantum mechanics is the Noether’s theorem, which states that
for each symmetry (i.e., U(g)HU †(g) = H where H is the system Hamilto-
nian) we have a conserved quantity, namely [J, H] = 0 such that the mean
value of J does not change in time. This is in general not true for an open
quantum system, and specifically for the weak symmetry of a quantum dy-
namical semigroup in Eq. (2.34) [60, 61]. Indeed, recalling the structure of the
GKLS master equation driven by L in Eq. (2.29), and in particular the effec-
tive Hamiltonian H and the Lindblad operators {Lk}k, consider the following
three propositions:

1. [H, J ] = [Lk, J ] = 0 for all k.

2. d
dtJH(t) = L†[JH(t)] = 0.

3. UgLU†
g = L, or equivalently [L, J ] = 0.

Then, in general we can only say that 1. implies 2. and 3. (in this case we say
that there is a “strong symmetry” of the dynamics [60]), but no other impli-
cations are in general true. That is, there are some open evolutions in which a
conserved quantity does not generate a weak symmetry, and some in which a
weak symmetry is present but there is no conserved quantity associated with
it [61].

Conserved quantities are important because they give us crucial informa-
tion on the structure of the space of stationary states of the dynamics [60–63].
In contrast, the symmetries or covariances of the dynamics can help us to
simplify the solution of the GKLS master equation we are interested in. In-
deed, the property [L, J ] = 0 tells us that the Liouvillian superoperator and
the superoperator J share a common basis of eigenvectors, and typically the
eigenvalues and eigenvectors of J are known. We will see how to exploit this
property to reduce the effective dimension of the Liouvillian superoperator in
the next section.

2.5 The Liouville space formalism
The Liouvillian superoperator introduced in Eq. (2.26) is by definition a lin-
ear operator acting on the Hilbert space B(HS). Therefore, it is natural
to represent it as a matrix acting on the vectorized elements of B(HS). If
dim(HS) = dS , then the elements of B(HS) are usually represented as dS × dS

matrices, while the Liouvillian can be represented as a dS
2 × dS

2 matrix.
Strictly speaking, the Liouville space is the vectorized space of operators on
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the Hilbert space of the system B(HS), which now become d2
S-dimensional

vectors. Therefore, the Liouvillian superoperator is an operator acting on the
Liouville space. In this section, we briefly review the formalism of open quan-
tum systems in the Liouville space focusing on the results that are important
for this thesis, and we refer the readers interested in the mathematical details
to the excellent tutorial by Gyamfi [64].

A pure quantum state in HS is represented by a ket |v⟩ [31, 32]. In this
language, the elements of B(HS) (including the density matrices according to
Eq. (2.2)) are written as

O =
dS∑

j,k=1
Ojk |vj⟩ ⟨vk| , (2.35)

where {|v⟩j}dS
j=1 is a basis of HS and Ojk are the elements of the matrix asso-

ciated with O and written in the same basis, such that O |vm⟩ =
∑

j Ojm |vj⟩.
Our aim is to write O as a vector. To do so, we apply the following “bra-
flipping” transformation [64]:

O → ∥O⟩⟩ =
dS∑

j,k=1
Ojk |vj⟩ ⊗ |vk⟩ . (2.36)

In other words, we are introducing a tensor product notation to transform the
operator O into a vector. The bras are transformed into new kets that are
vectors in a copy of the Hilbert space HS . Since the dual space of the bras is
isomorphic to HS , this transformation is always well-defined. Moreover, note
that it is basis-independent, as it can be written through a suitable linear
superoperator acting on B(HS) [64].

Let us now derive some useful identities in this new formalism. First of
all, the Hilbert-Schmidt inner product in this space is written as:

Tr
[
B†A

]
=

dS∑
j,k=1

AjkB∗
jk = ⟨⟨B∥A⟩⟩, ∀A, B ∈ B(HS), (2.37)

where ⟨⟨B∥A⟩⟩ is the standard Euclidean inner product between two vectors
in a complex d2

S-dimensional Hilbert space.
For our purposes, it will be very useful to employ the following identity on

the composition of operators in the Liouville space:

AB → ∥AB⟩⟩ =
dS∑

j,k,m=1
AjmBmk |vj⟩ ⊗ |vk⟩

=
dS∑

k,m=1
Bmk(A |vm⟩) ⊗ |vk⟩ = A ⊗ IS∥B⟩⟩.

(2.38)
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In this way, we have written the composition of the operators A and B as
the operator A ⊗ IS (which lives in the extended Hilbert space HS ⊗ HS , i.e.,
the Liouville space) acting on the vectorized operator ∥B⟩⟩. We can derive an
analogous expression for ∥BA⟩⟩:

BA → ∥BA⟩⟩ =
dS∑

j,k,m=1
BjmAmk |vj⟩ ⊗ |vk⟩

=
dS∑

j,m=1
Bjm |vj⟩ ⊗ (AT |vm⟩) = IS ⊗ AT ∥B⟩⟩.

(2.39)

Using these results we can obtain the action of the Liouvillian superopera-
tor L on B(HS), and in particular on density matrices. By computing L∥ρS⟩⟩
(with abuse of notation we are representing the Liouvillian as L both when we
consider it as a superoperator and as an operator on the Liouville space) and
applying Eqs. (2.38) and (2.39), we can readily observe that the non-diagonal
Liouvillian in Eq. (2.28) can be written as an operator acting on HS ⊗ HS as:

L = − i

ℏ

(
H ⊗ IS − IS ⊗ HT

)
+

D2−1∑
j,k=1

γjk

(
Fj ⊗ F ∗

k − 1
2(F †

k Fj ⊗ IS + IS ⊗ (F †
k Fj)T )

)
.

(2.40)

The above equation will be extremely useful for the analytical and/or nu-
merical solution of GKLS master equations. Indeed, we can write the Liouvil-
lian superoperator as a matrix through Eq. (2.40), and then find its eigenvalues
and left and right eigenvectors3. This procedure is usually called the spectral
analysis of the Liouvillian, and it is of utmost importance for the study of
structured open dynamics [65].

Here, we list some “facts” on the spectral analysis of the Liouvillian, and
we refer the interested readers to Refs. [11, 61, 62, 65–68] for more details
and proofs. Suppose that we find some eigenvalues and right eigenvectors4

Lvj = λjvj . Then:

• λj ∈ C and Re{λj} ≤ 0.

• If Re{λj} ̸= 0, then Tr[vj ] = 0.
3Note that L† ̸= L, therefore in some cases L may not be diagonalizable. Moreover, left

and right eigenvectors in general do not coincide.
4Note that here we are describing the eigenvectors as operators. Of course, we can always

switch to the formalism of the Liouville space where the eigenvectors are vectorized via the
isomorphism in Eq. (2.36) and viceversa.
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• If Lvj = λjvj , then Lv†
j = λ∗

jv†
j . In particular, if v†

j = vj , then λj ∈ R.
If λj ∈ R and has geometric multiplicity n, then it is always possible to
construct n Hermitian right eigenvectors of L with eigenvalue λj .

• Building on the results of the previous point, if λj = 0 and has geometric
multiplicity n, then it is always possible to find n properly renormalized
density matrices ρ

(j)
k such that exp(Lt)[ρ(j)

k ] = ρ
(j)
k for all k = 1, . . . , n.

These density matrices are called the steady states of the dynamics.

• If dim(HS) = dS < ∞, then there is always at least one steady state of
the dynamics.

• If the steady state ρss of the dynamics is unique, then the dynamical
semigroup is relaxing. That is, exp(Lt)[ρS ] → ρss for t → ∞ and for all
initial states ρS . The search for necessary and sufficient conditions for
the uniqueness of the steady state of a quantum dynamical semigroup
is still a matter of ongoing research. Some results in this direction have
been presented in the past forty years, see for instance the extensive
discussion in Ref. [69].

• If there is a right eigenvector vj such that Re{λj} = 0 but Im{λj} ̸= 0,
then we say that there are oscillating coherences in the dynamics. This
is because there will be a subspace of the dynamics where the state of
the system will oscillate unitarily also at infinite time without any kind
of decay.

We conclude this section by discussing the role of symmetry in the language
of the Liouville space. Following the discussion in Sec. 2.4 and Eq. (2.34), we
say that there is a weak symmetry of the dynamics if [L, Ug] = 0, where Ug is
the (superoperator) representation of a symmetry group G. If the latter is a
continuous abelian symmetry, we can write it as Ug = exp(igJ ) for some super-
operator J and g ∈ R. Then, the weak symmetry reads [J , L] = 0. Suppose
that J has R known eigenvalues {µj}R

j=1, each of which has multiplicity nj (J
is Hermitian, so it is always diagonalizable). Then, we can block-diagonalize
the matrix L given by Eq. (2.40) in the basis of the eigenvectors of J :

L =
R⊕

j=1
Lj , (2.41)

where each Lj is a nj × nj block. In this way, the dimensionality of L may be
highly reduced.

Finally, as discussed in Sec. 2.4 the superoperator J is associated with a
system observable J ∈ B(HS) via J = [J, ·]. In the Liouville space formalism,
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this superoperator is straightforwardly written as an operator on HS ⊗ HS

through:
J = J ⊗ IS − IS ⊗ JT . (2.42)

2.6 Microscopic derivation of the GKLS master equa-
tion

In this section we will see how a Markovian master equation can be derived
from the microscopic model of an open quantum system coupled to a stationary
environment. The general (for simplicity time-independent) Hamiltonian of
such a microscopic model can be written as:

H = HS + HE + µHI , (2.43)

where HS is the system Hamiltonian, HE is the environment Hamiltonian and
HI is the interaction Hamiltonian between system and environment, while µ
is a dimensionless parameter that characterizes the interaction energy.

If we start the dynamics of the overall model in a product state ρSE(0) =
ρS(0) ⊗ ρE , then the state of the system at time t will be given by

ρS(t) = TrE [e−iHtρS(0) ⊗ ρEeiHt], (2.44)

according to Eq. (2.6). As discussed in Sec. 2.1, this evolution can be de-
scribed through a quantum map for each time t. However, the environment
typically has many (or even infinite) degrees of freedom, therefore computing
the full evolution driven by exp(−iHt) is a formidable task. This is why some
approximations are necessary in order to obtain a closed (Markovian) form
of the quantum map in Eq. (2.44). In particular, we will assume that the
coupling between system and environment is weak. That is, the interaction
Hamiltonian HI is a perturbation of the total Hamiltonian with µ ≪ 1. Phys-
ically, this means that the interaction energy is way smaller than the energy
of the system, and their ratio is of the order of µ. Let us now see how we can
derive a Markovian master equation in the regime of weak coupling.

First, we consider the joint state of the system and environment ρ̃SE(t),
where the tilde indicates that we are working with states (or operators) in the
interaction picture [32]. Its dynamics is driven by the following von-Neumann
equation:

d

dt
ρ̃SE(t) = − iµ

ℏ
[H̃I(t), ρ̃SE(t)], (2.45)

where

ρ̃SE(t) = e
i
ℏ (HS+HE)tρSE(t)e− i

ℏ (HS+HE)t,

H̃I(t) = e
i
ℏ (HS+HE)tHIe− i

ℏ (HS+HE)t.
(2.46)
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Expanding at the second order in µ the differential equation in Eq. (2.45)
(this is the so-called Born approximation [8]), we find :

d

dt
ρ̃S(t) = −µ2

ℏ2

∫ t

0
dt′ TrE{[H̃I(t), [H̃I(t′), ρ̃S(t′) ⊗ ρE ]}, (2.47)

where we have assumed TrE [[H̃I(t), ρSE(0)]] = 0, which is satisfied by the
interaction Hamiltonians of several models of open quantum systems. Let us
now decompose the interaction Hamiltonian into system (Aβ) and environment
(Bβ) operators as:

H̃I(t) =
∑

β

Aβ(t) ⊗ Bβ(t). (2.48)

Then, after the change of variable τ = t − t′, we can rewrite Eq. (2.47) as:

d

dt
ρ̃S(t) = −µ2

ℏ2

∑
β,β′

∫ t

0
dτ

(
Bββ′(τ)[Aβ(t), [Aβ′(t − τ), ρS(t − τ)]] + H.c.

)
,

(2.49)
where we have introduced the autocorrelation functions of the environment:

Bββ′(τ) = TrE [B†
β(τ)Bβ′(0)], (2.50)

and we have assumed the stationarity of the state of the environment through
[ρE , HE ] = 0. Under this condition,

TrE [B†
β(t)Bβ′(s)] = TrE [B†

β(t − s)Bβ′(0)] = TrE [B†
β(0)Bβ′(s − t)]. (2.51)

We will now perform the so-called Markov approximation, which is based
on the assumption that the autocorrelation functions of the environment decay
very fast in time with respect to the relaxation time of the system. This
corresponds to a sort of “fading memory” of the dynamics, so that the state of
the system at a given time is not influenced by the states explored at earlier
times [8]. This notion resembles the definition of Markovianity we introduced
in Eq. (2.24), and indeed we will see that, in many cases, the evolution under
this approximation can be described by a quantum dynamical semigroup.

Let us introduce the phenomenological decay time τR at which the state
reaches the stationary state of the dynamics. Note that τR ∝ µ−2 defines the
timescale of the evolution of the state of the system in the interaction picture.
The same state in the Schrödinger picture evolves with a different timescale
since it displays also the fast oscillations driven by the system Hamiltonian
HS . Let us now assume that the autocorrelation functions of the environment
decay towards zero with a timescale defined by the environment correlation
time τE . For instance, let us suppose that Bββ′(τ) ∝ e−τ/τE . Then, the
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Markov approximation requires that τE ≪ τR. More specifically, we need to
introduce a coarse-graining in Eq. (2.49), which is defined by5 [1, 74]:

∃t∗ such that τE ≪ t∗ ≪ τR. (2.52)

Then, we can make a time average in Eq. (2.49) using the coarse-graining time
t∗, and we obtain the Bloch-Redfield master equation [8, 75]:

d

dt
ρ̃S(t) = −µ2

ℏ2

∑
β,β′

∫ ∞

0
dτ

(
Bββ′(τ)[Aβ(t), [Aβ′(t − τ), ρS(t)]] + H.c.

)
.

(2.53)
Note that even if we are using the same notation as before for the state of the
system ρ̃S(t), more formally this is a new state defined as the time average of
the state of the system over a time interval t∗.

At this point, each system operator can be further decomposed into the
sum of the jump operators Aβ(ω):

Aβ(t) =
∑
ω

Aβ(ω)e−iωt, Aβ(ω) =
∑

ϵ′−ϵ=ℏω

|ϵ⟩ ⟨ϵ| Aβ

∣∣ϵ′〉 〈
ϵ′∣∣ , (2.54)

where the states |ϵ⟩ are the eigenstates of HS . Then, the Bloch-Redfield master
equation can be written as:

d

dt
ρ̃S(t) = µ2

ℏ2

∑
β,β′

∑
ω,ω′

(
ei(ω′−ω)tΓββ′(ω)

(
Aβ′(ω)ρ̃S(t)A†

β(ω′)

−A†
β(ω′)Aβ′(ω)ρ̃S(t)

)
+ H.c.

)
,

(2.55)

where we have defined

Γββ′(ω) =
∫ ∞

0
dτ eiωτ Bββ′(τ). (2.56)

We can now further simplify the expression in Eq. (2.55) by making use of
the final approximation in the derivation of a Markovian master equation from
the full microscopic model, namely the secular approximation. Then, following
a similar argument as for the Markov approximation, one can perform an
additional coarse-graining average over Eq. (2.55), so as to neglect all the
terms rotating with a frequency which is way faster than 1/τR. Specifically,
we eliminate all the terms for which we can find a coarse-graining time t∗ such
that [1, 74]:

∃t∗ such that
∣∣ω − ω′∣∣−1 ≪ t∗ ≪ τR. (2.57)

5For more details about the different definitions of this coarse-graining time and their
physical meaning we refer the readers to, for instance, Refs. [70–73].
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Let us suppose that this condition is satisfied for all frequencies ω′ ̸= ω,
so that all cross elements in Eq. (2.55) would be absent. We will call this
approximation the full secular approximation. Then, the only remaining terms
in Eq. (2.55) can be rearranged to obtain the following master equation, where
for convenience we have also switched back to the Schrödinger picture [8]:

d

dt
ρS(t) = − i

ℏ
[HS + HLS , ρS(t)] + D[ρS(t)], (2.58)

where we have introduced the Lamb-shift Hamiltonian

HLS =
∑
ω

∑
β,β′

Sββ′(ω)A†
β(ω)Aβ′(ω), (2.59)

and the dissipator

D[ρS ] =
∑
ω

∑
β,β′

γββ′(ω)
(

Aβ(ω)ρSAβ′(ω)† − 1
2{Aβ′(ω)†Aβ(ω), ρS}

)
. (2.60)

The coefficients are defined by:

γββ′(ω) = Γββ′(ω) + Γ∗
β′β(ω),

Sββ′(ω) =
Γββ′(ω) − Γ∗

β′β(ω)
2i

.
(2.61)

It can be shown that H†
LS = HLS and that the coefficients γββ′ give rise to a

positive semi-definite matrix [8]. Therefore, the master equation in Eq. (2.58)
is in the GKLS form as in Eq. (2.28), and we have derived a Markovian master
equation starting from the full model of an open quantum system coupled to
an external environment.

While the well-known derivation we have provided above is based on some
physically motivated approximations [8, 11, 74], it is worth pointing out that a
rigorous mathematical derivation of the GKLS master equation starting from
a complete microscopic model was introduced by Davies in the 70s [76, 77].
The mathematically refined idea of Davies’ derivation relies on the so-called
Bogolyubov-van Hove limit, characterized by µ → 0, t → ∞ and µ2t = τ =
const in Eq. (2.49).

2.7 Quantum collision models
In Sec. 2.6 we have shown that a GKLS master equation can be derived starting
from the microscopic model of an open quantum system weakly coupled to a
stationary environment whose autocorrelation functions decay very fast in
time. Here, we will present another scenario in which a Markovian master
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equation for the open system only can be obtained from the unitary evolution
of a larger physical system. In particular, we will discuss the general aspects of
the theory of collision models. The interested readers can check the excellent
recent review on this topic by Ciccarello et al. for further references and details
[78].

The core idea of quantum collision models is to reproduce a non-unitary
open system dynamics through repeated “collisions” (i.e., unitary interactions
lasting for a timestep ∆t) between the open system and some external particles
“of the environment”, which are usually called ancillas. In Markovian collision
models, after each collision the colliding ancilla goes away and never interacts
again with the system, so that we can forget about it. This corresponds to
performing the partial trace on the degrees of freedom of the ancilla after each
timestep.

Let us now formalize this idea mathematically. Let us say that the Hilbert
space of the system is HS , while the Hilbert space of jth ancilla is HEj . Before
the collision, we prepare the state of the ancilla in ρEj , and we assume that
the state of the system is initialized in ρS . Then, after the collision with the
jth ancilla the state of the system is:

ρS,j = TrEj [UI(∆t)ρS ⊗ ρEj U †
I (∆t)]. (2.62)

The unitary operator describing the collision reads:

UI(∆t) = exp
[
− i

ℏ
(gSHS + gIHI,j) ∆t

]
, (2.63)

where HS is the free system Hamiltonian and HI is the interaction Hamil-
tonian, which are both dimensionless. The magnitudes of these energies are
respectively gS and gI .

Let us now suppose that all the ancillas are identical, they are initialized
in the same state ρE and they collide with the system through the same
interaction Hamiltonian HI . Then, we can introduce a well-defined quantum
map ϕ∆t to describe a generic collision between the system and a single ancilla:

ϕ∆t = TrE [UI(∆t) · ⊗ρEU †
I (∆t)], (2.64)

where E refers to the degrees of freedom of a single generic ancilla, and UI is
written as in Eq. (2.63) but without the dependency on j. Let us suppose we
start the system dynamics in ρS(0) and we perform n collisions. Then, the
state of the system at the end of this evolution will be given by:

ρS(n∆t) = ϕn
∆t[ρS(0)]. (2.65)

Our aim is to derive a Markovian master equation starting from the action
of the quantum map in Eq. (2.64). Note that the expression in Eq. (2.65)
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already tells us that the evolution of the state of the system during the jth
collision does not depend on the previous history of ρS(t), i.e., the Markovian-
ity between the collisions is enforced by construction. Then, what we need
is some kind of “smooth” evolution of ρS(j∆t) to mimic the GKLS dynam-
ics in Eq. (2.29). Quite intuitively, we can obtain this by taking the limit of
infinitesimal timestep ∆t → 0+.

If ∆t is infinitesimal, we can apply the Baker-Campbell-Hausdorff formula
to Eq. (2.64) and we obtain:

ϕ∆t[ρS ] =ρS − i

ℏ
∆t TrE [[gSHS + gIHI , ρS ⊗ ρE ]]

− ∆t2

2ℏ2 TrE [[gSHS + gIHI , [gSHS + gIHI , ρS ⊗ ρE ]]] + O(∆t3).
(2.66)

We will now make two fundamental assumptions. The first one is TrE [[HI , ρS⊗
ρE ]] = 0 for all ρS . This is always true, for instance, if

HI =
∑

β

Aβ ⊗ Bβ, (2.67)

similarly as in Eq. (2.48), and all the ancilla operators are such that TrE [BβρE ] =
0. Note that this requirement is equivalent to the condition we assumed to
derive Eq. (2.47) for the full microscopic model in the previous section. The
second assumption is gS ≪ gI (i.e., the magnitude of the collision energy is
much larger than the system energy) and g2

I ∆t/ℏ2 → γ, g2
S∆t/ℏ2 → 0 for

∆t → 0+, where γ is a finite constant with the units of the inverse of time.
Under these assumptions, Eq. (2.66) becomes:

ϕ∆t[ρS ] =ρS − i

ℏ
∆tgS [HS , ρS ] + γ∆t TrE [HIρS ⊗ ρEHI − 1

2{H2
I , ρS ⊗ ρE}]

+ O(g2
S∆t2/ℏ2) + O(gSgI∆t2/ℏ2) + O(∆t3).

(2.68)

For a single collision, ρS(t + ∆t) = ϕ∆t[ρS(t)], so:

d

dt
ρS(t) = lim

∆t→0+

ρS(t + ∆t) − ρS(t)
∆t

= lim
∆t→0+

ϕ∆t[ρS(t)] − ρS(t)
∆t

= − i

ℏ
gS [HS , ρS(t)] + γ

∑
β,β′

TrE [B†
βBβ′ρE ]

(
Aβ′ρS(t)A†

β

− 1
2{A†

βAβ′ , ρS(t)}
)
,

(2.69)

where we have used Eqs. (2.67) and (2.68). It is immediate to see that
Eq. (2.69) is in GKLS form, which is what we were looking for. In particular,
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we can simulate a quantum dynamical semigroup driven by the Liouvillian L
defined as in Eq. (2.69) at time t by performing n repeated collisions between
system and ancillas, with n = t/∆t. In other words:

exp(Lt) = lim
∆t→0+

ϕn
∆t, with n = t/∆t. (2.70)

Note that, using the same approximations, we could have obtained exactly
the same quantum dynamical semigroup also employing this slightly differ-
ent unitary operator for the collisions: UI(∆t) = e− i

ℏgSHS∆te− i
ℏgIHI∆t. That

is, we can first perform the collision and then, independently, the free sys-
tem evolution. This allows us to tune gI and gS by using different collision
timesteps.

The derivation of the GKLS master equation associated with a Markovian
collision model we have provided above follows the lines of different works
published in the last ten years [5, 79–81]. The quantum collision models are
employed for disparate tasks in which open quantum systems play a relevant
role. To name just a few, they are employed to study the problem of ther-
malization or “homogenization” of the open system [82, 83], to analyze the
non-Markovianity of the open evolution, either through collisions between the
system and some ancillas that are correlated with the previous ones [84, 85] or
through a Markovian embedding of pseudomodes to generate a non-Markovian
dynamics [81], and to study the elementary variations of heat, work and en-
ergy in quantum thermodynamics [86–88]. Moreover, the fact that collision
models are based on the application of repeated simple unitaries makes them
very convenient to be implemented on quantum computers, so as to quantum
simulate the GKLS dynamics we are interested in. Further discussions can be
found in Refs. [78, 89].
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Applications to multipartite
open quantum systems

3.1 A Markovian master equation for multipartite
open quantum systems and its properties

In Sec. 2.6 we have shown how a Markovian master equation can be derived
from a general microscopic model of an open quantum system weakly coupled
to an environment. Here, we will discuss some issues that arise in this deriva-
tion if the open system is multipartite, how to overcome them, and what are
the properties of the master equation we will obtain.

3.1.1 Global and local master equations

Let us suppose that the open system is multipartite and is composed of M
subsystems. The system Hamiltonian, in general, includes some local terms
(acting on a single subsystem only) and the interaction between the subsys-
tems:

HS = HS,L + λHS,I =
M∑

j=1
HS,j + λHS,I , (3.1)

where HS,L contains all the local terms, while HS,I is the inter-subsystem
interaction term. λ is the dimensionless coupling constant that characterizes
the magnitude of these interactions.

Let us go back to the derivation of the microscopic GKLS master equation.
Getting the form of the Bloch-Redfield master equation in Eq. (2.55) requires
introducing the jump operators in Eq. (2.54). To do so, we must find the
eigenvalues and eigenvectors of the system Hamiltonian HS . For convenience,
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we will term these as the “global eigenvectors” and “global eigenvalues”:

HS =
dS∑

k=1
E

(g)
k

∣∣∣e(g)
k

〉〈
e

(g)
k

∣∣∣ , (3.2)

where we recall that dS is the dimension of the system Hilbert space. If the
system is multipartite and/or a many-body quantum system, then it might
be difficult to find the diagonalization in Eq. (3.2). For this reason, a “local
approach” can be invoked, which makes use of the “local eigenvalues” and
“local eigenvectors” of the local Hamiltonian HS,L:

HS,L =
dS∑

k=1
E

(l)
k

∣∣∣e(l)
k

〉〈
e

(l)
k

∣∣∣ . (3.3)

It is much easier to perform this diagonalization, as the eigenvectors {
∣∣∣e(l)

k

〉
}dS

k=1
are given by the tensor product of the local bases of each HS,j . Two different
approaches are then adopted in the literature:

Global master equation The so-called global master equation is the stan-
dard Bloch-Redfield master equation in Eq. (2.55), typically with the
application of the secular approximation. The jump operators of the
global master equation are derived from the diagonalization of the full
system Hamiltonian as in Eq. (3.2).

Local master equation The local master equation is derived under an addi-
tional approximation on the “locality” of its jump operators. Specifically,
it is a Bloch-Redfield equation (typically with secular approximation)
where the jump operators are the ones obtained with the local system
Hamiltonian in Eq. (3.3). This means that the interaction term HS,I is
neglected during the derivation of the master equation, and it appears
only in the effective system Hamiltonian HS of the final GKLS master
equation in Eq. (2.58).

The local master equation is widely adopted in the literature, especially in
the field of open many-body quantum systems. However, its validity has been
disputed in a number of works. In particular, few years ago Levy and Kosloff
showed that the local master equation leads to a violation of the second law
of thermodynamics in a simple system of two coupled qubits interacting with
two baths at different temperature [26]. In 2016, Trusheckhin and Volovich
carefully analyzed the conditions for the validity of the local approximation,
and by employing matrix perturbation methods they showed that the local
master equation is valid whenever λ ≪ 1, and the error of this approximation
with respect to the global master equation is of the order of O(λ) [27] (if the
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system energies are degenerate then a more careful discussion is necessary).
Then, the violation of the second law found in Ref. [26] is due to an error
of order O(λ), therefore the local master equation can still be employed for
thermodynamic studies in a limited regime of parameters, taking this error
into account. Physically, the requirement λ ≪ 1 corresponds to the subsystem
energies in each HS,j being much larger than the magnitude of the subsystem-
subsystem interaction.

Several comparisons between the local and global master equations have
been presented, and Publication I briefly reviews them. Although the local
master equation is obtained via an additional approximation applied to the
global master equation, in the literature we can often find the claim that the
global master equation may fail in regimes of validity where the local master
equation is valid [28, 29]. This is due to the fact that many references in the
literature use the term “global master equation” to refer to the more specific
“global master equation under the full secular approximation”, i.e., a Bloch-
Redfield master equation derived using the global jump operators according to
Eq. (3.2) and where all the terms with ω′ ̸= ω are neglected in Eq. (2.55). We
see that two different features of the microscopic master equation are taken
into account at once here. Therefore, care must be taken when talking about
the “global master equation”.

A global master equation with a consistent secular approximation is there-
fore a better approximation than a local one, by construction. Still, an in-
discriminate application of the full secular approximation can fail. Let us
show with an example why some issues with the global master equation in
full secular approximation arise for multipartite open quantum systems. For a
single quantum system, the energy levels are usually equally spaced (e.g., in a
harmonic oscillator), or the gap between the levels is considerably different be-
tween different pairs of levels. As a consequence, the frequencies in Eq. (2.55)
are either equal (ω = ω′, so that the corresponding terms are not removed by
the full secular approximation) or very different, and in the latter case they
can be safely removed through the full secular approximation according to
Eq. (2.57). This is in general not true for a multipartite system. For instance,
consider the case of two coupled qubits that are slightly detuned. The system
Hamiltonian can be written as:

HS = ℏω1
2 σz

1 + ℏω2
2 σz

2 + λ(σ+
1 σ−

2 + H.c.). (3.4)

If ∆ = |ω1−ω2|
ω1

is small (we assume that the order of magnitude of the qubit
frequencies is the same), that is, ∆ ≪ 1, and λ ≪ 1 as well, then the gap
between the second and the third energy level of this Hamiltonian is small
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compared to the qubit energies. More specifically, the eigenvalues of HS are:

E0 = −ℏ(ω1 + ω2)
2 , E1 = −

√
λ2 + ℏ(ω1 − ω2)2/4,

E2 = −E1, E3 = −E0.
(3.5)

Then, a jump frequency in Eq. (2.55) can be ω = E1 − E0, while another one
can be ω′ = E2 − E0. Clearly, ω − ω′ = E1 − E2, which is small compared
to the qubit energies. Therefore, the full secular approximation cannot be
applied to these terms because the condition in Eq. (2.57) is not satisfied.
Increasing the number of subsystems, we find more and more scenarios with
energy gaps for which the full secular approximation cannot be applied, if the
coupling between the subsystems is small. Note that λ ≪ 1 is at the same
time the sufficient condition for the validity of the local approximation and
the necessary condition for the breaking of the global master equation with
full secular approximation. This is why it is often claimed in the literature
that in this regime the local approach is better than the global one [28, 29].

The aim of Publication I is to review the literature on the “local vs global
problem” and to shed light on its subtlest aspects. In particular, Publication I
shows that the global master equation (as we have defined it above) is always
valid under the regime of validity of the Bloch-Redfield master equation (i.e.,
under the Born and Markov approximations) if the secular approximation is
applied in a correct way. That is, if we remove only the terms with frequencies
ω, ω′ in Eq. (2.55) that satisfy the condition in Eq. (2.57). This approximation
is usually called partial secular approximation [72, 90]. Remarkably, Redfield
himself made a comment on the possibility of performing this approximation
in his seminal paper [75].

Let us say that the frequencies that are not eliminated by the partial
secular approximation can be written as the elements of a set (ω, ω′) ∈ PSA.
Then, the global master equation under the partial secular approximation can
be written as Eq. (2.58), that is, L[ρS(t)] = −i/ℏ[HS + HLS , ρS(t)] + D[ρS(t)],
with Lamb-shift Hamiltonian given by

HLS =
∑
β,β′

∑
(ω,ω′)∈PSA

Sβ,β′(ω, ω′)A†
β(ω′)Aβ′(ω), (3.6)

and dissipator

D[ρS ] =
∑
β,β′

∑
(ω,ω′)∈PSA

γβ,β′(ω, ω′)
(

Aβ′(ω)ρSA†
β(ω′) − 1

2{A†
β(ω′)Aβ′(ω), ρS}

)
.

(3.7)
The jump operators are defined in Eq. (2.54) according to the total system
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Hamiltonian decomposed as in Eq. (3.2), while the coefficients are:

γββ′(ω, ω′) = Γββ′(ω) + Γ∗
β′β(ω′),

Sββ′(ω, ω′) =
Γββ′(ω) − Γ∗

β′β(ω′)
2i

,
(3.8)

where Γββ′(ω) is defined in Eq. (2.56).
Publication I discusses how the global master equation with partial secular

approximation introduced above is accurate in all regimes of validity of the
Bloch-Redfield master equation. In particular, this master equation is valid
also when λ ≪ 1 (despite being “global”), where it gives the same physical
predictions as the local equation. Viceversa, if λ ≫ 1 then the full secular ap-
proximation is typically valid, and the predictions given by the global master
equation with either full or partial secular approximation coincide. There-
fore, the global master equation with partial secular approximation can be
considered as an “always-valid” bridge between the local master equation and
the global master equation with full secular approximation. This idea has
been further analyzed in a recent work [91]. Moreover, Publication I discusses
the regimes of validity of the local and full-secular master equations in the
presence of common or separate baths, and their consequences for the obser-
vation of physical effects such as entanglement generation, quantum beats,
and steady-state heat current. We refer the reader to the original paper for
further details, while further developments on the local vs global problem after
the appearance of Publication I can be found, for instance, in Refs. [91–95].

A common concern on the global master equation with partial secular ap-
proximation is the fact that, being derived from the Redfield equation without
the full secular approximation, it might not yield a completely positive dynam-
ics. This is a typical issue of the Bloch-Redfield equation [96]. We can answer
this criticism in two different ways. First, it has been recently shown that some
sufficient conditions for the complete positivity of the master equation with
partial secular approximation can be derived under reasonable assumptions
[71, 72]. This makes sense, as the terms leading to the breaking of complete
positivity in the Redfield equation are typically the fast-oscillating ones, which
are still eliminated by the partial secular. Secondly, we may adopt a different
vision toward the issue of the complete positivity of the master equation: the
exact reduced dynamics in Eq. (2.44) is completely positive. Starting from
that equation, we have applied i) the Born approximation ii) the Markov ap-
proximation, and doing this we obtain the Redfield equation. If the latter
is not completely positive, then the errors due to negativity issues must be
within the accuracy of these approximations. If we further apply the secular
approximation, we may recover mathematically a completely positive dynam-
ics, but we are not improving the accuracy of the master equation. Therefore,
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we may also work with a non-completely positive master equation, if we know
that there may be negativity issues of the order of the Born-Markov approxi-
mation. This idea has been extensively discussed and analyzed by Hartmann
and Strunz, who showed that, for the sake of numerical simulations, the Bloch-
Redfield equation is the most accurate weak-coupling master equation despite
its lack of complete positivity [97], and it typically provides better predictions
than master equations with full secular approximation. If we observe a con-
siderable violation of the positivity in the dynamics predicted by our Redfield
(or partial secular) master equation, then this is a sign that the conditions for
the Born-Markov approximations are breaking down, and we need to rely on
better numerical methods. Curing these negativities via the full secular ap-
proximation, indeed, would only lead to a mathematically well-defined master
equation that is not reproducing anymore the evolution of the microscopic
model of our interest. Similar considerations can be found also in Ref. [98].

Finally, inspired also by the results in Publication I and related discus-
sions on the partial secular approximation, A. Trusheckhin has introduced
the “Unified GKLS master equation” [99]. This equation can be thought of
as the mathematical formalization of the global master equation with partial
secular approximation, which can be written in GKLS form and thus is com-
pletely positive. The core idea of the unified master equation is to assume
that the system Hamiltonian can be written as HS = H

(0)
S + µ2δHS , where

[H(0)
S , δHS ] = 0 and µ is the system–environment coupling constant. The en-

ergy levels of H
(0)
S are either well-separated or fully degenerate (so that this

term could be well-treated through the full secular approximation), while the
term δHS introduces some quasi-degeneracies in the energy levels (i.e., the
small energy gaps that need the partial secular approximation). Then, a mi-
croscopic GKLS master equation is derived following Davies’ approach [76, 77]
based on the rigorous Bogolyubov-van Hove limit, and the terms that are not
deleted by the partial secular approximation are preserved in this equation
as well. The coefficients of the master equation are slightly modified, such
that, for instance, γββ′(ω, ω′) in Eq. (3.8) becomes a new γββ′(ω̄) that is eval-
uated at the average frequency ω̄ = (ω + ω′)/2 (this idea was sketched also
in Refs. [98, 100]). By doing so, it can be shown that the master equation
is in GKLS form. The unified master equation has the nice feature of being
completely positive, and therefore it generates a mathematically well-defined
quantum dynamical semigroup. However, following the reasoning in Ref. [97],
for the sake of precision of the numerical simulations it is slightly less accu-
rate than the standard master equation in partial secular approximation we
presented above.

To conclude, we have shown that a careful derivation of the microscopic
master equation that makes use of the partial secular approximation provides
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us with a general Markovian equation to study multipartite open quantum sys-
tems. This equation is particularly convenient for the numerical simulations,
and if it happens not to be in GKLS form, then it can always be brought into
this form by following the procedure in Ref. [99].

3.1.2 Symmetries of the master equation under the full and
partial secular approximation

Publication II shows that the global master equation with partial secular
approximation has a weak symmetry under quite general conditions. Suppose
that the system Hamiltonian can be written as a collection of M bosonic
and/or fermionic modes, such as:

HS =
M∑

k=1
Eka†

kak, (3.9)

where Ek are the energies of the eigenmodes and ak is a bosonic or fermionic
annihilation operator. General quadratic Hamiltonians can be brought into
this form by means of Bogolyubov transformations. Then, let us introduce
the total-number-of-particles operator as:

N =
M∑

k=1
a†

kak. (3.10)

This operator generates the one-parameter group of operators

U(g) = exp(igN), g ∈ R. (3.11)

Analogously, we can define the one-parameter group of superoperators

Ug = exp(igN ), g ∈ R, (3.12)

generated by the total-number-of-particles superoperator N = [N, ·]. In the
Liouville space, this superoperator is written as N ⊗ IS − IS ⊗ NT , according
to Eq. (2.42).

Now, let us suppose that we derive a GKLS global master equation with
partial secular approximation starting from a very general microscopic model
of the system with Hamiltonian HS coupled to an environment. Let us say
that we are able to introduce a well-defined Liouvillian L associated with this
master equation. Then, Publication II proves that, under some broadly valid
conditions for which we refer to the original article, the semigroup generated
by L is covariant under the action of the above-defined Ug. That is, the partial
secular master equation displays the weak symmetry

UgeLtU†
g = eLt, ∀g ∈ R, ∀t, or equivalently [L, N ] = 0. (3.13)
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We remind that, in general, no conserved quantity N is associated with this
weak symmetry, as discussed in Sec. 2.4. Still, this symmetry has remarkable
consequences. Indeed, first of all we can block-diagonalize the Liouvillian with
the eigenvectors of N (which can be trivially found), as discussed in Sec. 2.5
and according to Eq. (2.41). In particular, we can write L in the Liouville
space as:

L =
⊕

j

Lj , (3.14)

where Lj acts on the eigenvectors of N with eigenvalue j. Note that these
eigenvectors written as operators are such that the difference between the total
number of particles in the ket and the total number of particles in the bra is
equal to j. For instance, let us consider the case of two fermionic modes.
Then, the operator |01⟩ ⟨00| is an eigenvector of N with eigenvalue 1; |00⟩ ⟨00|
and |11⟩ ⟨11| are eigenvectors of N with eigenvalue 0, and so on. Moreover,
Publication II shows that L−j = L∗

j .

Another fundamental result of Publication II is the fact that, if the steady
state of the dynamics is unique, then it must be a linear combination of eigen-
vectors of N with eigenvalue 0. That is, to find it we only need to analyze the
block L0 of the Liouvillian. Clearly, these results provide us with a remarkable
dimensionality reduction for both the problem of finding the steady state of
the dynamics and of solving the full time evolution. We will see in Sec. 3.3
further applications of these findings.

Dimensionality reduction is not the only consequence of this covariance of
the master equation. It has been shown that global master equations with the
full secular approximation satisfy a different kind of covariance, whose group
of operators is generated by the system Hamiltonian HS [57, 101], and not
by N . Publication II shows that for the partial secular approximation this is
not true. This finding, derived from the microscopic model, is in contrast with
different results based on a derivation of the dynamics from general thermody-
namic principles, which claim that any open dynamics that satisfies the laws
of weak-coupling thermodynamics must be covariant under the group of oper-
ators generated by HS [30]. Therefore, we see how our result brings a relevant
contribution to a discussion on the foundations of quantum thermodynamics
(microscopic dynamics vs general principles) that, to the best of our knowl-
edge, has not been settled yet. For instance, the property [L, N ] = 0 implies
that the steady state of the dynamics can have coherences in the eigenbasis of
HS . These coherences, however, must be eigenvectors of N with eigenvalue 0
(e.g., |01⟩ ⟨10| for two fermions).
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3.2 Analog simulation of open quantum systems in
circuit QED

Publication III reviews and derives different results on dissipation engineering
in the field of circuit quantum electrodynamics (circuit QED). That is, how
we can reproduce and tune the action of external environments on supercon-
ducting qubits; this is usually referred to as “analog quantum simulation of
open quantum systems”. More specifically, Publication III analyzes in detail
how we can mimic the action of thermal baths by inserting resistive elements
in the superconducting circuit. This study has been inspired by some exper-
imental works conducted at Aalto University that showed how these resistive
elements can be engineered in a superconducting chip so as to study different
phenomena in quantum thermodynamics [102–104].

Reviewing the theory of circuit QED goes way beyond the scope of this
chapter. We refer the interested readers either to the discussions in Publica-
tion III and to some excellent recent reviews on this topic [105–107]. There-
fore, in this section we will just briefly present in a discursive way the main
results of Publication III and the general idea behind them.

The degrees of freedom that are typically quantized in circuit QED are
the fluxes of the branches of a superconducting circuit and their conjugate
momenta. The flux of a circuit branch at time t is defined as:

φ(t) =
∫ t

−∞
V (t′)dt′, (3.15)

where V (t) is the voltage difference across this branch. Let us now analyze
a very simple superconducting circuit composed of a superconducting qubit
(more specifically a transmon qubit [107]) coupled to a resistor through a
capacitor, as in Fig. 3.1. The degrees of freedom we are interested in are the
flux φA associated with the transmon qubit “A” and the flux φR associated
with the resistor, and their corresponding conjugate momenta. The branches
associated with the fluxes are the parts of circuits that go from the ground
at the bottom of each circuit branch to the black dot at the top. That is,
we need to consider the voltage difference across the transmon qubit to find
φA and across the resistor to find φR. The coupling capacitor Cg makes the
transmon qubit and the resistor interact.

Publication III discusses how to obtain the total Hamiltonian of the super-
conducting circuit in Fig. 3.1. This is not a trivial task, because the resistor is
a dissipative element and is not well-described through the standard formalism
of circuit QED. To formalize the Hamiltonian of the resistor, Publication III
makes use of the so-called Foster’s decomposition of a resistor as an infinite set
of LC circuits, which was introduced by Devoret [108]. In this way, an excita-
tion coming from the qubit may “travel” forever along the set of LC circuits of
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Figure 3.1: A transmon qubit with internal capacitance CA and flux φA ca-
pacitively coupled to a resistor.

the resistor without ever coming back. This effect, which is due to the infinite
number of LC circuits, mimics the emergence of dissipation, and can be for-
malized mathematically through the Sokhotski–Plemelj theorem, as explained
in Publication III. This procedure, however, is not enough to obtain the final
Hamiltonian of the superconducting circuit. Indeed, the standard procedure to
do so in circuit QED starts from the circuit Lagrangian, which can be obtained
relatively trivially by looking at the network of the circuit nodes [107, 108],
and then derives the Hamiltonian by applying the Legendre transform. This is
not easy, because it can be shown that it corresponds to inverting an infinite-
dimensional matrix. To accomplish this task, Publication III relies on some
theoretical methods recently developed by Parra-Rodriguez et al. [109, 110].
By applying these results and assuming the weak coupling limit, which reads
Cg ≪ CA (coupling capacitance much smaller than the internal capacitance of
the qubit), we are able to find the final Hamiltonian of the circuit in Fig. 3.1.

The final Hamiltonian we obtain for the circuit in Fig. 3.1 is the standard
Hamiltonian of the dissipative spin-boson model [8], where a single qubit is
weakly coupled through σx to a stationary thermal bath. Moreover, our re-
sults show that the spectral density of this bath is Ohmic, which is coherent
with the fact that the voltage fluctuations across the resistor emit Johnson-
Nyquist thermal noise. Since the spectral density is Ohmic, under reasonable
assumptions1 the dynamics of the transmon qubit is Markovian, and can be
described through a simple GKLS master equation (we refer the readers to
the original article for its form and details).

Remarkably, Publication III shows that we can simulate also some multi-
partite open quantum systems through similar superconducting circuits that

1More specifically, we must assume weak coupling between qubit and resistor, and that
kBT ≫ ℏ/τR, where T is the resistor temperature, and τR is the relaxation time of the qubit,
to guarantee a Markovian dynamics [8].
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Figure 3.2: Two transmon qubits with internal capacitances CA and CB are
coupled to a common resistor with resistance R through two coupling capaci-
tors that, for simplicity, have the same capacitance Cg.

contain resistors. In particular, the circuit in Fig. 3.2 depicts two transmon
qubits (“A” and “B”) capacitively coupled to the same resistor R. By em-
ploying the same methods as for a single transmon qubit (including the weak
coupling limit that now is given by Cg ≪ CA, CB), we are able to derive the
circuit Hamiltonian, which is the Hamiltonian of two non-interacting qubits
weakly coupled to a thermal bath. A direct coupling between the qubits can
be inserted as well. The master equation that can be derived for the dynamics
of the qubits only is the global master equation for two spins in a common
bath that is discussed in Publication I.

Finally, Fig. 3.3 displays two transmon qubits that are directly coupled
through a capacitor Cc, while the qubit B is also coupled to a resistor R.
Publication III shows that, if we assume the weak coupling limit for both
the qubit-qubit and the qubit-resistor capacitors, that is, Cc ≪ CA, CB and
Cg ≪ CA, CB, then the circuit Hamiltonian we can derive describes two weakly
interacting qubits, one of which is also weakly coupled to a thermal bath.
Therefore, in this scenario there is a “local” (or “separate”) bath acting on
a single qubit only. Since the coupling between the qubits is weak, their
dynamics is well-described by a local master equation that is discussed in
Publication I. Note that, due to the structure of the capacitive interaction in
circuit QED, we are forced to assume that the qubit-qubit interaction is weak
if we want to obtain a local bath. Otherwise, the resistor R would be directly
coupled also to the qubit A in the circuit Hamiltonian, despite being coupled
only to the qubit B in the circuit network of Fig. 3.3.

In conclusion, Publication III shows that circuit QED is an excellent plat-
form to study the dynamics of the simplest examples of multipartite open
quantum systems. Some experimental works at Aalto University [102–104]
prove that we already have the technology for the experimental investigation
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Figure 3.3: Two transmon qubits are coupled through a capacitor with capac-
itance Cc. Moreover, the qubit B is also coupled to a resistor R through a
capacitor with capacitance Cg.

of multipartite Markovian master equations with Ohmic spectral density by
inserting resistive elements in the superconducting circuit.

3.3 Spectral analysis for collective phenomena in
open quantum systems

Multipartite open quantum systems can display collective phenomena due to
the coherent interference of the emissions of the open subsystems into the en-
vironment, which would not be possible during the local decay of an isolated
subsystem only. In this section, we will consider three topical collective ef-
fects that are discussed in Publication IV, namely quantum synchronization,
subradiance and entanglement generation. Let us introduce them.

For simplicity, we will consider an open quantum system made of two sub-
systems only. Generalizations of these collective effects to more subsystems
are possible, although perhaps not trivial. We will start to discuss quantum
synchronization [24]. In this thesis, we refer to “quantum synchronization” as
the synchronization in time of the oscillations of the mean values of some local
observables of the two open subsystems. Synchronization is a paradigmatic
phenomenon in Physics and can be induced by dissipation on the system. In
our scenario, synchronization is indeed caused by a dissipative bath acting col-
lectively on the subsystems. We point out that different definitions of quantum
synchronization can be found in the literature [111].

Superradiance is a well-known phenomenon that was introduced theoreti-
cally by Dicke in 1954 [20] and has been studied experimentally since the 70s
[21]. It consists in the enhanced (i.e., faster) decay of a bunch of atoms that
emit coherently into a common environment. It can be observed when the
system is prepared in the so-called superradiant state. In contrast, Publica-
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tion IV focuses on subradiance, which is a complementary phenomenon that
emerges in the exactly same physical system as superradiance, but preparing
a different initial state, termed subradiant state [23]. Subradiance consists in
an atomic decay that is slower than in the case of local isolated atoms, and it
is due to the negative interference of their emissions into the common environ-
ment. Perfect subradiance corresponds to a zero decay rate, i.e., the emission
is inhibited and the dynamics lives in a decoherence-free subspace.

Finally, entanglement generation is simply the emergence of entanglement
between subsystems that were initially separable. It has been shown that
a collective environment can generate entanglement between non-interacting
qubits [112, 113].

Publication IV considers a system of two slightly detuned non-interacting
qubits that are immersed into a common thermal environment, and stud-
ies how and under which conditions the above-defined collective phenomena
emerge during the open dynamics. It explores a wide range of model parame-
ters and, moreover, it focuses on the physical system of two transmon qubits
coupled to a common resistor that has been studied in Publication III. This
circuit scheme is discussed in the previous section and is depicted in Fig. 3.2.
The master equation for the two-qubit dynamics is taken from Publication I,
and it is written as:

L[ρS(t)] = − i

ℏ
[HS + HLS , ρS(t)] +

∑
j,k=1,2

γ↓
jk

(
σ−

j ρS(t)σ+
k − 1

2{σ+
k σ−

j , ρS(t)}
)

+
∑

j,k=1,2
γ↑

jk

(
σ+

j ρS(t)σ−
k − 1

2{σ−
k σ+

j , ρS(t)}
)

.

(3.16)

HS = ℏω1σz
1/2+ℏω2σz

2/2 is the system Hamiltonian (the qubit frequencies are
ω1 and ω2). σ−

1 is the operator that destroys an excitation in the first qubit,
and analogously for σ−

2 . HLS is a Lamb-shift Hamiltonian introducing a spin
coupling effect of the form s12σ−

1 σ+
2 + H.c. (s12 is a temperature-dependent

complex coefficient), while γ↓
jk and γ↑

jk are coefficients that depend on the bath
temperature. We refer the readers to the original article for their detailed
expressions.

The master equation in Eq. (3.16) is a global master equation with par-
tial secular approximation. Therefore, it satisfies the symmetry discussed in
Publication II and Sec. 3.1.2. Specifically, [L, N ] = 0, with N = [N, ·] and
N = |1⟩ ⟨1| ⊗ I + I ⊗ |1⟩ ⟨1|, where |1⟩ is the excited state of a qubit. As a
consequence, we can diagonalize the Liouvillian using the eigenvectors of N ,
which are trivial to be found.

Let us go back to the collective phenomena we want to observe in the
dynamics driven by Eq. (3.16). In particular, our aim is to observe the syn-
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chronization of the mean values ⟨σx
1 (t)⟩ and ⟨σx

2 (t)⟩, that is, of the qubit
coherences. If the qubits were free, these mean values would oscillate at their
respective frequency ω1 or ω2. In the presence of the common bath, however,
these observables can synchronize. Let us understand why. First of all, it can
be shown that the dynamics of ⟨σx

1 (t)⟩ and ⟨σx
2 (t)⟩ “live” in the space of the

eigenvectors of N with eigenvalues 1 and −1 only. Moreover, L−1 = L∗
1, there-

fore we can focus on the block L1 only. This is a great simplification, because
L is a 16 × 16 matrix in the Liouville space, while L1 is a 4 × 4 matrix. Now,
let us say that the eigenvalues of L1 are {λ

(1)
j }4

j=1. Then, the mean values can
be written as:

⟨σx
k(t)⟩ =

4∑
j=1

c
(1)
jk eRe[λ(1)

j ]t cos
(
Im[λ(1)

j ]t + φ
(1)
jk

)
. (3.17)

c
(1)
jk and φ

(1)
jk depend on the eigenvectors of L1, on the initial conditions of the

dynamics, and on the selected qubit. The time dependence in Eq. (3.17) is
quite peculiar: an exponential decay is driven by the real part of the eigenval-
ues of L1, while we also observe an oscillatory behavior with a frequency given
by the corresponding imaginary part of the eigenvalues. We are now ready to
understand how synchronization can emerge in such a system.

Suppose that
∣∣∣Re[λ(1)

1 ]
∣∣∣ ≤

∣∣∣Re[λ(1)
2 ]

∣∣∣ ≤
∣∣∣Re[λ(1)

3 ]
∣∣∣ ≤

∣∣∣Re[λ(1)
4 ]

∣∣∣, then we
define the spectral gap as

∆1 =
∣∣∣Re[λ(1)

2 ]
∣∣∣ −

∣∣∣Re[λ(1)
1 ]

∣∣∣. (3.18)

The real parts of the eigenvalues describe how fast the spectral modes in
Eq. (3.17) decay during the dynamics. Therefore, the quantity 1/

∣∣∣Re[λ(1)
1 ]

∣∣∣
defines the relaxation time of the coherences, i.e., the time at which the last
oscillations of the coherences vanish. Now, suppose there is a large spectral
gap between the two smallest (in absolute value) real parts of the eigenvalues
in comparison with the relaxation time:

∆1∣∣∣Re[λ(1)
1 ]

∣∣∣ > 1. (3.19)

Then, intuitively there is a transient time of the dynamics (after the mode
driven by λ

(1)
2 has died) during which the oscillations driven by λ

(1)
1 are still

alive and there are no other modes in the system dynamics. That is, both
qubits are synchronized and oscillate with the same frequency equal to Im[λ(1)

1 ].
Due to the transient character of the synchronization, which eventually will
disappear after the relaxation time, this phenomenon is also called “transient
quantum synchronization” [24]. Based on these considerations and further
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analyses on the structure of the eigenvectors of L1, Publication IV introduces
a general measure of transient quantum synchronization.

Subradiance can be treated in a similar way as quantum synchronization.
The key difference lies in the fact that the mean values of the observables that
describe subradiance (i.e., the qubit energies σz

1(t) and σz
2(t)) “live” in the

block L0 only. Therefore, to study subradiance we only need to diagonalize
a 6 × 6 matrix. Then, the emergence of a slowly decaying subspace of the
dynamics can be related to the presence of a large spectral gap in L0, as in
Eqs. (3.18) and (3.19). Building on these considerations, Publication IV puts
forward a general measure of subradiance in the open dynamics.

Finally, the emergence of entanglement between the qubits is captured
by a figure of merit called negativity, which is a well-defined entanglement
monotone [114]. The maximum value of the negativity during the dynamics is
chosen to characterize entanglement generation. Unfortunately, the negativity
cannot be expressed in a simple way through the spectral analysis we employed
for synchronization and subradiance.

Using the quantities briefly discussed above, Publication IV extensively
studies how these figures of merit on the capability of the environment to
induce collective phenomena vary as a function of the model parameters. In
particular, Publication IV addresses the question of whether or not synchro-
nization and subradiance can be used as signatures of entanglement generation.
The answer is that they are reliable signatures if and only if the qubits are cou-
pled to the environment in a balanced way. That is, if the system-environment
coupling constant is the same (or almost the same) for both qubits. Curiously,
entanglement generation is always well-captured by a different figure of merit
that is analyzed in Publication IV, that is, the collectiveness of the dynam-
ics introduced in Ref. [115], which is an abstract measure based on the Choi
matrix of the open evolution.

Finally, Publication IV shows that all these collective effects can emerge
for some reasonable model parameters of the circuit in Fig. 3.2. Therefore,
quantum synchronization, subradiance and entanglement generation may be
observed experimentally using the superconducting circuits that are already
available in the laboratories.

3.4 A collision model for any Markovian multipar-
tite open quantum system dynamics

In Sec. 2.7 we introduced the concept of “collision models” and we showed how
a collision model can simulate a GKLS master equation of a single open system
in the limit of infinitesimal timestep. However, the extension of this method
to a multipartite open quantum system, that is, the modeling of a quantum
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collision model based on elementary collisions between the environment par-
ticles and each single subsystem to reproduce global master equations, is not
a trivial task2. Publication V gives a comprehensive answer to this problem,
while Publication VI builds on these results and presents the implementation
of the collision model on a near-term quantum computer. In this section, we
will discuss different aspects of this multipartite collision model.

3.4.1 Steps of the multipartite collision model

Publication V introduces the multipartite collision model (MCM), able to
reproduce any GKLS master equation of a multipartite open quantum system.
This includes both global and local master equations of open quantum systems
coupled to common and/or separate baths. Here, we will present the steps
of the MCM. Since the MCM can indeed be decomposed into a sequence of
steps, and the interactions between subsystems and environment ancillas are
elementary (i.e., two-qubit interactions if both the subsystems and the ancillas
are qubit), the multipartite collision model can be seen as a quantum algorithm
that is easily implementable on a quantum computer.

For simplicity, we will consider here a scenario where the Lindblad op-
erators of the GKLS master equation that we aim to reproduce are linear
combinations of operators that are local on each subsystem. Anyway, the
MCM works also beyond this scenario. Under this assumption, we can write
the GKLS master equation in non-diagonal form as:

L[ρS ] = − i

ℏ
[H̃S , ρS ]+

∑
m,α,m′,α′

γm,α,m′,α′

(
Fm,αρSF †

m′,α′ − 1
2{F †

m′,α′Fm,α, ρS}
)

.

(3.20)
H̃S is the effective Hamiltonian of the multipartite open quantum system. The
indexes m, m′ run over the subsystems (let us say m, m′ = 1, . . . , M if there
are M subsystems), while α, α′ run over the different local GKS operators of
the open dynamics. If the Hilbert space of each subsystem has dimension d,
then α, α′ = 1, . . . , d2 − 1, according to the discussion in Sec. 2.3. Fm,α is
a GKS operator that is local on the subsystem m, while γm,α,m′,α′ are the
coefficients of the master equation3.

The core idea of the MCM is to use a single ancillary qubit to reproduce
each term in the dissipator of Eq. (3.20). This corresponds to one ancilla

2Some collision models for multipartite systems have been introduced in the past ten
years, but they cannot describe a generic GKLS master equation [79, 81, 116].

3Note that, for simplicity, in the above equation we are not expressing the fact that, due
to the properties of the GKLS master equation that generates a CPTP map, for each term in
the master equation with, for example, Fm,αρSF †

m′,α′ , there must be a term Fm′,α′ ρSF †
m,α.

We will label both these terms through the same quartet (m, α, m′, α′).
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for each quartet (m, α, m′, α′). The way to implement this term by means of
collisions is based on the so-called second-order Suzuki-Trotter formula:

e
∆t
2 Ae∆tBe

∆t
2 A = e∆t(A+B) + O(∆t3), (3.21)

where ∆t ∈ R and A, B are operators. Then, let us set A = λm,αFm,α ⊗σ+
E,p +

H.c. and B = λm′,α′Fm′,α′ ⊗σ+
E,p+H.c., where σ+

E,p is the operator that creates
an excitation in the ancillary qubit associated with p = (m, α, m′, α′), while
λm,α and λm′,α′ are some constants. Then, ∆t(A + B) can be used as a single
term of the interaction Hamiltonian HI in Eq. (2.67), which is decomposed
into elementary subsystem-ancilla interactions via Eq. (3.21). It can be shown
that in this way we are able to reproduce the most general GKLS master
equation expressed in Eq. (3.20).

Specifically, the steps of the MCM are the following:

1. For each unordered pair of GKS operators in Eq. (3.20) (i.e., for each
quartet p = (m, α, m′, α′)), prepare the collision operators

U (m,α)
p (∆t) = exp

(
− i

ℏ
gI∆tH

(m,α)
I,p

)
, (3.22)

and analogously for U
(m′,α′)
p . In Eq. (3.22), gI is the magnitude of the

collision energy, while H
(m,α)
I,p = A as defined above (and analogously for

m′, α′ and B). Then, construct the following interaction operator that is
expressed according to the second-order Suzuki-Trotter decomposition:

Up(∆t) = U (m,α)
p (∆t/2)U (m′,α′)

p (∆t)U (m,α)
p (∆t/2). (3.23)

2. Compose the interaction operators for all the ancillas as follows:

UI(∆t) =
∏
p

Up(∆t). (3.24)

The order of the composition can be chosen freely.

3. Add a unitary system evolution with magnitude gS , according to the
discussion in Sec. 2.7:

Usim(∆t) = US(∆t) ◦ UI(∆t), (3.25)

where US(∆t) = exp
(
− i

ℏgSHS∆t
)

and HS = H̃S/gS .

4. Prepare all the ancillas in the ground state4 ρE(0) =
⊗

p |0⟩p⟨0|.
4Any diagonal state is actually fine, and in some cases it might be more convenient, for

instance, to prepare the ancillas in a thermal state.
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5. Build the quantum map of a single timestep of the multipartite collision
model as

ϕ∆t[ρS ] = TrE [Usim(∆t)ρS ⊗ ρE(0)U †
sim(∆t)], (3.26)

where the trace is performed over all the ancillas p.

Publication V shows that, by properly tuning the constants λm,α, we can
simulate the Liouvillian L of any multipartite GKLS master equation through:

exp(Lt) = lim
∆t→0

(ϕ∆t)n, t = n∆t, (3.27)

with the standard assumptions for the magnitudes gI and gS introduced in
Sec. 2.7. Although to guarantee the complete generality of the MCM we need
to assume one ancilla for each pair of GKS operators, Publication V discusses
some possible shortcuts that highly reduce the number of required ancillas.
Moreover, the MCM for a diagonal GKLS equation can also be defined, and
further extensions to many-body jump operators and time-dependent Marko-
vian equations are discussed in the original paper.

3.4.2 Theoretical error estimation and simulation efficiency

Publication V introduces some measures to quantify the error of the ideal
implementation of the MCM when we choose a timestep ∆t that is small
but not infinitesimal, and derives some upper bounds for this error. While
Publication V makes use of the one-to-one superoperator norm defined in
Eq. (2.19), Publication VI extends the error bounds to the diamond norm in
Eq. (2.20). Therefore, here we will employ the diamond norm.

The discrepancy between the quantum dynamical semigroup we aim to
simulate and the MCM can be captured by the global error5:

ϵg = ∥exp Lt − (ϕ∆t)n∥✸ , t = n∆t. (3.28)

It can be shown that ϵg ≤ nϵs, where the single-step error is defined as

ϵs = ∥exp L∆t − ϕ∆t∥✸ . (3.29)

The single-step error can in turn be bounded through ϵs ≤ ϵt + ϵc, where the
truncation error and collision error are respectively given by

ϵt = ∥exp L∆t − (IS + ∆tL)∥✸ and ϵc = ∥ϕ∆t − (IS + ∆tL)∥✸ . (3.30)
5Half of this quantity corresponds to the diamond distance introduced in Eq. (2.21).

However, to keep the same notation as in the original papers we do not insert the factor 1
2 .
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Publication V derives some upper bounds for ϵt and ϵc, and therefore for
the global error of the ideal MCM ϵg. We do not show here their expressions
because they are quite cumbersome, while we refer the reader to the original
paper and to the supplementary material of Publication V. We just point out
that it can be proven that

ϵg ≤ O(n∆t2) = O(t2/n). (3.31)

The scaling in Eq. (3.31) can be used to prove that the MCM is efficiently
simulable on a quantum computer, under the general assumption of k-local
Liouvillian. This means that the Liouvillian can always be decomposed as a
sum of terms that act non-trivially on k subsystems only, and the number k is
fixed even when the number of subsystems M increases. This assumption is
at the basis of quantum simulation [117], and it has been introduced also for
the simulation of open quantum systems [118]. The conditions for the efficient
simulability of a quantum algorithm require that the number of necessary
ancillas and necessary gates scales polynomially as a function of the number
of subsystems M , of the time t and of the inverse of the required accuracy
1/ϵg [118, 119]. This is what Publication V proves for the multipartite collision
model.

Publication VI extends the study of the theoretical accuracy of the MCM
to the case of a noisy collision model. That is, a MCM implemented on a
near-term quantum computer with noisy gates and noisy state preparation.
For a single timestep of the collision model, we can introduce the more general
error

ϵs,n = ∥exp L∆t − ϕ∗
∆t∥✸ , (3.32)

where ϕ∗
∆t is the quantum map that describes the actual realization of the

MCM on a real quantum computer. Therefore, ϕ∗
∆t is not an ideal algorithm

anymore, but contains also some noise that is due to the features of the quan-
tum platform we are using. Using the triangle inequality, this error can be
bounded as ϵs,n ≤ ϵs + ϵn, where ϵs is the ideal single-step error we introduced
in Eq. (3.29), while the noisy error is given by

ϵn = ∥ϕ∆t − ϕ∗
∆t∥✸ . (3.33)

The noisy error is therefore describing the discrepancy between the ideal map
we aimed to implement on the quantum computer and its actual realization.

Publication V gives us an error bound for ϵs, while Publication VI shows
that we can bound ϵn using the diamond distances between the ideal and the
noisy gates of our quantum computer. More precisely, suppose that we need to
employ the sequence of gates {Uj}j for a single timestep of the MCM. However,
we find that their actual implementation can be described by the sequence of
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noisy channels {Ej}j . Moreover, suppose that, instead of preparing the state
of the ancillas in the desired ground state, we have a noisy state preparation
described by the operators {Gi}i acting on |0⟩i, where the index i runs over
the different ancillas. Then, Publication VI proves that the noisy error can
be bounded as:

ϵn ≤ 2

∑
j

d✸(Uj , Ej) +
∑

i

d✸(IE , Gi)

 , (3.34)

where the diamond distance is given by Eq. (2.21).

3.4.3 Implementation on a near-term quantum computer

In addition to introducing an error bound for the noisy MCM, Publication VI
presents the experimental results of the simulation of the multipartite collision
model on a near-term quantum computer, namely an IBM quantum computer.
The experimental results are reported in the original article, while here we will
just complement with brief comments about the meaning and validity of these
results.

We performed two different kinds of experimental tasks. First, the quan-
tum simulation of the multipartite collision model (up to 5 collisions) to simu-
late superradiance and subradiance between two qubits, inspired by the study
on collective phenomena in Publication IV. We point out that experiments
showing these collective effects have been already realized in the past, but this
is not the main goal of Publication VI. Our main goal is to check if we are
able to engineer and observe these phenomena via the MCM on the current
digital (and not analog) near-term quantum computers. Secondly, we per-
formed the full process tomography [7] of all the CNOT gates we employed
in the algorithm, with the aim of better understanding the features of noise
on the quantum computer. We have chosen to analyze only the CNOT gates,
because it has been shown that the two-qubit gates are by far the noisiest on
current near-term computers.

The experimental results of the collision model show a qualitative agree-
ment with the subradiant and superradiant dynamics, at least for the first
collisions. That is, we observe a collective evolution that would not be pos-
sible in the presence of a local environment acting on each qubit. However,
the agreement is only qualitative, and the quantitative precision is low due to
the high levels of noise on the platform. After a few collisions, decoherence
emerges and the dynamics loses its collective features.

As explained in Sec. 2.2, the full process tomography of the experimental
CNOT gates allows us to recover the values of their average gate fidelity in
Eq. (2.22) and diamond distance from the ideal gate in Eq. (2.21). Full process
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tomography, however, has a drawback: it is subject to the so-called SPAM
errors, i.e., errors in the state preparation and in the measurements on the
circuits for the process tomography [120]. Therefore, we have applied the
procedures for error mitigation that are available on the IBM quantum library
qiskit [121]. Anyway, the results of the process tomography may still contain
residual SPAM errors.

Full process tomography allows us to understand some properties of the
noise on the quantum computer. First, the diamond distances between exper-
imental and ideal CNOT gates are of the order of 5 × 10−2–10−1. Since we
employ more than 50 CNOT gates to perform five collisions of the algorithm,
the cumulative error bound for ϵn in Eq. (3.33) is clearly quickly exceeding 1
(note that these distances are exactly the ones employed in Eq. (3.34) for the
CNOT gates only). Furthermore, we have compared the experimental value
of the average gate infidelity with the gate error provided by IBM, which is
estimated through a randomized benchmarking procedure [122]. We have put
forward a noise model based on the average gate infidelities of the CNOT
gates, and showed that its performance are similar to the one provided by
IBM.

To conclude, Publication VI shows that signatures of collective phenomena
in multipartite open quantum systems can be found also in nowadays near-
term digital quantum computers. However, the quantitative accuracy of the
quantum simulation is quite low, and the thresholds for the diamond errors of
the two-qubit gates are still orders of magnitude away from the experimental
diamond distances. Moreover, Publication VI performs an extensive noise
analysis based on full process tomography, and tries to improve our under-
standing of the noise we can face on near-term computers and of its relation
with the experimental results of the quantum simulation.
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Concluding Remarks

In this thesis we have discussed different aspects of multipartite open quantum
systems. We have explained what are the key issues in passing from the
description of a generic open quantum system that does not take into account
its inner structure to the description of a multipartite system made of multiple
subsystems, and how we may develop different methods to solve such issues.
Moreover, we have explored the emergence of collective effects in multipartite
systems and how to simulate them. In particular, Sec. 3.1 and Publications I
and II focus on the characterization of the master equations for multipartite
open quantum systems, while Sec. 3.2 and Publication III discusses how we
may simulate this type of dynamics on a platform of superconducting qubits.
Publication IV and Sec. 3.3 are devoted to the study of different collective
effects between a pair of qubits in a common bath, which relies on the spectral
analysis of the Liouvillian superoperator of the dynamics. Finally, Sec. 3.4
and Publication V and VI put forward the multipartite collision model, which
can be seen as a quantum algorithm for the simulation of the most general
Markovian dynamics of a multipartite open quantum system, and explore its
features both theoretically and experimentally.

The global master equation with partial secular approximation we analyzed
in Sec. 3.1 is a useful tool to describe the Markovian dynamics of a generic
multipartite open quantum system. Remarkably, it is valid also when the
local master equation or the global master equation with full secular approx-
imation fail (i.e., respectively for strong and weak inter-subsystem coupling).
Therefore, this master equation may give us a definitive answer to the “local vs
global discussion”, which animated the communities of open quantum systems
and quantum thermodynamics for some years. Moreover, recent results have
shown that this master equation can always be slightly modified to obtain a
GKLS structure, even if for the sake of numerical simulations we do not always
need to use a completely positive master equation.
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One missing piece of the discussion on the global master equation with
partial secular approximation is its thermodynamic analysis, which will be an
interesting outlook for the near future. In particular, Publication II proves
that this master equation is almost always covariant under the action of a su-
peroperator group generated by the total-number-of-particles operator. This
property sets some challenges for the standard resource theories of quantum
thermodynamics, which usually assume that the dynamics is covariant under
a group generated by the system Hamiltonian. Unifying these two different vi-
sions, i.e., making the dynamical constraints coming from thermodynamic as-
sumptions and from the microscopic model of system plus environment agree,
promises to be an intriguing challenge for the next few years.

Publication IV explores the emergence of subradiance, synchronization
and entanglement generation between two detuned qubits in a common bath.
This study sheds light on the behavior of these phenomena as a function of
the model parameters, and on when and why these effects may appear under
the same physical conditions. Extending the results of this work may require
to consider more than two subsystems of the multipartite open quantum sys-
tem. From the theoretical perspective this should be relatively easy, as the
theoretical tools we would need to employ (e.g., the master equation and its
properties) are still the same. Less trivial is to find a proper figure of merit
for these phenomena when the system is not bipartite anymore. On the other
hand, Publications III and IV show that these collective effects can be studied
experimentally on a platform of two transmon qubits capacitively coupled to
a common resistor, which acts as a thermal bath. Therefore, the most imme-
diate outlook of these works may be their experimental implementation in a
circuit QED lab.

The multipartite collision model is a successful tool to reproduce any multi-
partite GKLS master equation. It can be employed both for quantum thermo-
dynamic studies and for the simulation of the master equation on a quantum
computer. Remarkably, Publication V also proves that it is efficiently simula-
ble, and to do so it puts forward a procedure to estimate some rigorous error
bounds on the global error of the collision model due to a small but finite col-
lision timestep. This procedure can be employed to estimate analogous error
bounds for any collision model. Publication VI extends these bounds to the
presence of experimental errors in the algorithm implementation. Moreover,
the experimental results of the multipartite collision model implemented on
a near-term quantum computer show signatures of collective effects, although
the accuracy of these machines is still quite low due to very noisy two-qubit
gates.

Owing to its generality, the multipartite collision model may be immedi-
ately applied to simulate fascinating collective phenomena such as the syn-
chronization of extended quantum systems or dissipative time crystals. Fur-
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thermore, an interesting outlook of Publication V may be the thermodynamic
analysis of a single multipartite collision. In what follows we sketch some
related questions that are still without an answer: what are the expressions
for the production of heat, work and entropy during a single collision? Can
we decompose these expressions into some elementary terms associated with
a single subsystem only? Is there a difference between these quantities for the
multipartite collision model and for a standard unstructured collision model?
Can we find a qualitative difference in these expressions when we pass from
the description of a local master equation to a highly global one? Addressing
these issues would provide a remarkable step forward for the thermodynam-
ics of multipartite quantum systems. Moreover, Publication VI paves the way
for the experimental study of the thermodynamics of the multipartite collision
model on a near-term quantum computer.

In conclusion, the field of multipartite open quantum systems is getting
more and more important for contemporary quantum mechanics, due to the
increasing number of theoretical and experimental studies focused on extended
quantum systems, which are crucial, for instance, for the future of quantum
computation and simulation. This thesis presents some relevant results on the
study and characterization of multipartite open quantum systems. We hope
the readers will appreciate these contributions in this era of excitement and
discoveries on quantum technologies and fundamental quantum physics, when
a more structured and accurate characterization of the quantum systems we
manipulate is deemed necessary.
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