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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:

Background

The aim was to investigate whether children born after assisted reproduction technology

(ART), particularly after frozen-thawed embryo transfer (FET), are at higher risk of childhood

cancer than children born after fresh embryo transfer and spontaneous conception.

Methods and findings

We performed a registry-based cohort study using data from the 4 Nordic countries: Den-

mark, Finland, Norway, and Sweden. The study included 7,944,248 children, out of whom

171,774 children were born after use of ART (2.2%) and 7,772,474 children were born after

spontaneous conception, representing all children born between the years 1994 to 2014 in

Denmark, 1990 to 2014 in Finland, 1984 to 2015 in Norway, and 1985 to 2015 in Sweden.

Rates for any cancer and specific cancer groups in children born after each conception

method were determined by cross-linking national ART registry data with national cancer

and health data registries and population registries. We used Cox proportional hazards

models to estimate the risk of any cancer, with age as the time scale.

After a mean follow-up of 9.9 and 12.5 years, the incidence rate (IR) of cancer before age

18 years was 19.3/100,000 person-years for children born after ART (329 cases) and 16.7/

100,000 person-years for children born after spontaneous conception (16,184 cases).

Adjusted hazard ratio (aHR) was 1.08, 95% confidence interval (CI) 0.96 to 1.21, p = 0.18.

Adjustment was performed for sex, plurality, year of birth, country of birth, maternal age at
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birth, and parity. Children born after FET had a higher risk of cancer (48 cases; IR 30.1/

100,000 person-years) compared to both fresh embryo transfer (IR 18.8/100,000 person-

years), aHR 1.59, 95% CI 1.15 to 2.20, p = 0.005, and spontaneous conception, aHR 1.65,

95% CI 1.24 to 2.19, p = 0.001. Adjustment either for macrosomia, birth weight, or major

birth defects attenuated the association marginally. Higher risks of epithelial tumors and

melanoma after any assisted reproductive method and of leukemia after FET were

observed.

The main limitation of this study is the small number of children with cancer in the FET

group.

Conclusions

Children born after FET had a higher risk of childhood cancer than children born after fresh

embryo transfer and spontaneous conception. The results should be interpreted cautiously

based on the small number of children with cancer, but the findings raise concerns consider-

ing the increasing use of FET, in particular freeze-all strategies without clear medical

indications.

Trial registration

Trial registration number: ISRCTN 11780826.

Author summary

Why was this study done?

• Worldwide, the number of children born after assisted reproductive technology (ART)

with frozen-thawed embryo transfer (FET) increases and now exceeds the number of

children born after fresh embryo transfer in many countries.

• Singletons born after FET are at increased risk of macrosomia that has been associated

with a higher risk of childhood cancer.

• Studies on the association of ART and risk of childhood cancer show conflicting results.

What did the researchers do and find?

• We performed a Nordic registry-based cohort study including 171,774 children born

after use of ART and 7,772,474 children born after spontaneous conception.

• We found that children born after FET had a higher risk of childhood cancer than chil-

dren born after fresh embryo transfer and spontaneous conception. We found no

increase in childhood cancer after any ART.

What do these findings mean?

• Concerns may be raised considering the vast increase in FET, in particular freeze-all

strategies without clear medical indications.
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• The main limitation of this study is the small number of children with cancer in the FET

group.

Introduction

Recently, a substantial increase in use of frozen-thawed embryo transfers (FETs) in in vitro fer-

tilization has occurred worldwide. In the United States of America, the FET rate has doubled

since 2015 and comprised 78.8% of all embryo transfers using non-donor assisted reproductive

technology (ART) in 2019 [1]. A similar pattern is observed in Australia, New Zealand, and

Europe [2]. The main reason for the increase in FET is improved embryo survival and the high

pregnancy/live birth rates after transfer of vitrified/thawed blastocysts compared to the previ-

ously used technique with transfer of slow frozen-thawed cleavage stage embryos [3,4]. A

freeze-all policy (freezing of all embryos from a treatment cycle and no fresh embryo transfer)

is currently being implemented in many parts of the world [2], despite indications of increased

birth weight and risk of hypertensive disorders in pregnancy [5] and without careful consider-

ation of benefits and harms. Six large randomized controlled trials have investigated the differ-

ences in live birth rate following fresh embryo transfer and FET in freeze-all cycles [6–11]. The

first trial, published in 2016 [6], showed a significantly higher live birth rate in freeze-all groups

than fresh embryo transfer groups in anovulatory women. In ovulatory women, most trials

show similar ongoing pregnancy and live birth rates in a freeze-all group (either cleavage stage

embryos or blastocysts) compared with a fresh embryo transfer group [7,8,10,11]. Importantly,

freezing has reduced multiple pregnancies by facilitating single embryo transfer [12], and the

freeze-all strategy has almost eliminated ovarian hyperstimulation syndrome [5,13], a poten-

tially life-threatening complication in ART [14]. Currently, up to 7.9% of children in Europe

and 5.1% in the United States are born after ART, making health of children born after ART a

topic of public health importance [15,16].

In many countries, the number of FET-conceived children has now exceeded the number

born after fresh embryo transfer [1,17].

Childhood cancer includes a wide array of diagnoses, some of them very rare. Often the

diagnoses are seen only in children but also cancer diseases common in adults occur. Leuke-

mia is the most common neoplasm followed by various forms of tumors in the central nervous

system (CNS). The incidence peaks during the first years of life [18]. The overall incidence in

Northern Europe increased slightly up to the turning of the century, but later on, a stabiliza-

tion has followed [19]. Studies on risk of childhood cancer after ART show conflicting results.

Most large observational studies indicate similar overall cancer risk in children born after ART

and in children in the general population [20–23], but a higher risk for both any cancer [24–

27] and specific malignancies [20,21,24–26] has also been reported. In a Danish population-

based registry study [22], a higher risk of any childhood cancer was found after FET compared

to spontaneous conception, but the finding was based on a limited number of cases.

In this large population-based registry study from 4 Nordic countries, we estimated the risk

of childhood cancer in an unselected ART-conceived population, with special focus on chil-

dren born after FET, and compared it to the risk in children born after fresh embryo transfer

and spontaneous conception during the same period.
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Methods

Study population and data collection

Data were obtained for Denmark, Finland, Norway, and Sweden from the CoNARTaS (Com-

mittee of Nordic ART and Safety) cohort [28], established to study short- and long-term health

consequences of ART treatment in children and their mothers. Data on maternal and perinatal

health in all deliveries were obtained from nationwide Medical Birth Registries in each country

[29] and cross-linked with data from the national cancer registries, national patient registries,

the national cause of death registries, and socioeconomic data retrieved from the population

registries in each country. The unique personal identity number assigned to each resident in

the Nordic countries enabled individual-level data linkage between registries and between chil-

dren and their mothers.

All Nordic cancer registries are population based and nationwide. The respective cancer

registries were founded in 1942 in Denmark [30], 1952 in Finland [31], 1951 in Norway [32],

and 1958 in Sweden [33]. Notification of cancer is mandatory in all Nordic countries. A high

degree of completeness and accuracy of the registered data and comparability between coun-

tries has been documented [34].

ART conception was determined from reports to the Medical Birth Registry (Finland),

notifications from fertility clinics regarding all ongoing ART-conceived pregnancies in gesta-

tional weeks 6 to 7 (Norway) or the National Board of Health and Welfare (Sweden until

2007), or through linkage with cycle-based ART registries (Denmark, Sweden from 2007) (S1

Table). Details on the cohort and registries are given elsewhere [28].

Inclusion criteria were all live-born singletons, twins, and higher order multiples born after

ART and spontaneous conception (here defined as any conception without ART) during the

study period.

Outcome variables and follow-up

The primary outcomes were any cancer diagnosed before age 18 years after use of any ART

and specifically after FET. Secondary outcomes were cancer diagnosis groups according to the

International Classification of Childhood Cancer (ICCC-3) [35]. The ICCC-3 is based on the

World Health Organization (WHO) classification system for cancer morphology and allows

comparison of broad categories of neoplasms in continuity with previous classifications [36].

In ICCC-3, the diagnoses are grouped into 12 main categories according to the morphology

code, the topographic code, and the behavior of the tumor, i.e., benign or malignant (S2

Table). We grouped all patients into ICCC-3 categories. The 12 groups each include a defined

set of morphology codes, and occasionally, the additional use of topography codes was used.

In older patients topography codes according to the International Statistical Classification of

Diseases (ICD) and Related Health problems were transferred to the latest version, ICD-10, by

an algorithm used by the cancer registries. ICCC-3 only groups tumors with a malignant diag-

nosis except for tumors located in the CNS. Consequently, other benign or borderline tumors

were not included in this report. Although there are discrepancies, due mainly to different tra-

ditions in cancer registration between the countries [28,34], pooling of data was possible

because all use the WHO classification system [36].

Macrosomia was defined as birth weight�4,000 g. Birth defects and chromosomal aberra-

tions were defined according to ICD-9 (740–759) or ICD-10 (Q00–99) code. Major birth

defects were defined according to the EUROCAT classification system (S1 Table) [37].

This study is reported as per the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline (S1 STROBE Checklist). Our analyses were planned in
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advance of the research team accessing any data, and our study protocol is provided (S1 Text).

The CoNARTaS project is also registered in the ISRCTN registry (ISRCTN11780826).

Ethical approval

Ethical approval was obtained from Ethical Committee in Gothenburg, Sweden (Dnr 214–12,

T422-12, T516-15, T233-16, T300-17, T1144-17, T121-18, T1071-18, 2019–02347). In Norway,

approval was given by the Regional Committee for Medical and Health (REK-Nord, 2010/

1909). There are no requirements for ethical approval for registry-based studies in Denmark

and Finland. All registry-keeping organizations gave permission to use their data in this study.

Statistical analysis

We used Cox proportional hazards models to estimate the risk of any cancer, with age as the

time scale. We computed each child’s time at risk from date of birth until whichever event

occurred first: diagnosis of any cancer, emigration (available through 2014 for Denmark,

through 2015 for Sweden and Norway, and not available for Finland), death (available through

2014 for Denmark and Finland and 2015 for Norway and Sweden), 18th birthday, or end of

the follow-up period (December 31, 2014 for Finland, December 31, 2015 for Norway and

Sweden, and December 31, 2018 for Denmark).

We compared risk of cancer between children born after ART and spontaneous conception,

between children born after FET and fresh embryo transfer, and between children born after

FET and spontaneous conception, for any cancer and the 12 different cancer groups. In all

analyses, only the first diagnosed cancer type was considered. Finland was not included in the

analysis of FET since the Finnish registration does not differentiate between different assisted

reproduction methods. We further analyzed risk of any cancer for singletons and multiples

separately.

We estimated crude and adjusted hazard ratios (HRs) with 95% confidence intervals (CIs).

The significance level was set to 5%. A number of<10 events in any group was considered too

small to calculate a stable estimate. Adjustments were made for selected covariates. Selection

of covariates was primarily based on medical knowledge and previous studies. We searched lit-

erature for identification of covariates [38]. The variables included the following child and

maternal characteristics: calendar year of birth (continuous variable), country of birth (Den-

mark, Finland, Norway, Sweden), maternal age at delivery (continuous variable), parity (nul-

liparous/parous), sex, and plurality (singletons/multiples). Calendar year at birth and country

of birth both influence cancer incidence as well as likeliness of having been conceived by ART.

Both maternal age and birth order have been shown to be associated with cancer in offspring

[39,40] and are also associated with ART (ART mothers are older and of lower parity than

spontaneous conception mothers). Risk of certain cancers is different among males and

females [41], and some ART methods (transfer of blastocysts) may alter the sex ratio [42], and

therefore, sex was included as a covariate. Furthermore, an association with multiple birth and

cancer (leukemia) has been found [43] and multiple birth is more common after ART, and

plurality was therefore also included as a covariate.

In a sensitivity analysis, we also included maternal smoking during pregnancy (yes/no) as a

covariate. In an additional sensitivity analysis, maternal highest educational level achieved dur-

ing the study period (low, medium, high) was included as a covariate [44]. This analysis

included data from Denmark, Finland, and Sweden because data on education were not avail-

able from Norway.

In the main regression analysis where adjustment was performed for year of birth, country

of birth, maternal age at birth, parity, sex, and plurality, the percentage of missing data was
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small. In the sensitivity analyses where adjustment was performed for maternal smoking or

educational level, missing data for these variables were substantial. Participants with missing

data were excluded from these models. No imputations were made.

Macrosomia and major birth defects have been associated with childhood cancer [45–47]

and are also associated with ART [23,48]. To investigate macrosomia and major birth defects,

as possible mechanisms of an increased risk of cancer in children born after FET, separate

exploratory analyses were performed with additional adjustment for macrosomia (yes/no) and

major birth defects (yes/no). A similar analysis was also performed with birth weight as a con-

tinuous variable. Finally, as an indicator of embryo quality, we additionally adjusted for

embryo stage, i.e., cleavage stage or blastocyst in a separate exploratory analysis comparing

conception after FET and fresh embryo transfer.

Collinearity was assessed via the post-estimation command estat variance–covariance

matrix of the estimators (VCE) in Stata, giving the covariances/correlations between the differ-

ent covariates in the Cox proportional hazards model. No major issues with multicollinearity

were identified in our analyses.

The proportional hazards assumption was tested with Schoenfeld residuals, and there were

no clear violations. All analyses were performed in Stata, version 16.

Patient and public involvement

Children or parents were not involved in the design, outcome measures, or planning of the

study, and they were not asked to give advice on interpretation of results. The results of the

research will be disseminated to the public through broadcasts, popular science articles, and

newspapers.

Results

Child and maternal characteristics

The study population included 171,774 children born after use of ART and 7,772,474 children

born after spontaneous conception (S1 Fig). Child and maternal characteristics are presented

in Table 1 for any ART method and spontaneous conception and in S3 Table for FET, fresh

embryo transfer, and spontaneous conception. Overall, 25.9% and 2.6% of the children born

after ART and spontaneous conception were part of a multifetal pregnancy. Preterm birth

(<37 weeks) and low birth weight (<2,500 g) occurred among 16.1% and 13.0% of the chil-

dren born after ART and among 5.6% and 3.5% of children born after spontaneous concep-

tion. Mean maternal age at delivery was 33.9 and 29.7 years in the ART and spontaneously

conceived population, and 68.1% and 41.8% of the mothers were primiparous.

Risk of cancer after ART-conception

The total follow-up time was 1,705,772 person-years for the ART group (mean [SD] 9.9 [5.8]

years) and 97,027,051 person-years for the spontaneously conceived group (mean [SD] 12.5

[5.9] years). Cancer was diagnosed before age 18 years in 329 children in the ART group (inci-

dence rate (IR) 19.3 per 100,000 person-years, Table 2) and in 16,183 spontaneously conceived

children (IR 16.7/100,000 person-years). The mean age at first cancer diagnosis was 6.0 years

after ART and 6.8 years after spontaneous conception, and the distribution of age at first can-

cer diagnosis (Fig 1) reflected the longer mean follow-up after spontaneous conception. Age-

specific hazard rates were slightly higher among ART-conceived compared to spontaneously

conceived children from approximately 5 to 12 years of age (Fig 2), corresponding to unad-

justed cumulative hazards that were similar up to about 6 years of age and diverged slightly
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Table 1. Characteristics of study population by mode of conception defined as ART or SC and by country of birth in children born in Denmark 1994–2014, Finland

1990–2014, Norway 1984–2015, or Sweden 1985–2015.

All countries N = 7,944,248 Denmark

N = 1,355,267

Finland N = 1,496,133 Norway N = 1,865,484 Sweden N = 3,227,364

ART

N = 171,774

SC

N = 7,772,474

ART

N = 45,783

SC N = 1

309,484

ART

N = 29,682

SC

N = 1,466,451

ART

N = 34,042

SC

N = 1,831,442

ART

N = 62,267

SC

N = 3,165,097

Child

characteristics

Calendar year of
birth, N (%)
1984–1990 1,676

(1.0)

1,095,853

(14.1)

- - 53

(0.2)

65,203

(4.5)

877

(2.6)

383,757

(21.0)

746

(1.2)

646,893

(20.4)

1991–1995 11,681

(6.8)

1,321,054

(17.0)

1,299

(2.8)

138,138

(10.6)

2,864

(9.7)

320,916

(21.9)

2,464

(7.2)

297,356

(16.2)

5,054

(8.1)

564,644

(17.8)

1996–2000 28,705

(16.7)

1,133,572

(17.2)

8,532

(18.6)

327,305

(25.0)

6,937

(23.4)

283,142

(19.3)

4,313

(12.7)

292,015

(15.9)

8,923

(14.3)

431,110

(13.6)

2001–2005 36,089

(21.0)

1,332,301

(17.1)

11,797

(25.8)

313,095

(23.9)

6,357

(21.4)

276,286

(18.8)

6,586

(19.4)

276,926

(15.1)

11,349

(18.2)

465,994

(14.7)

2006–2010 45,499

(26.5)

1,414,136

(18.2)

13,139

(28.7)

310,160

(23.7)

6,971

(23.5)

291,843

(19.9)

9,411

(27.7)

293,014

(16.0)

15,978

(25.7)

519,119

(16.4)

2011–2015 48,124

(28.0)

1,275,558

(16.4)

11,016

(24.1)

220,786

(16.9)

6,500

(21.9)

229,061

(15.6)

10,391

(30.5)

288,374

(15.8)

20,217

(32.5)

537,337

(17.0)

Birth weight, N (%)
Very low birth

weight, <1,500 g

5,220

(3.1)

56,245

(0.7)

1,566

(3.5)

10,331

(0.8)

844

(2.8)

9,494

(0.7)

1,233

(3.6)

14,584

(0.8)

1,577

(2.5)

21,836

(0.7)

Low birth weight,

<2,500 g

22,241

(13.0)

272,089

(3.5)

6,894

(15.2)

50,901

(4.0)

3,936

(13.3)

46,765

(3.2)

4,870

(14.3)

67,004

(3.7)

6,541

(10.6)

107,419

(3.4)

Macrosomia,

�4,000 g

20,522

(12.0)

1,458,901

(18.9)

4,723

(10.4)

238,105

(18.5)

3,521

(11.9)

272,308

(18.6)

3,933

(11.6)

355,748

(19.4)

8,345

(13.5)

592,740

(18.8)

Birth weight, g,

mean (SD)

3,193

(754)

3,517

(584)

3,109

(764)

3,492

(596)

3,200

(745)

3,527

(566)

3,155

(780)

3,522

(595)

3,272

(729)

3,520

(582)

Missing data for

birth weight, N

(%)

755

(0.4)

36,522

(0.5)

463

(1.0)

24,570

(1.9)

13

(0.04)

3,405

(0.2)

35

(0.1)

1,556

(0.1)

244

(0.4)

6,991

(0.2)

Gestational age, N
(%)
Extremely preterm

birth, <28+0

weeks

2,100

(1.2)

22,136

(0.3)

677

(1.5)

4,075

(0.3)

341

(1.2)

3,800

(0.3)

476

(1.4)

5,627

(0.3)

606

(1.0)

8,634

(0.3)

Very preterm

birth, <32+0

weeks

4,364

(2.6)

47,876

(0.6)

1,334

(2.9)

9,355

(0.7)

681

(2.3)

7,616

(0.5)

978

(2.9)

12,110

(0.7)

1,371

(2.2)

18,795

(0.6)

Preterm birth, <37

+0 weeks

27,462

(16.1)

428,385

(5.6)

8,364

(18.4)

82,501

(6.4)

5,125

(17.3)

74,474

(5.1)

5,842

(17.3)

99,294

(5.7)

8,131

(13.1)

172,116

(5.5)

Postterm birth,

�42+0 weeks

5,057

(3.0)

374,569

(4.9)

789

(1.7)

40,354

(3.1)

573

(1.9)

40,738

(2.8)

1,152

(3.4)

124,498

(7.2)

2,543

(4.1)

168,979

(5.4)

Gestational age,

days, mean (SD)

270

(20)

278

(14)

268

(21)

278

(14)

270

(20)

278

(13)

270

(21)

279

(14)

273

(19)

278

(13)

Missing data for

gestational age, N
(%)

652

(0.4)

129,426

(1.7)

298

(0.7)

28,949

(2.2)

57

(0.2)

6,738

(0.5)

246

(0.7)

89,599

(4.9)

51

(0.1)

4,140

(0.1)

Plurality, N (%)
Singletons 127,230

(74.1)

7,573,456

(97.4)

30,997

(67.7)

1,269,481

(97.0)

22,038

(74.3)

1,430,582

(97.6)

24,114

(70.1)

1,783,892

(97.4)

50,081

(80.4)

3,089,501

(97.6)

Twins 42,536

(24.8)

194,464

(2.5)

14,392

(31.4)

38,981

(3.0)

7,196

(24.2)

35,165

(2.4)

9,367

(27.5)

46,389

(2.5)

11,581

(18.6)

73,929

(2.3)

(Continued)
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Table 1. (Continued)

All countries N = 7,944,248 Denmark

N = 1,355,267

Finland N = 1,496,133 Norway N = 1,865,484 Sweden N = 3,227,364

ART

N = 171,774

SC

N = 7,772,474

ART

N = 45,783

SC N = 1

309,484

ART

N = 29,682

SC

N = 1,466,451

ART

N = 34,042

SC

N = 1,831,442

ART

N = 62,267

SC

N = 3,165,097

Triplets and higher

order multiples

2,008

(1,2)

4,554

(0.1)

394

(0.9)

1,022

(0.1)

448

(1.5)

704

(0.1)

561

(1.7)

1,161

(0.1)

605

(1.0)

1,667

(0.1)

Birth defects, N (%)
Any major defectsa

(non-

chromosomal or

chromosomal

defects)

8,965

(5.2)

263,781

(3.4)

2,597

(5.6)

48,686

(3.7)

2,165

(7.3)

67,234

(4.6)

1,802

(5.3)

62,089

(3.4)

2,401

(3.8)

85,772

(2.7)

Major birth

defectsa (non-

chromosomal)

8,679

(5.1)

256,525

(3.3)

2,536

(5.5)

47,388

(3.6)

2,099

(7.1)

65,291

(4.5)

1,733

(5.1)

60,506

(3.3)

2,311

(3.7)

83,340

(2.6)

Chromosomal

defects (with or

without other

major birth

defectsa)

286

(0.17)

7,256

(0.09)

61

(0.13)

1,298

(0.10)

66

(0.22)

1,943

(0.13)

69

(0.20)

1,583

(0.09)

90

(0.14)

2,432

(0.08)

Male sex, N (%) 87,805

(51.1)

3,988,987

(51.3)

23,202

(50.7)

672,088

(51.3)

15,192

(51.2)

749,359

(51.1)

17,456

(51.3)

940,571

(51.4)

31,955

(51.3)

1,626,969

(51.4)

Age at cancer

diagnosis (year),

mean (SD),

median (range)

6.0 (5.0)

4.3 (0–18)

6.8 (5.4)

5.2 (0–18)

7.0 (5.3)

5.2 (0–17)

6.9 (5.4)

5.3 (0–18)

5.9 (4.8)

4.7 (0–17)

6.6 (5.3)

4.8 (0–18)

5.4 (4.8)

4.1 (0–18)

7.3 (5.6)

5.7 (0–18)

5.2 (4.5)

3.5 (0–17)

6.7 (5.3)

5.0 (0–18)

Follow-up time

(year), mean (SD),

median (range)

9.9 (5.8)

9.5 (0–18)

12.5 (5.9)

14.5 (0–18)

12.0 (4.8)

12.2 (0–18)

13.2 (4.9)

14.4 (0–

18)

10.0 (5.9)

10.1 (0–18)

11.7 (6.0)

12.8 (0–18)

9.0 (5.8)

8.2 (0–18)

12.8 (6.0)

15.7 (0–18)

8.9 (5.9)

7.9 (0–18)

12.4 (6.2)

15.0 (0–18)

Maternal

characteristics

Age at delivery,

(year), mean (SD)

33.9

(4.2)

29.7

(5.2)

33.6

(4.1)

30.2

(4.9)

33.9

(4.6)

29.8

(5.3)

33.6

(4.1)

29.3

(5.2)

34.2

(4.1)

29.8

(5.2)

Primiparous, N
(%)

116,551

(68.1)

3,244,158

(41.8)

30,479

(67.4)

554,294

(42.9)

20,132

(67.9)

592,796

(40.5)

21,733

(63.8)

756,578

(41.3)

44,207

(71.0)

1,340,490

(42.4)

Smoking during

pregnancyb, N (%)

10,141

(6.4)

989,017

(15.1)

3,956

(9.3)

194,512

(16.5)

1,820

(6.2)

224,725

(15.7)

1,735

(6.1)

129,171

(13.4)

2,630

(4.5)

440,609

(14.7)

Missing data for

smoking, N (%)

12,944

(7.5)

1,213,569

(15.6)

3,217

(7.0)

132,470

(10.1)

447

(1.5)

37,222

(2.5)

5,703

(16.8)

868,891

(47.4)

3,577

(5.7)

174,986

(5.5)

BMI (kg/m2),

mean (SD)

24.3

(4.1)

24.2

(4.5)

24.0

(4.3)

24.3

(5.0)

24.1

(4.3)

24.3

(4.8)

24.4

(4.4)

24.3

(4.8)

24.4

(3.9)

24.1

(4.3)

Missing data for

BMI, N (%)

64,265

(37.4)

3,814,698

(49.1)

17,836

(40.0)

693,037

(52.9)

14,610

(49.2)

866,154

(59.1)

24,402

(71.7)

1,575,159

(86.0)

7,417

(11.9)

680,348

(21.5)

Educational level,
N (%)c, d

Low (ISCED <5) 59,198

(44.7)

3,103,182

(56.1)

24,091

(53.3)

775,825

(61.0)

8,674

(30.9)

604,310

(46.2)

NA NA 26,433

(44.7)

1,723,047

(58.3)

Medium (ISCED

5–6)

45,322

(34.2)

1,651,780

(29.8)

13,657

(30.1)

342,858

(26.9)

11,349

(40.4)

466,435

(35.7)

NA NA 20,316

(34.3)

842,487

(28.5)

High (ISCED 7–8) 27,952

(21.1)

781,679

(14.1)

7,455

(16.5)

154,279

(12.1)

8,078

(28.8)

237,128

(18.1)

NA NA 12,419

(20.1)

390,272

(13.2)

Missing data for

educational level

5,260

(4.0)

404,391

(7.3)

580

(1.3)

36,522

(2.8)

1,581

(5.3)

158,578

(10.8)

NA NA 3,099

(5.0)

209,291

(6.6)

Assisted
reproduction
methode, N (%)

(Continued)
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thereafter (Fig 3). After adjustment, no statistically significant difference in any cancer risk

was found for children born after ART versus spontaneous conception (aHR 1.08, 95% CI 0.96

to 1.21, p = 0.18) (Table 3).

The 2 most common cancer types were leukemia and CNS tumors (Table 3). There were

111 cases of leukemia among children born after ART (IR 6.5/100,000 person-years) and 4,921

cases after spontaneous conception (IR 5.1/100,000 person-years) (aHR 1.09, 95% CI 0.89 to

1.33, p = 0.40). The rates of any chromosomal aberration among children with leukemia were

4.5% in ART and 2.2% in the spontaneous conception group.

CNS tumors occurred in 87 children born after ART and 4,080 after spontaneous concep-

tion (IR 5.1 and 4.2/100,000 person-years, respectively) (aHR 1.22, 95% CI 0.97 to 1.52,

p = 0.09). A higher risk of epithelial tumors and melanoma was found in children born after

ART (22 cases, IR 1.3/100,000 person-years) compared with children born after spontaneous

conception (812 cases, IR 0.8/100,000 person-years) (aHR 1.89, 95% CI 1.20 to 2.97, p = 0.01).

Table 1. (Continued)

All countries N = 7,944,248 Denmark

N = 1,355,267

Finland N = 1,496,133 Norway N = 1,865,484 Sweden N = 3,227,364

ART

N = 171,774

SC

N = 7,772,474

ART

N = 45,783

SC N = 1

309,484

ART

N = 29,682

SC

N = 1,466,451

ART

N = 34,042

SC

N = 1,831,442

ART

N = 62,267

SC

N = 3,165,097

IVF 81,948

(57.7)

- 25,006

(54.6)

- NA - 20,093

(59.0)

- 36,849

(59.2)

-

ICSI 55,126

(38.8)

- 18,118

(39.6)

- NA - 11,590

(34.0)

- 25,418

(40.8)

-

Missing data for

IVF/ICSI

5,018

(3.5)

- 2,659

(5.8)

- NA - 2,359

(7.0)

- 0 -

Fresh embryo

transfer

115,474

(81.3)

- 41,022

(89.6)

- NA - 25,630

(75.3)

- 48,822

(78.4)

-

Frozen embryo

transfer

22,630

(15.9)

- 4,761

(10.4)

- NA - 4,424

(13.0)

- 13,445

(21.6)

-

Missing data for

fresh/frozen

embryo transfer

3,988

(2.8)

- 0 - NA - 3,988

(11.7)

- 0 -

Cleavage stage

embryo

130,784

(92.0)

- 42,444

(92.7)

- NA - 33,628

(98.8)

- 54,712

(87.9)

-

Blastocysts 9,623

(6.8)

1,654

(3.6)

414

(1.2)

7,555

(12.1)

Missing data for

embryo stage

1,685

(1.2)

- 1,685

(3.7)

- NA - 0 - 0 -

Autologous

oocytes

140,682

(99.0)

- 45,073

(98.4)

- NA - 34,042

(100)

- 61,567

(98.9)

Donated oocytes 1,410

(1.0)

- 710

(1.6)

NA - 0f - 700

(1.1)

-

aMajor birth defects defined according to the EUROCAT classification system [37].
bData for Denmark, Finland, and Sweden but only birth cohorts since 1999 from Norway when smoking habits were first registered.
cData for Denmark, Finland, and Sweden because no data were available for Norway.
dEducational level according to International Standard Classification of Education (ISCED2011), ISCED <5 = primary, secondary, or post-secondary non tertiary

education, ISCED 5–6 = first stage of tertiary education (bachelors or equivalent), ISCED 7–8 = second stage of tertiary education (master, doctorate, or more) [44].
eData for Denmark, Norway, and Sweden because no data on assisted reproductive method were available for Finland.
fOocyte donation not permitted in Norway.

ART, assisted reproductive technology; BMI, body mass index; ICSI, intracytoplasmic sperm injection; ISCED, international standard classification of education; IVF, in

vitro fertilization; LGA, large for gestational age; NA, not available; SC, spontaneous conception; SGA, small for gestational age.

https://doi.org/10.1371/journal.pmed.1004078.t001
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No significant differences were observed for other types of cancer where statistical compari-

sons were performed.

The IRs for any cancer and different cancer types by country of birth are presented in S4

Table.

Sensitivity analyses, including adjustment for any smoking during pregnancy or highest

maternal educational level, only marginally changed the association (aHR 1.02, 95% CI 0.90 to

1.15, p = 0.75 and aHR 1.08, 95% CI 0.95 to 1.22, p = 0.27, respectively).

Table 2. IR of any cancer before 18 years of age by mode of conception and country of birth in children born in Denmark, Finland, Norway, or Sweden (Denmark

1994–2014, Finland 1990–2014, Norway 1984–2015, and Sweden 1985–2015).

ART Spontaneous conception All

No. of children

with cancer

IR No. of children

with cancer

IR No. of children

with cancer

IR

Per 1,000

children

Per 100,000

person-years

Per 1,000

children

Per 100,000

person-years

Per 1,000

children

Per 100,000

person-years

All

countries

329 1.92

(329/

171,774)

19.29

(329/1,705,772)

16,184 2.08

(16,184/

7,772,474)

16.68

(16 184/

97,027,051)

16,513 2.08

(16,513/

7,944,248)

16.72

(16,513/

98,732,823)

Denmark 108 2.36

(108/

45,783)

19.29

(108/549,372)

2,840 2.17

(2,840/

1,309,484)

16.48

(2,840/

17,231,434)

2,948 2.18

(2,948/

1,355,267)

16.58

(2,948/

17,780,806)

Finland 49 1.65

(49/29,682)

19.66

(49/296,659)

3,140 2.14

(3,140/

1,466,451)

18.36

(3,140/

17,106,671)

3,189 2.13

(3,189/

1,496,133)

18.32

(3,189/

17,403,330)

Norway 63 1.85

(63/34,042)

16.52

(63/306,537)

3,841 2.10

(3,841/

1,831,442)

16.43

(3,841/

23,373,870)

3,904 2.09

(3,904/

1,865,484)

16.49

(3,904/

23,680,407)

Sweden 109 1.75

(109/

62,267)

20.55

(109/553,204

6,363 2.01

(6,363/

3,165,097)

16.18

(6,363/

39,315,076)

6,472 2.01

(6,472/

3,227,364)

16.23

(6,472/

39,868,280)

ART, assisted reproduction technology; IR, incidence rate.

https://doi.org/10.1371/journal.pmed.1004078.t002

Fig 1. ProportionalAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 5andTables2 � 4:Pleaseverifythatallentriesarecorrect:distribution of age at first cancer (any type) among spontaneously and ART-conceived

children born in Denmark (1994–2014), Finland (1990–2014), Norway (1984–2015), and Sweden (1985–2015) and

diagnosed with cancer before age 18 years. ART, assisted reproduction technology.

https://doi.org/10.1371/journal.pmed.1004078.g001
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No statistically significant differences for any cancer between ART-conceived and sponta-

neously conceived singletons (aHR 1.05, 95% CI 0.92 to 1.20, p = 0.48) or multiples (aHR 1.16,

95% CI 0.92 to 1.47, p = 0.22) were found.

Risk of cancer after frozen-thawed embryo transfer

There were 48 cases of cancer in children born after FET (IR 30.1/100,000 person-years

(Table 4). Children born after FET had a higher risk of any cancer compared both to children

born after fresh embryo transfer (227 cases, IR 18.8/100,000 person-years, aHR 1.59, 95% CI

1.15 to 2.20, p = 0.005) and children born after spontaneous conception (aHR 1.65, 95% CI

Fig 2. Age-specific hazard rates of first cancer (any type) among spontaneously and ART-conceived children born

in Denmark (1994–2014), Finland (1990–2014), Norway (1984–2015), and Sweden (1985–2015) and diagnosed

with any cancer before age 18 years. ART, assisted reproduction technology; CI, confidence interval.

https://doi.org/10.1371/journal.pmed.1004078.g002

Fig 3. Cumulative hazard of first cancer (any type) up to 18 years for spontaneously and ART-conceived children

born in Denmark (1994–2014), Finland (1990–2014), Norway (1984–2015), and Sweden (1985–2015). Crude

hazard ratio 1.13; 95% CI 1.01 to 1.26, p = 0.03. ART, assisted reproduction technology; CI, confidence interval.

https://doi.org/10.1371/journal.pmed.1004078.g003
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1.24 to 2.19, p = 0.001). Singletons showed lower estimates than multiples (FET versus fresh

embryo transfer, singletons aHR 1.49, 95% CI 1.01 to 2.18, p = 0.04; multiples aHR 1.91, 95%

CI 1.04 to 3.50, p = 0.04 and FET versus spontaneous conception, singletons aHR 1.49, 95% CI

1.07 to 2.08, p = 0.01; multiples aHR 2.34, 95% CI 1.33 to 4.12, p = 0.01). In the FET group, the

rates of macrosomia and major birth defects were: 31.3% versus 19.4%, 6.3% versus 4.3%, in

the cancer and no cancer groups. Further adjustments for macrosomia or major birth defects

only changed the results marginally (Table 4) as did adjusting for birth weight as a continuous

Table 3. IR and risk of any cancer and type of cancer according to ICCC-3 categories before 18 years of age by first diagnosis and mode of conception in children

born in Denmark, Finland, Norway, or Sweden (Denmark 1994–2014, Finland 1990–2014, Norway 1984–2015, and Sweden 1985–2015).

Cancer type (ICCC-3

category)a
ART

N = 171,774 children

N = 1,705,772 person-years

Spontaneous conception

N = 7,772,474 children

N = 97,027,051 person-years

ART vs. spontaneous

conception

No. of children

with cancer

IR No. of children

with cancer

IR Crude HR

(95% CI)

p-value

Adjusted HRb

(95% CI)

p-value
Per 1,000

children

Per 100,000

person- years

Per 1,000

children

Per 100,000

person-years

Any cancer (I–XII) 329 1.92 19.29 16,184 2.08 16.68 1.13

(1.01 to 1.26)

0.03

1.08

(0.96 to 1.21)

0.18

Leukemia (I) 111 0.65 6.51 4,921 0.63 5.07 1.18

(0.98 to 1.43)

0.08

1.09

(0.89 to 1.33)

0.40

Lymphomas (II) 30 0.17 1.76 1,699 0.22 1.75 1.12

(0.78 to 1.61)

0.53

1.02

(0.71 to 1.49)

0.90

Central nervous system tumors

(III)

87 0.51 5.10 4,080 0.52 4.20 1.20

(0.97 to 1.48)

0.10

1.22

(0.97 to 1.52)

0.09

Neuroblastoma and other

peripheral nervous cell tumors

(IV)

14 0.08 0.82 931 0.12 0.96 0.72

(0.42 to 1.21)

0.21

0.72

(0.42 to 1.24)

0.24

Retinoblastoma (V) 3 0.02 0.18 404 0.05 0.42 NAc NAc

Renal tumors (VI) 17 0.10 1.00 841 0.11 0.87 0.99

(0.61 to 1.60)

0.96

1.07

(0.65 to 1.76)

0.79

Hepatic tumors (VII) 7 0.04 0.41 225 0.03 0.23 NAc NAc

Bone tumors (VIII) 4 0.02 0.23 650 0.08 0.67 NAc NAc

Soft tissue sarcomas (IX) 25 0.15 1.47 868 0.11 0.89 1.62

(1.09 to 2.41)

0.02

1.49

(0.98 to 2.27)

0.06

Germ cell and gonadal tumors

(X)

7 0.04 0.41 667 0.09 0.69 NAc NAc

Epithelial tumors and melanoma

(XI)

22 0.13 1.29 812 0.10 0.84 2.00

(1.31 to 3.05)

0.001

1.89

(1.20 to 2.97)

0.01

Other and unspecified tumors

(XII)

<3d <0.02d <0.12d 86 0.01 0.09 NAc NAc

aUS Department of Health and Human Services. National Institutes of Health. National Cancer Institute. International Classification of Childhood Cancer. ICCC

Recode Third Edition ICD-O-3/IARC2017 [35].
bAdjusted for sex, plurality, year of birth, country of birth, maternal age at birth, and parity.
cNumbers too small (<10 in ART-conceived group) to calculate a stable estimate.
dThese data not reported as exact numbers to protect patient confidentiality.

ART, assisted reproduction technology; CI, confidence interval; HR, hazard ratio; ICCC-3, International Classification of Childhood Cancer; IR, incidence rate; NA, not

applicable.

https://doi.org/10.1371/journal.pmed.1004078.t003
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variable instead of macrosomia. In the FET versus fresh embryo group, adjustment for embryo

stage slightly strengthened the association (Table 4).

Risks of specific types of cancer in children born after FET versus fresh embryo transfer

and versus spontaneous conception are presented in S5 Table. A higher risk was observed for

leukemia in children born after FET (23 cases, IR 14.4/100,000 person-years) versus fresh

embryo transfer (75 cases, IR 6.2/100,000 person-years) (aHR 2.25, 95% CI 1.38 to 3.68,

p = 0.001) and in children born after FET versus spontaneous conception (aHR 2.22, 95% CI

1.47 to 3.35, p< 0.001). Further adjustment for macrosomia or major birth defects only atten-

uated the association slightly (S5 Table). The rates of any chromosomal aberration among chil-

dren with leukemia were 0% in the FET, 4.0% in the fresh, and 2.2% in the spontaneous

conception group. In the FET versus fresh embryo group adjustment for embryo stage slightly

strengthened the association (S5 Table).

The HRs for covariates included in the regression analyses are illustrated in Figs 4 and 5

and S2.

Discussion

The main finding in this large cohort study, based on nationwide registries and including

171,774 children born after use of any ART, was that while no increase in any childhood can-

cer was found after any ART, a higher risk was observed in children born after FET. The esti-

mates were robust and changed only marginally after adjustment for relevant confounders.

For specific cancer types, a significantly higher risk was found for epithelial tumors and mela-

nomas in children born after ART versus spontaneous conception and for leukemia in chil-

dren born after FET versus fresh embryo transfer and spontaneous conception. Further

adjustments for either macrosomia, continuous birth weight, or birth defects only marginally

attenuated these associations while adjusting for embryo morphology slightly strengthened the

association. Associations for FET were weaker for singletons than for multiples.

The reason for a possible higher risk of cancer in children born after FET is not known.

Each childhood cancer type has its own risk factor profile, but many childhood cancers are

thought to derive from embryonic accidents and originate in utero [18]. High birth weight has

been associated with higher childhood cancer risk, and epigenetic alterations have been

Fig 4. HRs with 95% CI for independent covariates including macrosomia for risk of cancer in children born after

FET versus fresh embryo transfer. CI, confidence interval; FET, frozen-thawed embryo transfer; HR, hazard ratio.

https://doi.org/10.1371/journal.pmed.1004078.g004
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proposed as a possible explanation [45–47]. Recent studies suggest changes in the epigenetic

control in newborns after use of different ARTs [49,50]. A population-based US study found

that among children with birth defects, particularly birth defects of chromosomal origin, those

conceived via ART were at greater risk of developing cancer compared with spontaneously

conceived children [23]. Although in our study, a major birth defect was an independent pre-

dictor of cancer in the analysis of children born after FET versus spontaneous conception, the

association changed only marginally after adjustment for major birth defects, as did analyses

with adjustment for macrosomia or birth weight. However, these analyses should be inter-

preted with caution due to the possibility of confounding from factors influencing both birth

weight, major birth defects, and cancer risk [51,52]. Thus, further adjustment, separating chro-

mosomal and non-chromosomal aberrations was not performed.

Higher risks of preterm birth, low birth weight, and birth defects in singletons after ART

have been repeatedly found both in large cohort and registry-based studies and in systematic

reviews and meta-analyses [53,54]. For children born after FET compared to children born

after fresh embryo transfer, a lower risk of preterm birth and low birth weight, but a higher

risk of macrosomia is apparent [48]. Studies on long-term outcomes in ART-conceived chil-

dren are more limited. Divergent results have been published concerning childhood cancer

after ART. Most large observational studies show similar cancer risk for children born after

ART compared to the general population [20–23]. In a large cohort study in the United King-

dom, including 106,013 ART children [20], 108 children with cancer were identified, com-

pared to 109.7 expected cancers (standardized IR 0.98, 95% CI 0.81 to 1.19). Higher risks were

detected for certain malignancies such as hepatoblastoma and rhabdomyosarcoma. For chil-

dren born after FET, the risk was similar to that in children born after fresh embryo transfer.

Also, 2 earlier Nordic studies including 91,796 and 25,782 ART children, respectively, partly

overlapping the present study, did not indicate any higher cancer risk in ART children (aHR

1.08, 95% CI 0.91 to 1.27 and aHR 1.21, 95% CI 0.90 to 1.63, respectively) [21,38]. In a large

observational study in the USA, a slightly higher risk of cancer among children born after ART

was observed (HR 1.17, 95% CI 1.00 to 1.36) [24]. The study identified 321 children with can-

cer in an ART population of 275,686 children, but no difference in risk was found for children

born after FET. In contrast, a Danish population-based registry study found higher risk of any

Fig 5. HRs with 95% CI for independent covariates including macrosomia for risk of cancer in children born after

FET versus spontaneous conception. CI, confidence interval; FET, frozen-thawed embryo transfer; HR, hazard ratio.

https://doi.org/10.1371/journal.pmed.1004078.g005
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childhood cancer after FET than after spontaneous conception, but the result was based on

only 14 cases (HR 2.43, 95% CI 1.44 to 4.11) [22]. Studies on childhood cancer after ART were

recently summarized in a systematic review [55], concluding that FET may be related to a

higher risk of pediatric cancer. In an even more recent study from Israel, with a limited num-

ber of children, a higher risk of cancer was found in children born after fresh transfer [27]. The

conflicting results may partly be due to limited study sizes with few events, differences in can-

cer registration, and various completeness of registries.

The main strengths of the present study are the large sample size, including unselected ART

and spontaneously conceived populations born during a period of up to 3 decades in 4 Nordic

countries and the use of high-quality validated population-based registries [56]. Individual

data linkage between population-based registries made adjustments for potential confounders

possible.

The main limitation is the number of children with cancer in the FET group. Although

including a large cohort, this study cannot give a definite answer if FET is associated with an

increased risk of cancer in childhood. It was not possible to include Finland in the FET analysis

due to missing information on ART method. Further, there was also lack on information on

emigration from Finland. Adjustment for race/ethnicity was not possible since registration on

race/ethnicity is not allowed in the Nordic countries. It has been reported that non-white chil-

dren and young adults might have lower rates of some childhood cancers [57]. The percentage

of mother’s country of birth being outside the Nordic countries was however low and similar

in ART and spontaneous conception in an earlier publication from CoNARTaS [58].

Furthermore, all data are observational, and residual confounding by factors such as genet-

ics, parental preconception health, and lifestyle cannot be excluded.

We were not able to exclude other medically assisted reproduction methods such as intra-

uterine insemination or ovulation induction from spontaneously conceived children.

Although today such cycles, at least in Denmark are substantial, they only accounted for a

small proportion of the spontaneous conception cohort. This misclassification might have

attenuated the associations.

In the present study, only patients performing ART and delivering in their home countries

are included. Although fertility tourism, meaning that patients go abroad or coming from

abroad for fertility treatment today is rather common in some Nordic countries, this was

uncommon during the study period. Such cycles are further impossible to correctly identify.

It might be argued that selecting the best quality embryos for fresh embryo transfer while

cryopreserving less good quality could represent 2 morphologically different populations of

embryos with different risks of any adverse outcome. Although numerous studies have found

an association between embryo quality and pregnancy and live birth rates, there are at present

no indication of more adverse outcome in children born from poor quality embryos [59]. In

addition, more FET pregnancies were conceived after blastocyst transfers which were consid-

ered having higher quality than cleavage stage embryos and when adjusting for embryo stage

as an indicator of embryo quality, the association between FET and cancer slightly strength-

ened. Furthermore, a vast majority of FET cycles were performed after a failed fresh cycle from

the same oocyte retrieval and cryopreservation of surplus embryos while the freeze-all concept

was hardly used. In fact, the FET population probably represents more good prognosis patients

since it was possible to freeze embryos in the same cycle in addition to the fresh embryo trans-

fer. Even though the present study included both children born after slow freezing of cleavage

stage embryos and the more recent technique with vitrification of blastocysts, which could be

associated with different risks, a recent large study comparing these techniques has not shown

any major differences in perinatal outcome between these groups [60].
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It is not clear if the results of this study can be broadly generalizable; however, the study

population represents an unselected ART as well as spontaneously conceived cohort from 4

Nordic countries covering a long time period.

Conclusions and further implications

In conclusion, while risk of any cancer was not higher in children born after use of ART, we

found that children born after FET had a higher risk of childhood cancer than children born

after fresh embryo transfer and spontaneous conception. The results should be interpreted

cautiously based on the limited number of children with cancer. Although the absolute risk is

low, these findings are important considering the increasing use of the freeze-all strategy.

Future research should elucidate these results and the mechanisms behind.
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