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Two-stage SQUID amplifier for the frequency multi-
plexed readout of the X-IFU X-ray camera

Mikko Kiviranta, Leif Grönberg, Tuomas Puranen, Jan van der Kuur, Nikolai Beev, Jaakko Salonen, Dibyendu
Hazra and Seppo Korpela

Abstract—The X-ray Integral Field Unit (X-IFU) is a cryogenic X-
ray camera intended for the ATHENA space observatory. Its focal
plane will contain a kilopixel array of Transition Edge Sensors
(TESs), originally intended to be read out by a Frequency Domain
Multiplexer involving 40 carrier frequencies in the 1 - 5 MHz range
per readout channel. We review dimensioning principles and fabri-
cation of a SQUID tandem, operating at 50 mK and 2 K tempera-
tures, intended to amplify the multiplexed signal from the TES ar-
ray. The first measurements indicate a 40 ℏ coupled energy resolu-
tion in the relevant frequency band, and sufficient linearity to reach
the required 1% total harmonic distortion. Additionally, we de-
scribe the non-multiplexed amplifier SQUID for the X-IFU anti-co-
incidence detector.
 

Index Terms— SQUID designs and applications, Josephson de-
vice fabrication, Transition-edge sensors (TES) devices, Multi-
plexing

I. INTRODUCTION

HE X-ray Integral Field Unit (X-IFU) [1] is a is a cryogenic
X-ray camera to be carried onboard the Advanced Tele-

scope for High Energy Astrophysics (ATHENA) [2], a (L)arge-
class mission by the European Space Agency (ESA). The X-
IFU will contain an array of 3 168 Transition Edge Sensor
(TES) calorimeters [3] with Frequency Domain Multiplexing
(FDM) [4] as the original baseline TES readout technique. The
TES array is under development at NASA / Goddard Space
Flight Center (GSFC).
  Similarly, the SPICA Far Infrared Instrument (SAFARI) was
the planned sub-mm wave camera to be carried onboard the
Space Infrared Telescope for Cosmology and Astrophysics
(SPICA) [5], a candidate for the fifth launch opportunity for a
(M)edium-class mission in the ESA Cosmic Vision pro-
gramme. The SAFARI was planned to contain order-of 3 500
TES bolometers with FDM readout [6]. The SPICA mission
was however discontinued a few weeks before submission of
this paper. An example of a ground-based FDM detector system
is [7].
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 Motivated by the X-IFU and SAFARI instruments, the VTT-
SRON collaboration has been developing a SQUID-based FDM
readout chain for many years, the most recent development be-
ing the switch from pillar-type [8] Josephson junctions (JJs) to
crossed-line SWAPS [9] JJs. Roughly the same time as the first
design iteration of the SWAPS-based SQUIDs for X-IFU was
finished and testing underway in February 2020, the X-IFU
consortium chose Time Domain Multiplexing (TDM) [10] as
the baseline readout technique, putting further FDM develop-
ment on the hold. We review here the status of the SQUID de-
velopment after the first SWAPS design iteration and the labor-
atory tests at VTT and SRON.
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Fig. 1. Simplified diagram of the SQUID tandem consisting of the single front
end SQUID at T = 50 mK, the 4-parallel 40-series SQUID array (booster) at T
= 2 K and the LNA at room temperature. The dc-coupled LNA utilizes a differ-
ential pair of 2 x 3 paralleled NESG3031 discrete SiGe transistors to reach uN
= 0.5 nV/Hz1/2 voltage and iN = 2 pA/Hz1/2 current noise, with 180 V/V gain
(45 V/V from the differential pair, 4 V/V from the buffer) and Df > 40 MHz
bandwidth. Feedback through the RTR resistors can be activated via photoMOS
switches to create a |Z IN | ≈ 150 W virtual LNA input resistance whose noise
temperature is less than the ambient [11]. The booster includes a voltage-sam-
pling local feedback circuit [12], which can be optionally activated by wire
bonding.
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II. THE SQUID TANDEM

The SQUID tandem for X-IFU (Fig. 1) refers to two cascaded
SQUID amplification stages, the front-end (FE) SQUID and
booster (AMP) SQUID, followed by a room temperature Low
Noise Amplifier (LNA) and a digitizer. Digitization in the VTT
setup is performed by the Red Pitaya [13] acquisition unit. The
tandem shown here is an upgrade of [14] and [15], and it at-
tempts to use a smaller number of more ‘muscular’ SQUID
cells in the arrays, heuristically in order to reduce the number
of degrees of freedom which may de-cohere.

In FDM the TES currents are combined via LC resonators
into a summing node (see eg. Fig. 1 of [6]), and the sum of cur-
rents drive the FE input coil (Fig. 1). In FDM the FE input
should present an ideal ammeter, i.e. its impedance should be
an ideal short, to avoid pixel-to-pixel crosstalk and reduced to-
tal bandwidth [16]. In practice the FE input inductance should
be extremely low ூே,ிாܮ ≈ 1 nH, which leads to two difficul-
ties: 1) energy resolution requirement of the FE SQUID ߝ =
ଵ

ଶൗ ூே݅௡ܮ
ଶ becomes challenging when the input current noise ݅௡

is constrained; and 2) parasitic inductance of interconnects may
be significant. The former can be alleviated via a power com-
biner more complex than the simple T-junction [17]. The FE
SQUID reviewed here, the type ‘M1’, is the X-IFU baseline
version implementing the simple T-junction combiner and hav-
ing a low .ூே,ிாܮ

The purpose of the two SQUID stages is to raise the signal
power created by an maximal-energy x-ray event from the level
at the TES output ைܲ,்ாௌ ≈ 1 pW (-87 dBm) to the level

ூܲ,௅ே஺ ≈ 20 nW (-47 dBm) at the LNA input, sufficiently high
above the LNA noise floor to cover the planned dynamic range.
Operated as a class-A amplifier, the FE SQUID dissipates

஽ܲ ,ிா ≈ 1 nW to generate the available signal power of ைܲ,ிா ≈
100 pW (-70 dBm) and the booster SQUID dissipates ஽ܲ,஺ெ௉ ≈
200 nW to generate ைܲ,஺ெ௉ ≈ 20 nW. Even if the class-B oper-
ation [18], [19] could improve the power efficiency ைܲ ஽ܲ⁄ , the
dissipation forces one to locate the booster SQUID at the ܶ =
2 K stage of the X-IFU refrigerating chain. The FE SQUID re-
sides at the ܶ = 50 mK stage close to the TES detectors.

The X-IFU FDM was designed to use 40 carrier frequencies
with Df =100 kHz in the 1…5 MHz band. The two dominant
bandwidth limits of the tandem are the L/R cutoff in the inter-
stage wiring between the FE and AMP SQUID, and the RC cut-
off in the AMP - LNA wiring. The ܮ = ூௌ்ீܮ + ூே,஺ெ௉ in theܮ
L/R includes the 50 mK - 2 K wiring inductance ூௌ்ீܮ  and the
input inductance of the booster ூே,஺ெ௉, while we want to keepܮ

ூௌ்ீܮ ≤ ூே,஺ெ௉ܮ  to avoid signal loss in the inductive divider
formed by the two. The resistance R in the L/R cutoff is the
dynamic output resistance of the FE SQUID, which we at-
tempted to raise as high as power dissipation budget allows,
reaching nominally ܴ஽,ிா ≈ 12.5 W.

The RC cutoff could be alleviated by lowering the dynamic
resistance of the booster ܴ஽,஺ெ௉. The C here is the parasitic ca-
pacitance of the 2 K - 300 K wiring. We have chosen to com-
bine a moderate ܴ஽,஺ெ௉ ≈ 125 W, nominally, with terminating
the 2 K - 300 K wiring resistively at LNA and making the wir-
ing behave more like a transmission line. The terminating resis-
tor is virtual, generated by a feedback technique in the LNA
(Fig. 1) to make its noise temperature less than the ambient tem-
perature [11]. The virtual suppression of the SQUID gain
ܸ݀ ݀Φ⁄  due to the LNA loading does not affect the signal-to-
noise ratio (SNR); it is feasible to reduce |Z IN | of the LNA even
to zero (i.e. make it a transimpedance amplifier, as with voltage-
biased SQUIDs [20]) and still have the SNR determined as the
ratio of the unsuppressed ܸ݀ ݀Φ⁄  of the booster and the voltage
noise uN of the LNA. The LNA is a 2012 upgrade of our previ-
ous version [14] and intended for laboratory work only. The X-
IFU flight LNA is under development in the University of Paris
[21].

III. SQUID FABRICATION

The SQUIDs are fabricated in the Micronova clean room [22]
on 150 mm Si wafers, using projection lithography with the
Canon FPA3000-i4 projection stepper. The clean room update
to use 200 mm wafers in all processes is underway.

The fabrication process is an upgrade of the one used in the
BREAKBEN project [23], with the third Nb superconductive
wiring layer and gold layer for cooling fins [24] added. The
SiO2 insulator below the third wiring is Chemically-Mechani-
cally (CMP) polished, facilitating additional wiring layers for
eg. RSFQ implementation [25] in future. The list of mask layers
is shown in the Table 1.

Josephson junctions fabricated with JC = 1.5 kA/cm2 critical
current density are located in the lowermost layer, using the
SWAPS [9] process outlined in Fig. 2. Their shunt resistors are

TABLE I: MASK LAYERS IN FABRICATION

Mask layer
name Material, thickness Comments

NB1 Nb 150 nm, Al 10 nm,
AlOx, Nb 100 nm

  Lower SWAPS stripe for JJs,
with spacers [9].

NB1J Nb 120 nm Crossing SWAPS stripe.
RES TiW 90 nm Target 5 W / square.

INS1a SiO2 100 + 100  nm 100 nm under RES, 100 nm on
top.

NB2b Nb 200 nm Second wiring layer.
INS2a SiO2   CMP planarized, thickness

varies.
NB3 Nb 200 nm Third wiring layer.

PASSa SiO2 250 nm Passivation.
AU Au 250 nm Deep contact windows to RES,

Au lift-off patterned.
aAll SiO2 layers are PECVD deposited at 180 °C.
bBREAKBEN fabrication process [23] followed up to here

Fig. 2. Fabrication steps to form a SWAPS Josephson junction [9]. From left to
right: The lower stripe is patterned from Nb-Al/AlOx-Nb trilayer. Sloped side-
wall spacers [26] are deposited. The crossing Nb stripe is deposited and pat-
terned. The Josephson junction is formed at the overlap of the two stripes.

NB1 counter

NB1 base

barrier SiO2 spacers

NB1J
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patterned out of titanium-tungsten film for good millikelvin
performance [27]. The niobium layers NB1, NB2 and NB3 are
patterned with Cl2 + CF4 plasma and the INS1 and INS2 contact
windows in the SiO2 insulator layers with CHF3 plasma. The
Au is deposited on a deep via to reach the TiW layer and pat-
terned with lift-off. An example cross section of the realized
film stack is shown in Fig. 3. The 1 mm linewidth / 1 mm gap
design rule for Nb layers has been followed in the X-IFU de-
vices, although the process is capable to implement 0.5 mm /
0.5 mm design rule reliably (Fig. 3b). The INS1 contact win-
dows are 1 ´ 1 mm in SQUID designs, but 0.6 ´ 0.6 mm win-
dows can be opened reliably. Due to uncertainty of the final in-
sulator material and etch method during process development,
the INS2 contact windows were drafted as 3.2 mm in the masks,
but 0.6 ´ 0.6 mm can be opened reliably with plasma in the
CMP SiO2.

IV. SQUID DIMENSIONING

A. Front end SQUID
The basic building block is a cascadeable SQUID cell with

gradiometric main loop of ௌொ = 70 pH inductance. Widths ofܮ
all niobium structures are ݓ ≤ 6 mm to avoid flux trap for-
mation in the Earth’s field [29], whereby both front-end and
booster devices can be operated without superconducting or
mu-metal shields1. The cell is equipped with 0.8 ´ 0.8 mm JJs
whose nominal critical current is ஼ = 9.6ܫ mA, and with ܴௌ =
17.5 W shunt resistors. The cell bias feed can be arranged sym-
metrically or asymmetrically. The nominal cell dissipation is

஽ܲ ≈ 1 nW. The cells are furnished with 3-turn input coils,
yielding ଵିܯ ≈ 14 mA/F0 periodicity.

1 Magnetic shielding is foreseen in the X-IFU focal plane assembly for pro-
tection against electromagnetic interference pickup, even if the SQUIDs are
flux trap resistant.

Internal schematic of the front-end SQUID is shown in the
Fig. 4. An asymmetrically biased version ‘M1’ was intended for
the X-IFU. It was to be operated on the shallow slope of the flux
response in order to reach the FDM requirement of 1% total
harmonic distortion (THD) at the nominal ac flux excitation.
The SQUID is equipped with a decoupling transformer to re-
duce the interaction of the baseband feedback (BBFB) [30] with
the TES detectors. We have measured ூே,ிாܮ ≈ 1.1 nH input
inductance at the summing node.

B. Booster SQUID
The booster SQUID is a 40-series 4-parallel array of sym-

metrically biased SQUID cells on a 4 ´ 4 mm chip, designated
as the type ‘N2’. Not shown in the simplified schematic (Fig.
1), there is a middle tap available both in the SQUID series ar-
ray output and the input coil, facilitating both balanced and sin-
gle-ended circuit configurations. The booster is equipped with
a coil for local negative feedback, to create asymmetric flux re-
sponse (Fig. 5b) with a shallow slope, on which the FDM re-
quirement of 1% THD is reached. The chosen feedback con-
diguration is voltage-sampling (V-FB) [11], because negative
V-FB tends to simultaneously lower the ܴ஽,஺ெ௉ , an advantage
for the tandem operation. When the V-FB is activated, loading
by the 2 ´ 210 W on-chip voltage-sampling resistors suppress
the modulation depth somewhat, as seen in the difference be-
tween Fig. 5 (a) and (b). The suppressing effect is in line with
the original device dimensioning.

C. CryoAC readout
In addition to the main TES array, there is a non-multiplexed

4-pixel anti co-incidence TES detector [31] in the X-IFU focal
plane array. Non-multiplexed readout of these TESs involves
single stage SQUID amplifiers, fabricated in the same process

Fig. 3. (a) Cross-section of the metal/insulator stack present in the standard
SQUID cell, produced by Focussed Ion Beam (FIB) etching: see Fig. 4 for the
location of the cut. The lowermost niobium wiring layer NB1 contains a 3-turn
input coil at 1 mm linewidth and 1 mm insulation gap. The resistive layer above
it contains capacitively coupled intracoil resistors [28] in some device variants.
The next NB2 wiring layer contains the 6 mm wide SQUID loop, and the top
NB3 wiring layer contains two one-turn coils for flux setpoint and local feed-
back. (b) A device variant with 6-turn input coil using 0.5 mm / 0.5 mm design
rule. The observed degraded magnetic coupling from the midmost turns dis-
courages the use of as dense input coil as this.

Fig. 4 (Left) SEM microphotograph of the SQUID region of the 2 ´ 2 mm Front
End chip. The top wiring layer (NB3) is visible while CMP obscures lower layer
visibility. The region contains the LSQ = 70 pH gradiometric SQUID loop and
the LDEC = 35 pH decoupling transformer. The FIB cut used to produce the Fig
3 cross-section is visible in the left sub-loop of the gradiometer. (Right) Sche-
matic of the Front End chip shows the SQUID, the input-feedback decoupler, a
balanced port for the Baseband Feedback [30], a setpoint coil, and multiple in-
puts driving the FDM summing node. Inputs are equipped with 0.5 nH / 0.5 W
and SQUID outputs with 15 nH / 10 W L/R-filters.
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wafers as the FE and booster SQUIDs. The CryoAC amplifiers,
designated as the type ‘M4’, are 2-series SQUID arrays, whose
constituent SQUIDs are a variant of the standard SQUID cell.
The ,ௌொ = 70 pH main loop and the 3-turn input coil are similarܮ
but Josephson junctions are 0.6 ´ 0.6 mm with the nominal crit-
ical current ஼ = 5.4ܫ mA, equipped with ܴௌ = 33 W shunt resis-
tors. The ‘M4’ SQUID includes on-chip 0.5 mW and 2.5 mW
resistors for TES biasing.

The target of the configuration is to obtain high enough gain
ܸ݀ ݀Φ⁄  within the ஽ܲ ≈ 1 nW dissipation budget, so that suffi-
ciently low flux noise can be obtained from a single SQUID
stage. We have observed ܸ݀ ݀Φ⁄  = 1 mV/F0 gain and Φே <
1 mF0/Hz1/2 in these devices when using our SiGe LNA for
readout.

V. RESULTS AND DISCUSSION

Flux-to-voltage response of the ‘N2’ booster at T = 4.2 K is
shown in Fig. 5 (a), exhibiting DV ≈ 6 mV modulation depth.
When the wire bonds for the voltage-sampling feedback coil are
attached, the trace (b) of Fig. 5 is obtained. In the traces the
virtual termination of the LNA is inactive. When the termina-
tion is activated, the modulation depth DV is suppressed; alt-
hough this does not affect the LNA-dominated SNR, it affects
the loop gain of the local feedback and makes the shallow slope
less linear. It turns out, however, that sufficient booster-to-LNA
bandwidth can be obtained without the termination, so that
close to X-IFU compliant linearity and THD is reached concur-
rently with the bandwidth. The choice of terminated vs. unter-
minated LNAs in the X-IFU system is still open.

The Fig. 5 (c) shows the flux response of the complete tan-
dem, i.e. FE SQUID current amplified by the booster SQUID.

The FE steep and shallow slopes are generated by the asymmet-
ric bias feed. Asymmetric bias feed is equivalent to current-
sampling feedback [12], beneficially increasing the dynamic re-
sistance ܴ஽,ிா on the shallow slope.

Frequency response of the tandem is the trace (d) in Fig. 6,
indicating -3 dB bandwidth of Df = 9 MHz. The flux noise
Fig. 6 (a) is measured at VTT in LHe, but the T = 50 mK flux
noise in Fig. 6 (b) has been measured at SRON as a part of an
FDM resonator test because the dilution refrigerator setup at
VTT is presently suffering from EMI pickup. The Φே ≈
0.2 mF0/Hz1/2 was reached. The SRON uses a single-ended ac-
coupled LNA different from the LNA in Fig. 1. In traces (a) and
(d) VTT LNA has been used, with the virtual termination inac-
tive.

To verify functioning of the VTT LNA with the termination
active, we have measured -3 dB bandwidth Df = 21 MHz.(Fig.
6e) and flux noise Φே ≈ 0.1 mF0/Hz (Fig. 6c) for the booster
SQUID, with the FE SQUID disconnected.

VI. CONCLUSION

We observe the SQUID tandem performance close to or
within the FDM requirements for the X-IFU instrument. Alt-
hough the FDM development is discontinued, we foresee the
booster SQUID can be used as a part of the new TDM system
for X-IFU [10] without significant modifications. The CryoAC
readout SQUID is also close to or within the requirements. The
radiation hardness test campaign is expected in the spring 2021.
These devices are a good starting point for the next design iter-
ation, likely to provide SQUIDs for the demonstration model of
the X-IFU instrument.

Fig. 5. Flux response of a booster SQUID when the local feedback is (a) inactive
and (b) active. The trace (c) shows flux response of the FE SQUID measured
through the shallow slope of the booster SQUID while the local feedback is
active; the slight foldback at the sweep extrema indicates that the FE current
swing is slightly too large to fit within the monotonous range of the booster.
The LNA virtual termination is off in all cases. The booster SQUID voltage for
traces (a) and (b) is obtained by dividing the LNA output voltage by 180. The
front-end SQUID output current scale can not be deduced as easily from the
trace (c) since the transresistance through the booster is not constant.
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