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� Monitoring sleep wake cycling is an essential component in neonatal brain monitoring.
� Detection of quiet sleep epochs is achievable from single EEG channels with deep learning-based

methods.
� Sleep State Trend (SST) can be used to visualize the classifier results in bedside monitors.

a b s t r a c t

Objective: To develop and validate an automated method for bedside monitoring of sleep state fluctua-
tions in neonatal intensive care units.
Methods: A deep learning-based algorithm was designed and trained using 53 EEG recordings from a
long-term (a)EEG monitoring in 30 near-term neonates. The results were validated using an independent
dataset from 30 polysomnography recordings. In addition, we constructed Sleep State Trend (SST), a
bedside-ready means for visualizing classifier outputs.
Results: The accuracy of quiet sleep detection in the training data was 90%, and the accuracy was com-
parable (85–86 %) in all bipolar derivations available from the 4-electrode recordings. The algorithm gen-
eralized well to a polysomnography dataset, showing 81% overall accuracy despite different signal
derivations. SST allowed an intuitive, clear visualization of the classifier output.
Conclusions: Fluctuations in sleep states can be detected at high fidelity from a single EEG channel, and
the results can be visualized as a transparent and intuitive trend in the bedside monitors.
Significance: The Sleep State Trend (SST) may provide caregivers and clinical studies a real-time view of
sleep state fluctuations and its cyclicity.
� 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sleep is essential for early brain organization (Allen, 2012,
Graven, 2006, Marks et al., 1995, Roffwarg et al., 1966), and a large
number of studies have shown the impact of sleep on many levels
of neurobehavioral development (Arditi-Babchuk et al., 2009,
Ednick et al., 2009, Lam et al., 2003, Mirmiran et al., 2003, Scher
et al., 1996, Touchette et al., 2007, van den Hoogen et al., 2017).
Clinically, fluctuation of sleep and wake states is seen as a key,
holistic indicator of healthy brain function, hence monitoring
sleep-wake rhythms has become a common practice in early brain
monitoring in the neonatal intensive care units (NICU) (Meder
et al., 2022, Thoresen et al., 2010, van den Hoogen et al., 2017). It
has also been suggested that sleep states should be monitored at
the bedside to help in optimizing care procedures in the interest
of minimizing disruption during a particular sleep state, or the
sleep-wake cycling (SWC) (Dereymaeker et al., 2017a).

The gold standard of sleep state recognition is behavioral obser-
vation (Grigg-Damberger et al., 2007), however physiological
recordings can also be used and polysomnography (PSG) recording
is commonly taken as the gold standard physiological recording
method. It includes electroencephalography (EEG) and polygraphy
(respiration, muscle tone, eye movements) signals, implying tech-
nical challenges, especially in bedside NICU use. Therefore, meth-
ods have been developed to allow an automated sleep
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assessment from the EEG signal alone (Ansari et al., 2018, Ansari
et al., 2020, Ansari et al., 2022, Dereymaeker et al., 2017b,
Fraiwan and Alkhodari, 2020, Fraiwan et al., 2011, Ghimatgar
et al., 2020, Hsu et al., 2013, Koolen et al., 2017, Pillay et al.,
2018, Piryatinska et al., 2009). These methods usually aim at recog-
nizing the two cardinal sleep states of a neonate, active sleep (AS or
rapid eye movement sleep, REM) and quiet sleep (QS or non-REM
sleep); some works have even aimed at recognizing more sleep
states, including separate detection of the wake state (Ansari
et al., 2020; Fraiwan et al., 2011; Fraiwan and Alkhodari, 2020;
Hsu et al., 2013; Pillay et al., 2018). Most of the existing sleep state
detectors are trained using feature-based classifiers (Dereymaeker
et al., 2017b; Fraiwan et al., 2011; Ghimatgar et al., 2020; Hsu
et al., 2013; Koolen et al., 2017; Pillay et al., 2018; Piryatinska
et al., 2009), and they generally show performance that comes
fairly close to PSG detection. However, reasonably high classifier
performance has required use of multiple EEG signals and/or tem-
poral smoothing, both of which challenge the utility of such solu-
tions in the typical limited-channel EEG monitoring that prevails
in the NICUs worldwide. Some studies using convolutional neural
networks (CNNs) have shown improvement in automatic neonatal
sleep state classification, even with fewer EEG channels (Ansari
et al., 2018, Ansari et al., 2020, Ansari et al., 2022).

Here, we aimed to develop a sleep state classifier that meets the
essential needs of NICU implementation, i.e. the classifier should
recognize EEG between active and quiet sleep with high enough
accuracy using a single channel EEG only; further, we purposed
to construct a classifier that would allow an intuitively inter-
pretable visualization, a Sleep State Trend (SST), to be imple-
mented in the bedside EEG monitors. To this end, we employed
convolutional neural networks (CNNs) capable of working on any
number of EEG channels, and we trained and tested it using both
EEG and PSG recordings. In addition, we tested the performance
of our novel classifier against a reference classifier described in
(Koolen et al., 2017).
2. Materials and methods

2.1. Overview

An overview of the development and performance testing of the
sleep state classifier and the SST is shown in Fig. 1.
2.2. EEG datasets

Cross-validation dataset: We used a cohort of 30 neonates
with a total of 943.7 hours of recordings (13 females, gestational
age (GA) between 35 + 1 and 42 + 1 weeks), all of which exhibited
clear sleep-wake cycling in the amplitude-integrated electroen-
cephalography (aEEG) trend. These recordings were collected ret-
rospectively from a clinical database of long-term monitoring
(Helsinki University Children’s Hospital, Finland) (Nevalainen
et al., 2021, Nevalainen et al., 2019). EEGs were collected using a
NicoletOne system (Cardinal Healthcare/Natus, USA) at 256 Hz
with four scalp electrodes located at F3, F4, P3, and P4, based on
the international 10–20 system (Cherian et al., 2009).

The continuous EEG signal was pre-processed with an auto-
mated pipeline. First, all the bipolar EEG channels (F3-P3, F4-P4,
F3-F4, and P3-P4) were scanned automatically to find and discard
high-amplitude values (> ±250 lV) or flat signals (constant zero).
In total 118.6 hours of the signal were detected as artifacts and
rejected from further analysis. Third, each EEG signal was band-
pass filtered at 0.5–30 Hz with a 4th order Butterworth filter.
Fourth, signals were resampled to 64 Hz with an anti-aliasing filter
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and segmented into 1-minute non-overlapping epochs (discrete
signal length of 3840 samples).

This dataset was annotated visually by two experts (SV and PN;
hereafter referred to as E1 and E2) for only QS epochs. Since there
was only EEG available, the score QS was assigned to epochs with
clearly discontinuous, or tracé alternant background pattern. Con-
versely, the rest was taken as continuous EEG, which may be either
AS or awake. This dichotomic scoring may not match perfectly
with the vigilance state scoring obtained from a full PSG study,
however an approach of this kind has been used in many recent
studies, and it is also the underlying assumption in the widely used
SWC assessment of the aEEG trends (Thoresen et al., 2010). Nota-
bly, the annotations were done at one second accuracy for all the
EEG considered to represent QS, i.e. no fixed segment lengths were
used. This approach allows physiologically faithful annotation of
the QS periods, although it deviates from the clinical tradition of
using fixed epoch lengths in the sleep scoring. In total, 175.6 hours
of QS (median per neonate: 21 minutes, interquartile range (IQR):
15–27 minutes) were annotated by E1 and 243 hours of QS (me-
dian per neonate: 25 minutes, IQR: 18–33 minutes) were anno-
tated by E2. Every 1-minute length EEG epoch was labelled into
one of QS or AS scores if all the samples in the epoch belong to
the same QS or AS score.

Independent validation dataset: The algorithm was validated
using an independent dataset that included 30 infants (12 female,
GA: 30 + 3 – 41 + 1 weeks) with PSG recordings, the gold standard
in sleep state classification. These recordings were done using
Embla N700 equipment and RemLogic 3.2.0 software (Natus,
United States) as per routine clinical protocol, and the dataset
was collected retrospectively from the hospital archives (Helsinki
University Children’s Hospital, Finland) using following criteria:
the PSG study was performed during newborn period
(conceptional age less than 45 weeks), clinical interpretation was
normal, and the EEG exhibited tracé alternant as the dominant
form of EEG during quiet sleep. Such dataset includes four channels
of EEG (C4, O2, A1, Fz) which are not the same recording positions
as the training dataset (see above), and hence allow testing how
well the findings generalize to EEG in different scalp locations. In
addition, the PSG data includes electromyograms (EMGs),
electrooculograms (EOGs), electrocardiogram (ECG) and respira-
tory signals.

The continuous EEG signal was pre-processed with an auto-
mated pipeline. First, all the bipolar EEG channels (C4-O2, O2-A1,
C4-A1, C4-Fz) were scanned automatically to find and discard
high-amplitude values (> ±250 lV) or flat signals (constant zero).
Then, each EEG signal was band-pass filtered at 0.5–30 Hz with a
4th order Butterworth filter. Finally, signals were resampled to
64 Hz with an anti-aliasing filter and segmented into 1-minute
non-overlapping epochs.

The PSG dataset was annotated by clinical sleep specialists as a
part of their clinical work, employing the sleep state scoring as per
international guidelines established by the American Academy of
Sleep Medicine (AASM) (Grigg-Damberger et al., 2007). For the pre-
sent work, we exported their hypnogram annotations including all
the sleep states recognized in our neonatal sleep studies (wake,
REM, N1, N3). Here, we tested the algorithm first with a two-
class classification where QS was taken to correspond to N3 in
the PSG hypnograms, and AS was taken from the other sleep states
(wake, REM, N1) grouped together. Notably, such PSG studies
include a minimal amount of actual wake, hence the grouping
was primarily for REM and N1 states. We also assessed an alterna-
tive classification where wake, REM, N1 and N3 were considered
separately.

Institutional Research Review Board of the HUS diagnostic cen-
ter approved the study, including waiver of consent due to the ret-
rospective and observational nature of the study.



Fig. 1. A. The overview of the sleep state classifier training, its performance assessment, validation, and visualization. B. Layer description of the proposed CNN for single-
channel sleep state classification with a total of 5,082 parameters. LOSO: Leave-one-subject-out, QS: Quiet sleep, CNN: Convolutional Neural Network.
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2.3. Algorithm design

A CNN is a type of artificial neural network (ANN) that is com-
posed of interchanging layers of convolution, nonlinear operator,
and pooling. A convolution layer convolves the n-dimensional
input tensor and weights matrix. A nonlinear operator (most com-
mon ReLU) is then used after each convolution layer to make a
nonlinear hidden layer for the CNN. A pooling layer performs a
down-sampling process on the output volume of its previous layer
to control overfitting. These layers automatically extract features.
Then, usually fully connected layers follow those layers to perform
the classification. An additional type of layers may be applied
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depending on the problem, such as batch-normalization to stan-
dardize the input to a layer (Ioffe and Szegedy, 2015), drop-out
to help prevent overfitting and increase generalization
(Srivastava et al., 2014), and softmax to map the output of the last
layer to a probability distribution (Bishop, 1995), etc.

The proposed CNN design in this study receives a single-
channel 1-minute EEG segment which is initially resampled to
64 Hz as input and after 11 layers of processing gives a vector of
probabilities for AS and QS classes as output. Fig. 1B illustrates
the proposed CNN structure which has 5,082 parameters. Prior
work has shown that CNN needs a sufficient number of parameters
for accurate generalization (Bubeck and Sellke, 2021). The architec-
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ture of the network was designed based on some previous studies
(Ansari et al., 2018, Ansari et al., 2020, Ansari et al., 2022, Phan
et al., 2019a, 2019b, Sors et al., 2018, Zhang and Wu, 2018,
Zhang et al., 2020), and trial and error using the development data
with a focus on accepting a single-channel EEG as input. Compared
to the 1D-CNN solution in prior study, our design has higher num-
ber of parameters (Ansari et al., 2018). The implementation was
done in Python using Keras with a TensorFlow backend and trained
on a Geforce GTX 1070 GPU. The first 8 layers perform feature
extraction, and the last 3 layers perform classification and proba-
bility calculation.

The optimal CNN classifier was trained with an ADAM solver
(beta1 = 0.9, beta2 = 0.99, and learning rate = 0.001) and minibatch
size of 64. The parameters were randomly initialized using uniform
He initialization (He et al., 2015). Training continued until the val-
idation loss stopped decreasing for a period of at least 35 epochs.
Maximum training epochs were set at 500, while most trainings
stopped before 100. The learning rate is reduced by the factor of
0.1 once learning plateaus over 20 consecutive epochs.

Post-processing was used for smoothing out spatial and tempo-
ral noise in the classifications. The CNN generates an output class
probability for each processed 1-minute EEG segment from each
channel. This temporal resolution is far higher than what is needed
for the NICU brain monitoring purposes where sleep state cycling
occurs in the scale of tens of minutes (Curzi-Dascalova et al.,
1988, Osredkar et al., 2005, Stevenson et al., 2014) For spatial
smoothing, we combined the output probabilities across channels
with an averaging function followed by ArgMax to determine the
sleep state for each 1 min epoch. A very mild temporal smoothing
(moving median filter, window length 5 epochs, i.e. 5 minutes) was
applied to the combined CNN output in order to taper down inci-
dental noise in the time series.

In the following, we will describe channel-wise results from all
four EEG channels separately after the mild temporal smoothing.
There was no major difference between the examined four EEG
derivations, and each derivation alone gives reasonably accurate
results. Channel-wise results are shown to provide a solution for
all EEG monitoring contexts, however our post-hoc experiment
indicated that spatial smoothing would improve classifier perfor-
mance (Supplementary Fig. S1 and Supplementary Table S1).

2.4. Training and performance testing

Classifier training was done with annotations from both
experts; thus, information was incorporated from both the agree-
ments and disagreements, which represent complementary
aspects of the experts’ annotations, andmay improve classifier per-
formance (Moghadam et al., 2021). We excluded epochs with mul-
tiple sleep states. The classifier produces one list of two estimated
class probabilities (output of the Softmax layer) for every 1-minute
non-overlapping EEG epoch from a single channel. For each epoch,
the class with higher probability was taken as the prediction.

Classifier performance was initially tested with the training
dataset using leave-one-subject-out (LOSO) cross-validation
approach, i.e. training with n-1 neonates and testing on the one
‘‘held-out” neonate. This was repeated for all n folds. As part of
the training process, to prevent overfitting, 10 % of the data in
the training folds of LOSO was set aside as inner validation (train-
ing was stopped if the inner validation loss did not decrease after
at least 20 epochs).

For the metrics of classifier performance, we computed confu-
sion matrices (true positive (TP) = correct detection of QS epochs),
accuracy, precision, F1 score, Cohen’s kappa, and the receiver oper-
ator characteristics (ROC, in Supplementary Material) curve. These
metrics can be defined with the numbers of true positives/ QS (TP),
true negatives/AS (TN), false positives (FP) and false negatives (FN).
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Accuracy is defined by (TP + TN)/(TP + TN + FP + FN), precision by
TP/(TP + FP), F1 score by (2 � TP)/(2 � TP + FP + FN) and Cohen’s
kappa coefficient by k = (Po – Pe)/(1 – Pe), where Po represents
the observed agreement and Pe denotes the chance agreement.

Clinical utility in individual diagnostics was estimated from the
ranges (min–max) of classifier performance measures in individual
neonates.

2.5. Visualization of the Sleep State Trend (SST)

Bedside implementation of the developed system requires an
intuitive and transparent visualization of the classifier output. As
a first step toward such visualization, the clinician should be able
to see the classifier output alongside an estimate of its certainty,
to be informed of, e.g., ambiguity in the EEG signal for biological
or technical reasons. To this end, we propose Sleep State Trend
(SST) by taking a weighted average of the ‘probability’ outputs
from the sleep state classifier for every 1-min EEG epoch. In addi-
tion to the SST, an index of classifier uncertainty is added to depict
the distribution of classifiers outputs from all channels available in
the given recording.

The SST algorithm and its visualization can be used openly via a
cloud service by requesting access from the authors.

2.6. Comparison to a reference classifier

A recently published feature-based classifier (Koolen et al.,
2017) was used as a reference classifier to provide a benchmark
with the proposed novel classifier. This allowed comparison of a
feature-based approach with our proposed end-to-end deep-
learning approach. We also compared our results with this refer-
ence classifier after re-training it on our present dataset to the clas-
sifier trained earlier with preterm EEG data (67 infants, (Koolen
et al., 2017)). Thus, we could assess how well the sleep state detec-
tion algorithms could generalize between preterm and term
infants. The Koolen’s classifier utilizes a set of N = 57 computa-
tional features combined in a support vector machine (SVM) clas-
sifier. The features are extracted from 10-min EEG segments of
multichannel EEG, including following categories: (1–2) age-
related features, (3–12) frequency-domain features, (13–47)
time-domain features, and (48–57) spatial connectivity features.
Thus, each multichannel EEG segment contains 228 (57 � 4 chan-
nels) features. The SVM classifier was trained and validated using
LOSO cross-validation. The hyperparameters of the SVM with
radial basis function kernel are set via 6-fold cross validation on
the training data.
3. Results

For the baseline, interrater agreement between human experts
was assessed for the quiet sleep annotations in the full training set.
The overall agreement was very high (Cohen Kappa = 0.71, 95 %CI:
0.66–0.73; Fig. 2A) and represents the upper limit of achievable
classifier performance.

3.1. Algorithm performance on the training dataset

The performance of the algorithm in detecting quiet sleep was
assessed with LOSO cross-validation, using single channel detec-
tion (applied to F3-P3, F4-P4, F3-F4, and P3-P4) and the mild tem-
poral smoothing. As shown in Fig. 2B, the algorithm performance
against each of the experts is overlapping with the interrater
agreement between the experts (Fig. 2A), and the classifier-
expert agreement was very strong as well (Cohen kappa = 0.76,
95 %CI:0.73–0.79; Supplementary Table S2). Comparison of EEG



Fig. 2. Confusion matrices of agreement of sleep state classification. A. between experts. The percentages (and corresponding colours) are with respect to the total number of
epochs. B. between the proposed classifier on the y-axis and each expert on the x-axis. The percentages (and corresponding colours) denote the recall value of each category.
AS: active sleep, QS: quiet sleep.
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derivations showed that the results generalize well across channels
(Supplementary Table S1). To further explore the classifier perfor-
mance vs ambiguity in the EEG, we compared classifier perfor-
mance levels also against each expert separately, against all
epochs, as well as against the epochs with full consensus between
experts (disputed epochs (11 % of all epochs) are not considered in
this case). Finally, the results were compared to the feature-based
reference classifier. The results are summarized in Table 1 and Sup-
plementary Table S2. This comparison indicated expectedly (cf.
(Airaksinen et al., 2020, Moghadam et al., 2021)) that classification
is a bit more accurate when considering the consensus epochs
only. Notably, comparison of accuracies in individual neonates
showed that detection was a clinically acceptable range (>80 %)
in all neonates. Performance of the feature-based classifier was
generally high as well but the accuracy in individual neonates
could fall considerably lower challenging its utility in the clinical
workup.

Finally, we estimated how well a straightforward amplitude
envelope or its standard deviation computed from the EEG signal
could correlate with the SST outputs. As shown in Supplementary
Fig. S3, both the amplitude envelope itself and its standard devia-
tion are noisy signals for the purpose of sleep classification, and
correspondingly, they only show a week correlation with the SST
output.
3.2. Validation with an independent dataset

To further validate the performance and generalizability of our
classifier, we tested it using a PSG dataset, which uses different
EEG derivations, a full PSG recording, and has been scored accord-
ing to the American academy of sleep medicine (AASM) consensus
guidelines rather than the EEG background alone (Fig. 3). We esti-
mated algorithm’s performance in distinguishing N3 (taken to rep-
resent QS) from the rest, i.e. wake/REM/N1 (taken to represent
active sleep). The overall performance in terms of accuracy was
81 % (63–100; the classifier that performed the best in the LOSO
cross-validation was used) in N3 versus other sleep states which
Table 1
Performance comparison between the reference feature-based algorithm and proposed clas
on multi-channel EEG, number of used epochs for its validation is about one-fourth of nu
(Koolen et al., 2017). T: feature-based algorithm re-trained on EEG from term infants.

# Epochs Accuracy [%]

Feature-based (PT) 10,005 73 (55–86)
Feature-based (T) 10,005 87 (70–98)
Proposed CNN
Consensus epochs 44,034 95 (83–99)

All epochs 98,932 90 (82–95)
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approaches levels of the inter-rater agreement reported for PSG
scoring (Satomaa et al., 2016) (Fig. 3A).

We also compared the classifier output against all four PSG-
derived sleep states. This analysis (Fig. 3B) shows that AS in our
detector output most closely represents wake and REM while QS
represents N3. There is a confusion between AS and QS for N1; this
is expected given the transitory, dynamic nature of N1 state
between wake and deeper sleep (Grigg-Damberger et al., 2007).

3.3. Visualization with Sleep State Trend (SST)

In order to be clinically useful, the algorithmic outputs need to
be visualized in the bedside monitors. Visualization of sleep state
detections is most natural using trends akin to those that are
already used in the aEEG displays (Thoresen et al., 2010), seizure
detections (Ansari et al., 2019, Stevenson et al., 2019, Stevenson
and Vanhatalo, 2018, Tapani et al., 2019), or the vital signs moni-
tors. To this end, we constructed an intuitive SST trend that depicts
the weighted average of the probability outputs from the sleep
state classifier for every 1-min EEG epoch. A comparable visualiza-
tion of EEG background (Moghadam et al., 2021) was well received
by a representative collection of clinicians. An example of SST is
shown in Fig. 4 for a 24-hour recording in a neonate from our train-
ing dataset. The aEEG trend and the human expert annotations
based on the raw EEG are shown for comparison. Sleep state fluc-
tuations are challenging to observe in sections of aEEG trend, espe-
cially when it becomes contaminated by the NICU-typical artifacts
such as cardiac activity, movements or high-frequency respiration,
or when longer time epochs need to be visualized in the same dis-
play. The SST is, however, able to depict the sleep state relevant
changes with clarity.
4. Discussion

Here we show an accurate detection of QS epochs using a CNN-
based classifier on single EEG channel data from newborn infants
near term equivalent age. The accuracy of this novel classifier is
comparable in EEG channels that are typically used in the long
sifier tested on consensus and all the labels. Since the feature-based classifier is based
mber of consensus epochs. PT: feature-based algorithm trained on EEG from preterm

F1-score [%] Precision [%] Kappa

47 (40–56) 50 (40–57) 0.2 (0.1–0.3)
77 (50–95) 76 (50–92) 0.5 (0.3–0.9)

93 (80–99) 96 (89–99) 0.9 (0.6–1)
88 (79–92) 90 (81–95) 0.8 (0.6–0.8)



Fig. 3. Confusion matrices of agreement of sleep state classification between the proposed classifier on the y-axis and PSG on the x-axis. Numbers are normalized such that
each column sums up to one. AS: active sleep, QS: quiet sleep, W: wakefulness, REM: rapid eye movement, N1 & N3: non-REM stages 1 and 3, respectively.
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term aEEG monitoring in NICUs. Importantly, the classifier perfor-
mance generalizes well to an unseen EEG data consisting of other
EEG derivations taken from an independent validation dataset of
PSG recordings; this also provides a gold standard benchmark.
Finally, we show that a classifier output of this kind can be visual-
ized in an intuitive manner as a SST trend, which is a continuous
display of QS probability and its confidence for quality assessment;
importantly, this allows a continuous visual display that can be
directly implemented into the bedside (a)EEG monitors. The main
novelty of this work is in providing the full pipeline, a complete
end-to-end solution from the raw signal to a validated classifier
and its implementation into bedside monitors. Moreover, we offer
this analytic pipeline openly for any future research use to expe-
dite its take-up into clinical research.

Several prior studies have described automated methods for
sleep state detection in the neonatal EEG signals (Ansari et al.,
2022, 2020, 2018; Dereymaeker et al., 2017b; Fraiwan et al.,
2011; Fraiwan and Alkhodari, 2020; Ghimatgar et al., 2020; Hsu
et al., 2013; Koolen et al., 2017; Pillay et al., 2018; Piryatinska
et al., 2009). The earlier solutions were commonly based on com-
putational features extracted from multiple EEG channels and then
combined in e.g. SVM-classifiers (Dereymaeker et al., 2017b;
Fraiwan et al., 2011; Ghimatgar et al., 2020; Hsu et al., 2013;
Koolen et al., 2017; Pillay et al., 2018; Piryatinska et al., 2009).
Their performance has largely depended on averaging over longer
time epochs and combining information from multiple channels in
order to show a clinically reasonable accuracy. The need for multi-
ple EEG signals has been a bottleneck in solutions for neonatal EEG
monitoring that typically work on one to three EEG channels. More
recently, CNN approaches have been developed to provide end-to-
end solutions without heuristic feature engineering; methods that
have been shown to hold promise in many applications of neonatal
EEG classification (Ansari et al., 2020). Previous attempts with CNN
algorithms for QS detection have shown that they outperform
feature-based methods, which was confirmed in our work as well.

A direct comparison between different classifiers, such as our
CNN and feature-based methods, is challenged by their different
time resolutions. For instance, our CNN model was trained for 1-
min epochs while the Koolen’s classifier was initially trained for
2.5-min epochs (Koolen et al., 2017). A shorter epoch length may
lead to higher uncertainty in classification, and it is commonly
tapered by smoothing in the post-processing phase. For the ulti-
mate implementation in bedside monitors, however, the desired
epoch length is defined by the length of sleep wake cycles
(SWC); in the neonate, SWC occurs in the scale of tens of minutes
(Curzi-Dascalova et al., 1988, Osredkar et al., 2005), hence the
epoch lengths between 30 s and 10 min used in the classifier con-
structs are all acceptable to provide measures of cycling (Stevenson
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et al., 2014) or trends of sleep state fluctuations (Koolen et al.,
2017).

Our findings are fully consistent with prior literature showing
that QS detection is possible from the neonatal EEG, however we
extend previous studies by developing a complete end-to-end
solution that takes in single EEG channel data and provides a clin-
ically useful SST visualization. Unlike the prior studies with multi-
channel data, here we used only single EEG channels, which makes
the findings useful as a bedside trend in the (a) EEG monitors. Our
findings show an accuracy that compares well with the human
interrater agreement, which sets the upper boundary of achievable
classifier performance in tasks where the target label is based on
subjective, visual interpretation. There are many possible reasons
for the improved performance of our novel quiet sleep classifier
compared to prior works. For instance, we used a large dataset
and annotated the EEG signals in our training data without pre-
fixed epochs, which was used in prior studies following the con-
ventional and physiologically imperfect practice in sleep medicine.
Larger datasets permit training of larger CNN architectures which
increases the potential of the CNN to generalize to unseen data
(cf. (Bubeck and Sellke, 2021)). We also incorporated annotations
from multiple experts rather than consensus or single annotations
as was done previously. Such inclusion of both experts’ agreements
and disagreements provides a more complex, but accurate, label-
ling of the data and has been shown to improve classifier perfor-
mance (Airaksinen et al., 2020, Moghadam et al., 2021). We show
here that the present algorithm generalizes well between deriva-
tions in the training dataset, as well as to completely different
derivations, recording systems and sleep scoring systems used in
our independent validation dataset.

In addition to describing the novel QS detector algorithm, we
also present an intuitively interpretable visualization of the classi-
fier output, SST, which allows direct implementation in the bedside
EEG monitors. SST is not equivalent to the hypnogram that is gen-
erated by a human reviewer using international guidelines (Grigg-
Damberger et al., 2007), but it allows a simple estimate of sleep
cycling between AS and QS which may be clinically useful in many
situations (Kidokoro et al., 2012). Unlike prior classifiers trained on
healthy neonates, our classifier was trained on neonates that had
recovered from serious conditions better reflecting the clinical sit-
uation we envision for the SST; tracking evolving SWC from immi-
nent to mature patterns (see Fig. 4).

A future clinical implementation of our work needs to consider
two limitations: First, the classifier only works for EEG recording
from infants at near term age. As shown with our comparison to
the reference classifier (Table 1), the sleep detectors may not gen-
eralize well between preterm and term age EEG records due to dra-
matic developmental changes that take place during this period



Fig. 4. Example SST results. The actual SST (black line) is complemented by depicting the uncertainty of the classifier (gray shadows) at each time point to provide the
clinician with a quality index of classification. The uncertainty is quantified by the distribution of the probability outputs of the classifier. Using a fixed threshold (black dotted
line in the SST) allows plotting a dichotomic detection of QS states (DQS) which are depicted with green lines under the SST. Expert annotations (E1 and E2) are shown for
comparison. A. A full 24-hour signal from the typical P3-P4 derivation. Please note the clear distinction between sleep states in the SST output, with high agreement with the
experts’ annotations, and a clear change from a poorly organized (‘‘imminent”) to a well-organized (‘‘mature”) SWC during this time period. This is hard to recognize from the
aEEG with 24 hours view, but it is relatively clear in the two 4-hour views of aEEG. The brief discontinuities in the SST output are due to removal of artefactual epochs in the
preprocessing stage. B. Example of the SST output computed from about 3 hours of PSG recording. The hypnogram depicts the sleep states annotated according to the AASM
criteria. Note the overall high agreement between algorithmic detection (SST and DQS) vs hypnogram. AS: active sleep, QS: quiet sleep.
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(Bourel-Ponchel et al., 2021, Dereymaeker et al., 2017a, Stevenson
et al., 2020, Vanhatalo and Kaila, 2006). Ideally, such an omnipo-
tent classifier could be developed in a hierarchical fashion where
the infant’s age is first analyzed using the Functional Brain Age
algorithm (FBA, (Stevenson et al., 2020)), followed by a sleep state
detector that uses FBA as an input. Development of such flexible
classifier would be essential to support wide-scale prospective
studies on sleep-oriented care and the use of sleep as a functional
biomarker across the wide range of conceptional ages present in
the NICUs. Second, ambiguity in sleep states may be even more
pronounced than in our dataset when monitoring neonates after
recovery of cerebral injury, such as birth asphyxia (Thoresen
et al., 2010). Evolution of the gradually emerging SWC is consid-
ered to be of key interest, however it also presents a conceptual
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challenge to define sleep stages that emerge from a discontinuous
overall background activity. These issues go beyond algorithms,
and require characterization by the neonatal community before
its faithful detection can be requested from computational
algorithms.

A future validation effort that includes prospective data collec-
tion, clinically relevant contexts, and a consensus-based definition
of conclusions that should be drawn from different means is
needed. To make this possible, we present our classifier openly
via our Babacloud server (www[dot]babacloud[dot]fi) to anyone
interested in its exploitation in clinical trials. Future research is also
needed to define the relative importance of detecting quiet sleep vs
other vigilance states, and an accurate, specific measure of other
sleep states will require corresponding detector development.
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Detection of any sleep state is sufficient for the purpose of estimat-
ing sleep-wake cyclicity (Kidokoro et al., 2012, Stevenson et al.,
2014). Since visual review of intermittent QS epochs in the aEEG
trend has become the bedside method of choice, our SST trend
allows a smooth transition between aEEG and SST interpretations.

When assessing the clinical or scientific utility of a novel
method, it is important to consider the potential ambiguities in
human annotations, in the data, as well as in the scoring systems;
moreover, these should be considered with respect to the aimed
implementation. Here, we aimed to develop a classifier that could
provide a bedside index of SWC. To this end, it is necessary to have
a reliable enough detection of at least one clear sleep state, i.e. QS
in our case. Prior literature has shown that QS in the near term
infants is mostly recognized as a mixture of tracé alternant and/
or high voltage synchronous EEG pattern with an imperfect but
good enough accuracy (Andre et al., 2010, Dereymaeker et al.,
2017a), and conversely, tracé alternant pattern or its aEEG equiva-
lent has become the hallmark of QS in the clinical work on SWC in
the NICU monitoring (Kidokoro et al., 2012, Schwindt et al., 2015,
Thoresen et al., 2010). We show that our QS detector works with
an accuracy that is equivalent to the level agreement of the human
experts visual interpretation in both the training and validation
datasets. Hence, the difference between the algorithm’s output
and an individual human annotations may simply reflect ambigu-
ity in the data itself as much as an error in the algorithm’s output.
This ambiguity in sleep states becomes even more apparent when
considering the spectrum of elusive states that characterize new-
born brain recovery from critical illness, such as birth asphyxia
(Thoresen et al., 2010). Therefore, the ultimate clinical utility of a
novel method like SST should not be evaluated only by a strict
comparison with the conventional laboratory methods; rather,
one should estimate its perceived added value to the bedside clin-
ician, a work that needs future prospective trials in multicenter
settings (Pavel et al., 2020).
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