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Admixed populations are sorely underrepresented in genomics research1,2. To ensure that 22 

medical genetic breakthroughs equitably benefit individuals of all ancestries3, there is a need for 23 

the development of tools that facilitate the study of diverse and admixed populations. Our 24 

manuscript4 proposes a novel methodology for the inclusion of admixed individuals in well-25 

calibrated genome-wide association studies (GWAS) through the incorporation of local ancestry. 26 
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In their comment, Hou et al. argue that alternative GWAS methods that do not include local 1 

ancestry can attain improved power in circumstances where the effect sizes are equivalent 2 

across ancestries. We wish to clarify that while we indeed observe a power drop due to the 3 

increase in the number of parameters estimated in this edge case (addressed in the Tractor 4 

manuscript in Figure 2, Extended Data Figure 3-4 and Discussion), in all other scenarios 5 

modeled we observe a power boost. Given that minor allele frequencies and patterns of linkage 6 

disequilibrium regularly differ between populations genome-wide5–8, as well as that differences 7 

in case ascertainment, epistasis, and gene-environment interactions may differ across 8 

ancestries and induce marginal effect size differences, we expect the instance of perfectly 9 

identical marginal effect sizes to be the exception, not the rule, even assuming identical causal 10 

effects. Tractor is therefore expected to outperform other methods at most GWAS loci.  11 

 12 

By marginal effect, we mean the estimand (large-sample limit) of GWAS-style single variant 13 

regression (including control for stratification). By causal effect, we mean the effect of allelic 14 

substitution on an isogenic (and iso-environmental) background. The causal effects may of 15 

course be unidentifiable from observed data; if all variation were measured and indexed with no 16 

perfect LD, and there were no population stratification, then they would represent the estimand 17 

or large-sample limit of the full multivariate regression. The vector of marginal effects is related 18 

to the vector of causal effects by multiplication by the LD matrix. 19 

 20 

The Tractor model parametrizes ancestry-specific marginal effects; hence the power loss 21 

highlighted in Hou et al.’s comment pertains only to the case where these are all equal, which 22 

requires not merely identical causal effects, but also identical patterns of AF and LD across 23 

ancestries. Imperfect tagging will induce heterogeneity by ancestry at the tagging variant even if 24 

the causal one has no allelic heterogeneity by ancestry, reducing the power of models that 25 

assume no heterogeneity such as the 1 degree of freedom tests suggested by Hou et al. The 26 
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vast majority of GWAS loci identified are not causal9–11 but rather represent tagging variants and 1 

their estimated marginal effect sizes.  2 

 3 

Tractor was specifically developed to function in diverse admixed datasets and has several 4 

further advantages beyond leveraging genomic differences across ancestries to gain power. 5 

Even when failing to boost power over competing methods, it produces accurate ancestry-6 

specific effect size estimates, which can be vital for efforts utilizing GWAS summary statistics, 7 

such as the construction of polygenic scores for understudied populations. Tests considering 8 

admixed individuals’ component ancestries in aggregate do not produce ancestry-specific 9 

results. Tractor additionally improves the resolution of GWAS signal, even before fine-mapping, 10 

thanks to its ability to track ancestry breakpoints within admixed genomes, helping streamline 11 

the interpretation of significant loci. By iterating between statistical phasing and local ancestry 12 

inference, we also improve the recovery of long-range haplotypes in admixed individuals. In 13 

sum, the Tractor model allows for the well-calibrated study of admixed individuals while boosting 14 

power under most scenarios.  15 
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All data referred to in this reply is available as described in the original Tractor publication4. 1 
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