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Hand-grip strength is widely used to estimate muscle strength and it serves as a general indicator of the overall health of
a person, particularly in aging adults. Hand-grip strength is typically estimated using dynamometers or specialized force
resistant pressure sensors embedded onto objects. Both of these solutions require the user to interact with a dedicated
measurement device which unnecessarily restricts the contexts where estimates are acquired. We contribute HIPPO, a novel
non-intrusive and opportunistic method for estimating hand-grip strength from everyday interactions with objects. HIPPO
re-purposes light sensors available in wearables (e.g., rings or gloves) to capture changes in light reflectivity when people
interact with objects. This allows HIPPO to non-intrusively piggyback everyday interactions for health information without
affecting the user’s everyday routines. We present two prototypes integrating HIPPO, an early smart glove proof-of-concept,
and a further optimized solution that uses sensors integrated onto a ring. We validate HIPPO through extensive experiments
and compare HIPPO against three baselines, including a clinical dynamometer. Our results show that HIPPO operates robustly
across a wide range of everyday objects, and participants. The force strength estimates correlate with estimates produced by
pressure-based devices, and can also determine the correct hand grip strength category with up to 86% accuracy. Our findings
also suggest that users prefer our approach to existing solutions as HIPPO blends the estimation with everyday interactions.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing design and evaluation methods.

Additional Key Words and Phrases: Light reflectivity, Light scattering, Hand grip strength, Internet of Things, Smart ring

ACM Reference Format:
Zhigang Yin, Mohan Liyanage, Abdul-Rasheed Ottun, Souvik Paul, Agustin Zuniga, Petteri Nurmi, and Huber Flores. 2022.
HIPPO: Pervasive Hand-Grip Estimation from Everyday Interactions. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6,
4, Article 209 (December 2022), 30 pages. https://doi.org/10.1145/3570344

∗Corresponding author

Authors’ addresses: Zhigang Yin, Institute of Computer Science, University of Tartu, Tartu, Estonia, zhigang.yin@ut.ee; Mohan Liyanage,
Institute of Computer Science, University of Tartu, Tartu, Estonia, mohan.liyanageh@ut.ee; Abdul-Rasheed Ottun, Institute of Computer
Science, University of Tartu, Tartu, Estonia, rasheed.ottun@ut.ee; Souvik Paul, Institute of Computer Science, University of Tartu, Tartu, Estonia,
souvik.paul@ut.ee; Agustin Zuniga, Department of Computer Science, University of Helsinki, Helsinki, Finland, agustin.zuniga@helsinki.fi;
Petteri Nurmi, Department of Computer Science, University of Helsinki, Helsinki, Finland, petteri.nurmi@helsinki.fi; Huber Flores, Institute
of Computer Science, University of Tartu, Tartu, Estonia, huber.flores@ut.ee.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2022 Association for Computing Machinery.
2474-9567/2022/12-ART209 $15.00
https://doi.org/10.1145/3570344

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 209. Publication date: December 2022.

https://doi.org/10.1145/3570344
https://doi.org/10.1145/3570344


209:2 • Yin et al.

1 INTRODUCTION
The human hand is exceptional. Besides allowing us to interact with everyday objects and perform numerous
activities [12, 50], it can also be used as an indicator of human health. Indeed, the force that a person generates
through grip, can indicate not just the strength of the hand, but also serve as an early indicator of a wide range
of health conditions [36, 37]. Among others, hand-grip strength has been linked to muscle loss [46], a decline
of mental cognition [1] and onset of diabetes [30]. Besides serving as a direct indicator of health, hand-grip
strength also has other clinical uses. For example, stroke rehabilitation can use hand-grip strength to assess the
performance of the upper motor system [2, 16].

Current solutions for estimating an individual’s hand-grip strength are cumbersome to use as they are restricted
to specific contexts and require interacting with a dedicated object. For example, the most common approach for
estimating hand-grip strength is to rely on a dynamometer, which is a clinically certified measurement device.
The dynamometer produces a score (unit kg or lb) which is then converted into a categorical grip strength
assessment (e.g., weak, normal, strong) according to normative reference tables obtained from large-scale clinical
studies [35, 42]. While easy-to-use and accurate, its usage is restricted to medical environments and is mostly only
used as part of health checks as a separate measurement device is required. Dynamometers also are laborious
to use as they require periodic re-calibration and as the measurements must be taken following a stringent
test protocol. While some efforts have been made to provide easier access to hand-grip estimates, e.g., through
dynamometers connected to smartphones [13], these similarly require interactions with a dedicated measurement
device and are prone to inaccuracies in the measurements. The main alternative is to rely on an object that
embeds pressure sensors (i.e., force resistors), but these similarly require interactions with dedicated objects or
wearing a device that integrates the sensors at grip contact points and are mostly tailored to specific application
scenarios, such as remote surgery [10].
This paper contributes HIPPO as a novel light sensing based approach for estimating the hand-grip strength

category of an individual. Humans touch many different objects every day, ranging from personal possessions to
home appliances, food items, clothing and so forth [50]. HIPPO exploits these interactions to opportunistically
estimate hand grip information from interactions with such everyday objects. The intuition is to re-purpose
light sensors that are readily available – or that can be easily integrated – on smart rings, gloves, and other
wearables to monitor changes in light reflections from the surface of an object as the individual interacts with
the object by gripping and squeezing it. This makes it possible to use a wide range of everyday objects, such
as, clothes, disposable cardboard cups, and food packaging to piggyback hand-grip information. We develop
two proof-of-concept prototypes that harness this principle. Our first and earlier prototype takes advantage
of light sensors integrated into an outdoor glove, and our second prototype further optimizes the form-factor
and integrates the sensors onto a ring that is combined with a smartwatch type of device that is responsible for
controlling the sensor. We also describe the design of the underlying sensing pipeline.
We validate and demonstrate the benefits of HIPPO through rigorous experiments that consider hand-grip

measurements from 44 participants (smart glove: 24 and smart ring: 20). As part of the experiments, we compare
our approach against several baselines, including a clinical dynamometer and custom objects that integrate
pressure sensors. The results demonstrate up to 86% accuracy in determining the hand-grip strength category of
an individual and a close correspondence between changes in light intensity values and the pressure exerted by
the individual on an object (RMSE 2.57 - 9.89 depending on the extent of side information that is available). HIPPO
significantly improves on a pressure sensor based baseline and produces hand-grip estimates that are comparable
to a clinical dynamometer used as the gold-standard. We also show that HIPPO operates robustly across a wide
range of everyday objects and participants with different characteristics. Taken together, our results demonstrate
that using light reflectance resulting from everyday interactions is a promising solution for opportunistic capture
of hand-grip characteristics and for achieving unobtrusive monitoring of an important health parameter.
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Summary of Contributions:

• Novel method and sensing modality for capturing hand grip strength opportunistically using light
reflectance measurements resulting from everyday interactions with objects.

• Novel insights into light sensing by demonstrating that the changes in the surface of objects captured by
light measurements correlate with hand-grip strength measurements, as given by a clinical baseline.

• Extensive benchmarks demonstrate that light sensing provides better performance than pressure sensors
and is comparable to a clinical dynamometer.

2 RELATED WORK
Hand patterns and activity recognition: Human activity recognition have been studied extensively from
simple activities, such as walking, to more fine-grained activities, such as folding clothes [3]. Hand posture and
pressure are relevant to analyze situational impairment that can hamper interactions with mobile applications [17].
Motion sensors along with gesture interactions with screens have been studied to identify hand patterns [27].
Electromyography sensing also has been proposed to detect holding patterns of objects [14]. Squeeze gestures
have been studied to understand the human grip for holding smartphones [39]. Pressure information from
hand-grip and fingers have been analyzed for interactive interfaces [43, 44]. New wearable devices also have been
studied to capture information from the human hand [28]. Unlike these works, we focus on hand-grip strength as
it simultaneously provides health information.
Hand-grip and health: Hand-grip strength has been shown to be a good indicator for diagnosing multiple
health conditions. The most evident condition that can be monitored is the loss (or gain) of muscle strength over
time [47]. Typically, loss of muscles occurs as individuals age or get drastically ill [5, 6]. Hand-grip strength can
also provide insights into the cognitive function of individuals as they get older. More severe conditions can also
be predicted through the monitoring of hand-grip strength [36]. For instance, it has been studied that obesity
changes the structure of the hand, and thus it can influence hand-grip strength [46]. Likewise, cardiac disorders
have been linked to low hand-grip strength in individuals [36, 38]. Other studies also have demonstrated the
importance of hand-grip strength by using it as a predictor to identify diabetes, respiratory diseases and even
cancer [8, 30, 45]. Due to the simplicity of measuring hand-grip strength, it is a test that can be used to easily
monitor the health of a population [35]. In our work, we design and develop an approach that can be embedded
in wearable devices, such as smart rings and gloves, such that hand-grip strength can be monitored continuously.
Pervasive digital health: Research in pervasive health has steadily evolved [4, 34]. As smart devices have
become pervasive tools to collect personal data from individuals continuously, numerous sensors have been
piggybacked and re-purposed to monitor several health aspects of individuals. For instance, light sensors can
be used to collect heart rate measurements and analyze blood stream and glucose of individuals [18, 23]. A
camera also has been shown to be useful to obtain sample measurements to estimate heart rate [25]. With this
information collected over time, several conditions that affect human health have been studied. For instance, heart
rate measurements can be easily collected by hand wrists and smart watches to diagnose sleep deprivation and
stress [22, 41]. Heart rate also has been estimated solely by grabbing a smartphones [26]. Respiratory information
has been collected through the microphone of smartphones to diagnose respiratory diseases [20, 21], e.g., COVID-
19. Motion sensor information from smartphones has been analyzed to diagnose Parkinson’s disease [31]. Passive
thermal imaging have been also investigated to extract temperature from objects touched by humans [9, 12].
Other smartphone solutions have been designed to capture the physical conditions of individuals, e.g., eating
activities [49]. Unlike previous work, our work focuses on measuring hand-grip strength using light sensors.
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Table 1. Hand-grip measurements from participants across different days. DH: Dominant Hand, R: Right, L: Left.

Participants day1 day2 day3 day4 day5 day6 day7 day8
id DH L R L R L R L R L R L R L R L R
1 Right weak weak weak normal weak normal weak normal weak normal weak normal weak normal weak normal
2 Right normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal
3 Right weak weak weak normal weak weak weak weak weak weak weak weak weak weak weak weak
4 Right weak normal weak normal normal normal normal normal weak normal normal normal normal normal weak normal
5 Right weak weak normal normal weak normal weak normal weak normal weak normal weak normal weak normal
6 Right weak weak normal normal normal normal normal normal weak normal weak weak normal normal weak weak
7 Right weak weak weak weak weak weak weak weak weak normal weak normal weak weak weak weak
8 Right weak weak weak weak weak normal weak weak weak normal weak normal weak normal weak normal
9 Right weak weak weak weak weak weak weak weak weak weak weak weak weak weak weak weak
10 Right normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal normal

3 MOTIVATION
Previous research suggests that hand-grip characteristics may be dependent on the context where they are taken,
with particularly the posture of the user, the time-of-day, and prior activity being factors that can affect hand-grip
characteristics [11]. On the other hand, there is evidence to suggest that hand-grip strength is generally consistent
over time, as long as the context remains sufficiently similar [7]. We first demonstrate that robust hand-grip
assessments are possible by carrying a small-scale study that shows hand-grip assessments to be consistent also
when taken outside of a medical environment, even when taking in different days, using different postures, or
different times-of-day. We next detail our experiment and its results.
Setup:We recruited 10 participants and measured their hand-grip strength 8 times during a two-week period.
The mean age of the participants was 29.6 (standard deviation 7.78). The time-of-day for the measurements was
varied to ensure any variations resulting from daily fluctuations would be captured. During each measurement
period, hand-grip was assessed six times in total, three times each for left and right hands. All measurements
were taken using a dynamometer. The dynamometer requires the participants to follow a simple but precise
procedure (See Section 5 and 6 for a description about the apparatus and procedure). At the beginning of each
measurement period, the dynamometer was configured according to the gender and age of each participant.
The grip area of the dynamometer was also adjusted for each participant until the second joint of the index
finger was at a 90 degree of the handle. After this, each participant performs the dynamometer procedure and
measurements were recorded. The grip measurements were also classified into one of three categories following
the common methodology for assessing the physical status of a person [35, 40]: weak, normal and strong. This is
accomplished by configuring the dynamometer with the relevant user characteristics, and mapping the score
produced by a dynamometer to a category through a normative reference table that accounts for variations in
user characteristics.
Results: Table 1 shows the results and separately includes information about the dominant hand (DH) of the
participant and grip strength measurements for the left (L) and the right hand (R). The dominant hand generally
outperforms the weaker hand, which shows the measurements process to be accurate. In line with results in
medical studies [7], the measurements are highly consistent across different days despite being taken at different-
times-of-day. The only variations we observe are shifts between adjacent categories, e.g., there are some cases
where we can observe a shift fromweak to normal or vice-versa. These findings suggest that hand-grip is generally
sufficiently consistent and that the variations caused by different contexts are generally small. However, the
results also suggest that hand-grip strength should be sampled multiple times in different contexts to minimize
the influence of any situational factors. Our approach is well-suited for this purpose as it opportunistically
harnesses everyday interactions which take place in wide range of contexts, thus offering ample data to overcome
situational influences in the measurements.
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4 PERVASIVE HAND-GRIP STRENGTH MONITORING
The proposed method for hand-grip strength estimations takes advantage of the fact that interactions with certain
objects result in topological transformations in the shape of the object and that these changes can be captured
through light reflectance [51]. The amount of force that is applied on the object influences the extent of change
in the shape, and this in turn affects the amount of light that is reflected by the surface of the object (Figure 1(a)).
Examples of this kind of interactions include crumpling, squeezing and pressing down objects such as packaging
or clothes. In the rest of this section, we briefly explain the theoretical foundation of our solution, and present
the algorithmic pipeline that we use for mapping light reflectance values into hand-grip strength estimates.
Overview: The general principle behind HIPPO is illustrated in Figure 1. A light sensor (light source + pho-
toresistor) worn on the user’s hand, e.g., integrated onto the exterior of a smart glove or a smart ring, is used
to measure changes in light reflectance as the user interacts with (malleable) objects. When the object is held
in hand normally, the surface of the object covers the light sensor and the intensity of the reflected light is
(approximately) constant and this value is used as reference value for estimating overall hand grip strength. As
the user grips the object, the surface of the object changes. The extent of these changes depends on the force
that is applied on the object, as well as the material of the object. Changes in the surface of the object affect the
intensity of the reflected light as the sensor is in closer contact to the object and as the refraction and reflection
patterns from the object’s surface change. As the pressure on the object is maintained, the changes in the surface
and consequently also the intensity of the reflected light become (approximately) constant. HIPPO monitors
for these changes in light reflectance, and estimates the hand grip strength opportunistically using differences
between the intensity at initial and maximal strength.
When users grab an object, the overall force exerted on the object is distributed among the different fingers

grasping an object and the distribution of force along the different fingers further depends on the nature of the
interaction as well as the surface material of the object [29, 33]. Optimally the measurements would be taken
from all fingers, or from the thumb since that tends to have the highest overall contribution. In practice, the
sensors need to be integrated with a device that is easy to wear with a smart ring or a wearable glove being the
most practical approaches. As part of our experiments, we separately consider measurements from three different
fingers to demonstrate the practicality of our approach. Specifically, we consider measurements from the index,
middle and little finger as these are the three most important fingers (referred to as position-1 to position-3) in
Figure 1(b) for hand grip. Index finger typically serves as the first point of contact with the object, but it tends to
have the smallest overall contribution. The middle finger tends to have the most consistent contribution to grip
strength, whereas the contribution of the little finger depends on the nature of the task with the contribution
being largest in tasks that require careful finger coordination.
Theoretical Foundation: HIPPO estimates hand-grip strength from changes in light reflectivity induced on the
surface of an object [15]. As a beam (source) of light is pointed to a surface, the light is reflected back from the
surface. When an individual interacts with an object, e.g., by squeezing it, the interaction results in a pressure (𝑃 )
being applied to the object. The grip exerts a force (𝐹 ) over the surface area of the object (𝑆), which in turn results
in a deformation of the surface area 𝑆 of the object. The extent of this deformation is indicative of the force that is
being applied. Formally, this relation is given by 𝑃 = 𝐹

𝑆
. Deriving an exact estimate of 𝐹 would require knowing

the surface area that is being measured. Instead, HIPPO uses the changes in light intensity as input to machine
learning algorithms to estimate the hand-grip strength and the appropriate category (weak, normal, strong) of
the individual’s hand-grip strength.
Sensing Pipeline: Figure 2 illustrates the sensing pipeline from data collection to signal processing and eventual
estimation of hand-grip strength. The pipeline operates using light sensors that comprise of a light source and a
photoreceptor. As we measure reflections from objects that the user interacts with, the sensor needs to be on
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Fig. 1. Pervasive hand-grip strength analysis, a) Light reflectivity pattern of the object in different states, b) Available positions
in hand for light sensing deployment, c) Hand-grip relax state, d) Hand-grip applied strength state.

Fig. 2. Sensing pipeline for processing sampling of hand-grip strength.

the exterior of the device integrating them and face outward from the user’s hand. In practice, also a proximity
sensor should be integrated on the device to minimize unnecessary sampling.

Our implementation of the sensing pipeline detects interactions with malleable everyday objects from the light
intensity measurements and processes these to estimate hand-grip strength. First, interactions can be detected
from peaks in the intensity measurements. We then find a rest point where the hand is holding the object,
but not yet squeezing or applying pressure on it (Figure 1(c)). This forms a reference point for analysing the
overall force that is exerted. Once the individual exerts a force on the object, the shape of the object starts to
deform and this results in changes in the reflected values (Figure 1(d)). These changes comprise the input to
the sensing pipeline. Since hand-grip strength measurements are provided by a quick grip (following certified
dynamometer procedure), only measurements that are provided below the 2-3 seconds range are considered as
valid measurements that depict hand-grip strength. In line with established practices [32], the light measurements
are first cleaned using Butterworth and Chebyshev filters. Next, light patterns that depict hand-grip strength
are labelled as relaxed hand-grip or applied hand-grip. This data is then used to construct standard machine
learning regressors for estimating hand-grip strength: Automatic Relevance Determination Regression (ARD),
and Ridge Regression (Ridge). This data is also used to classify hand-grip strength categories using two common
classifiers: Random Forest (RF) and Gradient Boosting (GB). Note that while the intensity measurements are
dependent on the location of the sensor, the pipeline itself is agnostic of the sensor location and can operate
using measurements from multiple different positions.
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5 PROTOTYPE DESIGN AND BASELINES
The possible design space for our solution is immense as the only requirement is having a light sensor (i.e.,
light source and photoreceptor) relatively close to the surface of the object that is being interacted with. Our
contribution focuses on demonstrating the principle of using light reflections for estimating hand-grip strength,
and for conducting our experiments we implemented a proof-of-concept prototype that integrates three light
sensors on a smart glove. The glove allowed us to place multiple sensors simultaneously on the object and
evaluate the impact of sensor orientation relative to the object on the estimation performance. In practical use we
would expect our solution to be integrated to a smart ring or other hand worn wearable and the sensors in our
prototype have been placed on different fingers to emulate how rings would be worn – as well as to evaluate the
robustness of our approach against changes in hand position. We next describe the prototype and the baselines
our system is compared against in the experiments.

5.1 HIPPO Prototype Design
The prototype shown in Figure 3(a), consists of a glove that integrates three light sensors connected to an ESP32
development board. The key reason for using a glove is that it can be easily extended with multiple sensors to
provide measurements simultaneously from different angles. The board controls the sampling frequency and
uploads the collected data to a web server in real-time. Each light sensor consists of a red laser diode (650nm,
5mW, 3− 5V) and a GM5539 photo-resistor (5MΩ). The light sensor is easy to deploy, and the components are also
low cost, which makes our solution affordable and easy to scale, e.g., a pack of 10 lasers and 20 photo resistors
costs around 10 US dollars. We use the ESP32 development board as a microcontroller because of its inbuilt Wi-Fi
connection facility and it provides multiple inputs to connect multiple sensors at the same time. Each photo
resistor changes its resistance according to light intensity, and we use this to measure reflected light. The ESP32
reads photo resistors’ values and forwards the values to a web server together with a timestamp. By default, the
photo resistor captures analog voltage measurements, which are then changed to digital voltage representations.
We use the output value of the ADC (analog to digital conversion, with a resolution of 12 bits, i.e., the voltage
is discretized to 4096 levels) as the physical unit to represent the intensity of reflected light. The glove is also
equipped with a piezoelectric sensor located on the palm. Data from the sensor is collected using a Multimeter
PeakTech 3430 that measures real time voltage with a timestamp. Collected data from the pressure sensor and
light sensors are synchronized to analyze hand-grip strength from different sensing angles. The sampling rate of
the sensor is 5Hz, and we found that about 50 samples on average are necessary to characterize the strength
applied on an object with 97.5% confidence.
In our main controlled experiment, the glove is used alongside a plastic ball that is partially inflated. When

the plastic ball is held in hand without any exertion, this provides a reference point that can be used to quantify
hand-grip strength. Once a force is exerted, the surface of the object changes, and this can be simultaneously
measured by changes in the internal air pressure and changes in the reflected light. Internal air pressure is
measured using a pressure gauge tool (Kixre Digital Tire Pressure Gauge). The device measured 0 PSI units when
the ball was held, and up to 9.9 PSI when it was squeezed. Later we also conduct separate experiments where we
consider a wide set of everyday objects instead of an inflatable ball.

5.2 Baselines
5.2.1 Dynamometer (Baseline 1). To verify the performance of HIPPO, an off-the-shelf commercial dynamometer
is used to obtain valid reference measurements that depict hand grip strength (gold standard). We used the
GRIPX EH101 dynamometer1 that is shown in Figure 3(b). The dynamometer measures hand-grip strength in
kilograms (kg) and has a measuring capacity of 198lbs (90kgs). The device is certified to produce highly accurate

1https://gripx.net/
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(a) Light sensing
(b) Body position and baselines
(Baseline 1 on the top) (c) Baseline 2 (d) Baseline 3

Fig. 3. Prototypes used to measure hand-grip strength: (a) HIPPO prototype integrated onto a wearable (glove); (b) Dy-
namometer baseline; (c) Wood ball baseline; and (d) Pressure plate baseline.

measurements. The dynamometer maps the grip strength into one of three categories for grip strength (weak,
normal, and strong) based on normative grip-strength tables. Since these tables are dependent on age and gender,
the dynamometer needs to be configured separately for each individual prior to using it.

5.2.2 Wooden Ball (Baseline 2). The second baseline is a squeezable stress-ball type of design shown in Figure 3(c).
The object is designed using wood, resulting in an even distribution of pressure along the surface. Indeed, many
other materials absorb some of the pressure and can mislead the pressure readings. Note that this only affects the
baseline that uses pressure sensors, and not the use of light reflectance measurements. The wooden ball was cut
into halves and a piezoelectric pressure sensor was placed in between them. The piezoelectric sensor exploits
mechanical stresses by measuring the voltage across a piezoelectric element generated by the applied force. We
record the induced voltage, measured in millivolts (mV), using a Multimeter that connects to a computer with
one mega ohm resistor in between to get a real time log of voltage readings with its respective timestamp.

5.2.3 Pressure Plates (Baseline 3). Our final baseline consists of wooden pressure plates. The prototype is shown
in Figure 3(d) and uses the dual-channel 24 Bit HX711 load cell amplifier module, and a Bending Beam Load Cell
(straight bar load cell). A load cell is a transducer device, which converts mechanical force into a measurable
electrical output in response to, and proportional to, the force applied to it. We mounted the load cell in between
two wooden plates so that when pressure is applied to the wooden plates, it will pass to the load cell. Since
the load cell output is very small, we use the HX711 load cell amplifier that helps the microcontroller read the
changes in the resistance of the load cell and get very accurate load measurements. Once the pressure is applied
to the load cell, the microprocessor can read the corresponding discrete-valued voltage (as given by the ADC
output) and upload this value to the Web server with a timestamp.

6 SMART GLOVE EXPERIMENTS: ROBUSTNESS OF HAND-GRIP STRENGTH ESTIMATION
We first conduct experiments with 𝑁 = 24 participants that focuses on assessing the robustness and accuracy of
using light reflection measurements to estimate hand-grip strength. These experiments are conducted using a
smart glove prototype integrating HIPPO. We later further explore a smaller and more practical prototype that
integrates HIPPO into a smart ring, and we evaluate how the ring prototype can be used to estimate grip strength
from everyday interactions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 209. Publication date: December 2022.
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6.1 Experimental Design
6.1.1 Study Design. The experiment is designed as a within-subject design where participants perform hand-grip
force measurements with four different devices at two different times-of-day and days. We encode the data as a
1 × 2 factorial design with device type and trial as independent variables as this allows us to evaluate the effect of
different devices, times-of-day, as well as to identify potential order effects. The device type variable has four
levels, corresponding to our prototype and the three baselines: Smart glove (GLOVE), Dynamometer (DYNA),
Wooden ball (W-BALL) and Pressure plates (PLATES). The trial variable has two levels, corresponding to the
first and second time that the experiment was conducted. To eliminate order effect and biases, whilst keeping
the number of trials manageable, trial number was counterbalanced following a Latin Square design, resulting
in eight experimental conditions: (1) Trial1-GLOVE, (2) Trial2-GLOVE, (3) Trial1-DYNA, (4) Trial2-DYNA, (5)
Trial1-W-BALL, (6) Trial2-W-BALL, (7) Trial1-PLATES and (8) Trial2-PLATES. The trial number was limited to
two as the intensity of the hand-grip strength tends to decrease with multiple attempts. We also provide a three
minute break between successive tests to change the device and let the muscles relax. For this experiment, 𝑁 = 24
participants were recruited (Males=12, Females=12). The participants were university students and staff from
different fields and nationalities. Their average age was 28.5 ± 3.58 and all of them were right-handed.

6.1.2 Procedure. Before starting the study, the researcher who conducted the experiment demonstrated to the
participant how to perform the task and provided a detailed description about how to grab each device. Each
participant also signed an informed consent form, following local IRB regulations. Prior to starting the experiment,
we used a ruler to measure the hand dimensions (breadth and length) of each participant as this allows us to
estimate the total surface area of the hand. Once the participant was ready to start the experiment, the different
experimental conditions were presented to participants and the participants carried them out one by one. Each
experimental task was carried out similarly to our dynamometer experiments in Section 3 and illustrated in
Figure 3(b). Specifically, the participants were asked to sit with feet on the floor and the back touching the chair.
The elbow of the (right) hand holding the device measuring hand-grip strength is placed at the participant side at
a 90 degree angle. We followed a rapid exchange grip test which requires the participant to apply the maximum
grip force on each device for 2 to 3 seconds without holding their breath, and then release the grip and relax. The
force applied on each device was recorded. None of these values were reported to the participants in between
the experiments to avoid any potential compensation effects. After the experiment concluded, a brief interview
with the participant was conducted to analyze the user experience and overall perception of the devices. Upon
concluding the experiment, the scores were revealed to the participant (if they were interested in knowing them).
The evaluation took place in one university room across one week in time slots between 11:00 and to 07:00 pm.
For each participant, the overall experiment lasted 35min to 40min.

6.2 Analysis and Results
6.2.1 Stability of Steady-State Estimates. The capability to estimate force grip strength depends on the potential
to obtain an accurate reference measurement when the object is held normally without exerting any additional
force. Figure 4(a) and (b) visualize the distribution and variation in light sensor values obtained from the three
fingers when the object was held in a relaxed state (i.e., no force exerted). The former focuses on a specific point
on the object, whereas the latter depicts different points when hold by different participants. In both figures (a
and b), we can observe the variance of the measurements to be low across all fingers but the mean value depends
on the finger from which the measurements are. The specific values of the fingers (shown in Figure 4a) are as
follows: little finger (position-1, mean=3063.59, SD=27.79), middle finger (position-2, mean=1588.81, SD=22.98)
and index finger (position-3, mean=1090.01, SD=34.45). Likewise, we also estimate the light reflectivity values
at the different positions as objects are held by different individuals in a relaxed state. Figure 4b shows the
results. From the figure, we can observe that there are small variations in light values: Position-1: Mean = 3073.99,
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(a) (b)

Fig. 4. Capturing hand grip strength, a) Light characterization of different positions (in the relaxed state), b) the variation of
light value across all participants in different positions (in the relaxed state).

SD=103.52; Position-2: Mean = 1712.61, SD=215.67; Position-3: Mean = 1205.75, SD=110.92, indicating that stable
light values can be captured to derive hand grip strength.

The index and the middle finger have similar patterns, with the index finger resulting in slightly lower intensity
as the sensor is better covered by the object when no force is exerted. In contrast, the little finger has highest
intensity indicating that less light is blocked by the object. Note that the difference between fingers does not affect
the final estimates as the overall force is estimated from changes in intensity of reflected light between maximum
and minimum grip force. These results are in line with existing studies on grip distribution [10, 29]. The low
variance of the measurements across all fingers shows that the reference point can be estimated robustly, whereas
variations across fingers simply highlight how the distribution of force along different fingers is captured by the
light intensity values. This indicates that the changes in object surface can be captured accurately irrespective of
position, but that the absolute values are sensitive to contact position. As we next demonstrate, the relative values
are robust across locations, and hence it is sufficient to have a calibration reference point for a specific position.

6.2.2 Baseline and Experiment Validity. Figure 5(a) shows the hand-grip strength assessments for the baselines
and compares them against the dynamometer which serves as the gold standard. As the measurements the
devices produce are on different scales, we normalize the data using z-score scaling to make it comparable.
We can observe that both the wooden ball and the pressure plates follow the same trend as the dynamometer
reference values. As the order of devices was randomized across the trials, the high correspondence between the
different devices indicates that the hand-grip values were consistent throughout the experiment and validates our
experimental design. In addition, Figure 5(b) and (c) also shows the level of linear relation between the default
units of dynamometer (kg) and, wood ball (mV) and plates (ADC), respectively. In our experiments, participants
scored between normal and weak types of hand-grip strength.

6.2.3 Light Measurement Quality. Next we demonstrate that the light intensity measurements reflect the same
differences as what the baselines capture. We use a Kolmogorov-Smirnov test to compare the measurements from
HIPPO against each of the baselines. To analyze the effect of different finger positions, we perform the analysis
separately for each of the three finger positions considered in our study. The results of the analysis are shown in
Table 2. With a single exception (little finger cf. wooden ball), no statistical differences can be observed with the
measurements, i.e., they come from a similar distribution. The measurements from different finger positions have
high similarity with the dynamometer. The finger positions also have similarity across each other, suggesting
that HIPPO can operate well at different finger positions, even if the distribution of force that is captured differs
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(a) (b) (c)

Fig. 5. Comparison of different baselines in hand-grip strength assessments, a) normalized comparison, b) and (c) with their
respective physical units.

(a) Position-1 (b) Position-2 (c) Position-3 (d) Average (all sensors)

Fig. 6. Hand-grip strength captured by different light sensors in different positions (All the participants).

across fingers. The sole exception in the results is the wooden ball, which overall results in lowest similarities.
This is due to the hard surface of the wooden ball. Moreover, a key factor for the lower similarity is that the
sensors are inside the ball and the surface absorbs some of the force that is exerted on it. Indeed, the wooden ball
also has low similarity with the other baselines, including the clinical dynamometer (gold standard).

Table 2. Data similarity between different sampling devices. Red colours indicate there is significant differences (p<0.05). The
positions refer to different fingers: little finger (1), middle finger (2), index finger (3).

Devices DYNA W-BALL PLATES GLOVE Sensors
Position-1 Position-2 Position-3

DYNA 1 0.139 0.994 0.902 0.994 0.902
W-BALL 0.139 1 0.139 0.011 0.067 0.067
PLATES 0.994 0.139 1 0.902 0.994 0.902

GLOVE
Sensors

Position-1 0.902 0.011 0.902 1 0.902 0.262
Position-2 0.994 0.067 0.994 0.902 1 0.902
Position-3 0.902 0.067 0.902 0.262 0.902 1

6.2.4 Sensor Position. Figure 6 shows the results for the different participants for the different fingers and
compares the results against the dynamometer reference. The relative patterns align with the dynamometer
for most participants, but there are also some deviations from the reference. The best alignment results from
using all three positions simultaneously as the optimal finger from which to sample measurements varies across
the participants. This is to be expected as the contribution of each finger on the overall force that is applied
varies across individuals [10, 29, 29]. Note also that the patterns for the little finger (position-1) and index finger
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(position-3) are often reversed and the patterns often offset each other. This is due to higher pressure on the
index finger resulting in a loosening of the grip at the little finger, and conversely higher force on the little finger
indicating a smaller contribution of the index finger. The middle finger is expected to result in the most consistent
pattern, but this depends also on the characteristics of the object and the force that is applied on the object.
Malleable objects with a soft surface can result in significant changes in the surface of the object and this can
decrease the contact of individual fingers. For example, the experiments consider a squeezable ball whose shape
undergoes significant changes and this can result in the grip of the middle finger loosening. Nevertheless, as
the results indicate, these variations can most of the time be overcome by simply using multiple contact points.
Further stability can be achieved by analysing the reflection patterns in more detail and filtering out periods
where the reflection characteristics undergo changes.

6.2.5 Individual Differences. To better understand variations across individuals, we next split the participants
into two groups based on gender (Figure 7). Figure 7(a) and (b) compares (on a normalized scale) the hand-grip
data captured by all the devices. In parallel to this, Figure 7(c) and (d) show the level of linearization between
the dynamometer and the light reflectivity values with their actual physical units. This group (male and female)
division is motivated by the fact that hand size and physical strength are governed by gender characteristics [48].
Table 3 shows the Kendall correlation of the measurements when the participants are grouped and Table 4
shows the results without grouping. The results show that the correlations for index (position-3) and little finger
(position-1) are significantly higher when the participants are grouped by gender. Note also that the sign of the
correlation changes (for both genders) depending on the finger. A negative correlation indicates a reduction in
light intensity as force is applied, which indicates a closer contact between the sensor and the surface of the
object. Positive correlation, in turn, means the contact is not as tight which results in higher amount of light
reflecting back to the receptor – as well as small amounts of ambient light being able to enter the sensor. This
also further explains why the variations in the index and little finger measurements, as discussed above, tend to
offset each other.

To further understand the differences, we next calculate the DYNA-hand which briefly estimates the pressure
on the objects based on the hand size. DYNA-hand is the value of dividing the dynamometer reading (force) with
the hand size which is calculated from the hand dimensions collected prior to the study (hand-size ≈ hand-length
× hand-breadth, DYNA-hand = 𝐷𝑌𝑁𝐴

ℎ𝑎𝑛𝑑−𝑠𝑖𝑧𝑒 ). Table 5 shows the similarity values (from a Kolmogorov-Smirnov test)
and also the correlation analysis (Kendall). The similarities are high for all finger positions and both genders,
highlighting that the general principle of using light intensity variations is viable means of estimating changes in
grip force. The extent of changes depends on the surface area of the hand, and using the gender of the participant
tends to serve as a proxy to these changes. Naturally estimating the surface area of the hand is infeasible on a
simple wearable sensor. The most practical way to overcome this limitation is to (i) select sensor position based
on hand-size or (ii) collect measurements from multiple positions simultaneously and (iii) adapt the analysis
according to variations in the light intensity values. For people with smaller hand, the increase in grip at index
finger seems to be best indicative of grip force, whereas for people with larger hand size the grip force can
be reliably estimated from the loosened grip at the little finger. In addition, we can observe the significant
correlation between the light sensor in position-1 and DYNA-hand. Figure 8 also shows the strong relation
in position-1 especially when the gender is considered. However, there is no significant correlation for other
positions, except the female participants in position-3. Therefore, we can conclude that the position-1 can achieve
the best hand-grip strength estimation, which will be further proved in the following.

6.2.6 Comfort in Capturing Hand-grip Strength. Besides individual differences of participants, we explored the
user experience by measuring the comfort (or discomfort) of performing the hand-grip strength experiments
with the different devices. As a dynamometer has a flexible ergonomic design to adapt easily to any individual,
it is important then to analyze the perception of participants when using the devices. To do this, after the
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Table 3. Correlation (Kendall) coefficient (𝜏) analysis for all devices (Divided by group)

Devices GLOVE Sensors (Male) GLOVE Sensors (Female)
Position1-M Position2-M Position3-M Position1-F Position2-F Position3-F

DYNA 0.85 0.03 -0.21 0.33 -0.12 -0.82
W-BALL 0.76 0.06 -0.18 0.18 -0.48 -0.58
PLATES 0.79 -0.09 -0.21 0.09 0.06 -0.45

(a) Male in position-1 (b) Female in position-3 (c) Male in position-1 (d) Female in position-3

Fig. 7. Hand-grip analysis divided per group using the best sensor per group, a) and b) with normalization, c) and d) with
physical units.

Table 4. Correlation (Kendall) coefficient (𝜏) analysis for all devices.

Devices DYNA W-BALL PLATES GLOVE Sensors
Position-1 Position-2 Position-3

DYNA 1 0.86 0.86 0.29 0.19 -0.21
W-BALL 0.86 1 0.80 0.25 0.15 -0.13
PLATES 0.86 0.80 1 0.22 0.20 -0.13

Table 5. Statistical analysis between light reflectivity changes in different positions and DYNA-hand (value of dividing the
dynamometer value with the hand size): red colour indicates lack of statistical significance in similarity or correlation.

Position-1 Position-2 Position-3Statistical
Analysis Male Female All Male Female All Male Female All
Similarity 0.998 0.998 0.994 0.998 0.998 0.902 0.998 0.536 0.902
Correlation 0.88 0.67 0.39 -0.12 -0.09 0.14 -0.36 -0.73 -0.23

experiment finalized, we ask all the participants to assign rankwn values (on a 4-point Likert scale) based on
their comfort when using the devices. The scale is anchored at 1 (very uncomfortable) and 4 (very comfortable).
Figure 9 shows the results. Overall, the participants ranked the glove as the most comfortable, specially male
participants. P3 mentioned that "squeezing everyday objects is a very non-intrusive way because it is not noticeable".
Another participant P12 also mentioned that "the glove is very a lightweight solution". In contrast, there were also
participants that disliked the glove, specifically female participants. P7 mentioned that "it is difficult to squeeze the
plastic ball as its too big for my hands". Another participant P20 said that "I cannot apply proper hand-grip strength
as the plastic ball is slippery". P18 also said that "the plastic ball is too soft and it is difficult to assess whether I am
applying my maximum hand-grip strength or not". In the case of the other devices, W-BALL was ranked as the
second most preferable option, specially from female participants. Indeed, P9 mentioned that "the wooden ball is
small enough and provides better control when squeezing the object". Several participants also mentioned that "the
wooden ball is painful and hurts the hand as the material is too rigid". PLATES and DYNA received almost the
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(a) Male participants (b) Female participants (c) All participants

Fig. 8. Estimated pressure on the object (DYNA-hand) captured by the light senor in position-1.

Fig. 9. Ranking of 4 devices in use (the most comfortable–4, the least comfortable–1).

same scores. The main comments about PLATES were that "it is not easy to press and the shape square design
hurts the hand". Likewise, the main comments about DYNA were that "it is too heavy, it seems that the design is
not balanced (the frontal part is more heavy than the back one) and it is difficult to provide hand-grip strength as it
is too rigid". Overall, HIPPO provides the least intrusive and easiest-to-use solution and is preferred by the user
compared to the baseline approaches.

6.2.7 Hand-Grip Strength Estimation (Classification). Hand grip strength is typically reported using discrete
categories that offer a standardized and normative point for comparison. We next demonstrate how HIPPO can
support coarse-grained classification of hand grip strength into different grip categories. We use four parameters
for prediction: light values (L), gender (G), hand size (S), age (A), and three sensor positions: little finger, middle
finger and index finger. Gender and age are well-known to affect hand-grip strength with normative reference
tables typically considering these two variables to characterize the hand grip values [35]. Normative values
also typically separate values depending on height, and potentially also weight. Height correlates strongly with
hand size and thus the use of hand size indicator is equivalent to the use of height as part of dynamometer
procedures [19]. We consider two simple machine learning classifiers: Random Forest and Gradient Boosting to
guarantee that models can be deployed in low-power environments and 5-fold cross validation to evaluate the
generalization of the models. When we train a L-G-S specific model, the average performance for the different
fingers is 80% (little finger: 86%, middle finger: 70.5%, index finger: 84%). Once we train a model that considers
the relationship between the strength and the age given by the dynamometer norm, L-G-S-A model, the average
performance increases to 83% (little finger: 86%, middle finger: 79%, index finger: 84%), indicating the importance of
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age in strength type classification. In terms of gender, the average classification performance for male participants
results in 86.1% (little finger: 91.7%, middle finger: 75%, index finger: 91.7%) and for females 79.2%, (little finger:
79.2%, middle finger: 83.3%, index finger: 75%). These results confirm not only the influence of sensor positions,
but also the information that gender can provide into the model. Naturally, other context issues might affect
the estimates (e.g., object size, fit of the glove). Overall, the results demonstrate that hand-grip strength can be
accurately estimated using HIPPO and especially when the sensor is worn in the little finger.

6.2.8 Hand-Grip Strength Estimation (Regression). We next demonstrate the potential of using machine learning
to estimate the exact hand-grip strength based on light measurements and information about the characteristics of
the participants. We considered two common regression models (ARDRegression and Ridge) to predict hand-grip
strength by 10-fold cross validation across participants (i.e., both trials from each participant were always kept in
the same fold to minimize correlations in the test and training sets). We also normalize the input parameters (hand
size and lighting values) for more robust regression performance. The regression model effectively provides a
mapping that can be used to convert the light reflectivity values captured by the sensor to a physical unit through
a correspondence with another measurement device. The root mean square error RMSE (unit kg) and 𝑅2 score of
the regression experiments are shown in Table 6. When only the light reflectivity changes are considered, the
average RMSE is 9.72 kg and the 𝑅2 score is 0.01 across all regressors in different positions. This depicts a simple
model that estimates hand-grip strength with minimal information about the individuals. Once an additional
parameter gender or hand size is considered in the model, the average of RMSE decreases significantly for all
positions (gender: RMSE = 4.72 kg, hand size: RMSE = 5.96 kg) with higher model relevance (gender: 𝑅2 score =
0.75, hand size: 𝑅2 score = 0.63). This supports the insight that individual physical characteristics may improve
the regression model further. The best regression performance is achieved in all positions by including more
than two factors, being light reflectivity changes (L), gender (G) and hand size (S) and the performance can be
further improved when more measurements are taken. The best results are obtained for the little finger: RMSE
2.57 kg and 𝑅2 score 0.93 across both regressors. Since different finger positions influence the hand-grip strength
estimates, we also evaluate regression performance for measurements collected from different fingers. The results
in Figure 10 show that the true values and predicted values are mostly distributed along a linear line for all
positions, especially in position-1 (little finger), indicating accurate hand-grip strength estimation for HIPPO.

Table 6. Root mean square error RMSE (unit kg) and 𝑅2 score of predicting hand-grip strength (HS) in different experimental
conditions. Model data → Predicted. Regression Method: Automatic Relevance Determination Regression (ARD), Ridge
Regression (Ridge). Features: light reflectivity change (L), gender (G) and hand size (S), age (A).

Test conditions Position-1 Position-2 Position-3 Overall
ARD Ridge Average ARD Ridge Average ARD Ridge Average Average

RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2

(L)→ HS 9.63 0.02 9.49 0.05 9.56 0.04 10.08 -0.07 9.70 0.01 9.89 -0.03 9.84 -0.02 9.59 0.03 9.72 0.01 9.72 0.01
(L,S)→ HS 5.42 0.69 5.38 0.70 5.40 0.70 6.45 0.56 6.49 0.56 6.47 0.56 6.10 0.61 5.90 0.63 6.00 0.62 5.96 0.63
(L,G)→ HS 3.33 0.88 3.32 0.88 3.33 0.88 5.98 0.62 6.14 0.60 6.06 0.61 4.80 0.76 4.75 0.76 4.78 0.76 4.72 0.75
(L,S,G)→ HS 2.58 0.93 2.56 0.93 2.57 0.93 5.42 0.69 5.42 0.69 5.42 0.69 4.51 0.79 4.29 0.81 4.40 0.80 4.13 0.81
(L,S,G,A)→ HS 2.55 0.93 2.68 0.93 2.62 0.93 5.42 0.69 5.62 0.67 5.52 0.68 4.44 0.79 4.50 0.79 4.47 0.79 4.20 0.80

7 PRACTICALITY: SMART RING EXPERIMENTS
The results thus far have demonstrated that light sensors located on fingers can be used to estimate hand-grip
strength. We also showed that the results vary across different fingers and individuals, with the best results
requiring to use multiple contact points and background information about the user’s gender. As the smart
glove can constrain the hand-grip of some participants, we next demonstrate that our solution is feasible also in
more practical scenarios by presenting an optimized design of the HIPPO wearable, and carrying out further
experiments using everyday household objects and 𝑁 = 14 participants. These experiments were designed to
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(a) Position-1 (b) Position-2 (c) Position-3

Fig. 10. Hand-grip strength estimation performance in different positions.

show that HIPPO can indeed piggyback interactions with everyday objects to obtain continuous estimates of
grip strength. We also consider a wider variety of experimental conditions and new situations that can influence
the estimations of hand-grip strength though HIPPO.

7.1 Experimental Design
7.1.1 Everyday Objects. As household objects used in our experiments, we rely on a (A) disposable cup (Poly-
Coated paper), (B) plastic cup (PET), (C) kitchen sponge (Microfiber), (D) Paper-sheet (Wood fibres), (E) Fleece
jacket (Polyester), (F) Face mask (Polypropylene - PP), (G) Plastic bag (HDPE), (H) Beer can (Aluminum) and (I)
Metallic scrubbers (Stainless steel) (see Figure 11(b)). The first three objects were evaluated by all participants,
whereas objects (D) - (I) were only sampled by a single participant (6 trials per object). Limiting the number of
objects that were interacted with was necessary to maintain the length of the study feasible for participants.

7.1.2 Participants. 14 participantswere recruited (Males=7, Females=7). The participantswere university students,
staff and also the researcher’s social circle from different fields and nationalities. Their average age was 23.93±5.01
and all of them were right-handed.

7.1.3 Wearable Prototype. We built an optimized smart ring prototype that embeds the light sensors to a ring
and connects to a computing board for carrying out the analysis of values. Figure 11(a) shows the prototype
which is worn by an individual in the right hand and located in the ring finger (light sensor in position-1). The
prototype uses a wireless M5StickC PLUS ESP32 development board that controls the sampling frequency of
the light sensor and uploads the samples to a centralized server. The M5StickC Plus contains an inbuilt Wi-Fi
connection facility, battery supplies (120 mAh @ 3.7V) and LCD screen to externalize the activities of the board.
Moreover, it is lightweight (21g) and portable, such that it can be placed in a wristband (65 ∗ 25 ∗ 15mm). The
M5StickC PLUS reads photo resistor’s values through G36 pin and can show the light reflectivity values on its
screen in real time. The board externalizes a light sensor through a dedicated and isolated wire that is attached to
a plastic ring. The ring is a ready-made manufactured product, whose shape is flexible as its core is made from an
elastic wire. We used the same type of red laser diode (650nm 5mW 3 − 5V) and a photo-resistor (5MΩ) as in our
smart glove prototype. Since the shape of ring is flexible, it is easy to adjust to different finger characteristics.
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Fig. 11. Common house hold objects used in the wild experiment: a) optimized HIPPO wearable that consists in a wristband
and a ring; b) (1) first set: A) disposable cup, B) plastic cup, C) kitchen sponge; b) (2) second set: D) paper-sheet, E) fleece
jacket, F) face mask, G) plastic bag, H) beer can, I) metallic scrubbers.

7.1.4 Procedure. Experiments we carried follow the same standard procedure as when using the dynamometer
(See details in Section 6. As in previous experiments, the researcher conducting the experiment explained the
overall procedure and collected a signed informed consent form from every participant. The experiment was
encoded into a 1 × 2 factorial design with the object type and trial as independent variables, following the design
of our controlled experiment. To eliminate order effect and biases, whilst keeping the number of trials manageable,
trial number was counterbalanced following a Latin Square design, resulting in eight experimental conditions: (1)
Trial1-DYNA, (2) Trial2-DYNA, (3) Trial1-A, (4) Trial2-A, (5) Trial1-B, (6) Trial2-B, (7) Trial1-C and (8) Trial2-C (A,
B and C are the 3 objects for the experiment). The duration of the experiment was around 25 minutes. In addition
to this, the researcher collected 6 trials worth of measurements for the other objects (D)-(I). The evaluation took
place in the same university room as the other experiments (see Section 6).

7.2 Results
7.2.1 Characteristics of Light Intensity. Figure 12(a) shows a characterization of the light reflectivity values for the
different objects across all participants. The mean light values vary across different objects and the variance in the
light measurements for each object is low: disposable cup (Mean=2431.18, SD=59.26), plastic cup (Mean=3172.54,
SD=45.94) and kitchen sponge (Mean=3266.34, SD=59.09). The variation in the measurements is mostly caused
by small motions, but overall the effect is negligible. The effect of these motions can be mitigated by integrating a
motion sensor that detects periods where the hand is stable and only considering those periods. Figure 12(b)
illustrates this point, showing how the variance in measurements is significantly reduced when only stable
periods are considered for measurements. Finally, Figure 12(c) compares the light values across different objects
and across all the participants. The values vary across objects, which simply shows that the changes in intensity
depend on the surface characteristics of the objects. As HIPPO uses relative changes in light intensity between
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minimum and maximum grip force, this does not affect the hand-grip strength estimates. However, the result
shows that interactions with different objects can be identified from the light intensity values.

(a) (b) (c)

Fig. 12. Capturing hand-grip strength, a) Variations in light values of the objects across all participants (in the relaxed state),
b) Light characterization of the objects (in the relaxed state), c) Quantification of hand-grip strength in different objects
across all participants.

7.2.2 Validity. We verified that our new wearable design captures representative data of hand grip strength by
comparing the collected light measurements against the gold standard (dynamometer). Table 7 shows the results
of Kolmogorov-Smirnov test on pairs of data. No statistically significant differences are found, i.e., the changes
in light intensity values reflect the actual force-grip strength. We also separately compare the similarity of the
changes in light intensity values with the estimated pressure applied on the object, i.e., the force given by the
dynamometer divided by the approximate hand surface area size. The similarity with pressure values is slightly
higher than with the dynamometer values, especially for female participants. Thus, similarly to the controlled
experiments, the fit between the sensor and the object have slight influence on the intensity values but overall
the results are sufficiently stable across participants to estimate hand grip strength. Figure 13 also indicates that
there is a strong correlation between the light reflectivity changes and DYNA-hand in different objects for males
and females. From Table 7, we can also observe that despite the different mechanical properties of the objects,
the generality of our approach across different objects is well-suited for different participants.

Table 7. Data similarity (𝑝−value) between light reflectivity changes in the object and two measures: DYNA (dynamometer
value), DYNA-hand (estimated pressure on the object, calculated by dividing the dynamometer reading (force) with the hand
size).

Disposable cup Plastic cup Kitchen spongeSimilarity
Analysis Male Female All Male Female All Male Female All
DYNA 0.962 0.937 0.904 0.962 0.937 0.998 0.962 0.937 0.904

DYNA-hand 0.962 0.962 0.920 0.962 0.962 0.999 0.962 1 0.999

7.2.3 Performance. We evaluate HIPPO performance by using the same regression and classification models as
before to predict exact hand-grip strength (10-fold cross validation) and strength category (5-fold cross validation).
We report the average accuracy across all tests. In this experiment, participants scored all types (weak, normal and
strong) of hand-grip strength. We also trained the model on individual objects to test the classification sensitivity
of different objects. From the smart glove experiment, the best performance of estimated hand-grip strength is
achieved by the combination of the light change, hand size and gender. Therefore, we consider this combination
for our field (i.e., in the wild) evaluation. We still consider age as an input parameter due to the relevance between
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(a) Male participants (b) Female participants

Fig. 13. Estimated pressure on the object (DYNA-hand) captured by the light senor in different objects.

age and strength type according to the dynamometer norm table. Table 8 shows the classification accuracy of
HIPPO on the individual object as well as all objects in different conditions. We can observe that plastic cup
and kitchen sponge (both 73.3%) performed better than a disposable cup (71.7%). Since squeezing the disposable
cup is harder than squeezing the plastic cup and sponge, the variation in light changes using the disposable cup
across the participants is lower, which might lead to a low accuracy. The performance of the individual object
can be further improved if more samples are obtained from each object since most hand grips are of the normal
category in the experiment. The accuracy increased greatly up to 90.6% when training the models on all objects.
Therefore, a better hand-grip strength type estimation can be achieved with the combined measurements from
different daily objects. Moreover, when we consider the object type as one of the parameters and train the model
on all objects, The best performance can be achieved with the accuracy 91.9% (RF 90.6% and GB 93.1%), a slight
increase compared to the performance on all objects without considering object types. This further proves that
although different mechanical properties of the objects might result in different patterns of light reflectivity, their
performance of strength type estimation is almost consistent. Figure 14 also shows that accuracy is good since
the predicted and true values closely align with a straight line centered in the origin.

Table 8. Evaluation on regression (RMSE kg, 𝑅2 score) of predicting hand-grip strength (HS) and classification accuracy(%) of
predicting hand-grip strength type (ST) in different conditions. Features: light reflectivity change (L), gender (G), hand size
(S), age (A) and object (O).

Test conditions Object Regression Classification(%)
RMSE 𝑅2

(L,S,G,A) Disposable cup 3.54 0.68 71.7
Plastic cup 3.44 0.70 73.3

Kitchen Sponge 2.96 0.78 73.3
All objects 3.20 0.75 90.6

(L,S,G,A,O) All objects 3.22 0.74 91.9

7.2.4 Other Household Objects. Figure 15(a) shows the light sensor values of the additional household objects
(i.e., (D) - (I)) that were sampled six times by the researcher. In line with the other results, each individual object
has a unique light fingerprint despite the force being (approximately) constant. The fingerprints also have low
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(a) Disposable cup (b) Plastic cup (c) Kitchen sponge (d) All objects

Fig. 14. hand-grip strength estimation performance of different objects.

overall variance: paper sheet (Mean=1298.21, SD=302.60), fleece jacket (Mean=2452.42, SD=47.92), face mask
(Mean=1731.34, SD=211.65), plastic bag (Mean=1621.75, SD=352.26), beer can (Mean=645.63, SD=185.85), metallic
scrubbers (Mean=2145.54, SD=17.62). Overall the variance is somewhat higher for some of the objects. This
mainly concerns objects that are hard to grab (paper sheet) or that have a shiny (beer can) or translucent surface
(plastic bag). Taken together, the results show that HIPPO is practical and can operate robustly across users and
everyday household objects. Some objects are better suited for HIPPO than others, but these can be identified by
examining the distribution and changes in light intensity values.

Fig. 15. a) The changes in light intensity values for the additional household objects, b) evaluation of other factors on HIPPO:
(1) Laser vs LED, (2) Unseen (new) object and (3) Sensing without objects

7.3 Impact of Design and Environmental Factors on HIPPO
HIPPO has been designed as a solution that can operate as part of everyday interactions instead of requiring
a dedicated measurement protocol, unlike existing solutions. We next briefly assess the effects of different
environmental and other design factors on the performance of HIPPO to demonstrate that the hand-grip estimates
are robust across a wide range of factors. These tests were carried out through separate experiments conducted
independently and in a small scale setting with additional participants. The main reason for this is to avoid having
longer experiments, which are not engaging to participants and can potentially be noisy, and also to avoid the
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experiments from becoming a burden for participants. Moreover, it is not possible to obtain consistent hand-grip
measurements from consecutive measurements that require applying heavy force. We recruited 6 participants
(age 31.83 ± 9.70), three males and three females, to have a balanced distribution (participants 1-3 are females).
The procedure to collect hand-grip measurements remains the same as in previous experiments (see details in
Section 6). The duration of the experiment was on average 30 minutes. These experiments are conducted using
the same smart ring prototype as described previously (laser as the light source).

7.3.1 Effect of the Luminosity. Since environmental conditions can influence light values, we have also evaluated
the impact of environmental luminosity considering three conditions: indoor dark (Dark), indoor ambient light
(IAL) and outdoor ambient light (OAL). The indoor ambient light condition is the same as in the previous
experiment. Measurements were collected for 7-days for laser and LED independently. Plastic cup and kitchen
sponge (See B and C in Figure 11(b)) were used as the household objects in this experiment. Figure 16 shows the
luminosity (LUX) of the measurements in the different environments. The luminosity is stable in the two indoor
environments, whereas the ambient light contains more variations in the outdoor case. Luminosity shows to be
constant during both laser and LED experiments.

(a) Laser (b) LED

Fig. 16. Light intensity (LUX) in different experimental environments (IAL: indoor ambient light, Dark: indoor dark, OAL:
outdoor ambient light).

Figure 17(a-d) shows the results of estimated pressure (DYNA-hand) and their respective light values in the
different luminosity environments. We also separated the results by gender as hand size and finger positions play
an important role, as we showed previously. From the figure, we can observe that light changes can estimate
relatively similar pressure in all the environments. We also repeat the regression experiments by re-training our
models using the measurements from the 7-days. Training and testing are carried out using leave-one-day-out
cross validation. Table 9 shows the laser results of HIPPO using RMSE and 𝑅2 values. The accuracy is consistently
high, with the two indoor environments resulting in the best performance. Thus, luminosity impacts the results
due to largest variations in ambient sunlight, but this is generally negligible. The regression results in Figure 18
(a-d) similarly show high accuracy, and the average classification performance for hand-grip strength type is
90.87% (IAL: average 93.44%, Dark: average 92.26%, OAL: average 88.69% and All: average 90.87%) in the different
environments from Figure 19(c).

7.3.2 Effect of Light Source. We also assessed whether the laser could be replaced by a LED (red-color, 5 mm in
size, 0.06W power draw, and luminous intensity of 1500 mcd at a 30◦ angle) shown in Figure 15(b)(1). The laser
produces monochromatic and heavily directed light, whereas the spectrum of light produced by the LED contains
more variation. The results in Figure 17(e-h) show that no clear relationship can be established between light
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(a) Laser: plastic cup (b) Laser: plastic cup (c) Laser: kitchen sponge (d) Laser: kitchen sponge

(e) LED: plastic cup (f) LED: plastic cup (g) LED: kitchen sponge (h) LED: kitchen sponge

Fig. 17. Estimated pressure (DYNA-hand) captured by light reflectivity changes through 7-day measurements in different
environments: IAL-indoor ambient light, Dark-indoor dark, OAL-outdoor ambient light.

Table 9. Root mean square error RMSE (kg) and 𝑅2 score of predicting hand-grip strength (HS) in different environments.
Features: light reflectivity change (L), gender (G) and hand size (S), age (A), object (O), light conditions LUX (C).

Sensors Test conditons Measure-1 Measure-2 Measure-3 Measure-4 Measure-5 Measure-6 Measure-7 10-CV
RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2

Laser IAL (L,S,G,A,O) 2.64 0.87 3.47 0.80 3.60 0.79 2.59 0.89 2.62 0.89 3.19 0.87 3.03 0.89 3.13 0.85
(L,S,G,A,O,C) 2.64 0.87 3.47 0.80 3.60 0.79 2.59 0.89 2.62 0.89 3.19 0.87 3.03 0.89 3.14 0.85

Dark (L,S,G,A,O) 3.60 0.76 2.66 0.88 3.73 0.78 2.85 0.86 3.33 0.81 3.52 0.85 3.74 0.82 3.47 0.82
(L,S,G,A,O,C) 3.60 0.76 2.66 0.88 3.73 0.78 2.85 0.86 3.33 0.81 3.52 0.85 3.74 0.82 3.47 0.82

OAL (L,S,G,A,O) 4.77 0.59 4.42 0.68 4.08 0.73 3.70 0.77 3.40 0.80 4.42 0.76 4.04 0.79 4.19 0.74
(L,S,G,A,O,C) 4.78 0.58 4.46 0.67 4.08 0.73 3.70 0.77 3.45 0.80 4.68 0.73 4.04 0.79 4.23 0.73

All (L,S,G,A,O) 3.70 0.75 3.51 0.80 3.78 0.77 3.16 0.83 3.28 0.82 3.93 0.81 3.58 0.84 3.54 0.81
(L,S,G,A,O,C) 3.70 0.75 3.51 0.80 3.78 0.77 3.16 0.83 3.28 0.82 3.99 0.80 3.58 0.84 3.56 0.81

LED IAL (L,S,G,A,O) 5.38 0.36 4.28 0.74 6.15 0.56 4.48 0.63 4.92 0.54 5.35 0.69 4.32 0.77 5.24 0.61
(L,S,G,A,O,C) 5.34 0.37 4.53 0.70 6.08 0.57 4.40 0.64 4.85 0.55 5.56 0.67 4.38 0.77 5.24 0.61

Dark (L,S,G,A,O) 5.48 0.34 4.40 0.72 5.61 0.63 3.50 0.77 4.01 0.69 5.08 0.72 5.04 0.69 4.94 0.65
(L,S,G,A,O,C) 5.50 0.33 4.39 0.72 5.61 0.63 3.69 0.75 4.03 0.69 5.11 0.72 5.10 0.68 4.94 0.65

OAL (L,S,G,A,O) 5.82 0.25 4.55 0.70 6.11 0.56 4.88 0.56 5.15 0.49 5.55 0.67 4.54 0.75 5.39 0.59
(L,S,G,A,O,C) 5.83 0.25 4.54 0.70 6.19 0.55 4.86 0.56 5.16 0.49 5.88 0.63 4.53 0.75 5.41 0.59

All (L,S,G,A,O) 5.69 0.28 4.42 0.72 5.94 0.59 4.25 0.67 4.94 0.54 5.30 0.70 4.54 0.75 4.98 0.65
(L,S,G,A,O,C) 5.69 0.28 4.42 0.72 5.95 0.59 4.25 0.67 4.95 0.53 5.35 0.69 4.54 0.75 4.99 0.65

changes and the estimated pressure (DYNA-hand) as given by the dynamometer. This is a direct consequence of
the variations in the light spectrum of the LED and in practice this mostly affects the regression estimates and
cases where the strength values are close to the border between two categories. Indeed, the laser consistently
outperforms the LED source, even if the LED can also be used to obtain insights about hand-grip strength.
Specifically, HIPPO combined with laser performs better than LED in regression from Table 9 (laser: average
RMSE= 3.56 kg, and LED: average RMSE=5.01 kg), as well as in classifying the hand-grip strength category (IAL:
average 91.66%, Dark: average 89.82%, OAL: average 80.85% and All: average 85.31%). We also notice from Figure
19 (d) that the performance of LED is not consistent during different days (OAL) and the accuracy is below 80%
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(a) Laser: IAL (b) Laser: Dark (c) Laser: OAL (d) Laser: All

(e) LED: IAL (f) LED: Dark (g) LED: OAL (h) LED: All

Fig. 18. Hand-grip strength estimation performance by 10-fold cross validation across 7-day measurements in different
environments.

(a) Laser (b) LED (c) Laser (d) LED

Fig. 19. Evaluations on hand-grip strength estimation (RMSE) and strength type classification(%) across 7-day measurements
in different environments.

for 3 out of 7-day measurements. Figure 18 (e-h) also show estimation performance by 10-fold cross validation,
which we find to be less accurate along 𝑦 = 𝑥 with LED, especially in outdoor ambient environments.

7.3.3 Unseen Household Objects. Ultimately HIPPO should operate on any everyday interactions without having
to rely onmodels tailored for specific objects. We tested performance for a previously unseen object by introducing
an object made of sponge cloth (cellulose with cotton) shown in Figure 15(b)(2). We train the models with the data
from the two objects described above (plastic cup and kitchen sponge) and test against the data from the cloth.
The data of the cloth was also collected across 7-day measurements from the same 6 participants as the plastic cup
and kitchen sponge. The results in Figure 20 show the trend between light changes and estimated pressure to be
similar, and robust across gender, and environment. Table 10 shows the regression and classification performance,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 209. Publication date: December 2022.



209:24 • Yin et al.

Fig. 20. Estimated pressure (DYNA-hand) captured by light reflectivity changes on unseen (new) object through 7-day
measurements in different environments.

Table 10. Unseen object evaluations on hand grip strength estimation RMSE (kg) and strength type classification (%) in
different environments.

Test conditions Regression Classification(%)
RMSE Id1 Id2 Id3 Id4 Id5 Id6 All Ids

IAL 5.45 71.43 85.71 100 71.43 78.57 100 83.33
Dark 4.91 71.43 100 100 71.43 100 100 90.47
OAL 4.84 85.71 85.71 100 85.71 100 100 92.86
All 5.05 85.71 90.48 100 69.04 100 100 90.88

which remain reasonably high despite variations across individuals (IAL 83.33%, Dark 90.47 and OAL 92.86% and
All 90.88%). For two users (1 and 4, female and male), the drop in performance was more significant (1: 71.43%, 4:
71.43%), which resulted from low similarity between the light values considered for training and testing. The
sponge cloth is easiest to squeeze and thus it should result in highest variation and deformations. The two users
whose estimates were least accurate both had low pressure grips, resulting in a small number of deformations and
making the light intensity values relatively stable. Thus, the performance with unseen objects depends on the
characteristics of the object and may also depend on the grip-strength category of the individual as the presence
or absence of deformations may impact how well prior data fits the user.

7.3.4 Performance without Object. Hand-grip strength estimates should only be calculated when the user is
interacting with an object, and thus there is a risk of false positives if the user clenches their fist or keeps the
hand open without exerting a pressure. As final step, we investigate whether these cases can be reliably detected
and omitted from analysis. We perform this from the same participants by examining the light intensity values
when the user’s hand is clenched (or gripped) or open without interacting with an object. Figure 21 shows the
resulting light values and the light values in the flat (or relaxed) state are from the area shown in Figure 15(b)(3).
The light values are similar for the same individual, and we can observe similarities between the relaxed and
clenched (gripped) states. This indicates that when there is a hand-grip, the sensors read the same information no
matter the environment. Table 11 shows the mean and standard deviation of the light intensity values, showing
small variations between the relaxed and the clenched states. These values are significantly different from those
when the user interacts with an object, and thus interactions with objects can be detected by identifying sudden
significant changes in the light intensity values. This suggests that false positives can be significantly mitigated.
Another implication of this result is that it offers potential for resource savings by helping to identify when
measurements need to be processed.
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(a) IAL+OAL (b) Dark+OAL

Fig. 21. Light values of hand with different states in different environments: profile - light profile of the whole hand in the
flat state, gripped - light values in the hand-grip applied strength state, relaxed - light values in the flat state where the
sampling area is based on the area of the sensing point in gripped state. The same OAL-gripped values shown with both IAL
and Dark environments.

Table 11. Light values (ADC) without objects in different environments: profile - light profile of the whole hand in the flat
state, gripped - light values in the hand-grip applied strength state, relaxed - light values in the flat state where the sampling
area is based on the area of the sensing point in gripped state.

Participants IAL Dark OAL
Profile Relaxed Gripped Profile Relaxed Gripped Gripped

Id1 3124.66±160.07 3098.57±160.16 3160.73±169.46 2967.15±161.50 3099.02±105.23 3152.84±77.16 3050.94±42.99
Id2 3166.21±185.28 3232.78±54.23 3239.79±45.64 2823.02±267.93 3168.97±44.06 3322.69±40.39 3322.69±40.39
Id3 3132.75±188.94 3212.64±96.54 3217.71±109.55 3169.31±201.13 3186.00±133.89 3128.87±67.21 3217.70±109.55
Id4 3055.49±155.59 2972.56±81.71 2960.00±61.37 3064.16±119.11 2944.32±104.08 2873.54±82.57 2877.44±66.09
Id5 2792.64±362.54 3086.82±153.19 3058.77±204.64 2697.65±394.11 2982.57±172.06 3020.08±181.59 3015.21±105.84
Id6 2607.17±395.79 2121.34±117.20 2042.92±110.74 2521.258±325.29 2383.64±156.06 2308.92±105.36 2431.00±150.99

8 DISCUSSION
Factors that influence hand-grip strength:Age and gender are factors that influence hand-grip measurements,
and there are very well defined index values associated with them. The average grip strength is 46kg for men
and 29kg for women [35]. In our work, we demonstrated that our light sensing approach can also capture this
strength as the results preserve the relative patterns measured by a certified dynamometer.
Room for improvement:We demonstrated in our work that hand-grip strength can be estimated using light
sensors located in a smart glove prototype. As software and hardware of light sensors are already miniaturized,
e.g., smartwatches, the deployment of our approach can be optimally envisioned within smart rings. Indeed,
existing commercial solutions either implement light sensors (that can be re-purposed) or could be easily extended
with light sensors to introduce our approach transparently into daily routines of users. The performance of HIPPO
showed highly promising performance, correlating well with a clinical baseline (dynamometer), but naturally
there is further work to improve the robustness of the estimates and to support interactions with a wider range
of household objects. We are also interested in generalizing our approach into a larger spectrum of interactions
with household objects, and different body positions.
Daily hand-grip monitoring: Previous work has reported that the body position that is used for measuring
hand-grip strength can influence the results of the overall measurements [11]. However, it is also noticed by
these studies that to overcome this problem, the strength values just have to be adjusted based on the body
position, such that those can be interpreted fairly. In addition, it has also been found that just 4 kg of hand-grip

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 209. Publication date: December 2022.



209:26 • Yin et al.

strength is required to perform 90% of daily living activities (ADL) [24]. Thus, there are opportunities to measure
hand-grip strength directly from interactions or indirectly by asking the user. As part of the post questionnaire
for each participant in our main experiment, we asked whether they have used dynamometer before to measure
their hand-grip strength. Overall 62% of the participants mentioned that they did not use it before. We also
asked whether they would be interested on acquiring a dynamometer in the future to measure their hand-grip
continuously at home. Overall 83.3% of participants mentioned that they are not interested. All in all, this
highlights further the need of non-intrusive approaches for measuring health based on hand-grip indicators.
Other light spectrum:We demonstrated that light sensing in the red spectrum can be used to capture hand-grip
strength measurements. By looking at the reflective patterns of the changing surface of the object as the hand
squeezes the object, it is possible to extrapolate the intensity of the hand-grip. Other spectrum of light can also
be re-purposed to achieve this, e.g., blue and green, we are interested in investigating its performance as some
spectrums are preferable over others based on the context of the user. For instance, red light would be suitable
underwater when compared with blue light.
Comparison to other sensing modalities: While pressure sensors can be used as an alternative sensing
modality to measure hand-grip strength, its deployment is rather difficult as its placement within the hand plays
an important role to obtain accurate measurements. Thus, it is difficult to introduce it in a transparent manner to
users. In our work, an additional pressure sensor is located in the (hand) palm and we found high variance in the
results when measuring hand-grip of squeezing objects. One reason of this is that soft materials tend to absorb
the grip force so that the sensor is not able to detect and distinguish it. For instance, a rubber ball will absorb
most of the force from the hand-grip.
End-user adoption: The results demonstrate that a simple light sensor embedded in a ring can be used to
estimate the hand grip strength of an individual, and to provide insights into changes in the user’s health.
Naturally further optimizations would be required in practice. Firstly, most wearable devices are combined
with a compendium application that runs on a smartphone. HIPPO could similarly benefit from such design,
offloading the analysis of the light intensity values onto the smartphone instead of performing them on the
ring. The smartphone application can also be used to obtain information that supports the analysis, e.g., hand
size parameters could potentially be estimated on the smartphone from touch screen interaction patterns. The
sampling on the ring can also be further optimized using a proximity sensor to detect when the user is interacting
with objects.
Inherent object characteristics : Surface deformations are dependent on inherent characteristics of the material
of the object being interacted with and these variations can affect the light intensity measurements captured by
HIPPO. For example, hard surfaces (such as the wooden ball used as the baseline) might not alter their shape,
whereas malleable objects can undergo significant surface changes. In both cases, the light intensity values change
as force is applied, but the patterns of changes vary depending on the surface of the object. Further improving
the robustness of the estimates may require averaging estimates from multiple interactions and potentially
from different objects. Alternatively, it may be possible to suggest activities to create opportunistic moments for
hand-grip estimation, e.g., by inducing interactions on a smartphone by providing recommendations.
Application scenarios: HIPPO presents an important first step toward harnessing everyday interactions for
deriving health related information. While the main focus in this paper has been on interactions with everyday
objects, HIPPO is also beneficial to more specialized domains. For example, hospitals or care homes could give
medical rings to patients and use HIPPO to continuously estimate hand grip instead of requiring separate test
assessments.
Practicability: Optimally, we envision HIPPO to be integrated into smart rings, which already contain the
required sensor, re-purposing these devices for hand-grip estimation. The light sensors used by HIPPO are
low-cost, low-power, and small in size, making it reasonably easy to integrate HIPPO with diverse wearables.
Indeed, wearables already use light sensors for measuring heart rate and other physiological parameters, and
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HIPPO uses similar technology but is placed on the exterior of the wearable to derive hand grip information.
Our experiments showed that it is possible to detect when objects are held and this information can be used to
optimize resource consumption.

9 SUMMARY AND CONCLUSIONS
We contributed HIPPO, an innovative sensing solution and a new sensing modality for assessing hand-grip
strength from opportunistic interactions with everyday objects. HIPPO captures hand-grip estimations by looking
at changes in the surface of objects using light sensors. Through extensive experiments that considered a wide
range of everyday objects and 44 participants, we demonstrated that HIPPO can capture hand-grip estimations
that align with a clinically certified dynamometer. We also compared our proposed method against other state-of-
the-art baselines, demonstrating that HIPPO can capture pressure-based estimations through light and provide
an easy-to-use and natural alternative that harnesses everyday interactions. The best results are obtained when
there are multiple measurement points per individual, i.e., when multiple interactions with different objects are
piggybacked. The results also showed some interactions being better for estimation as others as the contact
between the light sensor and the object needs to be sufficiently good to capture the changes in shape. Our method
paves the way toward non-intrusive solutions for capturing individual’s hand-grip strength – an important
health-related parameter – continuously and pervasively.
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