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Abstract
Diseases caused by alterations in the DNA can be overcome by providing the cells or tissues with a functional copy of the
mutated gene. The most common form of gene therapy implies adding an extra genetic unit into the cell. However, new genome
engineering techniques also allow the modification or correction of the existing allele, providing new possibilities, especially for
dominant diseases. Gene therapies have been tested for 30 years in thousands of clinical trials, but presently, we have only three
authorised gene therapy products for the treatment of inherited diseases in European Union. Here, we describe the gene therapy
alternatives already on the market in the European Union and expand the scope to some clinical trials. Additionally, we discuss
the ethical and regulatory issues raised by the development of these new kinds of therapies.
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The progression of diseases resulting from genetic alterations
can be stopped or reversed if the affected cells or tissues over-
come the genetic failure. Gene therapy has been suggested as a
possible treatment for inherited conditions since the 1970s
(Friedmann and Roblin 1972; Terheggen et al. 1975), and
the first official trial was initiated in the USA in 1990. The
therapy consisted of a viral vector that delivered a functional
copy of the adenosine deaminase (ADA) gene into the T cells
of a severe combined immunodeficiency patient (Blaese et al.
1995; Culver et al. 1991). The success of this first clinical trial
promoted numerous trials throughout the decade. The situa-
tion changed in 1999, when the University of Pennsylvania
reported fatal systemic inflammatory response during an ex-
perimental gene therapy trial for ornithine transcarbamylase
deficiency (Raper et al. 2003). Consequently, the develop-
ment of the field markedly slowed down, until China ap-
proved a gene therapy trial for head and neck cancer in 2003
(Lang et al. 2003; Han et al. 2003; Raty, Pikkarainen, Wirth et
al. 2008). Thereafter, the number of trials has soared. In
February 2020, the total number of conducted or ongoing

gene therapy clinical trials exceeds 4000 (Clinical trials NIH
2020). Extensive testing and development have yielded, how-
ever, only a handful of therapeutic products1. Additionally,
most trials and half of the products are designed for somatic-
alteration diseases, mainly cancer. This review describes the
potentially curative gene therapy treatments for inherited dis-
eases. We examine the authorised therapies in the European
market and describe promising approaches in clinical trials for
specific disease groups. We exclude protein replacement and
oligonucleotide-based therapies, which are seldom curative;
and allogeneic cell transplantation from genetically healthy
donors, which can be curative, but is not classified as a
bioengineered gene therapy.

Therapeutic applications in genetic diseases vary signifi-
cantly, and the preferred methods for successful treatments
are highly disease dependant. An in vivo therapy delivers a
therapeutic vector in the form of DNA, RNA or a virus, while
an ex vivo therapy consists of genetically modified cells or
tissues (Gene Therapy Net 2020). The European Medicine
Agency (EMA) webpage (European Medicines Agency
2015) displays the precise classifications and explains the reg-
ulatory processes for different categories of genetic therapies.
The regulatory requirements of gene therapy products greatly
influence the development of new treatments and affect the
time lag between scientific breakthroughs and newly available
medicines.

1 In this review, the term therapeutic product refers to those therapies that have
been approved for market commercialisation.
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Gene therapy strategies

All the market-authorised genetic treatments and most of the
ongoing trials rely on the addition of a genetic element to the
cells, including the necessary parts for expression. Coded as
RNA or DNA, the gene transfer happens via chemical or
physical techniques with variable efficiency and safety pro-
files but more frequently using a virus (Kamimura et al. 2011,
Table 1). This ultimately leads to the production of the desired
RNA and/or protein in the target cells.

Genetic modification or editing means that the existing
genetic code inside a living cell is altered. All the gene-
editing methods guide an effector, including a nuclease, to a
target site in the genome (What is Genome Editing? NIH
2019). After a successful targeting, the effector catalyses the
desired modification by creating a cut in one or both strands of
DNA, modifying it or replacing it with a synthetic template
(Gene Therapy Net 2020). Although probably the most
known editing method is CRISPR-Cas9, the older zinc finger
nuclease (ZFN) technique is further in clinical trials, and
others also exist (Table 2). The latest, 2019-published prime
editing, is based on a reverse transcriptase enzyme ‘writing’ a
new text into the DNA (Anzalone et al. 2019). So far, only the
original publication has reported positive results applying this
novel method. Different gene transfer and editing methods
have brought us to a situation where we could write practically
anything inside the cells, with almost endless options. The
complexity of the genome sets the limitations (Jensen et al.
2017), and some modifications are technically easier to
achieve than others.

The cause of the disease defines the preferred
techniques for a treatment

It is crucial to understand the pathogenesis of the target
disease to appropriately design a gene therapy (Diakatou
et al. 2019). A blood disease can be treated with a relatively
small number of self-renewing haematopoietic stem cells
(Boelens et al. 2013), but postmitotic cells—such as

neurons—usually require a direct delivery of the therapeu-
tic agent to a significant proportion of them (Naldini et al.
1996).

The exceptional potential of gene therapy was first
envisioned in inherited diseases (Rosenberg et al. 1990), many
of which lack appropriate therapies. Then, researchers extend-
ed the applications to acquired conditions. Some of the targets
include infections, acquired ischemic and metabolic diseases
and several types of cancer (Gene Therapy Net 2020). Yet,
due to the large variety of mutations in cancerous cells
(National Cancer Institute 2015), curative genetic therapies
targeting malignant cells are difficult to develop. Therefore,
therapies frequently aim to modify the genes in the cells that
protect us from cancer (Eshhar et al. 1993; Maher et al. 2002;
Zhang et al. 2017), although we will not describe them in
detail.

On top of understanding the cell and tissue pathogenesis of
the disease, it is essential to know the molecular consequence
of the disease mutation (Fig. 1). Recessive diseases are typi-
cally caused by loss-of-function mutations (Deutschbauer
et al. 2005) and can be potentially cured by introducing a
healthy copy of the gene into the cells. The same approach
works for dominant diseases caused by haploinsufficiency
(Hafler et al. 2016). On the contrary, if the pathogenicity raises
from gain-of-function or dominant-negative gene products,
gene/mRNA supplementation may not be sufficient. A com-
mon example of a gain-of-function mutation result is an over-
active tyrosine kinase receptor, which cannot be silenced by
the wild-type gene. Hence, in these cases, more suitable alter-
native for therapy would be to correct the mutation and/or
excise the altered allele (Farrar et al. 2012; Mendes and
Cheetham 2008).

Clinical experience

In the EU, there have been seven market-authorised gene ther-
apy products, six of which are still available (Table 3): three
immunological gene therapies for cancer and three for treating
inherited diseases. Of the latter, one is an in vivo viral therapy

Table 1 Commonly used viral vectors in gene therapy

Vector Transfection capacity Integration Restrictions

Adenovirus < 7.5 kb None Causes immune response, short-term expression

Adeno-associated virus (AAV) < 4.5 kb Low Causes immune response

Alphavirus < 7.5 kb None Short-term expression

Herpesvirus > 30 kb None May cause immune response

Retrovirus < 8 kb High Risk of insertional mutagenesis. Just infects dividing cells

Lentivirus 8–10 kb High Risk of insertional mutagenesis

Vaccinia virus 25 kb None Short-term expression

(Baldo et al. 2014; Ura et al. 2014; Hanna et al. 2017; Lundstrom 2018)
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and two are ex vivo-modified cellular therapies. All these gene
therapies add a new sequence to the target cell, and no agency
has approved a gene-editing medicinal product yet. Despite
the small number of current market authorisations, the

technical improvements occur fast, and there are dozens of
products in the regulatory process (European Medicines
Agency 2020), suggesting gene therapy as a promising future
field in medicine.

Fig. 1 Flow chart model of
biological and technical variables
describing gene therapy
strategies. (a) Type of disease
mutation. Loss-of-function
mutations can be treated by
supplying the cells with a
functional copy of the gene in the
form of DNA or mRNA. If the
disease-causing mutation results
in gain-of-function or dominant-
negative product, the current
alternatives imply correcting the
alteration or excising the altered
allele using gene-editing tools
(ZFN, TALEN, CRISPR/Cas9).
(b) The affected tissue type has a
major influence whether the
disease can be targeted using
in vivo or ex vivo therapies. Self-
renewing tissues are much more
approachable with ex vivo
treatments. (c) Delivery options
are determined by the tissue type
and approach. Viral particles can
be used both in vivo and ex vivo.
Chemical or physical means are
mainly used in ex vivo therapies.
Created with BioRender.com
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Classic TALENs Large (5.6 kb,
two chains) DNA, mRNA, AV CLLS (CAR-T)

Fusion of a DNA 
targe�ng (effector) 
and a cleaving domain

CRISPR-Cas9 Medium (4 kb, 2 
components

DNA, mRNA; 
RNPs, big viral 
vectors

Intelia, Editas, 
CRISPR 
Therapeu�cs

RNA for DNA 
targe�ng (gRNA) and 
a protein for cleavage 
(Cas9)

ZFN Small (2 kb 
each, 2 chains)

Any vector 
system SGMO 

Fusion of a zinc finger 
protein (ZFP) and a 
cleaving domain 

Mega-TAL Small (single, 2
kb chain)

DNA, mRNA, AV, 
AAV, RTV vectors

BLUE (TCR 
program)

Fusion of a 
meganuclease 
domain and a TAL 
effector

Meganucleases
Small (single, 
0.8-0.9 kb 
chain)

Any vector 
system N/A One protein targets 

and cleaves
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Classic TALENs Large (5.6 kb,
two chains) DNA, mRNA, AV CLLS (CAR-T)

Fusion of a DNA 
targe�ng (effector) 
and a cleaving domain

CRISPR-Cas9 Medium (4 kb, 2 
components

DNA, mRNA; 
RNPs, big viral 
vectors

Intelia, Editas, 
CRISPR 
Therapeu�cs

RNA for DNA 
targe�ng (gRNA) and 
a protein for cleavage 
(Cas9)

ZFN Small (2 kb 
each, 2 chains)

Any vector 
system SGMO 

Fusion of a zinc finger 
protein (ZFP) and a 
cleaving domain 

Mega-TAL Small (single, 2
kb chain)

DNA, mRNA, AV, 
AAV, RTV vectors

BLUE (TCR 
program)

Fusion of a 
meganuclease 
domain and a TAL 
effector

Meganucleases
Small (single, 
0.8-0.9 kb 
chain)

Any vector 
system N/A One protein targets 

and cleaves
aModified from (BIOTECH Gene Therapy 2016)

AV Adenovirus, AAV adeno-associated virus, RTV retroviral, RNP ribonucleoprotein. ◯, low; ◒, moderate; ●, high
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The first European market authorisation for a gene therapy
product was given in 2012 to Glybera® but was later
suspended for commercial reasons (European Medicines
Agency 2017). The second approved product was the haema-
tological cell product Strimvelis®, for the treatment of the
‘bubble boy‘-immune deficiency ADA-SCID (European
Medicines Agency 2016). The therapy involves the retroviral
addition of the gene to the patient cells to surpass the insuffi-
ciency of the X-linked ADA gene causing the disease.

The only available in vivo gene therapy product is the
adeno-associated virus (AAV)-based LUXTURNA® (FDA
2017; European Medicines Agency 2019a, b). It is adminis-
tered as a subretinal injection in patients with biallelic RPE65
gene mutations, suffering from Leber’s congenital amaurosis
(eye disease, NCT00999609).

The latest gene therapy product arrived in the market in
2019, when the EMA approved Zynteglo® (European
Medicines Agency 2019a, b). The product consists of autolo-
gous haematopoietic stem cells treated ex vivo with a lentivi-
rus to express a functional β-globin gene in patients suffering
from thalassemia (NCT01745120).

The databases of the EU Clinical Trial Register (2020),
National Institute of Health (Clinical trials NIH 2020) and
the World Health Organization (2020) better illustrate the fast
development and current situation of gene therapy trials. In
total, thousands of trials have been registered, including more
than 300 phase 3 gene therapy studies. Next, we describe gene
therapy products and some ongoing clinical trials for inherited

haematological, ophthalmological and metabolic diseases
(Table 4).

Haematopoietic stem and progenitor cells

Haematopoietic stem and progenitor cells (HSPCs) are a par-
ticularly promising cell population for gene therapies due to
their relatively easy extraction and reintroduction into the pa-
tient and their well-described behaviour (Juric et al. 2016).
This cell population survives ex vivo manipulation and trans-
plantation into the same subject (autologous transplantation)
or into another recipient (allogeneic transplantation) (Juric
et al. 2016). They present a remarkably positive response to
many cell engineering approaches, namely, ex vivo electropo-
ration of ribonucleoprotein and mRNA or transduction with
lentivirus (LV) and AAV (Bjurström et al. 2016; Hendel et al.
2015; Roselli et al. 2010). Additionally, according to the
EMA, an estimated 36,000 patients a year receive HSPC
transplantation in the EU. Thus, this well-tested procedure
does not represent a major concern for ex vivo gene therapy
clinical trials targeting the HSPC population. Therefore, the
most efficient gene-editing and gene transfer clinical trials
involve ex vivo strategies. However, performing HSPC-
based therapies on a big scale still represents a challenge for
hospital infrastructure and reproducible manufacturing (Bai
et al. 2019).

As of February 2020, 48 phases 1 or 2 clinical trials for
genetic therapies in HSPC have been approved (Clinical trials

Table 3 Gene therapy products approved by the EMAa

Trade name Product Condition Vector EMA
approval

Glybera® Alipogene tiparvovec Lipoprotein lipase deficiency 10/2012†2017

Imlygic® Talimogene laherparepvec Regionally or distantly metastatic unresectable
melanoma

HSV-1/GM-CSF 12/2015

Strimvelis®b Autologous CD34+ cells transduced
to express ADA

Adenosine deaminase deficiency (ADA) ϒ-retrovirus/ADA 05/2016

Kymriah® c Tisagenlecleucel • Relapsed or refractory B-cell acute lymphoblastic
leukaemia

• Relapsed or refractory diffuse large B-cell lymphoma

LV-CAR
(CD19R)

09/2018

Yescarta®c Axicabtagene ciloleucel
(CAR-T)

• Relapsed or refractory DLBCL and primary
mediastinal large B-cell lymphoma

• Some types of non-Hodgkin lymphoma

ϒ-retrovirus 08/2018

LUXTURNA®d Voretigene neparvovec Inherited retinal dystrophy caused by biallelic
RPE65 mutations

AAV2-RPE65 11/2018

Zynteglo®e Autologous CD34+ cells encoding
βA-T87Q-globin gene

β-thalassemia with regular blood transfusions LV-ß-globin 05/2019

†Taken out of the market
a Gene Therapy Net (2020)
b Novartis (2020)
c Dolgin (2019)
dMaster (2019)
e DBGen (2019)
f Deena Beasley (2019)
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NIH 2020). From these, 43 propose gene transfer methods,
introducing a functional cDNA into the patient’s HSPC. The
cDNA product, regulated by a stable promotor, replaces the
missing or dysfunctional protein. To deliver expression cas-
sette, all these trials utilise retroviruses, including LV and self-
inactivating gammaretrovirus. An example of this approach is
the recently approved Zynteglo®(NCT01745120) that uses
lentiviral delivery of a working βA(T87Q)-globin gene se-
quence. In theory, AAVs could also be employed to deliver
a stable cDNA expression cassette as shown in other clinical
trials targeting different tissues (Dunbar et al. 2018).

The remaining 5 clinical trials correspond to gene-editing
approaches. Four of them aim to disrupt the erythroid enhanc-
er of the BCL11a gene, which induces the expression of γ-
globin while decreasing the β-globin (Psatha et al. 2018). Of
these, two are based on the introduction of ZFN mRNA, and
the other two employ non-viral delivery of CRISPR-Cas9.

Finally, there is just one clinical trial aiming to correct the
β-thalassemia mutations in the β-globin gene, targeting in-
duced haematopoietic stem cells (iHSC) instead of HSPC.

Working with iHSC allows clonal selection or population en-
richment of the edited cells, resulting in a more controlled and
standardised product. Nevertheless, iHSC transplantation is
not approved as a therapy yet due to concerns about its func-
tionality and safety (Tan et al. 2018). Hence, before gene
therapies in iHSC become a reality, it remains necessary to
test and further characterise these engineered cells for human
transplantation.

Eye diseases

Gene therapies for eye diseases have been widely explored
and represent promising alternatives for several conditions,
such as Leber’s congenital amaurosis (LCA), Leber’s heredi-
tary optic neuropathy (LHON), achromatopsia and
choroideremia, among others.

Viral vectors are currently the chosen mean to deliver func-
tional copies of genes. Already in 2008, three studies
disclosed the successful treatment of LCA (Bainbridge et al.
2008; Cideciyan et al. 2008; Maguire et al. 2008). In all of

Table 4 Examples of gene therapy clinical trials for inherited haematological, ophthalmological and metabolic diseases

Condition Target Clinical trial ID Method Delivery

Blood B-thalassemia BCL11a NCT03432364 ZFN Ex vivo Non-viral

NCT03653247 Ex vivo N.R.

NCT03655678 CRISPR-Cas9 Ex vivo Non-viral

NCT03745287 Ex vivo Non-viral

β-globin NCT03728322 CRISPR-Cas9 iHSC N.R.

βA-T87Q-globin NCT01745120 (Zynteglo) Gene suppl. Ex vivo LV

Eye LCA RPE65 NCT00643747 Gene suppl. In vivo AAV2

NCT00481546 In vivo AAV2

NCT00821340 In vivo AAV2

NCT00999609 (Luxturna) In vivo AAV2

NCT03872479 CRISPR-Cas9 In vivo AAV5

LHON ND4 NCT03428178 Gene suppl In vivo AAV2

NCT03153293 In vivo AAV2

NCT02064569 In vivo AAV2

NCT02161380 In vivo AAV2

Achromatopsia CNGA3 NCT02935517 Gene suppl In vivo AAV2

CNGA3/CNGB3 NCT03278873 Gene suppl In vivo AAV2/8

Choroideremia REP1 NCT02341807 Gene suppl In vivo AAV2

NCT03507686 In vivo AAV2

Metabolism PKD RPK (Red cell PK) NCT04105166 Gene suppl Ex vivo LV

Haemophilia F8 NCT03061201 Gene suppl In vivo AAV2/6

ADA-SCID ADA NCT01380990 (Strimvelis) Gene suppl Ex vivo LV

Fabry disease GLA NCT04046224 Gene suppl In vivo AAV2/6

MPS type I IDUA NCT02702115 ZFN + gene suppl In vivo AAV2/6

NCT03488394 Gene suppl Ex vivo LV

MPS type II IDS NCT03041324 ZFN + gene suppl In vivo AAV2/6

N.R. Not reported. Bold: EMA-approved products
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them, the patients received a subretinal injection of AAVs
carrying a functional copy of the RPE65 gene. Regarding
LHON, for which the current treatments involve oestrogen
replacement (Fantini et al. 2019; Giordano et al. 2011;
Giordano et al. 2014) or administration of idebenone
(Mashima et al. 2000), the gene therapies in clinical trials
aim to become a sustained solution for the condition. For
conditions for which the existing treatment only delays the
progression of the symptoms, genetic approaches could offer
to stop or reverse it. Such are the cases of choroideremia and
congenital achromatopsia, currently aided with diet manage-
ment (Kalatzis et al. 2013; Patrício et al. 2018) and eyeborg
(Rochi 2009), respectively.

Several genetic therapies in clinical trials have yielded
promising results. Yet, it was not until late 2017 that the
Food and Drug Adminis t ra t ion (FDA) approved
LUXTURNA®, the first in vivo gene therapy product for
RPE65-caused LCA (FDA 2017). More recently, Editas
Medicine and Allergan started the first clinical trial for an
in vivo CRISPR-based gene therapy in humans
(NCT03872479; Editas Medicine, Allergan 2019, 2020).
The study tests the effects of AGN-151587 (EDIT-101) in
CEP290 gene, administering a single dose via subretinal in-
jection. The aim is to deliver gene-editing tools directly into
the affected cells in patients with LCA10, where they would
correct the disease-causing mutation.

Inborn errors of metabolism

Inherited metabolic diseases are generally caused by ge-
netic mutations affecting enzyme expression or function,
resulting in metabolism impairment (MeSH 2020;
MedlinePlus n.d.). The diverse pathogenesis and the
wide spectrum of phenotypes demand an equally wide,
albeit specific, range of treatments.

Traditionally, some of these diseases were approachedwith
dietary modulation (restriction or supplementation). However,
many others remained untreatable until enzyme replacement,
organ transplantation and gene therapy became common,
around 20 years ago (Fukao and Nakamura 2019).
Currently, several genetic therapies in clinical trial target met-
abolic diseases, including Pyruvate Kinase Deficiency (PKD),
h a emoph i l i a , ADA-SC ID , F a b r y d i s e a s e a n d
mucopolysaccharidosis (MPS) type I and II (also known as
Hunter syndrome). Although all of them employ viral vectors
to deliver functional copies of the patients’ dysfunctional
genes, Sangamo’s products (NCT02702115, NCT03041324)
present the first in vivo gene-editing approaches.
Recombinant AAV2/6 introduce ZFNs and a correct copy of
α-L-iduronidase or iduronate 2-sulfatase for MPS I or II, re-
spectively. These genes are placed under the control of the
highly active albumin promoter in the patients’ own hepato-
cytes (Laoharawee et al. 2018). Hence, they do not require a

massive infection efficiency, while they provide a permanent,
tissue-specific expression of the desired gene.

Another trial by the same company adopts a similar
workflow for haemophilia A. The SB-525 vector encodes
the cDNA for the β-domain of the human clotting factor
VIII (hF8) under a liver-specific promoter. The aim is to es-
tablish a stable and long-term secretion of F8 after a single
administration of the AAV2/6 product. Thus, this gene thera-
py protects the patients against bleeding while freeing them
from recurrent F8 replacement treatments.

Regulation and ethics

Each member state of the EU manages the authorisation of
clinical trials, but EMA is the entity that ensures that the qual-
ity, safety and ethical aspects of the therapy comply with the
EU legislation. The assessment of therapies’ safety and effi-
cacy requires an understanding in molecular and cell biology,
and the classification based on the mechanism of actions is not
always easy. Within the EMA, the regulation of genetic med-
ical products is administered by the Committee for Advanced
Therapies (CAT), under the classification of advanced therapy
medicinal products (ATMP)(European Medicines Agency
(n.d.)).

Gene therapy shares many general concerns with other tra-
ditional therapies: the risk-benefit ratio must be acceptable,
and the same patient-rights issues are valid (National
Academy of Science 2017). However, gene therapy does pres-
ent some specific concerns. One of the most debated points is
the potential of germline transmission. The Oviedo
Convention by the Council of Europe prohibits inherited
changes (Council of Europe 1997). Additionally, the scientific
consensus is that we do not yet have enough experience in
somatic therapies and techniques to safely consider germline
therapies (National Academy of Science 2017). Nevertheless,
entities like the Nuffield Council on Bioethics have argued
that it would be unethical not to treat if a treatment is available
(Nuffield Council on Bioethics 2018). The germline transmis-
sion of a healthy copy of a gene offers potentially stopping the
further inheritance of pathogenic mutations altogether. In this
regard, the fast development of gene therapies and the im-
provement of their accuracy and safety may change the regu-
latory situation.

Furthermore, novel economic and social concerns emerged
with gene therapies and other new treatments for rare diseases.
Occasionally, the small number of patients turns impossible to
reach the demands of the conventional pharmacological drug
development, which affects the commercial interest of the
industry. Moreover, some diseases are only approachable with
genetic treatments, giving rise to financial toxicity (Zafar and
Abernethy 2013). This means that the few available manufac-
turers can price their products as high as possible. The

272 J Community Genet (2021) 12:267–276



argument of commercial partners often relies on the substan-
tial price-outcome differences between their product and the
existing therapies (Green 2019). In Europe, the centralised
health care systems balance cost-effectiveness analyses often
in favour of the therapy, as the long-term health benefits of the
low number of patients justifies the investment. Yet, some
years ago, financial toxicity influenced greatly Glybera’s mar-
ket authorization withdrawal (European Medicines Agency
2017) and placed the pricing of novel therapies as an issue
for discussion. Nowadays, the prices of the EMA-approved
gene therapy products (Table 3) range from €28 thousand/year
(Imlygic) to €1.575 million (Zynteglo).

Concluding remarks

The emerging interest for gene therapy began in the 1990s,
and, in hindsight, the techniques and regulation were insuffi-
cient at the time, leading to some serious adverse effects and
even deaths. In the last years, these setbacks have been scarce,
if any, which has brought back the enthusiasm and increased
the funding. The optimism is encouraged by gene-editing and
other novel or improved techniques, the number of which
seems to increase every week (Mitha 2019). While gene-
editing approaches remain in early phases, the follow-up times
in many gene therapy trials have exceeded the 10 years with-
out major undesired effects reported to ClinicalTrials.

Gene therapies may provide possible curative treatments
for genetic diseases. However, further understanding of each
disease’s cellular and genetic pathology is needed. Technical
improvements are also required (specifically to deliver prod-
ucts to non-dividing cells), as well as making them specific to
increase safety. Developing new treatments always bears
risks, but if the potential benefit proves significant, some risks
are acceptable. The regulatory questions seem solvable and
have not hindered critical development. The question of
germline modifications has made many headlines but seems
so far to be quite marginal in practical terms. However, it is
still an important unresolved issue but outside the scope of this
review.

Additional challenges remain unmet. In 2017, the
Massachusetts Institute of Technology predicted that by
2022, the FDA would have approved almost 40 new gene
therapies (MIT NEWDIGS Initiative 2017). Europe could ex-
pect a similar situation. This may require changes in existing
social and economic structures if we aim to include these
advance therapies as regular medical practices. Scientists, doc-
tors and governments ought to focus on informing and pre-
paring the society to assimilate the arising novel treatments.
Health care systems need the adequate hospital infrastructure
and educated professionals to ensure competence and
applicability.

While scientific research explores treatments for a wide
spectrum of rare diseases, financial toxicity still threatens ac-
cessibility and availability. Thus, the new therapies must re-
sult cost-efficient enough to succeed and remain in the market.
Moreover, in countries with limited health care support, these
expenses become an additional burden for economically vul-
nerable patients. Assuring accessibility challenges societies
and the scientific community aiming to ensure the equal treat-
ment of the citizens.

In summary, advances in scientific research and gene ther-
apy clinical trials promise great advantages in the long-term
treatment of diseases, including rare genetic conditions. The
field progresses rapidly, and varied approaches are explored
and/or already in clinical trials. In the foreseeable future, so-
cieties and international agencies may need to re-evaluate and
update the current regulations in accordance with therapy de-
velopment. Further improvements and adaptations require
collaborative efforts of multidisciplinary teams (including
governments) to make the breakthroughs accessible for
everyone.
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