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Accumulated preclinical data are increasingly being re-used to build and validate predictive 

models generated by Artificial Intelligence (AI)[1] algorithms. Such in silico models have a 

range of applications in biomedicine and healthcare, including drug discovery[2] and 

precision oncology[3]. Here, we focus on predictive modelling of phenotypic activities of 

molecules in non-molecular targets, e.g., in cancer cell lines or bacterial cultures, serving as 

preclinical disease models. Machine learning (ML), including deep learning (DL), is by far 

the most commonly employed AI subarea to tackle this important healthcare problem. 

This Special Issue (SI) covers various aspects of cancer pharmaco-omic modeling, such as 

the diverse ways in which preclinical datasets to re-use for ML are generated[4], how 

molecules are characterized numerically to enable the use of ML algorithms[5], which ML-

based drug response prediction models have been built to date[6], in which scenarios DL-

based models tend to work better than models built with less recent ML algorithms[7], 



which datasets lead to the most predictive ML models[8], what types of modeling challenges 

are caused by the diversity of cell lines[9] or how software implementing preclinical models 

can facilitate their application to patients[10]. 

More concretely, Piyawajanusorn et al.[4] provide a primer on understanding preclinical 

data for cancer pharmaco-omic modeling (both drug response and drug combination 

synergy). The paper covers the following topics: experimental models of cancer tumors 

(tumor samples, in vitro tumor models, in vivo tumor models), multi-omics tumor profiles 

(genomic, transcriptomic, epigenomic, proteomic, and bulk versus single-cell profiling), 

drug-sensitivity profiling of tumors (in vitro, ex vivo and in vivo) and primary data resources 

(for each resource, the number of drugs, cell lines and cancer types, the employed assay and 

the first ML-modelling studies in those datasets). 

The application of ML to drug response prediction requires a way to characterize molecules 

numerically. There is a range of such molecular representations and An et al. [5] presents an 

entry-level review covering those most widely used. More precisely, this review comprises 

various linear notations (InChI, SMILES), molecular fingerprints (structural keys, circular 

fingerprints), graph notations (MPNN, GCN, AGBT) and related topics (pre-training, multi-

task learning). For each representation, its generation mechanism, implementation aspects 

and application examples are outlined. 

Firoozbakht et al.[6] provides a systematic review of monotherapeutic drug response 

prediction built from preclinical molecular profiles and responses to various drugs. 

Summarized here are over 70 ML methods as well as commonly used data sources for 

training, input and output data types, and evaluation methods. Introductory material to both 

ML principles as well as the types of biological data used for model generation is provided 

for those new to the subject. 

Complex DL methods are increasingly being used in the prediction of drug responses in 

cancer cell lines. In addition to reviewing the state-of-the-art in the field, Chen and Zhang[7] 

compared the performance of recent DL methods, and pointed out a number of limitations in 

their current performance, especially in a blind test scenario where a non-DL method 

worked substantially better. This indicates potential over-fitting of DL to limited training 

data, which has also been observed when modelling clinical data[11,12]. The authors also 



recommend several improvements that complement those suggested in the other recent 

reviews in the field[13,14].   

Xia et al.[8] focus on the generalizability of drug response prediction models for cancer cell 

lines. They observe that cross-validations tend to overestimate model performance and are 

thus inadequate for practical scenarios that involve more than one dataset. They review the 

factors that contribute to the differences in feature and response data, highlighting the effects 

of assay variability and drug diversity in raising prediction upper bounds. Through ML 

model comparison and simulation experiments, they also provide some general 

recommendations for future drug screening experiments. 

Sharifi-Noghabi et al.[9] explore the different aspects of the development of univariate and 

multivariate predictors of monotherapy response in vitro. They found that the use of specific 

datasets led to more generalizable predictors, and that generalizability must be computed on 

fully independent datasets to test the models’ capacity to overcome the inevitable biases 

originating from different experimental protocols. The authors also found that the diversity 

of cell lines in these datasets also presented its own challenges, as lymphoid cell lines grown 

in suspension exhibited higher drug response across on average and their inclusion during 

model training may lead to suboptimal models.  

Maeser et al.[10] present a new R package, oncoPredict, to facilitate drug discovery from 

drug response predictions. This package unites three separate methodologies to (1) predict 

clinical drug response in patients; (2) associate the predicted drug response with clinical 

features for in vivo drug biomarker discovery; and (3) correct for general levels of drug 

sensitivity to enable drug-specific biomarker discovery. The authors show how the package 

can be applied to various in vitro and in vivo datasets to enable the generation of 

translational research hypotheses.  

In addition to these monotherapy (single-drug) response prediction articles, the SI also 

extents to drug combination synergy prediction[15] by looking at how to account for 

experimental noise in drug combination synergy estimation[16], and how single-cell data 

can be exploited to identify patient-specific drug combinations that selectively co-inhibit 

only malignant cell populations[17]. 

Rønneberg et al.[16] went beyond monotherapies to develop a novel approach to estimate 

the effects of the combinations of drugs on cancer cell viability by accounting for the 

https://paperpile.com/c/MleJyM/nljE


inevitable experimental noise in drug screening data[18,19]. The authors developed the 

open-source bayesynergy package which implements a probabilistic model where the drug 

combination surface is modelled using a Bayesian approach. The bayesynergy package is 

likely to enable future research as the compendium of drug combination datasets quickly 

grows over time[20,21]. 

To address the intra- and inter-tumoral heterogeneity when identifying combinatorial 

treatment regimens for cancer patients, He et al.[17] demonstrated in an ovarian cancer case 

study how a ML-based platform enables prediction of drug combinations that selectively co-

inhibit only malignant cell populations in individual patient samples. The platform makes 

use of data from single-cell imaging drug response assay, combined with genome-wide 

transcriptomic and genetic profiles, and it is widely applicable also to other cancer types to 

predict cancer-selective and patient-specific combinations. 

Last but not least, the SI includes a study presenting a new antimicrobial pharmaco-omic 

dataset and its ML models[22]. Antimicrobial resistance (AMR) is a global health threat 

impacting millions of people each year.  Understanding the transmission of AMR, and 

rapidly predicting resistance in pathogens, is important for reducing disease burden and 

improving patient outcomes. In this context, VanOeffelen et. al.[22] describe a curated 

collection of over 60,000 bacterial genomes paired with laboratory-derived antimicrobial 

susceptibility test data for use in both traditional bioinformatics and ML studies.  To 

demonstrate the utility of the collection, they build a set of ML models for classifying 

susceptible and resistant phenotypes as well as predicting antimicrobial minimum inhibitory 

concentrations. 

We hope this SI will provide a concrete and practical guidance to both experienced 

modellers and newcomers about the data and methods being used and their impact in this 

research area. We would like to thank the journal staff, reviewers and authors for their work 

to make this SI possible. 
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