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BOUNDEDNESS OF TOEPLITZ OPERATORS IN
BERGMAN-TYPE SPACES

JARI TASKINEN AND JANI A. VIRTANEN

1. Introduction: the spaces and operators

The focus of this article is on recent results on the boundedness of Toeplitz op-
erators on weighted Bergman spaces of holomorphic functions, mainly on the open
unit disc D of the complex plane C, although some of the results are also formulated
on the unit ball BN of CN , N = 2, 3, . . . . The related question on the compactness
is only considered when it can be dealt with parallel to boundedness, and certain
more special recent results for compactness will remain out of this review.

We will concentrate on two circles of ideas. First, we deal with Toeplitz operators
with oscillating symbols and weak Carleson-type sufficient conditions for bound-
edness. The starting point of this direction of research is the article [30]. The
second approach applies to operators with radial symbols, and it is based on the
results on the structure of weighted Bergman spaces which were pioneered in the
works of W.Lusky, [17], [18], [19] and adapted to the study of Toeplitz operators
recently in the papers [4], [5]. This led to a characterization of the boundedness and
compactness of Toeplitz operators in weighted H∞-spaces.

Let us present the basic notation and definitions. The notation concerning the
spaces on the unit ball BN will only be needed and thus given at the end of Section
2. The normalized area measure on D is denoted by dA = π−1rdrdθ, where r and θ
are the polar coordinates of z = reiθ ∈ C. Given 1 ≤ p <∞ and the real parameter
α > −1 we define the weighted area measure by dAα(z) = (1 + α)(1 − r2)αdA(z)
and set

Lpα(D) =
{
g : D→ C measurable : ‖g‖pp,α :=

∫
D

|g|pdAα <∞
}

and

Apα(D) = {g ∈ Lpv(D) : g holomorphic };
in the case α = 0 these spaces are denoted by Lp(D) and Ap(D), respectively. Here,
v(z) = (1− |z|2)α are called standard weights.

We will also consider more general weighted Bergman spaces and their analogue,
weighted Hardy space H∞v corresponding to p = ∞. In general, by a weight v we
mean a continuous function D →]0,∞[ which is radial, vanishing on the bound-
ary and decreasing with the radius, i.e. there holds v(z) = v(|z|) for all z ∈ D,
lim|z|→1 v(z) = 0 and v(r) ≥ v(s) if 1 > s > r > 0. We denote vdA = dAv and, for
1 ≤ p <∞,

Lpv(D) =
{
g : D→ C measurable : ‖g‖pp,v :=

∫
D

|g|pdAv <∞
}

and

Apv(D) = {g ∈ Lpv(D) : g holomorphic },
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and

h∞v (D) = {g : D→ C : g harmonic, ‖g‖v := sup
z∈D
|g(z)|v(|z|) <∞}

and
H∞v (D) = {g ∈ h∞v : g holomorphic };

we use the standard notation H∞(D) = (H∞(D), ‖ · ‖∞) in the non-weighted case.
In all of the above cases, the subspaces of holomorphic and harmonic functions are
closed subspaces of the their superspaces.

We write N = {1, 2, 3, . . .} and N0 = N ∪ {0}.
Given α, the Bergman projection Pα is the orthogonal projection from the Hilbert

space L2
α(D) onto the closed subspace A2

α(D). Given a function a ∈ L1(D), we also
denote by Ma the pointwise multiplier Ma : f 7→ af , where f : D → C is a
measurable function (which is usually holomorphic or harmonic in the sequel). If
1 ≤ p < ∞, then a Toeplitz operator Ta on Apα(D), with symbol a, is in principle
defined as the composition

Taf = PαMaf,(1.1)

but the assumptions made so far do not always suffice to guarantee that (1.1) makes
sense, since Ma might map f outside L2

α(D). In the case a is a bounded function,
there is no problem with the definition, since Pα can be written with the help of the
Bergman kernel as the intergal operator

Pαf(z) =

∫
D

f(w)

(1− zw)2+α
dAα(w) , hence PαMaf =

∫
D

a(w)f(w)

(1− zw)2+α
dAα(w),(1.2)

and for every z ∈ D, these integrals converge for all f ∈ L1
α(D). Moreover, it is

known that Pα is a bounded operator in the space Lpα(D), when 1 < p <∞, which
yields the boundedness of Ta : Apα(D)→ Apα(D) for bounded symbols.

It is not difficult to construct unbounded symbols a which still induce bounded
Toeplitz operators, but the characterization of symbols a ∈ L1(D) such that Ta :
Apα(D) → Apα(D) is well-defined and bounded is a well-known open problem. Let
us mention some partial results on it. The characterization of boundedness and
compactness of Toeplitz operators with nonnegative symbols in terms of Carleson
type measures first appeared in [24]

D.Luecking [15] proved that a Toeplitz operator Ta with a nonnegative symbol
a ∈ L1(D) is bounded in A2(D), if and only if the average

|B(z, r)|−1

∫
B(z,r)

a(w) dA(w)

is a bounded function of z. Here B(z, r) denotes a disk in the Bergman metric,
with center z and some fixed radius r > 0. Toeplitz operators with radial symbols
in the space A2

α(D) and analogues on higher dimensional domains were thoroughly
considered in [9]: in this case the operator is unitarily equivalent with a sequence
space multiplier, see also (5.1) below, and thus the boundedness properties can be
determined. A partial generalization to the case p 6= 2 was established in [21]. The
Berezin transform

(1.3) B(f)(z) = (1− |z|2)2

∫
D

f(w)

|1− zw̄|4
dA(w), z ∈ D,
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is a useful tool for the theory of Toeplitz operators, although it will not be used in
this article. N.Zorboska proved in [38] for symbols a of bounded mean oscillation
that the Toeplitz operator Ta : A2(D) → A2(D) is bounded if and only if B(a) is
bounded. The results of [15] and [38] generalize to other Ap(D)-spaces, 1 < p <∞,
as well, see e.g. [30]. Here is a non-exhaustive list of other works dealing with the
boundedness and compactness of Toeplitz operators in Bergman-type spaces: [8],
[9], [10], ,[11], [12], [15], [16], [21], [22], [25], [27], [28], [29], [30], [34], [35], [39], [36],
[38]. The monograph [37] is a standard reference for the topic, and we also mention
the survey article [31].

In this article we will review in Section 2 the results of [30], [33], [11]. These consist
of sufficient, weak Carleson-type conditions for the boundedness and compactness
of Toeplitz operators in reflexive Bergman spaces with standard weights, both on
the unit disc and the unit ball. Sections 3–6 are mainly based on the recent works
[4], [5], which deal with operators on H∞v (D)-spaces with quite general classes of
weights. Theorem 4.1 of Section 4 states that there is a bounded harmonic symbol
f for which Tf is unbounded in H∞v (D) for any radial weight v satisfying our general
assumptions. The main result of Section 5, Theorem 5.3 contains a necessary and
sufficient condition for the boundedness of Tf in H∞v (D), as well as the corresponding
result for the compactness. These conditions are slightly abstract, and thus in
Section 6 we derive some more concrete, easily formulated sufficient conditions based
on the results of Section 5.

We conclude this section by a remark on the definition of Toeplitz operators as
an improper integral. Here, we fix α > −1 and assume the symbol a is radial.
Formula (1.4) will be considered in detail in Section 2 even for more general, non-
radial symbols. The proof of Proposition 1.1 is taken here from [14], although some
versions of it have probably been known for specialists for a long time.

Proposition 1.1. Let a be a radial symbol, i.e. a(z) = a(|z|) for almost all z ∈ D,
belonging to L1

α(D), α > −1, and let g(z) =
∑∞

n=0 gnz
n be a holomorphic function

on D. Then, the defining integral (1.2) of Tag exists in the improper sense as the
limit

(1.4) Tag(z) = lim
ρ→1

∫
|w|<ρ

a(w)g(w)

(1− zw)2+α
dAα(w),

convergent for every z ∈ D. Moreover,

(1.5) Tag =
∞∑
n=0

βa,α(1, n)gn
(α + 1)B(n+ 1, α + 1)

zn

and in particular the power series on the right converges for all z ∈ D.

Here and in the next we denote by B and Γ Euler’s beta- and gamma-functions,

B(n+ 1, c) =
n!Γ(c)

Γ(n+ 1 + c)
, c > 0,

and for 0 < ρ ≤ 1

βa,α(ρ, n) = (α + 1)

√
ρ∫

0

tn(1− t)αa(
√
t)dt,(1.6)
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where the integral converges by the assumptions that a is radial and belongs to
L1
α(D).

Proof of Theorem 1.1. We start by the remark that for all m ∈ N0, the integral∫
D

g(w)wma(w)dAα(w)

exists in the improper sense for every holomorphic g on the disc D. Namely, the
rotational symmetry of a and the usual orthogonality relations of trigonometric
polynomials yield for all m ∈ N0∫

|w|<ρ

g(w)wma(w)dAα(w) = 2(α + 1)gm

ρ∫
0

r2m+1a(r)(1− r2)αdr.(1.7)

Clearly, the limit exists, when ρ → 1. For every 0 < ρ < 1, z ∈ D, we obtain by
(1.7) ∫

|w|<ρ

a(w)g(w)

(1− zw)2+α
dAα(w)

=

∫
|w|<ρ

g(w)

(
∞∑
n=0

(zw)n

(α + 1)B(n+ 1, α + 1)

)
a(w)dAα(w)

=
∞∑
n=0

βa,α(ρ, n)gn
(α + 1)B(n+ 1, α + 1)

zn.(1.8)

Let L ∈ N be such that L ≥ |α|+ 1. Then,

(1.9) B(n+ 1, α + 1) ≥ n!Γ(α + 1)

(n+ L)!
≥ CLn

−L

for some constant CL > 0. We also have

(1.10) βa,α(ρ, n) ≤ βa,α(1, n) = 2(α + 1)

1∫
0

t2n(1− t2)αa(t)dt ≤ Cα

for another constant Cα > 0, for all ρ and n, since a ∈ L1
α(D). Moreover, since g is

a holomorphic function on D, we have lim supn→∞ |gn|
1
n ≤ 1, hence,

lim sup
n→∞

∣∣∣∣ βa,α(1, n)gn
(α + 1)B(n+ 1, α + 1)

∣∣∣∣ 1n ≤ lim sup
n→∞

(
CLCαn

L
) 1
n · lim sup

n→∞
|gn|

1
n ≤ 1.

The same estimate holds, independently of ρ, when βa,α(1, n) is replaced by β1,α(ρ, n).
Hence, by the elementary theory of power series, (1.5), (1.8) converge uniformly on
compact subsets of the disc and define holomorphic functions. Moreover, we have
βa,α(ρ, n) → βa,α(1, n) for every n as ρ → 1, hence, considering truncated series
(1.5), (1.8) shows that the limit on the right of (1.4) exists for every z ∈ D and
coincides with (1.5). �
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2. Toeplitz operators with oscillating symbols

If an unbounded, measurable function a is strongly oscillating, it may give rise
to a Toeplitz operator via the improper integral (1.4), and the operator may even
be bounded with respect to a Bergman norm. A sufficient condition for oscillating
symbols to induce a bounded Ta was presented in the paper [30]. More precisely, in
the reference it was shown that Ta is bounded under an averaging condition for the
symbol itself rather than for its modulus. The result needs a generalized definition of
Toeplitz operators, which, however, eventually coincides with the improper integral.
The result also extends to little Hankel operators.

We will next review the mentioned approach. It is based on a decomposition of the
disc into an infinite family of (Dn)∞n=1 subdomains, which have essentially constant
area with respect to the hyperbolic geometry. The geometry of the subdomains needs
to specified carefully, since an explicit integration by parts -argument is a crucial
step in the argument. Here, the sets Dn are rectangles in the polar coordinates, but
they could also be chosen differently, see the discussion below.

Let us consider a symbol a : D→ C, which is at least locally Lebesgue-integrable
on D. We also fix the parameter α > −1.

Definition 2.1. Denote by D the family of the sets D := D(r, θ) , where

D = {ρeiφ | r ≤ ρ ≤ 1− 1

2
(1− r) , θ ≤ φ ≤ θ + π(1− r)}(2.1)

for all 0 < r < 1, θ ∈ [0, 2π]. Let |D| :=
∫
D
dA and, for w = ρeiφ ∈ D(r, θ), let

âD(w) :=
1

|D|

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%.(2.2)

We will study symbols a for which there exists a constant C > 0 such that

|âD(w)| ≤ C(2.3)

for all D ∈ D and all w ∈ D.

The sets D
(
1− 2−m+1, 2π(k − 1)2−m

)
∈ D, where m ∈ N, k = 1, . . . , 2−m, form a

decomposition of the disc D. Let us re-index them somehow into a family (Dn)∞n=1

with

Dn = { z = reiθ | rn < r ≤ r′n, θn < θ ≤ θ′n}(2.4)

where, for some m and k,

rn = 1− 2−m+1, r′n = 1− 2−m, θn = π(k − 1)2−m+1, θ′n = πk2−m+1.(2.5)

Given f ∈ Apα(D), we write for all n = n(m, k)

Fnf(z) =

∫
Dn

a(w)f(w)

(1− zw̄)2+α
dAα(w) , z ∈ D,(2.6)

so that Fn can actually be considered as a conventional, bounded Toeplitz operator
on Apα(D).

The following theorem, in the case of α = 0, is the main result Theorem 2.3 of
[30]. The weighted case was included in [11].
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Theorem 2.2. Let 1 < p < ∞ and assume that the locally integrable function a
satisfies the condition (2.3). Given f ∈ Apα(D), the series

∑∞
n=1 Fnf(z) converges

pointwise, absolutely for almost all z ∈ D, and the generalized Toeplitz operator
Ta : Ap → Ap, defined by

Taf(z) =
∞∑
n=1

Fnf(z)(2.7)

is bounded for all 1 < p < ∞, and there is a constant Cα, independent of a, such
that

‖Ta‖ ≤ Cα sup
D∈D,w∈D

|âD(w)|.(2.8)

The main step of the proof consists of writing the integral (2.6) in polar coordi-
nates and performing a double integration by parts (once with respect to both coor-
dinates) such that there appear integrals of a and derivatives of f(w)(1−|w|2)α(1−
zw̄)2+α. The former can be estimated by using the assumption (2.3) and the latter
by using bounds for the maximal Bergman projection and well known arguments
and estimates related with hyperbolic geometry. One obtains a representation for
the integral (1.2) as a pointwise convergent sum of the integrals (2.6) as in (2.7).
We refer to [30] for the details. Improved versions of the proof appear in [33] and
[11], and they yield our next theorem, although we do not repeat the proof here.
We remark that every Toeplitz operator

Taρf(z) =

∫
|w|<ρ

a(w)f(w)

(1− zw̄)2+α
dAα(w)(2.9)

is bounded Apα(D) → Apα(D), since the support of the symbol is contained in a
compact subset of D.

Theorem 2.3. Let 1 < p < ∞ and 1/p + 1/q = 1, and let the symbol a be as in
Theorem 2.2. Then, the generalized Toeplitz operator Ta : Apα(D)→ Apα(D), defined
in (2.7), can be written as

Taf = lim
ρ→1

Taρf ,(2.10)

for all f ∈ Apα(D). The limit converges with respect to the strong operator topology.
Moreover, the transposed operator T ∗a : Aqα(D)→ Aqα(D) (with respect to the standard
complex dual pairing) satisfies

T ∗a f = lim
ρ→1

Tāρf(2.11)

for f ∈ Aqα(D) and for almost all z ∈ D, and the limit also converges in the strong
operator topology.

The limits in (2.10), (2.11) cannot in general converge in the operator norm, since
the operators Taρ are compact. We mention that, when α = 0, the above results are
formulated in [33] also for little Hankel operators

haf(z) =

∫
D

a(w)f(w)

(1− z̄w)2
dA(w) , z ∈ D.(2.12)
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Here, one also defines using the same decomposition of the unit disc as above

Hnf(z) =

∫
Dn

a(w)f(w)

(1− z̄w)2
dA(w) , z ∈ D,(2.13)

and defines the generalized little Hankel operator haf(z) as the sum
∑∞

n=1Hnf(z).
Then, if (2.3) holds for the symbol a, one obtains that ha : Ap(D) → Lp(D) is
bounded for all 1 < p <∞, the operator norm of ha has the same bound as in (2.8),
and finally, the operator ha and its transpose have representations as improper
integrals similar to those in (2.10), (2.11).

The definition (2.7) of a generalized Toeplitz operator depends on the geometry
of the special decomposition (2.4) of the unit disc, but Theorem 2.3 largely removes
this unsatisfacatory feature, since the improper integral in (2.10) is quite a natural
one. We remark that in the literature there are versions of the result, which use
different subdomains of the unit disc. In [39] the condition (2.3) is replaced by a
similar one on Carleson squares

Sαh (eiθ) =
{
ρeiφ : 1− h < ρ < 1, |φ− θ| < παh

}
where 0 < h < 1, 0 ≤ θ ≤ 2π, 0 < α ≤ 1. The authors give a boundedness result for
the Toeplitz operators and they also show that their sufficient condition is equivalent
to that in Theorem 2.2. Finally, they also prove the important observation that the
sufficient condition (2.3) is not necessary to the boundedness of Ta : Apα(D)→ Apα(D).

Another variant appears in [22], [23] where Toeplitz operators on Bergman spaces
of simply connected planar domains are considered. In such domains any geometric
symmetry is usually lost, and there does not exist a decomposition of the domain
which is as natural as the one for the disc, see (2.4). However, the author uses
a Whitney decomposition with Euclidean rectangles and obtains results which are
analogous Theorem 2.2. The Whitney decomposition can of course be applied also
in the case of the disc, and it yields another sufficient condition for the boundedness
of the Toeplitz operator. We do not know, if the condition is equivalent to (2.3).

In [32], we generalized Theorem 2.2 to the setting of A1(D), while bounded
Toeplitz operators Tµ on A1

α(BN) were characterized in terms of the reproducing
kernels in [6] under additional conditions on the measure µ. We skip a detailed dis-
cussion on the boundedness problem in A1-spaces and only note that the previous
approach has not been worked out in the non-locally convex cases 0 < p < 1.

Theorems 2.2 and 2.3, first proven in [30] and [33], have been generalized to the
case of Toeplitz operators on the Bergman space of the unit ball of CN in the recent
work [11], but even presenting the results leads to non-trivial technical challenges.
We do not directly need the Euclidean space R3 here, but since that dimension is
still within the capabilities of the human imagination, we ask the reader to think
about a radially symmetric decomposition of the unit ball of R3: that is indeed a
challenge, since decomposing the ball surface into finitely many identical squares in
spherical coordinates (corresponding to intervals [θn, θ

′
n] in (2.4)–(2.5)) is impossible.

For example, starting to fill the ball surface from the equator with spherical squares
with one side parallel to the meridians, one runs into difficulties at latest when trying
to fill the north and south caps.

The results of [11] are formulated for measures with standard weights and thus the
proofs contain new information even in the case N = 1, since the earlier papers only
contained the unweighted case. The basic idea of the proof is the same as in in [30]
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and [33], but new non-trivial technical considerations are nevertheless needed. Let
us review the approach of [11] superficially without going into all technical details.
For α > −1, we define the weighted Lebesgue measure dVα on the unit ball BN ,
N ∈ N, by dVα(z) = cα(1−|z|2)αdV (z), where dV is the unweighted N -dimensional
(real) Lebesgue measure and cα is a normalizing constant such that

∫
BN
dVα = 1.

For 1 ≤ p <∞, we denote by Lpα(BN) the Lp-space with respect to the measure dVα
and by Apα(BN) the weighted Bergman space of all holomorphic functions in Lpα(BN).
We also denote by Pα the orthogonal projection from L2

α(BN) onto A2
α(BN). It is

known to be a bounded operator Lpα(BN) onto Apα(BN) for all 1 < p <∞.
In the following it is useful to work with real variables by identifying CN with Rn,

n = 2N , so that BN equals Bn in real coordinates. Accordingly, any point x ∈ Bn
with modulus |x| = r can be written as

x = (r cos θ2, r sin θ2 cos θ3, r sin θ2 sin θ3 cos θ4, · · · ,
r sin θ2 · · · sin θn−1 cos θn, r sin θ2 · · · sin θn−1 sin θn)

in the spherical coordinates

ξ = (r, θ2, · · · , θn) ∈ [0, 1[×
n−1∏
j=2

[0, π[×[0, 2π[ =: Qn,

and these determine the coordinate transform σ : Qn → Bn by x = σ(ξ). As in
the case of the unit ball one needs to specify a suitable decomposition of the unit
ball Bn, but it turns out to be unexpectedly difficult in higher dimensions. We
skip the detailed choice of the sets at this point, referring to Section 1 of [11] and
only mention that it is possible to choose for every m ∈ N finitely many subsets
Bm,k, k = 1, . . . , Km, which are images under the mapping σ of certain rectangles
Qm,k ⊂ Qn in polar coordinates, such that

– the volume of every Bm,k is proportional to 2−nm,
– the union of all sets Bm,k when m ∈ N and k = 1, . . . , Km, covers Bn,
– there is a constant N ∈ N such that any point x ∈ Bn is contained in at most N
of the sets Bm,k.

We enumerate the sets Qm,k and Bm,k into sequences (Qj)
∞
j=1 and (Bj)

∞
j=1. Then,

we impose on Qn the partial ordering

x 6 y ⇐⇒ x1 ≤ y1, |π2 − x2| ≥ |π2 − y2|, . . . , |π2 − xn−1| ≥ |π2 − yn−1|,
xn ≤ yn.(2.14)

On each Qj we pick up the smallest and largest points x(j) =
(
x

(j)
1 , . . . , x

(j)
n

)
and

y(j) =
(
y

(j)
1 , . . . , y

(j)
n

)
with respect to the given ordering, hence, there holds Qj =

Q
(
x(j), y(j)

)
, where we denote, for a, b ∈ Qn with a 6 b,

Q(a, b) =
{
x ∈ Rn : a 6 x 6 b

}
, B(a, b) = σ

(
Q(a, b)

)
.(2.15)

Note that for x, y ∈ [0, 1)× [0, π
2
]n−2 × [0, 2π] the order relation ”6” coincides with

the usual partial order of points in Rn, which is then mirrored to all of Qn to account
for the construction of the sets Qj and Bj. In particular, the x(j) and y(j) are two
opposite corners of Qj and we have Bj = B(x(j), y(j)).
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Let a : BN → C be a locally integrable function and 1 < p <∞. The generalized
Toeplitz operator is defined by

(2.16) Taf(z) :=
∞∑
j=1

Ta(χjf)(z) =
∞∑
j=1

Pα(aχjf)(z),

if the series converges for almost every z ∈ BN and all f ∈ Apα(BN). Here χj
denotes the characteristic function of the set Bj. The boundedness of the Bergman
projection Pα in Lpα(BN) implies that Taf = Pα(af) whenever af ∈ Lpα(BN). In
particular, if a is bounded, then Ta is just the standard Toeplitz operator. As in
the one-dimensional case, a “weak” Carleson-type condition (2.18) implies that Ta
becomes a well-defined bounded linear operator and the definition coincides with
the integral definition, when it is interpreted as an improper integral. Accordingly,
given a locally integrable a : BN → C, we define for all j ∈ N

(2.17) âj := sup
y∈Bj

∣∣∣∣ ∫
B(x(j),y)

a dVα

∣∣∣∣
and denote |B|α =

∫
B
dVα for all measurable subsets B ⊂ BN .

Theorem 2.4. Let a : BN → C be locally integrable, 1 < p < ∞ and the family
(Bj)j∈N be as above. If there exists a constant Ca > 0 such that

(2.18) âj ≤ Ca|Bj|α
for all j ∈ N, then the series (2.16) converges almost everywhere and in Lpα(BN)
and defines a bounded linear operator Apα(BN) → Apα(BN) with ‖Ta‖ ≤ CαCa, for
some constant Cα > 0 independent of a.

Given the symbol a as above and 0 < ρ < 1, we define aρ(z) = a(z) for |z| ≤ ρ
and aρ(z) = 0 for ρ < |z| < 1; then every operator Taρ is bounded on Apα(BN),
since the supports of the symbols are compact subsets of the unit ball, or also by
the previous theorem. As in the one-dimensional case, the assumption (2.18) allows
the following representation of the Toeplitz operator, which does not depend on the
decomposition (Bj)j∈N.

Theorem 2.5. Let 1 < p < ∞ and 1/p + 1/q = 1, and suppose that a ∈ L1
loc

satisfies (2.18). Then

Taf = lim
ρ→1

Taρf

for all f ∈ Apα(BN) and the transpose operator T ∗a : Aqα(BN) → Aqα(BN) can be
expressed as

T ∗a f = lim
ρ→1

Taρf

for f ∈ Apα(BN).

The transpose is defined respect to the standard duality of Apα(BN)-spaces.
It would probably be possible and technically easier to formulate and prove a

result analogous to Theorem 2.4 by using a rectangular Whitney decomposition of
BN instead of the one described here, but there would then be the disadvantage
that the spherical symmetry would be lost and the condition for the boundedness
would depend on the particular choice of the decomposition. In particular, it might
be difficult or impossible to prove Theorem 2.5 with that approach.
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3. Toeplitz operators in H∞v -spaces: introduction

From now on we will deal with Toeplitz operators in spaces on D with quite
general weights v satisfying the basic assumptions of Section 1. A typical, important
example of weights considered in this section is the exponentially decreasing v(r) =
exp(−1/(1 − r)). Because of such examples we need again to pay attention to the
definition of Toeplitz operators in the spaces Apv(D) and H∞v (D), namely, there is
the problem that the Bergman projection may not be bounded. Actually we will
show that this is always the case for p = ∞ for any weight, see Theorem 4.1, but
even in the reflexive case there may be problems in this respect: in [7] it was shown
that for the above mentioned exponential weight v(z), the orthogonal projection
L2
v(D) → A2

v(D) is bounded in Lpv if and only if p = 2. Moreover, in [19] W.Lusky
proved that the mere existence of a bounded projection from L∞v (D) onto H∞v (D)
is equivalent to v satisfying a so called condition (B), see Definition 5.1, below. For
example, the exponential weight v satisfies (B), but there also exist natural weights
which do not, like v(z) = (1− log(1− |z|))−1 (see the statement after Theorem 1.2.
of [19] and Example 2.4. of the same paper for other examples).

Yet, even in the spaces H∞v (D) and Apv(D) with general weights, the definition of
the Toeplitz operator involves the orthogonal projection Pv : L2

v(D) → A2
v(D). It

will be useful to consider the integral kernel of Pv, the so called Bergman kernel. In
the next we follow well-known arguments, see e.g. [7]. We denote the inner product
in the Hilbert spaces L2

v(D) and A2
v(D) by 〈f, g〉 =

∫
D fg dAv. Then, the functions

ek(z) = Γ
−1/2
2k zk, where k ∈ N0 and

Γk = 2π

1∫
0

rk+1v(r)dr,(3.1)

form an orthonormal basis of A2
v(D). We remark that the numbers Γk satisfy for all

0 < % < 1 and some constant Cv,% > 0 the following lower bound

Γk ≥ Cv,%%
k(3.2)

for every k ∈ N0. This follows from (3.1) by considering the integral e.g. over the
interval [%, 1− (1− %)/2] only.

Convergence in the space Apv(D), 1 < p < ∞, with respect to the norm ‖ · ‖p,v
implies pointwise convergence (hence Apv(D) is a closed subspace of Lpv(D) ), and
thus the point evaluation functionals at any point of D are bounded functionals on
Apv(D). Consequently, we find the Bergman kernel by using the Riesz representation
theorem, which allows us to choose the family of functions Kz ∈ A2

v(D), z ∈ D, such
that

g(z) = 〈g,Kz〉 =

∫
D

g(w)Kz(w) dAv(w)(3.3)

for all g ∈ A2
v(D). The integral operator defined by the right hand side can be

extended to L2
v(D), and it actually defines the orthogonal projection from L2

v(D)
onto A2

v(D), i.e. the Bergman projection Pv. Using the orthonormal basis (ek)
∞
k=0

we can write for all z ∈ D

Pvg(z) =
∞∑
k=0

〈g, ek〉ek(z) =

∫
D

∞∑
k=0

zkwk

Γ2k

g(w)dAv(w).(3.4)
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Here, the order of the summation and the integral can be changed, because (3.2)
leads for any fixed z ∈ D to the estimate∣∣∣zkwk

Γ2k

∣∣∣ ≤ cv,%

( |z|
%2

)k
,(3.5)

and we can choose here %2 > |z| so that the sum on the right-hand side of (3.4)
converges well enough. Moreover, the estimate (3.5) implies that for every z ∈ D
the Bergman kernel Kz is a bounded function:

|Kz(w)| ≤ Cz for all w ∈ D.(3.6)

We obtain the following inference.

Lemma 3.1. Let f ∈ L1(D). The integral defining the Toeplitz operator Tf with
symbol f on H∞v ,

Tfg =

∫
D

f(w)g(w)Kz(w) dAv(w),(3.7)

converges for all z ∈ D and for all g ∈ H∞v (D),

Indeed, if g ∈ H∞v (D), then, by definition, gv ∈ L∞(D). Hence, the result follows
from (3.6).

We remark that the a priori assumption f ∈ L1(D) is usual also in the consid-
erations on Toeplitz operators in the reflexive Bergman spaces, but in that case
this assumption does not guarantee that the defining integral (3.7) converges for all
g ∈ Apv(D). From this point of view, the case p =∞ is simpler. However, although
Tfg of (3.7) is a well-defined holomorphic function it might not be an element of
H∞v (D) and Tf might not be a bounded operator H∞v (D) → H∞v (D). Actually it
is an elementary consequence of the closed graph theorem that Tf is a bounded
operator H∞v (D)→ H∞v (D) if and only if Tf (H

∞
v (D)) ⊂ H∞v (D). We will soon turn

to questions on the boundedness of the operator Tf .
If g ∈ H∞v (D) is such that fg ∈ L2

v(D), we also have

(Tfg)(z) =
∞∑
n=0

〈fg, en〉en(z) =
∞∑
n=0

zn

Γ2n

∫
D

f(w)g(w)wnv(w)dA ,(3.8)

where the series converges in L2
v(D). However, the formula also holds for all g ∈

H∞v (D) (since we are assuming f ∈ L1(D)) and the product fgv thus belongs to
L1(D), and one can commute the summation and integration in (3.7), due to (3.5).
In the latter case, the sum (3.8) converges uniformly for z in compact subsets of the
disc.

4. Toeplitz operators with harmonic symbols in H∞v (D)-spaces

In this section we will consider Toeplitz operators Tf with harmonic symbols
f : D → C in weighted spaces H∞v (D). We assume that the weight v satisfies the
basic requirements introduced in Section 1. In addition, the following notions will
be needed here and in subsequent sections. For for any function g : D → C and
radius 0 ≤ r ≤ 1 we will denote

M∞(g, r) = sup
|z|=r
|g(z)|.(4.1)
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Also, a weight v is called normal if

sup
n∈N

v(1− 2−n)

v(1− 2−n−1)
<∞ and inf

k∈N
lim sup
n→∞

v(1− 2−n−k)

v(1− 2−n)
< 1.(4.2)

For example, the standard weights v(r) = (1− r2)α, α > 0 are normal, whereas the
weights of exponential type, v(r) = exp(−α/(1− r)β), α, β > 0, are not. The Riesz
projection P maps harmonic functions into holomorphic ones and it is defined by

P
(∑
k∈Z

akr
|k|eikθ

)
=
∞∑
k=0

akr
keikθ, r ∈ [0, 1), θ ∈ [0, 2π].(4.3)

For every m > 0 we denote by rm be a point where the function r 7→ rmv(r) attains
its absolute maximum on [0, 1]. Due to the general assumptions on the weights it
is easily seen that rn ≥ rm if n ≥ m and limm→∞ rm = 1; see for example [17] for
details.

We now turn to questions on the boundedness of Toeplitz operators Tf with
harmonic symbols f . In the case f is even holomorphic, the operator Tf is just the
multiplier Mf , and it is quite plain that Tf is bounded, if and only if f ∈ H∞(D), i.e.,
f is a bounded function. Due to the generality of the weights, the details of this claim
are exposed in [4], Section 2. Allowing the symbol to be just a harmonic function
changes the situation dramatically. The basic reason for this is the unboundedness
of the Riesz and Bergman projections with respect to the sup-norm, but one can
develop this idea as far as the following result.

Theorem 4.1. There is a bounded harmonic function f : D → C such that Tf is
not a bounded operator H∞v (D)→ H∞v (D) for any weight v on D.

This result implies the following conclusion.

Corollary 4.2. For any weight v satisfying our general assumptions, the Bergman
projection Pv is not a bounded mapping L∞v (D)→ L∞v (D).

Namely, the pointwise multiplication with a bounded function f is always a
bounded operator H∞v (D) → L∞v (D). So, if Pv were bounded, this would imply
Tf : H∞v (D) → H∞v (D) is bounded for every f ∈ L∞(D), which would contra-
dict Theorem 4.1. We actually see that even the restriction of Pv onto h∞v (D) is
unbounded.

In the sequel, the complex variable z will always written in the polar coordinates
as z = reiθ, unless otherwise indicated.

Proof of Theorem 4.1. Let us fix a weight v on D and define first the function
f0 : ∂D→ C by

f0(z) =

{
1 , if − π/2 ≤ θ ≤ π/2
0 , if −π ≤ θ < −π/2 or π/2 < θ ≤ π.

The symbol f is defined as the harmonic extension of f0 on D obtained from the
Poisson integral, hence, we have f ∈ h∞(D). Calculating the Fourier coefficients of
f0 we observe that

f(z) =
1

2
+

1

π

∞∑
k=0

(−1)k

2k + 1

(
z2k+1 + z̄2k+1

)
, z ∈ D.(4.4)



BOUNDEDNESS OF TOEPLITZ OPERATORS IN BERGMAN-TYPE SPACES 13

Indeed, let ak, k ∈ Z, be. Then we have

ak =
1

2π

π/2∫
−π/2

e−iktdt =
eikπ/2 − e−ikπ/2

2kπi
=
ei|k|π/2 − e−i|k|π/2

2|k|πi

=

{
(−1)j

(2j+1)π
, if |k| = 2j + 1 for some j ∈ N0,

0 for other k ∈ Z \ {0}.

Moreover, a0 = 1/2. This implies (4.4).
Next we define the test functions, which will be used in showing the unbounded-

ness of the Toeplitz operator: we set

gm(z) =
rmeimθ

rmmv(rm)
, z = reiθ ∈ D

for all m ∈ N0, where the definition of the maximum point rm was given in the
beginning the section so that we obviously have ‖gm‖v = 1. We next show that for
all m ∈ N0 there holds

Tfgm(z) =
m∑
k=0

bk−m
Γ2m

Γ2k

zk

rmmv(rm)
+

∞∑
k=m+1

bk−m
zk

rmmv(rm)
(4.5)

where f(z) =
∑∞

k=−∞ bkr
|k|eikθ and Γk is as in (3.1). Indeed, this follows from

f(z)g(z) =
∑
j∈Z

bj
rm+|j|ei(j+m)θ

rmmv(rm)

=
∞∑

k=m+1

bk−m
rkeikθ

rmmv(rm)
+

m∑
k=−∞

bk−m
r2m−keikθ

rmmv(rm)

and (3.8).
Let us now turn to the final proof showing that Tf is unbounded on H∞v (D). We

define

f1(z) =
∞∑
j=0

(−1)j

2j + 1

(
z2j+1 + z̄2j+1

)
and note that it suffices to show that Tf1 is unbounded since Tf = T1/2 + π−1Tf1
and T1/2 (multiplication by constant 1/2) is bounded. Fix a positive integer m, say
m = 4m0 for m0 ∈ N. Then

k −m is

{
odd if k is odd
even if k is even

and j − 2m0 is

{
odd if j is odd
even if j is even.

We apply formula (4.5) with bk = 0, if k is even, and with bk = (−1)k/|2k + 1| if k
is odd, to obtain

Tf1gm(z) =
m∑
k=0,
k odd

bk−m
Γ2m

Γ2k

zk

rmmv(rm)
+

∞∑
k=m+1,
k odd

bk−m
zk

rmmv(rm)
.(4.6)

Next, if S is the operator Sf(z) = (f(z)− if(iz))/2, we have

Sf(z) =
∞∑
k=0

f4k+1z
4k+1 for f(z) =

∞∑
k=0

f2k+1z
2k+1,(4.7)
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since 1− i · i2k+1 = 1 + (−1)k . We obtain

STf1gm(z) =
∑

0≤4j+1≤m

b4j+1−m
Γ2m

Γ8j+2

z4j+1

rmmv(rm)
+

∑
m+1≤4j+1<∞

b4j+1−m
z4j+1

rmmv(rm)
.

Recall that b4j+1−m = 1/|4(j −m0) + 1|. So if we take θ = 0 then all summands in
the preceding sum are non-negative. Hence

rm
5

log

(
1

1− r4
m

)
=
rm
5

∞∑
j=1

(r4
m)j

j
≤

∞∑
j=0

r4j+1
m

4j + 1

=
∑

m+1≤4j+1<∞

b4j+1−m
r4j+1
m v(rm)

rmmv(rm)
≤ S(Tf1(gm))(rm)v(rm)

≤ ‖S(Tf1(gm))‖v ≤ ‖Tf1(gm)‖v.
since trivially by the definition of the operator S we have sup|z|=r |(Sf)(z)| ≤
sup|z|=r |f(z)|. Since limm→∞ rm = 1, the left-hand side of the preceding estimate
grows to the infinity, when m→∞. Hence Tf1 and also Tf cannot be bounded. �

5. General result on multipliers and Toeplitz operators in H∞v (D)
with radial symbols

We continue by considering a fixed radial weight v on D and Toeplitz operators
Tf : H∞v (D)→ H∞v (D), where Tf = PvMf . A function with radial symmetry on the
disc can nearly never be harmonic, and the study of Toeplitz operators with radial
symbols requires techniques different from those in Section 4. First we note that if
f ∈ L1(D) is radial, i.e. f(z) = f(|z|) for almost every z ∈ D, then Tf is a coefficient
multiplier. This is easily seen by expanding the kernel as in (3.4) and a calculation
using the usual orthonormality relations of trigonometric polynomials,

Tfg(z) =
∞∑
n=0

zn

Γ2n

1∫
0

2π∫
0

f(r)g(reiθ)rn+1e−inθv(r) dθdr

=
∞∑
n=0

zn

Γ2n

1∫
0

f(r)r2n+1v(r)gndr =
∞∑
n=0

γngnz
n(5.1)

where g =
∑

n gnz
n and

γn =
1

Γ2n

1∫
0

r2n+1v(r)f(r)dr.(5.2)

We expose here the approach based mainly on the works [17], [19] and [20] dealing
with the condition (B), below, which according to Theorem 1.1 of [19] characterizes
those radial weights such that the space H∞v (D) is isomorphic to the Banach space
`∞. Examples of weights satisfying (B) are all normal weights (4.2), in particular
the standard weights, and the weights of exponential type v(r) = exp(−γ/(1− r)β);
see [19].

The very definition of condition (B) is somewhat technical and we cannot quite
avoid other technical considerations in this survey either, however, one can follow
our presentation without going into the depth of the arguments just by keeping in
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mind that condition (B) associates to the weight an increasing sequence of indices
(mn)∞n=1 ⊂ (0,∞) and radii

(
rmn
)∞
n=1
⊂ (0, 1) such that mn → ∞ and rn → 1 as

n → ∞, and moreover, gives the very useful equivalent representation in Theorem
5.2 for the weighted sup-norm. We recall that the numbers rm ∈]0, 1[ were defined
in the beginning of Section 4.

Definition 5.1. The weight v satisfies the condition (B), if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m,n > 0(
rm
rn

)m
v(rm)

v(rn)
≤ b1 and m,n, |m− n| ≥ c ⇒

(
rn
rm

)n
v(rn)

v(rm)
≤ b2.

Note that here m and n need not be integers. We now fix a number b > 2: it is
shown in Lemma 5.1. of [19] that it is then possible to choose, by induction, an
increasing, unbounded sequence (mn)∞n=1 ⊂ (0,∞) such that

b = min

((
rmn
rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)
.

Next, for all n ∈ N, for the given mn, we define

(5.3) wnk =


|k| − [mn−1]

[mn]− [mn−1]
, if mn−1 < |k| ≤ mn, and

[mn+1]− |k|
[mn+1]− [mn]

if mn < |k| ≤ mn+1,

where k ∈ Z and m0 = 0. Here [r] is the largest integer not greater than r. With
the help of these numbers we define the coefficient multipliers of de la Valleé Poissin
type, acting on harmonic functions f(z) =

∑∞
k=−∞ fkr

|k|eikθ, by

Wn :
∞∑

k=−∞

fkr
|k|eikθ 7→

∞∑
k=−∞

wnkfkr
|k|eikθ

We will need the following uniform boundedness property of the operators Wn,
namely there exists a constant C > 0, depending on the weight only, such that

M∞(Wng, r) ≤ CM∞(g, r)(5.4)

for all 0 ≤ r ≤ 1 and g ∈ h∞v (D). See (4.1) for the notation. The inequality (5.4)
follows e.g. by combining an inequality in Theorem 1 of [20] with Lemma 3.3. of
[19].

The operators Wn are important, since they decompose the space H∞v (D) into
finite dimensional blocks with a useful representation for the norm. The result is
from Theorem 1 of [20], see also Propositions 4.1. and 5.2. of [19].

Theorem 5.2. Let v satisfy (B). Then there are constants c1, c2 > 0 such that,
for all g ∈ h∞v (D),

c1 sup
n∈N

M∞(Wng, rmn)v(rmn) ≤ ‖g‖v ≤ c2 sup
n∈N

M∞(Wng, rmn)v(rmn)(5.5)

and

c1M∞(Wng, rmn)v(rmn) ≤ ‖Wng‖v ≤ c2M∞(Wng, rmn)v(rmn)(5.6)

for all n ∈ N.
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Moreover, it follows from Theorem 5.2 that if the numbers fk ∈ C, k ∈ Z satisfy

sup
n∈N

sup
θ∈[0,2π]

∣∣∣∣ ∑
mn−1<|k|≤mn+1

wnkfkr
|k|
mne

ikθ

∣∣∣∣v(rmn) <∞,(5.7)

then the series defining the harmonic function f(reiθ) =
∑∞

k=−∞ fkr
|k|eikθ converges

uniformly on compact subsets of D and f belongs to h∞v (D) and ‖g‖v is bounded
by a constant times depending on the weight v. For this statement, see Remark 1,
(iii) of [20].

Examples. If v is normal then one can take mn = 2kn for suitable fixed k > 0
(see [19], Example 2.4, and [17]). For v(r) = exp(−α/(1− r)β) one can take mn =
β2(β/α)1/βn2+2/β − β2n2, see [2].

We now formulate the main result of this section, the characterization of bound-
edness and compactness for coefficient multipliers. The case of Toeplitz operators
with radial symbols follows easily from this. The result was already proven for
a more restricted class of weights in Theorem 4.1 of [18]. We will assume that
a sequence (γk)

∞
k=0 of complex numbers is given, and consider the formal series

f(θ) =
∑∞

k=0 γke
ikθ, which may or may not converge. The formal series Wnf is then

naturally defined as

Wnf(θ) =
∞∑
k=0

wnkγke
ikθ

where the numbers wnk are as in (5.3). We denote by Mf the coefficient multiplier

Mfg(z) =
∞∑
k=0

γkgkr
keikθ, z = reiθ(5.8)

for harmonic functions g(z) =
∑∞

k=−∞ gkr
|k|eikθ. By definition, Mfg is holomorphic,

if the series (5.8) converges.

Theorem 5.3. Let the weight v satisfy condition (B). Then Mf maps h∞v (D) into
H∞v (D) and is bounded, if and only if

sup
n∈N

2π∫
0

|(Wnf)(θ)|dθ <∞.(5.9)

Moreover, assume (5.9) holds. Then Mf : h∞v (D)→ H∞v (D) is compact, if and only
if

2π∫
0

|(Wnf)(θ)|dθ → 0 as n→∞.(5.10)

We present here the proof of the boundedness-statement, comment on the compact
case only briefly and refer to [4] for the details. Let us first prove that (5.9) implies
the boundedness of the operator. By (5.3), for every n there are only finitely many
non-zero wnk, hence, we can write MWnf , cf. (5.8), as a convolution

MWnfg(z) =
1

2π

2π∫
0

Wnf(θ − ψ)g(reiψ)dψ, z = reiθ ∈ D.
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We obtain the estimate

∣∣MWnfg(z)
∣∣v(r) ≤ 1

2π

2π∫
0

|(Wnf)(θ)|dθ ‖g‖v(5.11)

for all g ∈ h∞v (D), Hence,

M∞(MWnfg, r)v(r) ≤ C‖g‖v
for all n and r, where the constant C > 0 is the supremum on the left-hand side of
(5.9). According to the remark concerning (5.7) the series on the right-hand side of
(5.8) converges uniformly on compact subsets of D, defines an element of H∞v (D) and
is bounded by ‖g‖v. This means that Mf maps h∞v (D) continuously into H∞v (D).

As for the compactness of the operator Mf under the assumption (5.10), one
takes a sequence (gj)

∞
j=1 contained in the closed unit ball of h∞v (D) and converging

to 0 uniformly on compact subsets of D. One needs to show that Mf maps such a
sequence into a one converging to 0 with respect to the norm; see for example [26],
Section 2.4. Roughly speaking, one can improve the boundedness proof to get this,
by using the assumption (5.10) together with the assumption on the convergence in
the compact-open topology. One needs a more sophisticated use of Theorem 5.2.

As usual, the proof for the necessity of the condition (5.9) for the boundedness
requires a careful enough choice of appropriate test functions. To this end we fix an
arbitrary 0 < ε < 1 as well as n ∈ N and ϕ ∈ [0, 2π]. Using the Fejer approximation
theorem we find a trigonometric polynomial g(z) =

∑
k∈Z gkr

|k|eikθ, depending on
n, ϕ and ε, such that∣∣∣g(rmne

iθ)− Wnf(ϕ− θ)
|Wn(ϕ− θ)|v(rmn)

∣∣∣ < ε

v(rmn)
(5.12)

for all θ ∈ [0, 2π|, in particular

M∞(g, rmn)v(rmn) ≤ 2.(5.13)

As a consequence,

1

2π

2π∫
0

|(Wnf)(θ)|dθ =
1

2π

2π∫
0

|(Wnf)(ϕ− θ)|dθ

≤ 1

2π

∣∣∣∣
2π∫

0

(Wnf)(ϕ− θ)g(rmne
iθ)dθ

∣∣∣∣ v(rmn) + ε

=
1

2π

∣∣∣∣
2π∫

0

f(ϕ− θ)(Wng)(rmne
iθ)dθ

∣∣∣∣ v(rmn) + ε

= |MfWng(rmne
iϕ)| v(rmn) + ε ≤ ‖Mf‖ · ‖Wng‖v + ε.(5.14)

Using Theorem 5.2 and (5.4), (5.13) we find a constant C > 0 such that

‖Wng‖v ≤ c2M∞(Wng, rmn)v(rmn) ≤ c2dM∞(g, rmn)v(rmn) ≤ 2Cc2.

Hence supn
2π∫
0

|(Wnf)(θ)|dθ <∞.
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The proof for the necessity of the condition (5.10) for the compactness of Mf

needs a number of additional technical details. �

Since Riesz projection P , (4.3), is bounded by the assumptions of Theorem 5.3, it
follows that the boundedness and compactness of Mf : H∞v (D) → H∞v (D) are also
equivalent to (5.9) and (5.10), respectively.

Let us turn back to Toeplitz operators. Let Ta be a Toeplitz operator on H∞v (D)
with a given radial symbol a ∈ L1(D), i.e. a(z) = a(|z|) for almost every z. Then,
defining

γk =
1

Γ2k

1∫
0

r2k+1v(r)a(r)dr, k ∈ N0 and fa(θ) =
∞∑
k=0

γke
ikθ,(5.15)

it was shown in (5.1)–(5.2) that Ta coincides with the Taylor multiplier with coeffi-
cients (γk)

∞
k=0. The previous theorem thus yields the main result on the boundedness

and compactness.

Theorem 5.4. Let the weight satisfy (B). If a ∈ L1 is radial then Ta is bounded
as operator H∞v (D)→ H∞v (D) if and only if

sup
n

2π∫
0

|(Wnfa)(θ)|dθ <∞,(5.16)

and Ta is a compact operator H∞v (D)→ H∞v (D), if and only if

lim
n→∞

2π∫
0

|(Wnfa)(θ)|dθ = 0.(5.17)

We finally recall that Theorems 1.1 and 3.3 of the article [21] contain necessary and
sufficient conditions for the boundedness and compactness of Ta : Apv(D) → Apv(D)
for 1 < p < ∞, with minimal assumptions on the radial weights v. However, the
characterization is in terms of the boundedness properties of coefficient multipliers
in Hardy spaces, which is an area with yet unanswered questions.

6. Supplementary results on Toeplitz operators with radial symbols

According to Theorem 4.1, the boundedness of the symbol does not suffice to
imply the boundedness of the Toeplitz operator of Tf : H∞v (D) → H∞v (D). In
this section we continue working with radial symbols and present results, where
additional regularity or decay of the symbol at the boundary of the disc D implies
the boundedness of Ta. The proofs are based on Theorem 5.4, although here we will
only sketch some ideas of them.

In Theorem 5.4, the conditions for the boundedness and compactness of the
Toeplitz operator may not be easy to verify for concrete weights and symbols, but
the results of this section also serve the purpose of presenting some sufficient con-
ditions that are quite easy to formulate and control. The setting for the spaces and
symbols is the same as in the previous section, but in addition to condition (B) we
also assume that, for some ε > 0, v satisfies the following technical condition

sup
n∈N

∫ 1

0
rn−n

ε
v(r)dr∫ 1

0
rnv(r)dr

<∞.(6.1)
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It is not difficult to see that (6.1) holds for example for the important classes of
standard, normal and exponential weights. For normal weights, condition (6.1) with
ε = 1/2 follows from Lemma 4.5. of [3]. In the case v(r) = exp(−1/(1 − r)) it is

known that
∫ 1

0
rmv(r)dr, m > 1, is proportional to the quantity m−3/4 exp(−Bm1/2)

for some constant B > 0 independent of m (see e.g. Lemma 2.2. in [7] or Lemma
4.28 in [1]). Hence, assuming ε < 1/2 we obtain

1∫
0

rn−n
ε

v(r)dr ≤ C(n− nε)3/4 exp(−B(n− nε)1/2)

≤ C ′n3/4 exp(−Bn1/2 + C ′′) ≤ C ′′′
1∫

0

rnv(r)dr

for some positive constants C,C ′ etc., since

(n− nε)1/2 = n1/2(1− nε−1)1/2 = n1/2
(

1− 1

2
nε−1 +O(n2ε−2)

)
= n1/2 − 1

2
nε−1/2 +O(n2ε−3/2) ≥ n1/2 − C ′′

for all n. Thus, (6.1) holds. The same argument works for the more general weights
v(r) = exp(−α/(1− r)β), α, β > 0.

It was proven in [19] that normal and exponential weights satisfy (B).

Theorem 6.1. Let v satisfy (B) and (6.1) and assume that the symbol a ∈ L1 is
real valued and radial. The operator Ta is a bounded operator H∞v (D)→ H∞v (D) in
any of the following cases:
(i) The restriction a|[δ,1[ is differentiable (with respect to r) for some δ ∈]0, 1[ and
there holds

lim sup
r→1

a′(r) <∞ or lim inf
r→1

a′(r) > −∞,(6.2)

and, in addition,

lim sup
r→1

|a(r) log(1− r)| <∞(6.3)

(ii) The restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[, a′ satisfies (6.2) and,
for some constant C > 0, there holds the bound

|a′(r)| ≤ C

(1− r)
(

log(1− r)
)2 for r ∈]δ, 1[.(6.4)

(iii) The symbol a is continuously differentiable on [0, 1].

Theorem 6.1 holds also in the case of complex valued symbols a, namely, the
assumptions need to be satisfied by both Re a and Im a.

The symbol a(r) = 1/(1 − log(1 − r)) satisfies the second condition (6.2) and,
of course, (6.3) so that Ta : H∞v (D) → H∞v (D) is bounded. The same is true for
a(r) = (1− r)δ with any δ > 0. The latter symbol even induces a compact operator,
as can be seen by the next result.
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Theorem 6.2. Let v satisfy (B) and (6.1) and assume that the symbol a ∈ L1 is
real valued and radial.
(i) If the restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[, satisfies (6.2) and, in
addition,

lim sup
r→1

|a(r) log(1− r)| = 0(6.5)

then the operator Ta : H∞v (D)→ H∞v (D) is compact.
(ii) Assume that the restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[, satisfies
(6.2), and there holds

lim
r→1
|a′(r)|(1− r)

(
log(1− r)

)2
= 0.(6.6)

Then Ta is compact, if and only if limr→1 a(r) = 0.

Here, the case of complex valued symbols can be treated in the same way as in
the previous theorem.

The item (i) in both Theorems 6.1 and 6.2 follows from Theorem 5.4. We do not
the proof present but only refer to [5]. Recall that the coefficients of the series fa
in (5.16), (5.17) are given in (5.15), which involves integrals

∫ 1

0
rna(r)v(r)dr: the

proofs of (i) of Theorems 6.1 and 6.2 are based on quite technical estimates and
calculations with these expressions.

However, it is not so difficult to see that the sufficient condition (ii) essentially
implies (i) in Theorem 6.1. Assume a is real-valued and that (6.4) holds. For
all r ∈]δ, 1[ we get by the change of the integration variable log(1 − s) =: x and
dx/ds = −1/(1− s) that

1∫
r

|a′(s)|ds ≤ C

1∫
r

1

(1− s)
(

log(1− s)
)2ds = C

log(1−r)∫
−∞

1

x2
dx =

C

| log(1− r)|
.(6.7)

This implies that we can extend a as a continuous function to ]δ, 1] by setting

a(1) =

1∫
δ

a′(s)ds+ a(δ)
(

= lim
r→1

a(r)
)
.

Now, (6.7) yields for all r ∈]δ, 1[

|a(r)− a(1)| =
∣∣∣ 1∫
r

a′(s)ds
∣∣∣ ≤ C

| log(1− r)|
,(6.8)

which means that the function a−a(1) satisfies (6.3). Note that the Toeplitz operator
with the constant symbol a(1) is bounded as it is just a constant multiplier.

It is plain that (iii) implies (ii) in Theorem 6.1.
Also, as regards to Theorem 6.2, the assumptions in (ii) imply those of (i).

Namely, if (6.6) holds, then we can repeat the calculation (6.7)–(6.8) so that the
constant C is replaced by a positive function C(r) with C(r)→ 0 as r → 1. Then,
we see from the analogue of (6.8) that the function a− a(1) even satisfies (6.5). If
in addition a(1) = 0 then also a satisfies (6.5). Note that if limr→1 a(r) = a(1) 6= 0,
then Ta is a compact perturbation of a non-zero multiple of the identity which is
not compact, and thus it cannot be a compact operator.
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In [5] it is shown that if v is a normal weight, the assumptions on a in the previous
theorems can be relaxed, namely the boundedness of Ta : H∞v (D)→ H∞v (D) follows
just from (6.3) and the compactness from (6.5) without any smoothness assumptions
on the symbol. Also, in the case of exponential weights v(r) = exp

(
− α/(1− r)β),

α, β > 0, the smoothness requirements on a can be dropped, namely, if

lim sup
r→1

|a(r)|(1− r)−1/2−β/4 <∞,(6.9)

then Ta : H∞v (D)→ H∞v (D) is bounded, and if

lim sup
r→1

|a(r)|(1− r)−1/2−β/4 = 0,(6.10)

then Ta is compact on H∞v (D).

Let us finally consider reflexive weighted Bergman spaces Apv(D). For radial sym-
bols, the boundedness of Ta as an operator from the Bergman-Hilbert space A2

v(D)
into itself is characterized by the condition

sup
n∈N
|γn| <∞,(6.11)

where the numbers γn are as in (5.2). The idea of trying to characterize the bound-
edness and compactness of Ta : Apv(D) → Apv(D) for 2 < p < ∞ (or 1 < p < 2)
by interpolating does not seem to work, but one can derive a sufficient condition
similar to (5.9) for the boundedness of Ta in Apv(D).

To formulate and sketch the proof of the result we need some modifications of
the notions that were used in the case of weighted sup-norms. We again assume
that the weight v satisfies condition (B). First, instead of the de la Valleé Poissin
operators it is enough just to use the Dirichlet projections Qng(z) =

∑n
k=0 gkz

k for
holomorphic g(z) =

∑∞
k=0 gkz

k. It is known that there are constants cp > 0 with
Mp(Qng, r) ≤ cpMp(g, r) for all 0 < r < 1, 1 < p < ∞, where cp does not depend

on g, n or r and we write Mp(g, r)
p = (2π)−1

∫ 2π

0
|g(reiθ)|pdθ.

Analogously with the case of weighted sup-norms one picks up suitable increasing
numerical sequences (`n)∞n=1 with `1 = 0 and limn→∞ `n = ∞ and (sn)∞n=1 ⊂ (0, 1)
with limn→∞ sn = 1 and then defines the operators

Zn = Q[`n+1] −Q[`n], n ∈ N.

These are used to derive an equivalent form of the weighted Lp-norm: for some
constants c2 ≥ c1 > 0, for every f ∈ Apv(D), there holds

c1‖f‖p,v ≤
( ∞∑
n=1

ωpnM
p
p (Znf, sn)

)1/p

≤ c2‖f‖p,v,(6.12)

where the numbers ωn are determined by the weight. The details of the definitions
of the various parameters and proof of (6.12) can be found in [13] for p = 1 and in
[20] for 1 < p <∞. Examples and calculations in concrete cases can be found in the
paper [3]: there it is shown that one can obtain (6.12) for the exponential weights
v(r) = exp

(
− α/(1− r)β), α, β > 0 by using

`n = β1+1/βα−1/βn2+2/β − βn2, sn = 1−
(α
β

)1/β 1

n2/β
.(6.13)
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Proposition 6.3. Let the weight satisfy (B), let a ∈ L1 be a radial function and let
fa(θ) =

∑∞
k=0 γke

ikθ be as in (5.2). Then the Toeplitz operator Ta : Apv(D)→ Apv(D)
is a well-defined, bounded operator, if

sup
n∈N

2π∫
0

|(Znfa)(θ)|dθ <∞,(6.14)

and Ta : Apv(D)→ Apv(D) is compact, if

2π∫
0

|(Znfa)(θ)|dθ → 0 as n→∞.(6.15)

Proof. Let Mf be the convolution operator, or the sequence space multiplier,
corresponding to Ta, see (5.2). For all g ∈ Apv(D) and z = reiθ ∈ D we get

(ZnMfg)(z) = (MZnfg)(z) =

2π∫
0

Znf(θ − ψ)Zng(reidψ)dψ,

where we replaced g by Zng by the usual orthogonality relations of trigonometric
monomials. The Young inequality ‖a ∗ b‖Lp(∂D) ≤ ‖a‖L1(∂D)‖b‖Lp(∂D) yields

Mp(ZnMfg, r) ≤
2π∫

0

|(Znf)(θ)|dθMp(Zng, r)(6.16)

The inequality ‖Mfg‖p,v ≤ C‖g‖p,v thus follows by applying (6.14) and (6.12) to
both ‖Mfg‖p,v and ‖g‖p,v, and this implies the boundedness of Ta.

Assume next (6.15) holds, and let (gj)
∞
j=1 be a sequence which is contained in the

unit ball of Apv(D) and which converges to 0 uniformly on compact subsets of D,

and assume ε > 0 is given. We choose N ∈ N such that
∫ 2π

0
|(Znf)(θ)|dθ < ε. The

convergence of the sequence in the compact-open topology can be used to find a
large enough J ∈ N such that

sup
|z|≤rmn

|ZnMfgj(z)|v(z) <
ε

2πNωn
⇒ Mp(ZnMfgj, rmn) <

ε

Nωn

for all n ≤ N , all j ≥ J . This, (6.16) and (6.12) imply

‖Mfgj‖pp,v ≤
N∑
n=1

ωpnMp(ZnMfgj, rmn)p +
∞∑

n=N+1

ωpnMp(ZnMfgj, rmn)p

≤ ε+ ε

∞∑
n=N+1

ωpnMp(Zngj, rmn)p ≤ 2ε‖gj‖pp,v ≤ 2ε.

We infer that the sequence (gj)
∞
j=1 converges to 0 in the norm of Apv(D), which proves

the compactness of the operator. �
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[8] M. Englǐs, Toeplitz operators and weighted Bergman kernels. J. Funct. Anal. 255, 6 (2008),

1419–1457.
[9] S. Grudsky, A. Karapetyants, N. Vasilevski, Toeplitz operators on the unit ball in CN with

radial symbols, J. Oper. Theory 49 (2003), 325–346.
[10] S. Grudsky, N. Vasilevski, Bergman-Toeplitz operators: radial component influence, Integr.

Eq. Oper. Theory 40 (2001), 16–33.
[11] R. Hagger, C. Liu, J. Taskinen, J. Virtanen, Toeplitz operators on the unit ball with locally

integrable symbols. Submitted.
[12] R. Hagger, J.A. Virtanen, Compact Hankel operators with bounded symbols, J. Operator

Theory 86 (2021), 317–329.
[13] A.Harutyunyan, W.Lusky, On L1−subspaces of holomorphic functions, Studia Math. 198

(2010), 157–175.
[14] A. Karapetyants, J. Taskinen, Toeplitz operators with radial symbols on general analytic

function spaces. Submitted.
[15] D. H. Luecking, Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73 (1987), no. 2,

345–368.
[16] D. H. Luecking, Finite rank Toeplitz operators on the Bergman space. Proc. Amer. Math.

Soc. 136 (2008), no. 5, 1717–1723.
[17] W.Lusky, On weighted spaces of harmonic and holomorphic functions, J. Lond. Math. Soc.

51 (1995), 309–320.
[18] W. Lusky, Growth conditions for harmonic and holomorphic functions, Functional Analy-

sis, Proceedings of the First International Workshop, Eds.: S.Dierolf,S.Dineen,P.Domanski,
(1996), 281–291.

[19] W.Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic func-
tions, Studia Math. 175 (2006), 19-45.

[20] W.Lusky, J.Taskinen, Bounded holomorphic projectionss for exponentially decreasing
weigths, J. Funct. Spaces Appl. 6 (2008), 59-70.

[21] W. Lusky, J. Taskinen, Toeplitz operators on Bergman spaces and Hardy multipliers. Studia
Math. 204 (2011), 137–154.

[22] P. Mannersalo, Toeplitz operators with locally integrable symbols on Bergman spaces of
bounded simply connected domains, Compl.Variables Elliptic Eq. 61,6 (2016), 854–874.

[23] P.Mannersalo, Toeplitz operators on Bergman spaces of polygonal domains, to appear in
Proc. Edinburgh Mat. Soc.

[24] G. McDonald, C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979),
no. 4, 595–611.
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