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ASYMPTOTICS OF THE SPECTRUM OF THE MIXED BOUNDARY
VALUE PROBLEM FOR THE LAPLACE OPERATOR IN A THIN

SPINDLE-SHAPED DOMAIN.

SERGEY A. NAZAROV AND JARI TASKINEN

Abstract. We examine the asymptotics of solutions to the spectral problem for the Laplace
operator in a d-dimensional thin, of diameterO(h), spindle-shaped domain Ωh with the Dirichlet
condition on small, of size h ≪ 1, terminal zones Γh

± and the Neumann condition on the

remaining part of the boundary ∂Ωh. In the limit as h → +0 an ordinary differential equation
on the axis (−1, 1) ∋ z of the spindle appears with a coefficient degenerating at the points
z = ±1 and besides without any boundary condition because the requirement on boundness of
eigenfunctions makes the limit spectral problem correct. We derive error estimates of the one-
dimensional model but in the case d = 3 it is necessary to construct boundary layers near the
sets Γh

± and in the case d = 2 to deal with self-adjoint extensions of the differential operator. The
extension parameters depend linearly on lnh so that its eigenvalues imply analytical functions
in the variable 1/| lnh|. As a result, in all dimensions the one-dimensional model gets the
power-law accuracy O(hδd) with an exponent δd > 0. First (the smallest) eigenvalues, positive
in Ωhand null in (−1, 1) require individual treatment. We also discuss infinite asymptotic series,
the static problem (without the spectral parameter) and alike shapes of thin domains.

Dedicated to Vasilii Mikhailovich Babich,
who knows everything about boundary layers.

1. Introduction.

1.1. Problem statement. Let ω be a domain in the Euclidean space Rd−1 with (d − 2)-
dimensional boundary ∂ω (which is assumed to be C∞-smooth for simplicity, cf. Section 2 § 6)
and compact closure ω = ω ∪ ∂ω, and let Ωh be a thin spindle-shaped body as in Fig. 1,a

Ωh = {x = (y, z) ∈ Rd−1 × R : η := h−1H(z)−1y ∈ ω, z ∈ (−1, 1)}, (1.1)

which is simply called a spindle in the following. Here, d ⩾ 2, h is a small positive parameter
and H ∈ C∞[−1, 1] is a profile function fulfilling the relations

H(±1) = 0, H(z) > 0 for z ∈ (−1, 1),

H(z) = (1∓ z)(H± + H̃±(1∓ z)) for ± z ∈ [0, 1], (1.2)

whereH± are positive numbers and the function t 7→ H̃±(t) belongs to C
∞[0, 1] with H̃±(0) = 0;

for technical reasons we assume that the functions H̃± are real analytic in some neighborhoods
of t = 0, i.e., for some t0 > 0 and {an,±}∞n=1 ∈ R we have

H̃±(t) =
∞∑
n=1

an,±t
n, t ∈ [0, t0]. (1.3)

Key words and phrases. Spindle-shaped thin domain, asymptotics of eigenvalues, boundary layers, self-adjoint
extensions.
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We rescale the length of the body (1.1) in the z = xd-axis direction to be two, hence, the
Cartesian coordinates x = (x1, . . . , xd) and geometric parameters are made dimensionless and,
in particular, the meaning of the restriction h≪ 1 becomes clear.

Also, fixing the numbers ρ± > 0 we denote the top and middle parts of the boundary ∂Ωh,
respectively, by

Γh
± = {x ∈ ∂Ωh : 1 > ±z > 1− hρ±} (1.4)

and Γh
◦ = ∂Ωh \ (Γh

+ ∪ Γh
−). In the domain (1.1) we consider the following spectral mixed

boundary value problem for the Laplace operator ∆x = ∇x · ∇x with the Dirichlet condition
on Γh

± and the Neumann one on Γh
◦ :

−∆xu
h(x) = λhuh(x), x ∈ Ωh, (1.5)

uh(x) = 0, x ∈ Γh
±, (1.6)

∂νu
h(x) = 0, x ∈ Γh

◦ . (1.7)

Here, ∇x = grad, ∂ν = ν(x) ·∇x, the central dot stands for the scalar product in the space Rm,
ν(x) is the unit outward normal vector on the surface ∂Ωh \{P+, P−} and P± = {0, . . . , 0,±1}
are tips of the conical (angular in the case d = 2) sharpenings.

The variational formulation of the problem (1.5)–(1.7) consists of the integral identity [1]

(∇xu
h,∇xψ

h)Ωh = λh(uh, ψh)Ωh ∀ψh ∈ H1
0 (Ω

h; Γh
±), (1.8)

where ( , )Ωh is the natural scalar product in the Lebesgue space L2(Ωh) of either scalar or vector
valued functions and H1

0 (Ω
h; Γh

±) denotes the subspace of functions in the Sobolev space H1(Ωh)
satisfying the Dirichlet condition (1.6). The bilinear form on the left-hand side of (1.8) is closed
and positive definite in the spaceH1

0 (Ω
h; Γh

±) and, therefore, according to [2, Ch. 10] the problem
(1.8) or (1.5)–(1.7) is associated with an unbounded positive definite self-adjoint operator Ah

in the Hilbert space L2(Ωh) with the domain D(Ah) ⊂ H1
0 (Ω

h; Γh
±). We emphasize that D(Ah)

is much larger than the space H2(Ωh)∩H1
0 (Ω

h; Γh
±), because of the square-root singularities of

the derivatives of the solutions to the mixed boundary value problems on the collision surfaces
{x ∈ ∂Ωh : ±z = 1− hρ±}, which are lines in the case d = 3 and points, if d = 2; see [3, 4] [5,
Ch. 2] etc. Also, owing to the compactness of the embedding H1(Ωh) ⊂ L2(Ωh) (see, e.g., [1])
the spectrum of the operator Ah is discrete and forms a monotone unbounded positive sequence

0 < λh1 < λh2 ⩽ λh3 ⩽ · · · ⩽ λhn ⩽ · · · → +∞ (1.9)

composed by taking into account the multiplicities of the eigenvalues (see, e.g., [2, Thm. 10.1.5
and 10.2.2]). The corresponding eigenfunctions uh1 , u

h
2 , u

h
3 , . . . , u

h
n, · · · ∈ H1

0 (Ω
h; Γh

±) can be
subject to the normalization and orthogonality conditions

(uhn, u
h
m)Ωh = δn,m, n,m ∈ N, (1.10)

where δn,m is the Kronecker symbol and N = {1, 2, 3, . . . } the set of natural numbers.

1.2. Motivation. Thin elastic structures like bodies, plates, shells and rods appear every-
where in biotic and abiotic nature as well as in mechanics and civil engineering, and conse-
quently the amount of research and publications on deformations of such objects, starting from
the nineteenth century, cannot be evaluated. These studies represent different levels of rigor
and various methods, like asymptotic ones. Here, it is usually essential to perform a dimension
reduction procedure leading to some differential equation: for example, the two-dimensional
image of a thin flattened solid is called the Kirchhoff plate and computation of its bend is based
on the Sophie Germain equation (see, e.g., the book [6]).
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Figure 1.1. The orginal spindle (a) and the artificially constructed cylinder (b)
for the description of the boundary layer. The Dirichlet zones are shaded.

In the introductory presentations on the theory of plates and rods, asymptotic analysis of
boundary value problems for scalar second-order equations is usually regarded as elementary
preliminary material. For example, in cylindrical domains, the Laplace and Helmholtz equa-
tions can be simply treated by separation of variables, which makes the dimension reduction
procedure elementary. Thus, it may seem that hardly any new scalar problems in thin domains
are worth scientific attention; however, the authors present here such a novel case.

Thin spindle-shaped objects (Fig. 1, a) are not so common as thin cylindrical ones, but ex-
amples of them are shuttles in sewing machines and looms; also, this sharpened cigar-shape
facilitates the liquid flow and therefore it is typical for marine reptiles and fishes. The shape
of the spindle is fixed just by the conical tops (cf. definition in (1.4)). The spectral problem
(1.5)–(1.7) in Ωh and the corresponding stationary one are related to the distribution of heat (a
metal skewer inside chopped meat could be considered as a spindle, but to model this setting
one needs a serious modification of the problem statement which we skip, since one is hardly
interested in warming a spindle while processing kebab). Finally, we point out that we do not
know precisely the asymptotic structures for the corresponding, much more complicated vecto-
rial problem of the linear elasticity. We mention that in the papers [7, 8], rods with paraboloidal
instead of conical ends were considered (see Section 1 § 6).

The interest in the asymptotic analysis of the problem (1.5)–(1.7) is due to a specific boundary
layer phenomenon. Namely, although ε−1 seems at the first sight to be the correct coordinate
dilation coefficient, it turns out the the proper one is ε−2. Also, the limit problem is posed
in a cylinder instead of a cone (see Fig. 1, b and Section 1 § 4). In the most interesting
situations d = 3 and d = 2 the boundary layer affects the derivation of the error estimates for
the one-dimensional model of the spindle, but it also has effects on the model itself. In the case
d = 2 the model consists of a self-adjoint extension of a differential operator with degenerating
coefficients at the points z = ±1. Exclusivity of the two-dimensional case d = 2 is explained
in Section 5 § 6, in particular, we discuss analytic dependence of the main asymptotic terms of
eigenvalues in the variable 1/| lnh|.

1.3. Content and structure of the paper. First of all, in § 2 we perform the formal
asymptotic analysis of the eigenpairs {λhn, uhn} of the mixed boundary value problem (1.5)–(1.7)
and present all basic properties of the derived limit problem, which is a degenerate differential
equation (2.9) with no boundary conditions at the points z = ±1. Its variational formulation
(2.14) is posed in a weighted Sobolev-type space .

The third section starts with the verification of the simplest assertion about asymptotics, that
is, the traditional convergence theorem (Lemma 3.1). We then prove asymptotic formulas for
the eigenvalues λhn and eigenfunctions uhn (Theorems 3.3 and 3.7) but only under the restriction
d ⩾ 4. As was mentioned, the spatial case d = 3 requires the construction of the boundary layer
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and we do this in § 4 (see, in particular, Theorem 4.1). Furthermore, Theorem 4.5 refines the
asymptotic expression of the first eigenvalue λh1 > 0, (1.9). This is necessary since the smallest
eigenvalue µ1 of the limit equation is null, and the result of Theorem 3.3 thus does not give
any useful information on the behaviour of λh1 > 0 as h→ +0.

In § 5 we proceed with studying the unbounded symmetric operator

−H1−d∂zH
d−1∂z

in the weighted Lebesgue space. We show that, for d ⩾ 4, this operator itself is self-adjoint,
but, for d = 3 and d = 2, it requires a self-adjoint extension. One such extension and its
parameters will be found by an analysis of the boundary layer. This leads to an appropriate
one-dimensional model of the planar spindle Ωh ⊂ R2 and provides the accuracy O(h1/2) for
the eigenvalues λhn (see Theorem 5.8). We emphasize that the usual variational formulation
of the limit problem (Section 2 § 2) is associated with the Friedrichs extension but, for d = 2,
generates too large approximation errors O((1 + | lnh|)−1) (cf., Proposition 5.7).
In the last § 6 we discuss several possible generalisations of the results, in particular, the

inhomogeneous stationary (λh = 0) boundary value problem in Ωh whose operator norm grows
unboundedly as h → +0 (Proposition 4.6). Furthermore, we outline iterative processes to
construct infinite asymptotic series for the eigenpairs of the spectral problem (1.5)–(1.7) and
we describe modifications of the asymptotic procedures in the cases of rounded or truncated
ends of spindle. Here, we do not prove precise assertions but only sketch asymptotic structures.

2. Formal derivation and examination of the limit equation.

2.1. Asymptotic analysis. We accept the standard ansätze (see, e.g., [9, § 1 Ch. 7]) for
the eigenpairs of problem (1.5)–(1.7)

λh = µ+ . . . (2.1)

and

uh(x) = v(z) + h2V (η, z) + . . . , (2.2)

where η = h−1H(z)−1y are stretched transversal coordinates, the number µ and the functions
v, V are to be determined and dots stand for higher-order terms of no importance for the formal
analysis.

We insert the ansätze (2.1) and (2.2) into equation (1.5) and collect coefficients of the same
powers of the small parameter h. The main term on the right-hand side of (2.2) depends only
on the “slow” variable z and the changes y 7→ η, z 7→ ζ = z lead to the following differentiation
formulas for the composite functions,

∇yV (h−1H(z)−1y, z) = h−1H(ζ)−1∇ηV (η, ζ),

∂zV (h−1H(z)−1y, z) = ∂ζV (η, ζ)−H(ζ)−1∂ζH(ζ) η · ∇ηV (η, ζ), (2.3)

so that we obtain the equation

−H(z)−2∆ηV (η, z) = F (η, z) := ∂2zv(z) + µv(z), η ∈ ω. (2.4)

The unit outward normal vector on the surface Γh
◦ takes the form(

1 + h2|∂zH(z)|2|η · ν ′(η)|2
)−1/2

(ν ′(η),−h∂zH(z) η · ν ′(η)), (2.5)

where ν ′ is the (d − 1)-dimensional unit outward normal vector on the boundary ∂ω ⊂ Rd−1.
Thus,

∂ν(v(z) + h2V (η, z)) = h
(
H(z)−1∂ν′(η)V (η, z)− ∂zH(z)η · ν ′(η)∂zv(z)

)
+ . . . ,
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and, therefore, equation (2.4) is supplied with the boundary condition

H(z)−2∂ν′(η)V (η, z) = G(η, z) := H(z)−1∂zH(z)η · ν ′(η)∂zv(z), η ∈ ∂ω. (2.6)

Now according to the obvious formula∫
∂ω

η · ν ′(η) dsη =
∫
ω

∇η · η dη = (d− 1)|ω|,

where |ω| = mesd−1ω is the (d − 1)-dimensional area of the cross-section ω, the compatibility
condition in the Neumann problem (2.4), (2.6) converts into

0 =

∫
ω

F (η, z)dη +

∫
∂ω

G(η, z) dsη

= |ω|(∂2zv(z) + µv(z)) + (d− 1)|ω|H(z)−1∂zH(z)∂zv(z). (2.7)

The solution V is fixed by the orthogonality condition∫
ω

V (η, z)dη = 0, z ∈ (−1, 1). (2.8)

We multiply the left and right sides of the relation (2.7) by |ω|−1H(z)d−1 and finally arrive
at the ordinary differential equation

−∂z(H(z)d−1∂zv(z)) = µH(z)d−1v(z), z ∈ (−1, 1). (2.9)

Due to assumptions (1.2) the coefficient of the second order derivative degenerates at the
endpoints P± of the interval (−1, 1).

2.2. On the spectrum of the degenerate equation. The assertions collected in this
section are quite simple and mainly known but we give short proofs for them, because the
notation will be used later.

The weighted Sobolev and Lebesgue spaces V1
β(−1, 1) and L2

β(−1, 1) are obtained as the
completion of the space C∞

c (−1, 1) (infinitely differentiable and compactly supported functions)
with respect to the norms

∥v;V1
β(−1, 1)∥ =

( 1∫
−1

(1− |z|)2β(|∂zv(z)|2 + |v(z)|2) dz
)1/2

, (2.10)

∥f ;L2
β(−1, 1)∥ =

( 1∫
−1

(1− |z|)2β|f(z)|2 dz
)1/2

. (2.11)

Lemma 2.1. For d ⩾ 2, the space V1
(d−1)/2(−1, 1) contains all smooth functions on the closed

interval [−1, 1] ∋ z.

Proof. Let v ∈ C∞[−1, 1] and vε = χεv where ε ∈ (0, 1),

χε(z) = χ
(1
ε
(1− |z|)

)
for d ⩾ 3 and χε(z) = 1− χ

( ln(1− |z|)
ln ε

)
for d = 2, (2.12)

and χ ∈ C∞(R) is the reference cut-off function,

χ(t) = 1 for t ⩾ 1, χ(t) = 0 for t ⩽
1

2
, 0 ⩽ χ ⩽ 1. (2.13)
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For ε→ +0, we have

∥vε−v;V1
(d−1)/2(−1, 1)∥2 =

1∫
−1

(1−|z|)d−1

(∣∣∣ d
dz

(1−χε(z))v(z)
∣∣∣2+|(1−χε(z))v(z)|2

)
dz ⩽ cvδ(ε),

where the factor cv depends on v while δ(ε) vanishes on the limit, δ(ε) = O(εd−2) for d > 2
and δ(ε) = O(| ln ε|−1) for d = 2. This, exactly, was to be checked. ⊠

Thus, equation (2.9) does not need any boundary condition at the points z = ±1 (cf., the
book [6, § 36] as well as the papers [10, 11, 12] and others about degenerate elliptic equations).
Hence, according to formulas (1.2), we state the variational formulation of the limit degenerate
equation in the space H = V1

(d−1)/2(−1, 1), and it reduces to the integral identity

(Hd−1∂zv, ∂zφ) = µ(Hd−1v, φ) ∀φ ∈ H, (2.14)

where ( , ) is the extension of the scalar product L2(−1, 1) up to the duality between appropriate
weighted spaces L2

β(−1, 1) and L2
−β(−1, 1).

Lemma 2.2. The norm (2.10) with the weight exponent β = (d− 1)/2 is equivalent to

∥v;H∥ =

( 1∫
−1

(1− |z|)d−1
(
|∂zv(z)|2

+(1− |z|)−2
(
1 + δd,2

(
1 + | ln(1− |z|)|

))−2|v(z)|2
)
dz

)1/2

. (2.15)

Proof. It suffices apply to the products U(t) = (1−χ(t))v(±1∓ t) the following variants of
the one-dimensional Hardy inequality:

1∫
0

t2α−1|U(t)|2 dt ⩽ 1

α2

1∫
0

t2α+1|∂tU(t)|2 dt ∀U ∈ C∞
c [0, 1), α =

d

2
− 1 > 0 for d ⩾ 3,

1∫
0

t−1| ln t|−2|U(t)|2 dt ⩽ 4

1∫
0

t|∂tU(t)|2 dt ∀ U ∈ C∞
c [0, 1) for d = 2. (2.16)

In the both cases the required relation U(1) = 0 follows from the definition (2.12) of the cut-off
function χ. ⊠

Lemma 2.3. The embedding of the space H into the space L = L2
(d−1)/2(−1, 1) with the norm

∥v;L∥ = ∥H(d−1)/2v;L2(−1, 1)∥ is compact.

Proof. The embedding operator H ⊂ L is approximated in the operator norm as ε → +0
by compact operators of multiplication with the cut-off functions (2.12) because the weight
multiplier of |v|2 in the norm (2.15) is larger than the weight multiplier (1−|z|)β = (1−|z|)d−1

in the norm (2.11) of the space L. ⊠

The left-hand side of the integral identity (2.14) includes a positive and closed bilinear form in
H which according to [2, § 10.1] is associated with an unbounded positive self-adjoint operator
A in L with the domain D(A) ⊂ H. Finally, by Theorems 10.1.5 and 10.2.2 [2] the spectrum
of the operator A consists of the monotone non-negative sequence of eigenvalues

0 = µ1 < µ2 < µ3 < · · · < µn ⩽ · · · → +∞. (2.17)
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The corresponding eigenfunctions v1,v2,v3, . . . ,vn, · · · ∈ H can be subject to the normalization
and orthogonality conditions

(Hd−1vm,vn) = δm,n, m, n ∈ N. (2.18)

The first eigenvalue is null and the corresponding eigenfunction is constant. We will prove in
Lemma 2.4) that all eigenvalues are simple.

The model equation, which describes the behaviour of eigenfunctions near the endpoints
z = ±1, is obtained by the changes z 7→ t = 1 ∓ z and H(z) 7→ tH± in the operator on
left-hand side of(2.9) and looks as follows:

− d

dt

(
(H±t)

d−1dV
dt

(t)
)
= 0, t ∈ (0,+∞). (2.19)

In addition to the constant solution V0(t) = 1, this equation has the singular solution

V1(t) = t2−d for d ⩾ 2 and V1(t) = ln t for d = 2. (2.20)

We set V1
±(z) = V1(1 ∓ z). Functions with the singularities O(V1

±(z)) do not belong to the
“energy” class H.

Lemma 2.4. The eigenfunctions vn are infinitely many times differentiable on the closed
interval [−1, 1] and

vn(±1) ̸= 0, ∂zvn(±1) = 0 (2.21)

so that the eigenvalue µn cannot be multiple.

Proof. Let us fix an eigenvalue µn in the sequence (2.17). Taking into account (1.2) and
(1.3), equation (2.9) for the eigenfunction vn can be written in a neighborhood of z = 1 as

P (z)∂2zvn(z) +Q(z)∂zvn(z) +Rn(z)vn(z) = 0 (2.22)

where, according to the assumptions made in §1, the functions P , Q and R have absolutely
convergent series

P (z) = H(z)d−1 = Hd−1
+ (1− z)d−1 +

∞∑
j=d

bj,1(1− z)j,

Q(z) = (d− 1)H(z)d−2H ′(z) = −(d− 1)Hd−1
+ (1− z)d−2 +

∞∑
j=d−1

bj,2(1− z)j,

Rn(z) = µnH
d−1
+ (1− z)d−1 +

∞∑
j=d

bj,3(1− z)j

with some bj,k ∈ R. There holds

p(z) :=
Q(z)

P (z)
=

1

1− z

∞∑
j=0

pj(1− z)j, q(z) :=
Rn(z)

P (z)
=

1

(1− z)2

∞∑
j=0

qj(1− z)j

for the coefficients pj, qj ∈ R with p0 = d − 1, q0 = q1 = 0, q2 = µn so that z = 1 is a regular
singular point for the equation (2.22). Moreover, the Frobenius ansatz

v(z; s) = (z − 1)s
∞∑
j=0

rj(s)(z − 1)j, (2.23)

where s ∈ R and r0 ̸= 0, leads to the indicial equation

I(s) := s(s− 1) + (d− 1)s = 0, (2.24)
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with the indicial polynomial I having zeros at s = 0 and s = −d+ 2. According to the general
theory (see [13, Theorem 11.6.46] or other textbooks on singular linear second order ordinary
differential equations), the power series on the right of (2.23) converges near the point 1 and
the expression (2.23) with s = 0 is always a (bounded) solution of (2.22) in a neighborhood
of z = 1. Moreover, in the case d ⩾ 3, the function (2.23) with s = −d + 2 is also a solution
having the singularity (1− z)2−d at z = 1, and in the case d = 2 the second solution of (2.22)
is known to have the singularity ln |1− z|. As it was already remarked, a function v with such
irregular behaviour cannot belong to H. Since the eigenfunction vn lives in H, it must coincide
with (2.23) for s = 0. Hence, vn is smooth in a neighborhood of z = 1.
The first relation (2.21) holds at z = 1 because r0 ̸= 0 in the ansatz (2.23). According to

formula (11.6.48) in [13], the coefficient r1 is obtained from the relation

I(s+ 1)r1(s) = −(p1s+ q1)r0

for the indicial polynomial (2.24), where the parameter value is set to s = 0. Since I(1) ̸= 0
and q1 = 0, this yields r1 = 0 and thus the second relation in (2.21) holds true, too.
The same argument applies also in a neighborhood of z = −1, thus, vn ∈ C∞[−1, 1]. Further-

more, the existence of two linearly independent solutions implies that their linear combination
vanishes at the point z = 1 and the series (2.23) for it is null on [1 − t0, 1] and therefore
everywhere on [-1,1]. In other words, eigenvalues (2.17) are simple. ⊠

Lemma 2.4 and relations (1.2) yield the following assertion.

Corollary 2.5. The solution of the problem (2.4), (2.6) which corresponds to vn and satisfies
(2.8), meets the estimate

H(z)−1|Vn(η, z)|+ |∇(η,z)Vn(η, z)|+ |∇2
(η,z)V (η, z)| ⩽ cn. ⊠ (2.25)

3. Limit passage in the spectral problem.

3.1. The convergence theorem. Let λhn be an entry in the sequence (1.9) with the fixed
number n ∈ N and let uhn be the corresponding eigenfunction of problem (1.5)–(1.7) normalized
in L2(Ωh) according to (1.10). We will show in Remark 3.5 that there exist positive h(n) and
c(n) such that

λhn ⩽ c(n) for h ∈ (0, h(m)]. (3.1)

Thus, one finds a sequence {hj}j∈N convergent to null such that

λhj
n → µ̂n ⩾ 0 as j → +∞. (3.2)

In this section we omit the indexes j and n in hj and λ
hj
n , u

hj
n . From formulas (1.8), (1.10)

and (3.1) we derive the relation

∥∇xu
h;L2(Ωh)∥2 = λh∥uh;L2(Ωh)∥2 ⩽ c. (3.3)

We set

uh(z) =
1

|ωh(z)|

∫
ωh(z)

uh(y, z) dy, (3.4)

uh⊥(yz) = uh(y, z)− uh(z),

∫
ωh(z)

uh⊥(y, z) dy = 0. (3.5)

Here,

ωh(z) = {y : (y, z) ∈ Ωh} (3.6)
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and

|ωh(z)| = hd−1H(z)d−1|ω| (3.7)

are the cross-section of the spindle (1.1) and its (d−1)-dimensional area. Recalling the definition
of the weighted norm in Section 2 § 2 and taking into account formulas (3.4), (3.3) and (1.10),
we write down the inequalities

∥uh;L∥2 =
1∫

−1

H(z)d−1|uh(z)|2 dz = 1

h2(d−1)|ω|2

1∫
−1

1

H(z)d−1

( ∫
ωh(z)

uh(y, z) dy

)2

dz ⩽

⩽
1

hd−1|ω|

1∫
−1

∫
ωh(z)

|uh(y, z)|2 dydz = 1

|ω|
h1−d (3.8)

and

∥∂zuh;L∥2 =
1

|ω|2

1∫
−1

H(z)d−1

∣∣∣∣ ∂∂z
∫
ω

uh(hH(z)η, z) dη

∣∣∣∣2 dz
⩽ c

1∫
−1

H(z)d−1

∣∣∣∣ ∫
ω

(
|∂zuh(hH(z)η, z)|+ h|∂zH(z)| |η · ∇yu

h(hH(z)η, z)|
)
dη

∣∣∣∣2 dz
⩽ ch2(1−d)

1∫
−1

H(z)1−d

( ∫
ωh(z)

(
|∂zuh(y, z)|+ h|∇yu

h(y, z)|
)
dy

)2

dz

⩽
c

hd−1
∥∇xu

h;L2(Ωh)∥2 ⩽ ch1−d.

Thus, we can pass to another subsequence such that, with a redefinition of the notation {hl}j∈N,
there holds the weak convergence

hj
(d−1)/2uhj

n → v̂n ∈ H = V1
(d−1)/2(−1, 1) as j → +∞, (3.9)

which implies strong convergence in the space L = L2
(d−1)/2(−1, 1) in view of Lemma 2.3.

Finally, due to the orthogonality condition (3.5) we can apply the Poincaré inequality in the
domain (3.6) of diameter O(hH(z)) to obtain the relation

h−2

∫
Ωh

H(z)−2|uh⊥(y, z)|2 dydz ⩽ cω

∫
Ωh

|∇yu
h
⊥(y, z)|2 dx

= cω

∫
Ωh

|∇y(u
h
⊥(y, z) + uh(z))|2 dx ⩽ cω∥∇xu

h;L2(Ωh)∥2 ⩽ C. (3.10)

Hence, owing to this, we have

1 =

∫
Ωh

|uh(z) + uh⊥(y, z)|2 dx,
∫
Ωh

|uh⊥(y, z)|2 dx ⩽ CΩh
2(d−1) (3.11)

⇒
∣∣∣∣hd−1

1∫
−1

H(z)d−1|uh(z)|2 dz − 1

|ω|

∣∣∣∣ ⩽ ch2 ⇒ ∥v̂n;L∥ = |ω|−1/2.
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Let φ ∈ C∞
c (−1, 1). According to formula (1.4), the function φ of the longitudinal variable

z satisfies the Dirichlet condition for a small h > 0 and can be inserted in the integral identity
(1.8) as a test function. Taking definition (3.4) into account, we obtain that

h1−d

1∫
−1

φ(z)

∫
ωh(z)

uh(y, z) dydz = |ω|
1∫

−1

H(z)d−1φ(z)uh(z) dz (3.12)

and

h1−d

1∫
−1

∂zφ(z)

∫
ωh(z)

∂zu
h(y, z) dydz

1∫
−1

H(ζ)d−1∂ζφ(ζ)

∫
ω

(∂ζu
h(hH(ζ)η, ζ) + h∂ζH(ζ)η · ∇yu

h(hH(ζ)η, ζ))dηdζ =

= |ω|
1∫

1

H(z)d−1∂zφ(z)∂zu
h(z) dz + h2−d

∫
Ωh

∂zφ(z)∂zH(z)η · ∇yu
h(y, z) dydz. (3.13)

The last integral Jh (including the factor h2−d) can be estimated by

|Jh| ⩽ ch2−d∥∂zφ;L2(Ωh)∥ ∥η · ∇yu
h;L2(Ωh)∥

⩽ cφh
1+(1−d)/2∥∇yu

h;L2(Ωh)∥ ⩽ Cφh
1+(1−d)/2. (3.14)

Thus, the convergence (3.2) for λh and (3.9) for h(d−1)/2uh together with the inequality (3.14)
as well as passing to the limit h → +0 in the integral identity (1.8) with the test function
ψh(x) = h(d−1)/2φ(z) lead to the relation

(Hd−1∂zv̂n, ∂zφ) = µ̂n(H
d−1v̂n, φ) ∀φ ∈ C∞

c (−1, 1). (3.15)

By a density argument, the one-dimensional integral identity (3.15) holds for all test functions
φ ∈ H and, therefore, µ̂n is an eigenvalue and v̂n is the corresponding eigenfunction of the
problem (2.14), which is non-zero due to the last equality in (3.12).

All in all, we have proved the next assertion which is known as the “convergence theorem”.

Lemma 3.1. Given the eigenpair {λhn, uhn} satisfying the relations (3.1) and (1.10), the con-
vergent sequences (3.2), (3.9) and formula (3.4) define the spectral pair {µ̂n, v̂n} of the equation
(2.9).

We emphasize that the coinciding of the eigenvalues µ̂n and µn has not been proved yet.

3.2 Abstract formulation of the problem. We endow the Hilbert spaceHh = H1
0 (Ω

h; Γh)
with the natural scalar product

⟨uh, φh⟩h = (∇xu
h,∇xψ

h)Ωh + (uh, ψh)Ωh (3.16)

and define the operator Kh,

⟨Khuh, ψh⟩h = (uh, ψh)Ωh ∀uh, ψh ∈ Hh (3.17)

which is positive, symmetric, continuous and thus self-adjoint. Formulas (3.16) and (3.17) show
that the variational formulation (1.8) of the problem (1.5)–(1.7) is equivalent to the abstract
equation

Khuh = κhuh in Hh
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with the new spectral parameter

κh = (1 + λh)−1. (3.18)

In view of the compactness of the embedding H1
0 (Ω

h; Γh) ⊂ L2(Ωh), the operator Kh is
compact so that by [2, Theorems 10.1.5 and 10.2.1] its essential spectrum consists of the single
point κ = 0 and its discrete spectrum forms a positive sequence convergent to null,

1 > κh1 > κh2 ⩾ κh3 ⩾ · · · ⩾ κhn ⩾ · · · → +0 (3.19)

which comes from the sequence (1.9) via (3.18).
The next assertion follos from the spectral decomposition of resolvent (see, e.g., [2, Ch. 6]) is

known as the lemma on “almost eigenvalues and eigenvectors”, [14].

Lemma 3.2. Let Uh ∈ Hh and kh > 0 be such that

∥Uh;Hh∥ = 1, ∥KhUh − khUh;Hh∥ = th ∈ [0, κh).

Then, there exists an element of the sequence (3.19) which fulfils

|kh − κhp | ⩽ th. (3.20)

Moreover, for any T h ∈ (th,kh), one finds a coefficient vector ch = (ch
Nh , . . . c

h
Nh+Kh−1

) ∈ RKh

satisfying the relations∥∥∥Uh −
Nh+Kh−1∑

q=Nh

chqUh
q ;Hh

∥∥∥ ⩽ 2
th

T h
,

Nh+Kh−1∑
q=Nh

|chq |2 = 1. (3.21)

Here, Uh
Nh , . . . ,Uh

Nh+Kh−1
∈ Hh is the set of all eigenvectors of the operator Kh which correspond

to the eigenvalues in the interval [kh − T h,kh + T h] and are subject to the orthogonality and
normalization conditions ⟨Uh

q ,Uh
p ⟩h = δq,p.

3.3. Almost eigenvalue and eigenvector. In this section we deal with dimensions d ⩾ 4
and postpone the spatial and planar cases d = 3, 2 to the next two sections. Taking the
eigenvalue µn and the eigenfunction vn ∈ H of the limit problem (2.14), we set

kn = (1 + µn)
−1, Uh

n = ∥uh
n;Hh∥−1uh

n, u
h
n = Xhvn (3.22)

where we introduced the cut-off function

Xh(z) = χ(h−2(1− hρ− + z))χ(h−2(1− hρ+ − z)) (3.23)

and χ is the reference cut-off function (2.13). Moreover,

|∂zXh(z)| ⩽ ch−2, supp (∂zX
h) ⊂ Ωh

‡ =
{
x ∈ Ωh : ∓z + 1− hρ± ∈ [h2/2, h2]

}
,

|Ωh
‡ | ⩽ ch2d and |vn(z)| ⩽ cn, |∂zvn(z)| ⩽ cnh for x ∈ Ωh

‡ (3.24)

by definitions (1.2), (1.1) and Lemma 2.4.
Thus, the function uh

n ∈ C∞
c (−1, 1) vanishes for ±z ∈ (1 − hρ±, 1) and, therefore, satisfies

the Dirichlet condition (1.6) on the sets (1.4) and belongs to the space Hh. In Lemma 3.6 we
will show that

∥uh
n;Hh∥ ⩾ ch(d−1)/2, c > 0. (3.25)

Taking into account formulas (3.16), (3.17) yields

thn := ∥KhUh
n − knU

h
n;Hh∥ = sup |⟨KhUh

n − kh
nU

h
n, ψ

h⟩| =
= ∥uh

n;Hh∥−1(1 + µn)
−1 sup

∣∣µn(u
h
n, ψ

h)Ωh − (∇xu
h
n,∇xψ

h)Ωh

∣∣ , (3.26)
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where the supremum is computed over the unit ball of the space Hh, hence,

∥ψh;Hh∥2 = ∥∇xψ
h;L2(Ωh)∥2 + ∥ψh;L2(Ωh)∥2 ⩽ 1. (3.27)

Let us evaluate the quantity (3.26). As in (3.12), we deduce that

µn(u
h
n, ψ

h)Ωh = hd−1|ω|µn(H
d−1un, X

hψ
h
) (3.28)

where ψ
h
is the mean value (3.4) of the function ψh of the cross-section (3.6) of the spindle Ωh.

Furthermore,

(∇xu
h
n,∇xψ

h)Ωh = (∂zvn, ∂z(X
hψh))Ωh + (vn∂zX

h, ∂zψ
h)Ωh −

−(∂zvn, ψ
h∂zX

h)Ωh =: Ih1 (ψ
h) + Ih2 (ψ

h)− Ih3 (ψ
h). (3.29)

We make the substitutions φ 7→ vn, u
h 7→ Xhψh in the calulations (3.13) and (3.14) , recall

(3.27) and end up with the inequality∣∣∣Ih1 (ψh)− hd−1|ω|(Hd−1∂zvn, ∂z(X
hψ

h
))
∣∣∣ ⩽

⩽ c

∫
Ωh

|∂zvn(z)| |∂zH(z)|h |η · ∇y(X
h(z)ψh(x))| dx ⩽

⩽ cHh
(d−1)/2∥H(d−1)/2∂zvn;L

2(−1, 1)∥h ∥∇yψ
h;L2(Ωh)∥ ⩽ cnh

(d+1)/2. (3.30)

It remains to consider the terms of (3.29) which contain derivatives of the cut-off function
Xh. We denote by Ωh

‡ the support of these derivatives and observe that it is finite union of sets

with diameter O(h2). Thus, by formulas (3.24), we obtain

|Ih2 (ψ)| ⩽ ch−2|Ωh
‡ |1/2max

x∈Ωh
‡

|vn(z)| ∥∇xψ
h;L2(Ωh)∥ ⩽ cnh

d−2,

|Ih3 (ψ)| ⩽ c|Ωh
‡ |1/2max

x∈Ωh
‡

|∂zvn(z)|h−2∥ψh;L2(Ωh)∥ ⩽ cnh
d−1. (3.31)

The subtrahend on the left-hand side of (3.30) coincides with the expression (3.28) due to the
integral identity (2.14), so that taking into account (3.25), our calculations yield the estimate

thn ⩽ cnh
(1−d)/2(h(d+1)/2 + hd−2) ⩽ 2cnh

min{2,d−3}/2. (3.32)

This bound vanishes on the limit h → +0 only, if d ⩾ 4: the definition (3.22) is useless in the
case d = 3 of the spatial spindle. Nevertheless, we formulate the following theorem, the proof
of which will be completed in the next section for d ⩾ 4 (note Remark 3.4 for d = 4) and by
using a different construction in Sections 3 and 4 § 4. The planar case d = 2 is postponed to
§ 5, since the corresponding error estimates will become of a completely different nature (see
Proposition 5.7).

Theorem 3.3. For d ⩾ 3 and n ∈ N, there exist positive numbers c
(n)
d and h

(n)
d such that the

eigenvalues (1.9) and (2.17) of the problems (1.8) and (2.14), respectively, are related by

|λhn − µn| ⩽ c
(n)
d h for h ∈ (0, h

(n)
d ]. (3.33)

Remark 3.4. Lemma 3.2 and inequality (3.32) for d = 4 already give the estimate (3.33)

with the weaker bound c
(n)
4 h1/2, however, the full statement of Theorem 3.3 for d = 4 needs the

construction of the boundary layers, which will be described in detail for the three-dimensional
spindle (see also Section 3 §6 for the general situation). This improvement is not of principal

importance because of the power-law order of smallness in the bound c
(n)
4 h1/2 (cf. §5 for the

case d = 2). If one only proceeds with this weaker form of the relation (3.32) then, for d = 4,
one has to replace the multipliers h by h1/2 in Section 4 §3. ⊠
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3.4. Asymptotics of eigenfunctions. By Lemma 3.2 we find an eigenvalue κhp of the

operator Kh such that the estimate (3.20), including (3.22) and (3.32), holds true. Thus, using
(3.22) and (3.18) we deduce that

|λhp − µn| ⩽ cnh(1 + λhp)(1 + µn) ⇒ (1 + λhp)(1− cnh(1 + µn)) ⩽ 1 + µn ⇒

⇒ 1 + λhp ⩽ 2(1 + µn) for h ⩽ h
(n)
d := (2cn(1 + µn))

−1. (3.34)

Hence, in view of the the first and last formulas in (3.34), we obtain the relation (3.33) with the

coefficient c
(n)
d = 2cn(1+µn)

2, but only for some eigenvalue λhp of (1.9) with an unknown index

p = ph(n) in the place of λhn. Since the eigenvalues (2.17) of the problem (2.14) are simple, the
mapping n 7→ ph(n) satisfies ph(m) < ph(n) for all m < n and small enough h, hence, there
holds ph(n) ⩾ n for all n ∈ N and small h.

Remark 3.5. The relation (3.1) can now proved by

λhn ⩽ λhph(n) ⩽ µn + cnh(1 + µn)
2.

The same considerations and calculations will also be applied in Sections 4 § 4 and 5 § 5 so that
(3.1) holds true also in the cases d = 3 and d = 2. ⊠

Let us assume that ph(n) > n. Then, due to formula (3.34) the limit limλhn+1 = µ̂n+1 ⩽ µn

is an eigenvalue of equation (2.9) for a small h, by Lemma 3.1. The eigenfunction uhn+1 is
orthogonal to the eigenfunctions uh1 , . . . , u

h
n in L2(Ωh), and the strong convergence (3.9) and

transformations analogous to (3.7), (3.10), (3.12) yield the following equalities in the limit as
h→ +0 (cf., (2.18)):

(Hd−1v̂n+1, v̂ℓ) = 0, ℓ = 1, . . . , n.

Consequently, we have found n + 1 eigenfunctions of the problem (2.7) which are mutually
orthogonal in the space L to each other and correspond to the eigenvalues µ1, . . . , µn. This is
impossible, and Theorem 3.3 is thus proved for d ⩾ 4.
We derive an estimate of the remainder in the asymptotic representation of the eigenfunction

uhn for the second part of Lemma 3.2, and to this end we need another estimate which also holds
for d ⩾ 4 only.

Lemma 3.6. Let vn and vm be eigenfunctions of the equation (2.9) subject to the orthogonality
and normalization conditions (2.18). Then, the products uh

n = Xhvn and uh
m = Xhvm with the

cut-off function (3.23) satisfy the inequality∣∣⟨uh
n,u

h
m⟩h − hd−1|ω|(1 + µn)δn,m

∣∣ ⩽ cm,nh
d+min{0,d−4} (3.35)

where the bound is o(hd−1) in the case d ⩾ 4.

Proof. We can directly write∣∣(Xhvn, X
hvm)Ωh − hd−1|ω|(Hd−1vn,vm)

∣∣ ⩽ cn,mh
d

because the d-dimensional volume of the set {x ∈ Ωh : Xh(z) ̸= 1} equals O(hd). Moreover,

(∇xu
h
n,∇xu

h
m)Ωh = hd−1|ω|(Hd−1∂zvn, ∂zvm)− ((1−Xh)∂zvn, (1 +Xh)∂zvm)Ωh +

+ (vn∂zX
h,vm∂zX

h)Ωh
‡
+ (Xh∂zvn,vm∂zX

h)Ωh
‡
+ (vn∂zX

h, Hh∂zvm)Ωh
‡
, (3.36)

where we label the last four scalar products by j = 1, . . . , 4. The moduli of them can be
estimated using the relations (3.24) by the bounds cjh

ρj , where

ρ1 = d+ 2, ρ2 = 2d− 4, ρ3 = ρ4 = 2d− 1.

It remains to recall the identity (2.14) and the definition of the scalar product (3.16). ⊠
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Thus, ∥uh
n;Hh∥ = h(d−1)/2(((1 + µn)

1/2|ω|1/2 +O(h)). In Lemma 3.2 we choose T h = Tn > 0
such that the interval [kn − Tn,kn + Tn] contains only one eigenvalue κhn = (1 + µn)

−1 + O(h)
of the operator Kh, cf. Theorem 3.3. Then Nh = n, Kh = 1 in (3.21) and, therefore, chn = ±1;
if necessary we change sign of Uh

n and obtain chn = 1. Furthermore, the normalization of the
eigenfunctions uhn and Uh

n implies that

∥uhn;Hh∥2 = (1 + λhn)∥uhn;L2(Ωh)∥2 = 1 + λhn ⇒ uhn = (1 + µn +O(h))1/2Uh
n . (3.37)

Finally, a simple calculation gives us the last assertion in this section.

Theorem 3.7. For d ⩾ 4 and any n ∈ N, there exist positive numbers C
(n)
d and h

(n)
d such that

eigenfunctions of problems (1.8) and (2.14) are related by∥∥uhn − h(1−d)/2|ω|−1/2Xhvn;H
1(Ωh)

∥∥ ⩽ C
(n)
d h for h ∈ (0, h

(n)
d ].

4. Spatial spindle. Boundary layer and asymptotic correction terms.

4.1. Prelude. By Lemma 2.4, the eigenfucntion vn does not vanish at the points z =
±1 and, therefore, the main term of the ansatz (2.2) does certainly not satisfy the Dirichlet
condition (1.6) in the sets Γh

± of diameter O(h). That is why the construction (3.22) of the
almost eigenvector uh

n contained the cut-off function Xh and the bounds in estimates (3.32)
and (3.35) were not sufficiently small in the case d < 4. Thus, the asymptotic ansatz needs to
be modified at least near the ends of the spindle (1.1) and as usual it is necessary to construct
boundary layers (see, e.g., [14, 15], [16, Ch. 4, 5 and 15, 16], [17], [18], [19]). We will explain
by formal calculations both their structure and the passing to the stretched coordinates

ξ± = (ξ±• , ξ
±
d ) = h−2(ρ±H±)

−1(y, 1− hρ± ∓ z) (4.1)

where the positive numbers ρ± and H± are taken from (1.4) and (1.2).
First of all, in view of (1.2) and (4.1), we transform the multiplier of y in the definition (1.1)

of the spindle Ωh as follows:

h−1H(z)−1 = h−1(1∓ z)−1(H± +O(1∓ z))−1 =

= h−1(hρ± + h2ρ±H±ξ
±
d )

−1(H± +O(hρ±(1 + hH±ξ
±
d )))

−1 =

= h−2(ρ±H±)
−1(1 +O(hH±ξ

±
d (1 + hH±ξ

±
d ))). (4.2)

The dilation coefficient h−2(ρ±H±)
−1 in (4.1) thus becomes correct because the cross-sections

ωh(±1 ∓ ρ±h) transform into the domain ω of unit size. As a result, the change x 7→ ξ± and
the formal passing to h = 0 convert the domain Ωh into the cylinder Π = ω × R ∋ (ξ±• , ξ

±
d ).

Moreover, the conical surface Γh
± turns into the cylindrical surface (∂Π)−: the bounds in formula

(1.4) turn into −(hH±)
−1 < ξ±d < 0 in the stretched coordinates (4.1) as the parameter h tends

to zero. Besides, we have set (∂Π)± = {ξ ∈ ∂Π : ±ξd > 0}.
Now we predict that in the case d ⩾ 3 the refined ansatz (2.2) looks as follows at some

distance from the top zones of the spindle :

uh(x) = v(z) + hd−2v′(z) + h2(V (η, z) + hd−2V ′(η, z)) + . . . . (4.3)

Here, v′ is an unknown function in the interval (−1, 1) having the following behaviour at its
endpoints:

v′(z) = (1∓ z)2−d(c± + . . . ). (4.4)

The singularity is matched with the solution (2.20) of the model equation (2.19) and the
quantities c± must be fixed such that the sum of the first couple of the terms on the right-hand
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side of (4.3) vanishes at the points z = ±1∓ ρ±h; this allows us to extend the sum as null over
the ends {x ∈ Ωh : ±z > 1− hρ±}, and hence the Dirichlet condition (1.6) is met by the sum
on the surfaces Γh

±. Due to relations (4.4), (4.1) and the Taylor formula, we have

v(z) + hd−2v′(z) = v(±1) + c±h
d−2(hρ± + h2ρ±H±ξ

±
d )

2−d + · · · =
= v(±1) + c±ρ

2−d
± − hc±(d− 2)ρ2−d

± H±ξ
±
d + . . . . (4.5)

Thus, the explicit terms of the expression (4.5) vanish at ξ±d = 0, if and only if

c± = −ρd−2
± v(±1). (4.6)

Furthermore, in the framework of the method of matched asymptotic expansions (see the
monographs [20, 17], [16, Ch. 2] and others), we observe from the form of the coefficient
of h on the right-hand side of (4.5) that, near the ends of the spindle, the main terms of
the inner expansions of the solutions of (1.5)–(1.7) must be functions with linear growth as
ξ±d → +∞.

4.2. Mixed boundary value problem in the cylinder. Formulas (2.1), (2.5) and (4.1)
imply the relations

∆x + λh = h−4∆ξ± + µ+ . . . ,

∂ν(x) = h−2∂ν′(η) + . . . . (4.7)

Taking into account the leading terms and using the geometric transformations of Section 1 § 4
yield the following boundary value problem in the cylinder Π (Fig. 1, b):

−∆ξw(ξ) = 0, ξ ∈ Π = ω × R,
w(ξ) = 0, ξ ∈ (∂Π)− = ∂ω × R−,

∂ν′w(ξ) = 0, ξ ∈ (∂Π)+ = ∂ω × R+. (4.8)

It would not be difficult to find a solution1 of the corresponding inhomogeneous problem (4.8)
with a bounded Dirichlet integral (see Section 1 § 6) but in this section we only need a solution
of the homogeneous problem with linear growth as ξ±d → +∞ (cf., the end of Section 1 § 4).
This solution is defined by its behaviour at infinity:

W (ξ) = W̃−(ξ), ξd < 0,

W (ξ) = ξd +Kω + W̃+(ξ), ξd > 0. (4.9)

Here, Kω is a constant depending only on the cross-section ω of the cylinder Π and W̃± are
exponentially decaying remainders,∣∣∣W̃±(ξ)

∣∣∣ ⩽ ce−κ±|ξd|, ±ξd > 0, κ± > 0, (4.10)

where κ2+ and κ2− are the first positive eigenvalues of the Neumann and Dirichlet problems in
the domain ω.

4.3. Boundary layers in the spatial case. Let us fix dimension d = 3, although we
will still write in the following the exponents as d− 1, d− 2 and so on, in order to match the
notation with the subsequent sections. We refine the ansatz (2.1) as follows:

λhn = µn + hd−2µ′
n + . . . . (4.11)

1Formally self-adjoint boundary value problems for elliptic systems in domains with cylindrical outlets to
infinity are studied in detail in the papers [21], [22, § 3]; these results require only some algebraic operations,
which become particularly simple in the case of the Laplace operator.
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The outer expansion (4.3) of the eigenfunction uhn of the problem (1.5)–(1.7) includes the
bounded eigenfunction v = vn of the equation (2.9), which is normalized in L, and the correction
term v′ = v′

n with the decomposition (4.4); this and the number µ′
n on the right-hand side of

(4.11) are to be determined. As in Section 1 § 2, the term V ′
n(η, z) can be found from the

following problem, which is analogous to (2.4), (2.6) and formulated on the cross-section ω
with the parameter z ∈ (−1, 1), namely

−H(z)−2∆ηV
′(η, z) = ∂2zv

′
n(z) + µnv

′
n(z) + µ′

nvn(z), η ∈ ω,

H(z)−2∂ν′(η)V
′(η, z) = H(z)−1∂zH(z) η · ν ′(η) ∂zv′

n(z), η ∈ ∂ω.

The compatibility condition in this Neumann problem turns into the inhomogeneous ordinary
differential equation (2.9)

−∂z(H(z)d−1∂zv
′
n(z))− µnH(z)d−1v′

n(z) = µ′
nH(z)d−1vn(z), z ∈ (−1, 1). (4.12)

The matching procedure for the outer expansion (4.5) uses formulas (4.9) and (4.6), and
yields the inner expansion

uh(x) = h(d− 2)vn(±1)H±W (ξ±) + . . . .

This also makes our prediction (4.4) precise:

v′
n(z) = v̂ ′

n(z)−
∑
±

χ±(z)(1∓ z)2−dρd−2
± vn(±1), (1− |z|)d−2v̂ ′

n(z)
∣∣
z=±1

= 0. (4.13)

Here and later we employ the cut-off functions defined by (2.13) and

χ±(z) = χ(±z). (4.14)

There exists a solution to equation (4.12) with behaviour (4.13) near the ends of the interval
(−1, 1), if and only if the following condition is satisfied

µ′
n = µ′

n

1∫
−1

H(z)d−1vn(z)
2dz

= − lim
ε→+0

1−ε∫
−1+ε

vn(z)
(
∂z(H(z)d−1∂zv

′
n(z)) + µnH(z)d−1v′

n(z)
)
dz (4.15)

= − lim
ε→+0

∑
±

±
(
vn(±1∓ ε)H(±1∓ ε)d−1∂zv

′
n(±1∓ ε)

−v′
n(±1∓ ε)H(±1∓ ε)d−1∂zvn(±1∓ ε)

)
.

We compute the limit with the help of the formulas (2.21), (1.2), (4.13) and finally obtain that

µ′
n = (d− 2)

∑
±

Hd−1
± ρd−2

± vn(±1)2
∣∣
d=3

=
∑
±

H2
±ρ±vn(±1)2. (4.16)

Thus, the correction term in the ansatz (4.11) has been found. Let us formulate an assertion
the proof of which will be presented in the next section.

Theorem 4.1. Let d = 3. For all n ∈ N, there exist positive numbers c
(n)
3 and h

(n)
3 such that

there holds the inequality ∣∣λhn − µn − hµ′
n

∣∣ ⩽ c
(n)
3 h3/2 for h ∈ (0, h

(n)
3 ], (4.17)

where λhn and µn are the entries of the sequences (1.9) and (2.17), and µ′
n is the quantity (4.16).
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Of course, formula (4.17) also implies the estimate (3.33).

4.4. Error estimates in the spatial case. We next derive an inequality which completes
the proof of Theorem 3.3. Moreover, we found in (4.16) the correction term in the representation
(4.11) for the eigenvalue λhn, which led to the much more precise asymptotic formula (4.17) in
comparison with (3.33). Here, we will present a couple of estimates, which together with
the considerations in Section 3 and 4 § 3, also yield the proof of (4.17) and thus of Theorem
4.1. Furthermore, in section 3 § 6 we will extend the discussion to infinite asymptotic series for
eigenvalues and eigenfunctions.

The quantity kh
n = (1+ µn + hµ′

n)
−1 differs only little from kn in (3.22), but the structure of

the corresponding function uh
n is much more complicated:

uh
n(x) = Xh(z)vh

n♭(z) + hX
√
h(z)v̂ ′

n(z) + h
∑
±

χ±(z)wn±(η, ξ
±
3 ) + h2Xh(z)V (η, z).(4.18)

Here, V is a solution of the problem (2.4), (2.6) subject to restriction (2.8) and estimate (2.25),

vh
n♭(z) = vn(z)− h

∑
±

χ±(z)(1∓ z)2−dρd−2
± vn(±1) (4.19)

and v′
n is a solution to problem (4.12), (4.13) which exists due to relation (4.15) and has the

representation (4.13); it is not unique but has been fixed somehow. Moreover, we will verify in
Lemma 4.2 the inequality

|v̂ ′
n(z)| ⩽ cn(1 + | ln(1− |z|)|), |∂zv̂ ′

n(z)| ⩽ cn(1− |z|)−1 (4.20)

for d = 3. The cut-off functions Xh, χ± and X
√
h, χh

± are defined in formulas (3.23), (4.14) and

X
√
h(z) = χ(h−1(1− hρ− + z))χ(h−1(1− hρ+ − z)), (4.21)

χh
±(z) = χ

(3
2
+

3

2
(hρ±)

−1(1− hρ± ∓ z)
)
χ
(3
2
− 3

2
(hρ±)

−1(1− hρ± ∓ z)
)
. (4.22)

Furthermore, X
√
h(z) = 1 for z ∈ (−1 + h(1 + ρ−), 1 − h(1 + ρ+)) and X

√
h = 0 in small

neighborhoods of the sets Γh
±, while χ

h
± equals one in the (hρ±/3)-neighborhood of the point

z = ±1∓ hρ± and null outside its (2hρ±/3)-neighborhood.
Finally, ξ± = (ξ±• , ξ

±
3 ) ∈ Π and η ∈ ω are the stretched coordinates, see (4.1) and (1.1). The

function

wn±(ξ
±) = vn(±1)H±(W (ξ±)−X±(ξ

±
3 )ξ

±
3 ), where X±(ξ

±
3 ) = χ(ρ±H±ξ

±
3 ), (4.23)

is defined by using the special solutionW of the problem (4.8) in the cylinder Π, see Section 2 § 4.
The definition of W can be extended to the whole spindle Ωh, since it is rewritten in the
coordinates (η, ξ±3 ) and multiplied with the cut-off function χh

±(z). Finally, due to relations
(4.9) and (4.10), the function (4.23) decays exponentially as ξ±3 → −∞ and converges to the
constant vn(±1)H±Kω as ξ±3 → +∞. The derivatives of (4.23) vanish at infinity with the rate

O(e−κ0|ξ±3 |), κ0 > 0.
We next derive analogues of formulas (3.26), (3.32) and (3.35), namely we treat the quantities

⟨uh
n,u

h
n⟩h = ∥∇xu

h
n;L

2(Ωh)∥2 + ∥uh
n;L

2(Ωh)∥2, (4.24)

sup
∣∣(µn + hµ′

n)(u
h
n, ψ

h)Ωh − (∇xu
h
n,∇xψ

h)Ωh

∣∣ , (4.25)

where the supremum is taken over all functions ψh belonging to the unit ball of Hh, cf. (3.27).
We proceed with (4.24) and immediately find that, thanks to the boundedness of the function

wn± in Π and the exponential decay of its derivatives,

h2∥∇x(χ
h
±wn±);L

2(Ωh)∥2
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⩽ ch2
∫
Υh

±

∫
ωh(z)

( 1

h4
|∇ξwn±(η, ξ

±
3 )|2 +

1

h2
|wn±(η, ξ

±
3 )|2

)
dydz

⩽ Ch2
(
h−4h6∥eκ|ξ

±
3 |∇ξ±wn±;L

2(Π)∥max
z∈Υh

±

(
e−2κ|ξ±3 |(1 + hH±|ξ±3 |)2

)
+h−2mes3{x ∈ Ωh : z ∈ Υh

±} sup
ξ±∈Π

|wn±(ξ
±)|2

)
⩽ ch4. (4.26)

Here κ ∈ (0, κ0) and according to definitions (4.22) and (1.1), (1.2), (4.1)

Υh
± = {z : | ± z − 1 + hρ±| ⩽ 2hρ±/3} ⊃ suppχh

±, dydz = (h2ρ±H±)
3dηdξ±3 ,

|ωh(z)| = O(h2(1± z)2) = O(h4ρ2±(1 + hH±|ξ±3 |)2) for z ∈ Υh
±.

With the help of formulas (2.25) and (3.23), (3.24) we conclude that

h4∥∇x(X
hV );L2(Ωh)∥2

⩽ ch4
( 1∫

−1

∫
ωh(z)

( 1

h2H(z)2
|∇ηV (η, z)|2 + |∂zV (η, z)|2

)
dydz

+
∑
±

1−hρ±+ch2∫
1−hρ±−ch2

∫
ωh(±t)

1

h4
|V (η,±t)|2dydt

)
⩽ ch4

(
h−2h2 + h−4h2h4

)
⩽ Ch4. (4.27)

Furthermore,

∥∇x(X
hvh

n♭ + hX
√
hv̂ ′

n);L
2(Ωh)∥2

= h2|ω|
1∫

−1

H(z)2
∣∣Xh(z)∂zv

h
n♭(z) + vh

n♭(z)∂zX
h(z) + h∂z(X

√
h(z)v̂ ′

n(z))
∣∣2dz

= h2|ω|
1∫

−1

H(z)2|∂zvn(z)|2dz +O(h5/2). (4.28)

Here, the bound ch5/2 for the remainder follows from the next observation, based on the formulas
(4.19), (4.13) and (3.23):

|vh
n♭(z)| ⩽ cnh for x ∈

⋃
±

υh±, |v̂ ′
n(z)| ⩽ cn(1 + | lnh|) for x ∈

⋃
±

Υh
±,

|∂zXh(z)| ⩽ cXh
−2, |∂zX

√
h(z)| ⩽ cXh

−1. (4.29)

We also have

υh± = {z : ±z − 1 + hρ± ∈ [−h2,−h2/2]}
and

h2
1∫

−1

H(z)2Xh(z)2|∂z(vh
n(z)− vh

n♭(z))|2dz ⩽ ch4
C∫

ch

t−2dt ⩽ cnh
3,
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h2
1∫

−1

H(z)2(1−Xh(z)2)|∂zvh
n♭(z)|2dz ⩽ cnh

7,

h2
1∫

−1

H(z)2|∂zXh(z)|2|vh
n♭(z)|2dz ⩽ cnh

3,

h4
1∫

−1

H(z)2|∂z(X
√
h(z)v̂ ′

n(z))|2dz ⩽ cnh
4. (4.30)

Similar but much simpler computations give an approximate formula, analogous to (4.28),

for the L2(Ωh)-norm of the sum Xhvh
n♭ + hX

√
hv̂ ′

n + h
∑

± χ
h
±wn± + h2XhV . This estimate

together with the normalization of the eigenfunction

(H2∂zvn, ∂zvn) = µn(H
2vn,vn) = µn

which follows from (2.18) and (2.14), prove the desired inequality in the case d = 3∣∣⟨uh
n,u

h
n⟩h − h2|ω|(1 + µn)

∣∣ ⩽ cnh
5/2; (4.31)

cf. inequality (3.35) with d ⩾ 3.
Let us turn to the quantity (4.25) where the expression inside the modulus is the sum of the

following terms:

Ih1 (ψ
h) = (µn + hµ′

n)(vn + hv′
n, X

hψh)Ωh − (∂zvn + h∂zv
′
n, ∂z(X

hψh))Ωh

−h2(∇xV,∇x(X
hψh))Ωh ,

Ih2 (ψ
h) = −(vh

n♭∂zX
h, ∂zψ

h)Ωh + (∂zv
h
n♭, ψ

h∂zX
h)Ωh ,

Ih3 (ψ
h) = h(µn + hµ′

n)((X
√
h −Xh)ṽ ′

n, ψ
h)Ωh

+h(∂zṽ
′
n, ∂z(X

hψh))Ωh − h(∂z(X
√
hṽ ′

n), ∂zψ
h)Ωh ,

Ih±4 (ψh) = h(µn + hµ′
n)(χ

h
±wn±, ψ

h)Ωh ,

Ih±5 (ψh) = −h(∇x(χ
h
±wn±),∇xψ

h)Ωh

Ih±6 (ψh) = h2(µn + hµ′
h)(X

hV, ψh)Ωh − h2(V ∂zX
h, ∂zψ

h)Ωh + h2(∂zV, ψ
h∂zX

h)Ωh .(4.32)

We proceed with the term which is the simplest, due to the factor h2. We repeat the
calculation (4.27), with a small modification, take (2.25) into account and observe that

|Ih6 (ψh)| ⩽ ch2
(
∥XhV ;L2(Ωh)∥ ∥ψh;L2(Ωh)∥

+
1

h2

∑
±

1−hρ±+ch2∫
1−hρ±−ch2

(
|V (η,±t)| |∂zψh(y,±t)|+ |ψh(y,±t)| |∂zV (η,±t)|

)
dydz

)
⩽ ch2(h2 + h−4h2h4)1/2∥ψh;Hh∥ ⩽ Ch3. (4.33)

Let us now process the expression on the first line of the list (4.32):

Ih1 (ψ
h) = Ih11(ψ

h) + Ih12(ψ
h) + Ih13(ψ

h),

Ih11(ψ
h) = hµ′

n(vn, X
hψh)Ωh + h(µn + hµ′

n)(v
′
n, X

hψh)Ωh ,

Ih12(ψ
h) = −h(∂zv′

n, ∂z(X
hψh))Ωh ,

Ih13(ψ
h) = µn(vn, X

hψh)Ωh − (∂zvn, ∂z(X
hψh))Ωh − h2(∇xV,∇x(X

hψh))Ωh . (4.34)
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As in formulas (3.4) and (3.5) we represent the test function ψh in the form ψ
h
+ψh

⊥. Repeating
the calculations (3.8) and (3.14) yields

Ih11(ψ
h) = h3|ω|

(
µ′
n(H

2vn, X
hψ

h
) + µn(H

2v′
n, X

hψ
h
)
)
+ h4|ω|µ′

n(H
2v′

n, X
hψ

h
), (4.35)

Repeating again with small modifications the calculations (3.13), (3.14), which are applied to
the functions v′

n, X
hψh, we find that∣∣∣Ih12(ψh) + h3|ω|(H2∂zv

′
n, ∂z(X

hψ
h
))
∣∣∣

⩽ ch2
∣∣∣∣ ∫
Ωh

Xh(z)∂zv
′
n(z)η · ∇yψ

h(x)dx

∣∣∣∣
⩽ ch2∥Xh∂zv

′
n;L

2(Ωh)∥ ∥∇yψ
h;L2(Ωh)∥ ⩽ ch5/2.

We emphasize that the singularity (4.1), (4.4) of the correction term v′
n is eliminated by the

cut-off function (3.23) so that the L2(Ωh)-norm of the product Xh∂zv
′
n is O(h1/2). The last

expression in (4.34) is transformed by integration by parts as

Ih13(ψ
h) = (µnvn + ∂2zvn + h2∆xV,X

hψh))Ωh − (∂ν(vn + h2V ), Xhψh))∂Ωh

=: Ih14(ψ
h)− Ih15(ψ

h). (4.36)

The differentiation rule (2.3), estimate (2.25) and equation (2.4) show that

|Ih14(ψh)| ⩽ ch2
(
∥∂2zV ;L2(Ωh)∥+ ∥∂z∂ηV ;L2(Ωh)∥+ ∥∂ηV ;L2(Ωh)∥

)
∥ψh;L2(Ωh)∥

⩽ ch3. (4.37)

Furthermore, using the same estimate (2.25) as well as the representation of the normal vector
(2.5), the boundary condition (2.6) and a simple trace inequality

h

∫
∂Ωh

H(z)|ψh(x)|2dsx ⩽ c

∫
Ωh

(
|∇xψ

h(x)|2 + |ψh(x)|2
)
dx,

we conclude the relation

|Ih15(ψh)| ⩽ ch2∥H−1/2∇(η,z)V ;L2(∂Ωh)∥∥H1/2ψh;L2(∂Ωh)∥ ⩽ ch2hh−1/2 = ch5/2. (4.38)

Summing up, we observe that the product Xhψ
h
vanishes in the neighborhoods of the points

z = ±1 and therefore the equation (4.12) can be reformulated as the integral identity

(H2∂zv
′
n, ∂z(X

hψ
h
))− µn(H

2v′
n, X

hψ
h
) = µ′

n(H
2vn, X

hψ
h
).

Thus, we have estimated all terms of the expression Ih1 (ψ
h) except the last one in (4.35) by

O(h5/2). But the remaining term meets the bound

h4|ω| |µ′
n|
∣∣∣(H2v′

n, X
hψ

h
)
∣∣∣ ⩽ ch4∥v′

n;L∥ ∥ψ
h
;L∥ ⩽ ch3,

because ∥ψ h
;L∥ ⩽ ch−1∥ψh;L2(Ωh)∥, where L = L2

1(−1, 1), can be deduced as in formula (3.8)
while the function v′

n also lives in the weighted space L due the singularities (4.13).
We also mention the elementary estimate

|Ih±4 (ψh)| ⩽ ch∥χh
±wn±;L

2(Ωh)∥ ∥ψh;L2(Ωh)∥ ⩽ chh5/2 = ch7/2, (4.39)

where we take into account the boundedness of the wn± (see relations (4.9), (4.10) and (4.23))
and the fact that the support of the function χh

± belongs to the closure of a narrow conical set
Ωh

± = {x ∈ Ωh : ±z ⩾ 1− 2hρ±} of volume O(h5).
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We now transform the last scalar product in (4.32) as follows:

Ih±5 (ψh) = −h(∇xwn±,∇x(χ
h
±ψ

h)Ωh − h(wn±∂zχ
h
±, ∂zψ

h)Ωh+

+h(∂zwn±, ψ
h∂zχ

h
±)Ωh = Ih±51 (ψh) + Ih±52 (ψh) + Ih±53 (ψh).

In view of formulas (4.22) and (2.13), the derivative ∂zχ
h
± differs from zero only for

|z ∓ 1± hρ±| ∈
[1
3
hρ±,

2

3
hρ±

]
⇔ |ξ±3 | ∈

[1
3

1

hH±
,
2

3

1

hH±

]
.

Hence, due to the decay rate O(e−κ0|ξ±3 |) of the gradient ∇ξ±wn± we obtain that

|Ih±53 (ψh)| ⩽ ch−me−κ0/h∥ψh;L2(Ωh)∥ ⩽ Cmh
5/2 (4.40)

for all m ∈ R and small h > 0 because κ0 > 0; note that the multipliers h−m with negative
exponents are caused by the differentiation of the functions wn± and χh

±. As in (4.18), the

inequality |wn±(ξ
±)| ⩽ c± and the smallness of the set suppχh

± ⊂ Ω
h

± yield the relation

|Ih±52 (ψh)| ⩽ chh−1|suppχh
±|1/2 ∥∂zψh;L2(Ωh)∥ ⩽ Cmh

5/2.

The immediate objective becomes to show that∣∣∣∣Ih±51 (ψh) + h3H±ρ±

∫
Π

∇ξ±w±(ξ
±) · ∇ξ±Ψ

h
±(ξ

±)dξ±
∣∣∣∣ ⩽ ch3. (4.41)

Here, Ψh
± is the product χh

±ψ
h written in the stretched coordinates (η, ξ±3 ). The estimate

∥Ψh
±;H

1(Ωh)∥2 ⩽ c(∥ψh;H1(Ωh)∥2 + h−2∥ψh;L2(Ωh
±)∥2) ⩽ c∥ψh;H1(Ωh)∥ ⩽ C, (4.42)

is obtained from the formula

∥ψh;L2(Ωh
±)∥ ⩽ ch∥∇xψ

h;L2(Ωh
±)∥, (4.43)

which follows from the Friedrichs and Poincare inequalities

∥ψh;L2(Ωh′
±)∥2 ⩽ ch4∥∇yψ

h;L2(Ωh′
±)∥2,

∥ψh;L2(Ωh
±)∥2 ⩽ c(h2∥∇xψ

h;L2(Ωh
±)∥2 + ∥ψh;L2(Ωh′

±)∥2). (4.44)

Here, we took into account the transversal and longitudinal sizes, O(h2) and O(h), respectively,
of the sets Ωh′

± = {x ∈ Ωh
± : ±z > 1− hρ±} and Ωh

± as well as the Dirichlet condition for ψh on
∂Ωh′

± ∩ Γh
±.

We can also write

∇ywn±(η, ξ
±
3 ) = h−1H(z)−1∇ηwn±(η, ξ

±
3 ),

∂zwn±(η, ξ
±
3 ) = ∓h−2(H±ρ±)

−1∂ξ±3 wn±(η, ξ
±
3 )− ∂zH(z)H(z)−1η · ∇ηwn±(η, ξ

±
3 ),

dydz = ∓h4H±ρ±H(z)2dηdξ±3 ,∣∣∣ 1

H(z)
− 1

hH±ρ±

∣∣∣ ⩽ c±(1 + |ξ±3 |)(1 + h|ξ±3 |) and ∓ z + 1− hρ± ∈
[
− 2

3
hρ±,

2

3
hρ±

]
.(4.45)

The last inequality is valid on the supports of the cut-off functions χh
±, which are the multipliers

of the boundary layer terms in the ansatz (4.18). Under the same restrictions the relations

|h2H±ρ±H(z)2 − h6(H±ρ±)
3| ⩽ cHh

7, (4.46)

|h2H±ρ±∇xw±(η, ξ
±
3 )−∇(η,ξ±3 )w±(η, ξ

±
3 )| ⩽ ch|∇η,ξ±3

w±(η, ξ
±
3 )|, (4.47)
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hold in the set Ωh
±, and the estimate (4.47) is valid for the function Ψh

±, too. Recalling the

inclusion eκ0|ξ±3 |∇η,ξ±3
w± ∈ L2(Π) and the inequalities (4.42), (3.27) we obtain the desired

estimate (4.41).
Since the test function Ψh

± has a compact support, the solution (4.9) of the problem (4.8) with
growth as ξ±3 → +∞ satisfies the integral identity (∇ξ±W,∇ξ±Ψ

h
±)Π = 0, which is converted

by means of formulas (4.23), (2.13) and simple transformations into∫
Π

∇ξ±wn±(η, ξ
±
3 ) · ∇ξ±Ψ

h
±(ξ

±)dξ± = vn(±1)H±

∫
Π

∂ξ±3 (ξ
±
3 X±(ξ

±
3 ))∂ξ±3 Ψ

h
±(ξ

±)dξ±

= vn(±1)H±

∫
Π

(
Ψh

±(ξ
±)∂ξ±3 X±(ξ

±
3 )− ξ±3 ∂ξ±3 X±(ξ

±
3 )∂ξ±3 Ψ

h
±(ξ

±)
)
dξ± =: J±(Ψ

h
±). (4.48)

We now process the expression Ih2 (ψ
h). Due to Lemma 2.4 and formula (4.1) the relation

vh
n♭(z) = vh

n(±1)
(
1− h

∑
±

ρ±χ±(z)(1∓ z)−1
)
+O(h2) =

= vn(±1)
(
1− h

∑
±

ρ±(hρ± + h2ρ±H±ξ
±
3 )

−1) +O(h2) = hvn(±1)H±ξ
±
3 +O(h2)

is valid in the set υh±. Definitions (3.23) and (4.1) of the cut-off function Xh and the stretched
coordinates ξ±d , respectively, show that

Xh(z) = X±(ξ
±
d ), [∆x, X

h(z)] = h−4[∆x,X±(ξ
±
d )] for ± z > 0. (4.49)

Eventually, the coordinate change x 7→ (η, ξ±3 ) and formulas (4.45) and (4.46) yield the
inequality ∣∣∣Ih±2 (ψh) + h3

∑
±

H±ρ±J±(Ψ
h
±)
∣∣∣ ⩽ ch3, (4.50)

which contains the right-hand side of the identity (4.48). Thus, we derive from (4.41) and
(4.50) the estimate ∑

±

∣∣Ih±51 (ψh)− Ih±2 (ψh)
∣∣∣ ⩽ ch3. (4.51)

It remains to process the expression Ih3 (ψ
h) in (4.32) which, owing to the coincidence of the

cut-off functions Xh and X
√
h in the set Ωh\(Ωh

+∪Ωh
−), reduces to the sum of the corresponding

scalar products in L2(Ωh
±). Hence, by means of the estimate (4.29) and, for example, the

inequality

h|(∂zv̂ ′
n, (X

h −X
√
h)∂zψ)Ωh ⩽ ch∥∂zψ;L2Ωh∥

(
h2

∑
±

Ch∫
ch

H(1∓ t)2|∂zv̂ ′
n(1∓ t)|2dt

)1/2

⩽ ch5/2

derived from formulas (4.20), (3.23), (4.21), we conclude that

|Ih±3 | ⩽ ch5/2. (4.52)

Collecting the estimates (4.33)–(4.41) and (4.50)–(4.52) shows that the supremum (4.25) does
not exceed ch5/2. Thus, the calculations and considerations in Sections 3 and 4 § 3, which led
to Theorem 3.3 for d > 3, also prove Theorem 4.1 and simultaneously Theorem 3.3 for d = 3.



SPINDLE-SHAPED DOMAIN 23

4.5. Remarks on boundary layers and asymptotics of eigenfunctions. The main
complication in the structure of the asymptotic approximation (4.18) is caused by the incom-
plete construction of the boundary layers, namely the function (4.23) does not decay at infinity
but tends to a constant as ξ±3 → +∞. Moreover, (4.18) involves the cut-off function (4.21),
which is mismatched with the stretched coordinates (4.1). In Section 3 § 6 we will discuss infi-
nite decompositions of the eigenpairs {λhn, uhn} and will show how it becomes possible to make
the boundary layer to decay and simultaneously to fix the arbitrariness in the choice of the
correction term v′

n in the ansatz (4.18). We emphasize that incompleteness of the asymptotic
approximation used until now does not affect the main result, that is, Theorem 3.3 of the pa-

per. Also, we will prove the exact bound C
(n)
3 h2(1 + | lnh|) in the estimate (4.17), where the

logarithmic growth of the component v̂ ′
n of the function v′

n shows up.

Lemma 4.2. The component v̂ ′
n of the solution (4.13) of the equation (4.12) is of the form

v̂ ′
n(z) = ṽ ′

n(z)−
∑
±

χ±(z)
(
c±n + 2ρd−2

± vn(±1)
∂tH̃±(0)

H±
ln(1∓ z)

)
,

where c±n are some constants, H± and H̃± are ingredients of the profile function H, see (1.2),

and the remainder ṽ ′
n = O(1∓z)(1+ | ln z|)) is negligible. If at least one of the numbers ∂tH̃(0)

is not null, then v̂ ′
n ̸∈ H.

Proof. The term V2
±(t) = c±n + 2H−1

± ∂tH̃±(0) ln t is a solution of the inhomogeneous model
equation (2.19) with d = 3, that is,

−Hd−1
±

d

dt

(
td−1dV2

±

dt
(t)

)
= (d− 1)Hd−2

± ∂tH̃±(0)
d

dt

(
td
d

dt
V1(t)

)
, t ∈ R+, (4.53)

where the right-hand side is explained by the term of order 1∓ z in the representation (1.2) of
the profile function H near the endpoints of the interval (−1, 1). ⊠

Remark 4.3. The change x 7→ ξ± leads to the relation ln(1 ∓ z) = lnh + ln ρ± + ln(1 +
hH±ξ

±
d ) and, therefore, higher-order terms in the asymptotic expansions of the eigenvalues

and eigenfunctions for the problem in Ωh ⊂ R3 get linear or polynomial dependence on the
parameter | lnh|. The same happens for d > 3 as well, because the singular solution (4.13) of
equation (4.12) clearly admits the representation

v′(z) = ṽ ′(z) +
∑
±

χ±(x)

( d−3∑
j=0

c±j (1∓ z)2−d+j + c±d−2,0 + c±d−2,1 ln(1∓ z)

)
(4.54)

where c±j and c±d−2,p are certain coefficients and ṽ ′ ∈ C∞(−1, 1) ∩ C[−1, 1], ṽ ′(±1) = 0.

We emphasize that the terms of order (1 ∓ z)j, j ⩾ 1, in the expansion (4.54) also depend
polynomially on ln(1∓ z). See § 5 for the planar case d = 2. ⊠

As in Section 3 § 4, we can now employ the above formulas for the quantities (4.24) and (3.33)
in order to justify the asymptotics of the eigenfunctions.

Theorem 4.4. For all n ∈ N, there exist positive numbers h
(n)
3 and C

(n)
3 such that the eigen-

functions of the problems (1.8) and (2.14), normalized by the conditions (1.10) and (2.18),
satisfy the inequality∥∥uhn − h−1|ω|−1/2vn;H

1(Ωh)
∥∥ ⩽ C

(n)
3 h1/2 for h ∈ (0, h

(n)
3 ]. (4.55)
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Proof. The second part of Lemma 3.2 and the information of Theorem 4.1 about the
eigenvalue λhn lead to the relation

∥Uh
n − ∥uh

n;Hh∥−1uh
n;Hh∥ ⩽ C

(n)
3 h5/2. (4.56)

Recalling formulas (3.37), (4.31) and (3.16), we turn (4.56) into the inequality

∥uhn − h−1|ω|−1/2uh
n;H

1(Ωh)∥ ⩽ C
(n)
3 h1/2.

We use the estimates (4.26) and (4.30) to move the “excess” terms hX
√
hv̂ ′

n and χh
±w± in the

definition (4.18) of the almost eigenfunction uh
n to the remainder. This means that they can be

omitted on the left-hand side of (4.56). The term h2XhV is processed by means of an evident
modification of the calculations (4.27) and (4.33). Finally, due to the simple formula

∥Xhχ±(1∓ z)−1;H1(Ωh)∥2 ⩽ ch2
1/2∫

hρ±

t2(t−4 + t−2)dt ⩽ c0h

we can replace vh
n♭ 7→ vn (see (4.18), (4.19)) on the left-hand side of (4.56) . This yields the

inequality (4.55). ⊠

4.6. Asymptotics of the first eigenvalue. In Theorem 3.3, formula (3.33) with n = 1
does not contain much information on the first eigenvalue λh1 > 0 of the problem (1.5)–(1.7),
since µ1 = 0. However, in the case d ⩾ 3 we write the more precise asymptotic decomposition
(cf. (4.11)).

λh1 = 0 + hd−2µ′
1 + . . . ,

and we repeat the reasoning and calculation of the previous sections in order to construct µ′
1

in the correction term. In the outer expansion (4.3) of the eigenfunction uh1 we have the null
term V = 0 and constant term

v(z) = v1 =

( 1∫
−1

H(z)d−1dz

)−1/2

.

The last formula comes from the normalization condition (2.18) for the constant eigenfunction
in the space L. The correction terms v′ = v′

1 and µ′
1 have to be found from equation (4.12)

with n = 1. A solution of the form (4.13) exists, if the relation (4.16) holds, and this turns
(without the restriction d = 3) into

µ′
1 = (d− 2)v2

1(H
d−1
+ ρd−2

+ +Hd−1
− ρd−2

− ). (4.57)

Let us formulate a result, which follows by the considerations in Sections 4 § 4 and 3 § 3.

Theorem 4.5. If d ⩾ 3, there exist positive numbers c
(1)
d and h

(1)
d such that

|λh1 − hd−2µ′
1| ⩽ c

(1)
d hd−3/2 for h ∈ (0, h

(1)
d ]. (4.58)

Here, λh1 is the first eigenvalue of problem (1.5)–(1.7) and µ′
1 > 0 is the quantity (4.57).

In the planar case d = 2 the asymptotic expansions of eigenvalues are essentially different,
and we will discuss them in the next section, cf. Proposition 5.7. Finally, we mention that
formula (4.58), and the corresponing relation (5.35) to be proven in the case d = 2, give
an asymptotically precise estimate of the constant in the Friedrichs inequality in the space
H1

0 (Ω
h; Γh

±). This can also be verified by the calculations in Section 1. § 3 and the Hardy
inequality (2.16).
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Proposition 4.6. For all functions uh ∈ H1
0 (Ω

h; Γh
±), there holds the inequality

∥uh;L2(Ωh)∥ ⩽ cdh
(2−d)/2(1 + | lnh|)δd,2∥∇xu

h;L2(Ωh)∥,
where the coefficient cd is independent of the function uh and the parameter h ∈ (0, h(d)] for
some h(d) > 0.

5. Planar spindle. Self-adjoint extensions of the differential operator.

5.1. Unbounded self-adjoint operator in a weighted class. The weighted Sobolev
space V l

β(−1, 1), also called the Kondratiev space [4], is endowed with the norm

∥v;V l
β(−1, 1)∥ =

( l∑
k=0

∥∂kzv;L2
β−l+k(−1, 1)∥2

)1/2

, (5.1)

where l ∈ N0 = N ∪ {0} and β ∈ R are the smoothness and weight exponents and the norm of
the weighted Lebesgue space L2

γ(−1, 1) is of the form (2.11). In the next lemma we will show
that the mapping

V l+2
l+(d+1)/2(−1, 1) ∋ v 7→ f ∈ V l

l+(d+1)/2(−1, 1) (5.2)

associated with the solving of the equation

−∂z(H(z)d−1∂zv(z)) = H(z)d−1f(z), z ∈ (−1, 1), (5.3)

is Fredholm, however, in the case d ⩾ 3 only. In order to treat the case d = 2 we introduce
“stepwise” weighted space V l,0

β (−1, 1) equipped with the norm

∥v;V l,0
β (−1, 1)∥ =

( l∑
k=1

∥∂kzv;L2
β−l+k(−1, 1)∥2 + ∥v;L2

β−l+1(−1, 1)∥2
)1/2

; (5.4)

we will soon consider also the mapping

V l+2,0
β (−1, 1) ∋ v 7→ f ∈ V l

β(−1, 1) (5.5)

with

d = 2 and β ∈ (l + 1/2, l + 3/2). (5.6)

The restrictions (5.6) on the weight index β are reasoned by the requirements χ± ∈ V l+2,0
β (−1, 1)

and (z 7→ χ±(z) ln(1 ∓ z)) ̸∈ V l+2,0
β (−1, 1) (see (4.14) and (2.20)). In other words, constants

live in the space V l+2,0
β (−1, 1) but logarithmic singularities do not.

Note that the dependence of the weight exponent β− l+k on the order of the differentiation
is linear in the both norms (5.1) and (5.4), except that the latter has a step at the value k = 1.
We emphasize that the space H = V1

(d−1)/2(−1, 1) coincides with V 1
(d−1)/2(−1, 1) for d ⩾ 3

due to the Hardy inequality (2.16) and with V 1,0
(d−1)/2(−1, 1) for d = 2, by definition (2.10).

Moreover, L2
β(−1, 1) = V 0

β (−1, 1).
In order to study properties of the mappings (5.2) and (5.5) we apply the Kondratiev theory

[4] (see also the monographs [5, 23] and others), a standard tool in the applications to elliptic
boundary value problem in domains with conical boundaries. The ordinary differential equation
(5.3) can of course be examined with other, much simpler methods but by interpreting the
endpoints of the interval (−1, 1) as tops of one-dimensional cones, that is, the semi-axes R∓,
we can refer to general results and thus avoid any calculations.

Lemma 5.1. The mappings (5.2) for d ⩾ 3 and (5.5) for d = 2 are Fredholm with one-
dimensional kernels and co-kernels generated by constant functions.
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Proof. We first consider the case d > 2. For m > 0, the integral identity

(Hd−1∂zv, ∂zφ) +m(Hd−1v, φ) = (Hd−1f , φ) ∀φ ∈ H (5.7)

has a unique solution v ∈ H because the left-hand side of (5.7) is a scalar product in the space
H and the right-hand side is a continuous functional in H, due to the relations

|(Hd−1f , φ)| = |(H(d+1)/2f , H(d−3)/2φ)| ⩽⩽ ∥f ;V 0
(d+1)/2(−1, 1)∥ ∥φ;V 0

(d−3)/2(−1, 1)∥
⩽ ∥f ;V l

l+(d+1)/2(−1, 1)∥ ∥φ;V l+2
l+(d+1)/2(−1, 1)∥. (5.8)

By Lemma 2.3, the scalar product (Hd−1v, φ) in (5.7) gives rise to a compact operator in H
and the quadratic form

(Hd−1∂zv, ∂zv)

is null only for constant functions. Thus, the Fredholm alternative shows that the integral
identity

(Hd−1∂zv, ∂zφ) = (Hd−1f , φ) ∀φ ∈ H

which is associated to the equation (5.3) and coincides with (5.7) for m = 0, gets only one
compatibility condition

(Hd−1f , 1) =

1∫
−1

H(z)d−1f(z) dz = 0. (5.9)

In the many-dimensional case d ⩾ 3 the properties of the weak solutions can be passed to
solutions v ∈ V l+2

l+(d+1)/2(−1, 1) ⊂ H of the equation (5.3) by using of the known estimate [4]

∥v;V l+2
β (−1, 1)∥ ⩽ c(∥H1−d∂zH

d−1∂zv;V
l
β(−1, 1)∥+ ∥v;V 0

β−l−2(−1, 1)∥). (5.10)

This holds true for any weight exponent, for instance β = l+(d+1)/2, and can be proven with
the help of local elliptic estimates for equations on the intervals {z : ±z ∈ (1−2−k+1, 1−2−k)},
which collapse into the points z = ±1 (see details in [5, Ch. 3, § 5]).

In the planar case d = 2 it is necessary to modify the reasoning by using the stepwise
weighted norms (5.4), as presented in the paper [24] and the monograph [5, Ch. 8 § 4]. Namely,
inequalities (5.8) are turned into the following:

|(Hf , φ)| ⩽ ∥f ;V 0
β−l(−1, 1)∥ ∥H1+l−βφ;L2(−1, 1)∥ ⩽ ∥f ;V l

β(−1, 1)∥ ∥φ;H∥.
Here, we took into account formulas (5.6) and the definitions of the norms (5.1) and (2.15).
Moreover, the estimate (5.10) is replaced by the estimate (5.6) which holds true for the weight
index β in (5.6),

∥∂zv;V l+1
l+(d+1)/2(−1, 1)∥ ⩽ c(∥H1−d∂zH

d−1∂zv;V
l
l+(d+1)/2(−1, 1)∥

+∥∂zv;V 0
(d−1)/2(−1, 1)∥). (5.11)

All other considerations remain the same. ⊠

We define the Hilbert space L which coincides algebraically and topologically with

V 0
(d−1)/2(−1, 1)

and is equipped with the scalar product

⟨v,u⟩ = (H(d−1)/2v, H(d−1)/2u). (5.12)

Let us introduce in L the unbounded operatorA0 with the differential expression−H1−d∂zH
d−1∂z

and the domain D(A0) = C∞
(−1,1). Clearly, A0 is a symmetric operator.
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Proposition 5.2. The domain of the closure A0 of the operator A0 equals

D(A0) = V 2
(d−1)/2(−1, 1) for d ̸= 4,

D(A0) = V 2,0
(d−1)/2(−1, 1) for d = 4. (5.13)

while its differential expression is the same −H1−d∂zH
d−1∂z as that of A0.

Proof. We employ another estimate [4]

∥v;V 2
β (−1, 1)∥ ⩽ c(∥H1−d∂zH

d−1∂zv;V
0
β (−1, 1)∥+ ∥v;L2(−1/2, 1/2)∥) (5.14)

which is of a different nature in comparison with the estimate (5.11). It is a consequence of the
Fredholm property of the continuous mapping

H1−d∂zH
d−1∂z : V

2
β (−1, 1) → V 0

β (−1, 1) (5.15)

generated by the equation (5.3) multiplied by H(z)1−d. The Kondratiev theory guarantees that
the operator (5.15) is Fredholm for any β ∈ R with exception of the forbidden indices

β0(d) = 3/2 and β1(d) = d− 1/2. (5.16)

These are determined by the solutions V0
± and V1

± of the model equation (2.19) (see formulas
(2.20) and, for example, [5, Ch. 3 § 1]), when one of the integrals

1∫
−1

H(z)2(βp(d)−2)|χ±(z)Vp
±(1∓ z)|2 dz, p = 0, 1, (5.17)

diverges at the logarithmic rate. In other words, the product χ±(z)Vp
±(1∓ z) does not belong

the space V 2
βp(d)

(−1, 1) but falls into V 2
βp(d)+ε(−1, 1) for all ε > 0.

Observing that ∥v;L2(−1/2, 1/2)∥ ⩽ c∥v;V 0
(d−1)/2(−1, 1)∥, we apply the estimate (5.14) with

the weight exponent β = (d − 1)/2, which is different from (5.16) for d = 2, 3, 5, 6, . . . . As a
result, we find that in the definition of the closed operator

D(A0) ∋ vn → v∞, A0vn → f∞ L ⇒ v∞ ∈ D(A0), A0v∞ = f∞

the limit v∞ belongs to the space V 2
(d−1)/2(−1, 1). It is also very important to note that the

space V 2
(d−1)/2(−1, 1) is mapped onto the space V 0

(d−1)/2(−1, 1) = L by the differential operator

Hd−1∂zH
d−1∂z.

In the exceptional case d = 4 the integral (5.17) diverges, if p = 0, i.e., for the constant
solution of the model equation (2.19). This situation allows us to employ a modification2 of
the Kondratiev theory [4] (see also [5, Ch. 8 § 4 and 9 § 6]) and use the estimate

∥v;V 2,0
β0(4)

(−1, 1)∥ ⩽ c(∥H1−d∂zH
d−1∂zv;V

0
β0(d)

(−1, 1)∥+ ∥v;L2(−1/2, 1/2)∥) (5.18)

which follows from the Fredholm property of the operator

−H1−d∂zH
d−1∂z : V

2,0
β0(4)

(−1, 1) → V 0
β0(4)

(−1, 1). (5.19)

This proves the last of the formulas (5.13). Let us pay attention to two points. First, the
“inconvenient” constant component of the solution v is eliminated by the differential operator
(5.19), and it also disappears from each term in the sum over k ⩾ 1 in (5.4). Moreover,
according to definition (5.13), the exponent of the power of the weight multiplier in the norm

2It is worth mentioning that the last section of the paper [4] contains an outline of a possible modification
of the definition of the weighted space V ℓ

β needed for polynomial solutions of the model problem in a cone. A

complete theory of the Neumann problem in the mechanics of cracks [25, 26] is presented in the paper [24] and
the book [5, Ch. 8 § 4].
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∥v;V 0
β0(4)−1(−1, 1)∥ is increased by one, which makes the corresponding integral convergent for

v = 1. Second, it is possible to insert into formulas (5.18) and (5.19) the “limit” exponent
β = β0(4) (compare relations (5.6) with l = 0 and (5.6) with d = 2 and β0(2) = β1(2) = 3/2),
because there is no need to avoid the logarithmic singularity as it does not appear in (2.20) for
d = 4. Finally, we emphasize that the space V 2,0

3/2(−1, 1) with “stepwise” norm (5.4) contains

all functions of C∞[−1, 1] in contrast to the space V 2
3/2(−1, 1) with “homogeneous” norm (5.4),

the elements of which must vanish at the points z = ±1. ⊠

5.2. Self-adjoint extensions of the operator in the weighted space. We aim to
determine the dimensions d in which the operator A0 is self-adjoint, and to this end we first
describe the adjoint operator A∗

0.

Proposition 5.3. The domain of the adjoint operator A∗
0 is as follows:

D(A∗
0) = V 2

(d−1)/2(−1, 1) for d = 5, 6, . . . , (5.20)

D(A∗
0) = V 2,0

(d−1)/2(−1, 1) for d = 4, (5.21)

D(A∗
0) =

{
v(z) = ṽ(z) +

∑
±

χ±(z)

(
a± +

b±
H2

±

( 1

1∓ z
+ 2

∂zH̃±(0)

H±
ln(1∓ z)

))
∣∣∣ ṽ ∈ V 2

(d−1)/2(−1, 1), a±, b± ∈ C
}

for d = 3, (5.22)

D(A∗
0) =

{
v(z) = ṽ(z) +

∑
±

χ±(z)

(
a± +

b±
H±

(
ln

1

1∓ z
+
∂zH̃±(0)

H±
(1∓ z)

))
∣∣∣ ṽ ∈ V 2

(d−1)/2(−1, 1), a±, b± ∈ C
}

for d = 2. (5.23)

Here, χ± are the cut-off functions (4.14).

Proof. The adjoint operator is determined as follows:

v, f ∈ L = V 0
(d−1)/2(−1, 1), ⟨f , φ⟩ = ⟨v,A0φ⟩ ∀φ ∈ D(A0) ⇒

⇒ v ∈ D(A∗
0), f = A∗

0v. (5.24)

The definition of the operator A0 and relation (5.12) show that the equality in (5.24) containing
the test function φ is equivalent to the integral identity

(Hd−1f , φ) = −(v, ∂zH
d−1∂zφ) ∀φ ∈ C∞

c (−1, 1).

Hence, standard local elliptic estimates (see, e.g., [27, Ch. 2 § 5, 6]) imply that v ∈ H2
loc(−1, 1)

and the differential equation (5.3) holds. We apply the estimate (5.10) (with the exponents
l = 0 and β = (d + 3)/2) whose right-hand and, therefore, left-hand side are finite due to the
assumption in (5.24) and the quite trivial inequality

∥f ;V 0
(d+3)/2(−1, 1)∥ ⩽ c∥f ;V 0

(d−1)/2(−1, 1)∥.

Hence, we see that the function v belongs to the space V 2
(d+3)/2(−1, 1) which thus contains

the set D(A∗
0) as a subspace. In order to describe this set in detail we apply the Kondratiev

theorem [4] (see also [5, Theorem4.2.1]) on the asymptotics of solutions near conical points
(recall that the endpoints z = ±1 of the interval (−1, 1) are interpreted as tops of the “cones”
R∓). To this end, we observe that due to formulas (2.20) there holds the relation

χ±V1
± ̸∈ V 2

(d+3)/2(−1, 1), χ±V0
± ∈ V 2

(d−1)/2(−1, 1) for d ⩾ 5,
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χ±V1
± ̸∈ V 2

(d+3)/2(−1, 1), χ±V0
± ∈ V 2,0

(d−1)/2(−1, 1) for d = 4.

According to the above-mentioned Kondratiev theorem the solutions V1 and V0 of the model
equation (2.19) form the asymptotics of a solution to equation (5.3). For d ⩾ 4, the products
χ±Vp

± lie in V 2
(d+3)/2(−1, 1) and out of D(A∗

0) simultaneously (the latter space is defined in

(5.20) and (5.21)); this proves the assertion in large dimensions d ⩾ 4.
If d = 2 and d = 3, then we have

χ±Vp
± ∈ V 2

(d+3)/2(−1, 1)/V 2
(d−1)/2(−1, 1), p = 0, 1

due to formulas (2.20). As a result, the Kondratiev theorem predicts a bit more complicated
structure for the solution v ∈ V 2

(d+3)/2(−1, 1). Due to the representation (1.2) of the coefficient

H, the main and correction singularities in the equations (2.19) and (4.53) take the form

V1(t) = − ln t, V2
±(t) = H−1

± ∂tH̃±(0)t for d = 2,

V1(t) = 1/t, V2
±(t) = H−1

± ∂tH̃±(0) ln t for d = 3,

hence, the functions

(−1, 1) ∋ z 7→ H(z)1−d∂zH(z)d−1∂zχ±(z)(V1
±)(1∓ z) + V2

±)(1∓ z))

belong to the space L = V 0
(d−1)/2(−1, 1). In other words, thanks to the introduction of higher-

order terms in the asymptotics (see, e.g., [5, Lemma3.5.11 and Theorem3.5.12]), the represen-
tations in (5.22) and (5.23) hold true, while the necessary estimate

∥ṽ;V 2
(d−1)/2(−1, 1)∥+

∑
±

(|a±|+ |b±|) ⩽ c(∥f ;V 0
(d−1)/2(−1, 1)∥+ ∥v;V 2

(d+3)/2(−1, 1)∥)

follows from the Kondratiev theorem. ⊠

Proposition 5.3 means that the operator A0 is self-adjoint only for d ⩾ 4. Furthermore, the
defect index of this operator for d = 2, 3 is equal to (2 : 2). In the case d = 3 the operator A of
Section 2 § 2, when restricted to the subspace V 2

(d+1)/2(−1, 1) ⊂ H, is a self-adjoint unbounded
operator in the Hilbert space L. Hence, it must be interpreted as the Friedrichs extension of
the operator A0. The same self-adjoint Friedrichs extension is obtained in the case d = 2, too,
when A is restricted onto the subspace V 2,0

3/2(−1, 1) ⊂ H.

Let us describe all possible self-adjoint extensions with the help of an approach proposed in
[28] (see the publications [29, 30, 31, 32] and others, related to concrete problems in mathe-
matical physics).

Proposition 5.4. Let d = 3 or d = 2. The operator A(s) which is defined by the differential
expression −H1−d∂zH

d−1∂z and has the domain

D(A(s)) = {v ∈ D(A∗
0) : i(I− s)av = (I+ s)bv}, (5.25)

is a self-adjoint extension of the operator A0. Here, av = (a+, a−) and bv = (b+, b−) are the
coefficient columns of decompositions of the function v in (5.22) or (5.23) while I is the unit
matrix and s a unitary matrix, both of size 2× 2. The domain of any self- adjoint extension of
the operator A0 equals (5.25) for some unitary matrix s.

Proof. Methods developed in the above-cited papers and the definition of the scalar product
(5.12) show that it suffices to prove the generalized Green formula

⟨A∗
0v,w⟩ − ⟨v,A∗

0w⟩ = av · bw − bv · aw ∀v,w ∈ D(A∗
0) (5.26)
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where bar stands for complex conjugation and the central dot for the scalar product in C (we
now deal with complex-valued functions). This formula can be checked by a direct calculation:

⟨A∗
0v,w⟩ − ⟨v,A∗

0w⟩ = (v, ∂zH
d−1∂zw)− (∂zH

d−1∂zv,w) =

= lim
ε→+0

∑
±

±
(
v(z)H(z)d−1∂zw(z)−w(z)H(z)d−1∂zv(z)

) ∣∣∣
z=±1∓ε

The decompositions of the functions v and w, which are indicated in (5.22) and (5.23), show
that the limit as ε→ +0 equals (5.26).
Our way of writing the parameters of self-adjoint extensions is non-standard, hence, we

explain for the convenience of the reader why (5.25) is a domain of a self-adjoint extension.
(This is the only assertion of the proposition to be used in the sequel.)

Let K± = ker(s ± I) be the eigenspace of the matrix s corresponding to its eigenvalue ∓1.
We set

bv = b0v + b+v + b−v , b±v ∈ K±, b0v ∈ K0 = C2 ⊖ (K+ ⊕K−)

and apply the same splitting to av and aw, bw. We have

av · bw − bv · aw =
∑
α=0,±

(aαv · bαw − bαv · aαw).

Terms with the subscripts α = + and α = − disappear because a−v = a−w = 0 and b+v = b+w = 0,
by formula (5.25). Furthermore, the Cayley transform of the unitary matrix s is the symmetric
operator m = i (I+ s)−1(I− s) in the subspace K0. Hence,

a0v · b0w − b0v · a0w = a0v ·ma0v −ma0v · a0v = 0,

and the operatorA(s) is symmetric, too. Since the dimension of the quotient spaceD(A∗
0)/D(A(s))

equals two and (2 : 2) is the defect index of the operator A0, we see that the operator A(s)
with the domain (5.25) is self-adjoint, indeed. ⊠

Remark 5.5. If s = I2, then, owing to (5.25), the coefficients b± of the singular components
in the decompositions in (5.22) and (5.23) vanish so that the subspace D(A(I)) contains only
bounded functions. Hence, A(I) is nothing but the Friedrichs extension. ⊠

5.3. Choosing the parameters of the self-adjoint extension. For large dimensions
d ⩾ 4 the operator A0 is self-adjoint, and at the same time, the justification of asymptotics in
§ 3 did not require the construction of the boundary layer. The authors do not know a reason for
this coincidence. We will show how the specially chosen self-adjoint extension A(s| lnh|) of the
operator A0 helps to create a proper one-dimensional model of the planar (d = 2) spindle Ωh.
An analogous self-adjoint extension could also be defined in the spatial case d = 3, but in § 4
we managed to prove Theorems 3.3 and 4.4 with power order accuracy for the one-dimensional
model, which is sufficient for most of goals and does not require an improvement. For d = 2,
the error increases up to an unacceptable quantity O((1 + | lnh|)−1) (see the relation (5.35),
below); hence, the technique to be introduced here is quite useful.

Let us proceed with the boundary layer analysis, which was skipped in Section 1 § 4 in the case
d = 2. Instead of the refined ansatz (4.3) we take the original ansatz (2.2), where we however
allow its terms vh(z) and V h(η, z) to depend on the parameter h = | lnh|. Furthermore, we
include into the main term the singular component (2.20), namely

vh(z) = bh±H
−1
± ln(1∓ z) + ah± +O(1∓ z) for z → ±1∓ 0. (5.27)

Now, the calculation (4.5) using the stretched coordinates (4.1) looks as follows:

vh(z) = ah± + bh±H
−1
± ln(hρ± + h2ρ±H±ξ

±
2 ) + . . .
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= bh±H
−1
± (ln ρ± − h) + ah± + hbh±ξ

±
2 + . . . . (5.28)

Hence, the main terms of the boundary layers are the form

−hbh±W (ξ±),

and to fulfil the Dirichlet condition (1.6) one needs the equalities

ah± = −bh±H−1
± (ln ρ± − h), (5.29)

which coincide with the vector equality in (5.25), where s is the diagonal unitary matrix

sh = diag

{
i(ln ρ+ − h) +H+

i(ln ρ+ − h)−H+

,
i(ln ρ− − h) +H−

i(ln ρ− − h)−H−

}
. (5.30)

This completes the construction of the desired self-adjoint extension A(sh) of the operator A0.

Proposition 5.6. The operator A(sh) is positive definite and its spectrum forms the unbounded
monotone positive sequence of eigenvalues

0 < µh
1 ⩽ µh

2 ⩽ · · · ⩽ µh
n ⩽ · · · → +∞. (5.31)

Proof. The self-adjoint extension A(sh) preserves the lower semi-boundness of A0, and
the embedding D(A(sh)) ⊂ L preserves the compactness. Thus, according to [2, Theorems
10.1.5 and 10.2.1], the spectrum of the operator A(sh) is discrete and forms an unbounded and
monotone sequence. The first inequality in (5.31) and the positive definiteness will be shown
in the proof of Proposition 5.7. ⊠

5.4. Spectral problem with asymptotic conditions at the endpoints of the interval.
By virtue of the estimate (5.10) with l = 0 and β = 5/2, a solution v ∈ L = V 0

1/2(−1, 1)

of the equation (5.3) with a right-hand side f ∈ C∞
c (−1, 1) falls into the space V 2

5/2(−1, 1)

(if d = 2, the only forbidden exponent is β = 3/2; see (5.16)). For d = 2, l = 0 and
β = 5/2, we consider the mapping (5.2) and the corresponding pre-image D of the subspace
L = V 0

1/2(−1, 1) ⊂ V 0
3/2(−1, 1). By the above mentioned Kondratiev theorem on asymptotics

[4], the space D coincides as a set with (5.23) and, being a weighted space with detached
asymptotics, can be identified with the space D of the triples {av, bv, ṽ}:

D ≈ D = C2 × C2 × V 2
1/2(−1, 1).

This becomes a Hibert space, when equipped with the norm

∥v;D∥ = (|av|2 + |bv|2 + ∥ṽ;V 2
1/2(−1, 1)∥2)1/2.

Furthermore, due to the properties of the operatorA∗
0, which were described above, the mapping

A0 : D → V 0
1/2(−1, 1),

A0v = −H1−d∂zH
d−1∂z

(
ṽ +

∑
±

χ±

(
a± +

b±
H±

ln
1

1∓ z

))
,

is a Fredholm epimorphism with a two-dimensional kernel. Finally, the mapping

D ∋ v 7→ Ahv = {b± +H±(ln ρ± − h)−1a±,A0v} ∈ L := C2 × V 0
1/2(−1, 1) (5.32)

preserves the Fredholm property with index equal to null. Due to the formulas (5.29), (5.30)
and (5.25), the spectrum of the pencil

µ 7→ Ah(µ) = Ah − µE (5.33)

where Ev = {0, 0,v}, coincides with the sequence (5.31) of the eigenvalues of the operator
A(sh).
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Proposition 5.7. For every N ∈ N, there exist h(N) ∈ (0, 1) and c(N) > 0 such that the
function

[0, 1/h(N)) ∋ h 7→ µh
n, n = 1, . . . , N, (5.34)

is real analytic. Moreover, there holds the relation∣∣∣µh
n − µn − h−1

∑
±

H−1
± vn(±1)2

∣∣∣ ⩽ c(n)h−2 for h ∈ (0, 1/h(N)), (5.35)

where µn is an element of the sequence (2.17) and n = 1, . . . , N .

Proof. Passing to the limit h → +∞ turns3 the operator (5.32) into the operator

A∞
v = {bv,A0v} (5.36)

which can be interpreted as the restriction of the operator A, Section 2 § 2, onto the subspace
D0 = {v ∈ D : bv = 0 ∈ C2} ⊂ H. Moreover, we look for the asymptotics of eigenpairs of the
pencil (5.33) in the form

µh
n = µn + h−1µ′

n + . . . , vh = vn + h−1v′
n + . . .

and for the coefficients of the decompositions near the points ±1 as

ah(n)± = vn(±1) + h−1a′(n)± + . . . , bh(n)± = 0 + h−1b′(n)± + . . . ;

we thus obtain the following problem for the correction terms:

− ∂z(H(z)∂zv
′
n(z))− µnH(z)v′

n(z) = µ′
nH(z)vn(z), z ∈ (−1, 1),

v′
n(z) = −H−1

± vn(±1) ln(1∓ z) + a′(n)± + o(1), z → ±1.

The following calculation is based on the generalized Green’s formula (5.26) and Lemma 2.4
with the normalization condition (2.18), and one of the conditions for the existence of the
solution v′

n ∈ D is discarded:

µ′
n = µ′

n(Hvn,vn) = −(∂zH∂zv
′
n + µnHv′

n,vn) =

=
∑
±

(a′(n)±0− vn(±1)b′(n)±) =
∑
±

H−1
± vn(±1)2 > 0. (5.37)

Since Ah is a regular perturbation of the operator A∞ (cf., (5.32) and (5.36)), general results of
the perturbation theory of linear operators justify the formal calculations as well as the estimate
(5.35) (cf., for, [33, Ch. 8] and [34, Ch. II §3]) Relations (5.37) and (5.35) assure that µh

1 > 0, if
the parameter h is large, hence, we have also proven the first assertion of Proposition and that
the eigenvalues µh

1, . . . , µ
h
N are simple. Finally, the operator (1.10) depends analytically on the

variable 1/h and this, cf. [34, Ch. II], proves the analyticity of the functions (5.34). ⊠

5.5. Justification of asymptotics in the planar case. As in Sections 4 § 3 and 4 § 4, we
apply Lemma 3.2 with the following almost eigenvalue and eigenvector of the operator Kh

kh
n = (1 + µh

n)
−1, Uh

n = ∥uh
n;Hh∥−1uh

n, uh
n = Xhvh

n.

These definitions are analogous to (3.22), but they contain the eigenpair {µh
n,v

h
n} ∈ R+ ×

D(A(sh)) of the self-adjoint extension A(sh) of the operator A0 (see Proposition 5.6) instead
of the eigenpair {µn,vn} ∈ R+ ×H of the variational problem (2.14). The eigenfunction vh

n is
normalized in the space L = V 0

1/2(−1, 1), and it satisfies the abstract equation

Ahvh
n = fhn := (0, 0, µh

nv
h) ∈ R2 × R2 × V 0

1/2(−1, 1),

3The same limit passage shows that s∞ = I is the unit matrix and A(s∞) is the Friedrichs extension.
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with the operator Ah which is a small perturbation of the operator A∞. Thus, owing to
Propositions 5.6 and 5.7, the terms of the representation

vh
n(z) = ṽ h

n(z) +
∑
±

χ±(z)(a
h
n± + bhn±H

−1
± ln(1∓ z))

there holds the inequality

∥ṽh
n;V

2
1/2(−1, 1)∥+

∑
±

(|ahn±|+ |bhn±|) ⩽ c (1 + µh
n) ∥vh

n;L∥ ⩽ Cn, (5.38)

where the bound is independent of a small h > 0. Furthermore, the equalities (5.29) yield the
estimate

|bhn±| ⩽ ch−1|ahn±| ⩽ Cnh
−1. (5.39)

We next repeat the calculations in Section 3 § 3 with the necessary modifications: we esti-
mate the quantity (3.26) of Lemma 3.2. The equality (3.28) is preserved, once one makes the
substitutions d = 2 and {µn,vn} = {µh

n,v
h
n}, and the same in the other formulas. We then

process the terms on the right-hand side of (3.29). The estimate (3.30) remains valid with the
bound cnh

3/2 (since d = 2). Moreover, we have

|Ih2 (ψh)| ⩽ ch−2|Ωh
‡ |1/2max

x∈Ωh
‡

|vh
n(z)| ∥∇xψ

h;L2(Ωh)∥ ⩽ cnh
−2h2h = cnh. (5.40)

In comparison with the first estimate (3.31), there is an additional factor h, which came into
(5.40) by the following observation: using (5.27) and (5.28) we obtain that

|vh
n(z)| = |bhn±H−1

± ln(1−∓z) + bhn±H
−1
± (h− ln ρ±) + ṽh

n(z)| ⩽ cnh

for ± z ∈ ςh± := (1− ρ±h− h2/2, 1− ρ±h+ h2) (5.41)

(cf., definition of Ωh
‡ in (3.24)). Finally, the second estimate in (3.31) can be improved as

|Ih3 (ψh)| ⩽ c|Ωh
‡ |1/2max

x∈Ωh
‡

|∂zvh
n(z)|h−2∥ψh;L2(Ωh

‡ )∥

⩽ cnh
2h−2h2∥∇xψ

h;L2(Ωh)∥ ⩽ cnh
2 (5.42)

by an application of the Friedrichs inequality (4.44) on sets of diameter O(h2)

∥ψh;L2({x ∈ Ωh : ±z ∈ ςh±})∥ ⩽ ch2∥∇xψ
h;L2({x ∈ Ωh : ±z ∈ ςh±})∥.

The treatment of the last estimate

|⟨uh
n,u

h
n⟩h − h|ω|(1 + µh

n)| ⩽ ch3/2 (5.43)

differs from the proof of Lemma 3.6 because vh
n ̸∈ H. We have

h−1|ω|−1⟨uh
n,u

h
n⟩h = (H∂z(X

hvh
n), ∂z(X

hvh
n)) + (HXhvh

n, X
hvh

n)

= (−∂z(H∂zvh
n), (X

h)2v2
n) + (Hvh

n∂zX
h, ∂z(X

hvh
n))

− (HXh∂zv
h
n,v

h
n∂zX

h) + (HXhvh
n, X

hvh
n). (5.44)

Recalling that −∂zH∂zvh
n = µh

nHvh
n, we transform this formula into the inequality (5.43) with

the help of the estimates

∥H1/2(1−Xh)vh
n;L

2(−1, 1)∥ ⩽ cnh, ∥H1/2vh∂zX
h;L2(−1, 1)∥ ⩽ cnh

1/2,

∥H1/2Xh∂zv
h
n;L

2(−1, 1)∥ ⩽ cn.
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In the first one we have used the decomposition of the function vh
n near the points z = ±1

and the definition (3.23) of the cut-off function Xh, in the second one in addition the relation
(5.41), and in the third one also the formula

|bh±|2
1−hρ+∫

−1+hρ−

H(z)χ±(z)
2|∂z ln(1∓ z)|2 dz ⩽ c| lnh|−2

1∫
hρ±

t
dt

t2
⩽

c

| lnh|
.

The inequalities (5.38) and (5.39), of course, were applied as well.
Collecting the estimates (3.28), (3.30) and (5.40), (5.42), (5.43), we see that the quantity

(3.26) does not exceed cnh
−1/2h = cnh

1/2 because ∥uh
n;H∥ ⩾ ch1/2, c > 0. Repeating the

reasoning in Sections 3 and 4 § 3 with a minor modification, we arrive at the following analogue
of Theorems 3.3 and 3.7 for the planar spindle.

Theorem 5.8. For all n ∈ N, there exist positive numbers h
(n)
2 and c

(n)
2 such that, for h ∈

(0, h
(n)
2 ], eigenpairs of the problem (1.5)–(1.7) (or (1.8) in the variational formulation) and the

pencil (5.33) (or the self-adjoint operator A(sh) defined by formulas (5.25) and (5.30)) are in
the relationship

|λhn − µh
n| ⩽ cnh

1/2 and ∥uhn − h−1/2|ω|−1/2Xhvh
n;H

1(Ωh)∥ ⩽ cnh
1/2.

6. Variants and generalizations.

6.1. Other shapes of the tops of the spindle. One does not need any changes in
the dimension reduction procedure or in the proofs of the error estimates, when studying the
asymptotics of the solutions of the spectral problem (1.5)–(1.5) in the spindle-shaped domain
with broken ends (see Fig. 2, a)

Ωh
‡ = {x ∈ Ωh : −1 + hρ− < z < 1− hρ+};

note that the Dirichlet condition is posed at the ends

Γh
± = {x ∈ Ωh : z = ±1∓ hρ±}.

The only difference is inessential: the boundary layer is to be found from the mixed boundary
value problem in the semi-infinite cylinder Π+ = ω × R+ (Fig. 2, b), where the Neumann

and Dirichlet conditions are posed on the lateral surface (∂Π)+ and the end ∂Π+ \ (∂Π)+,
respectively.

We next consider the spindle with rounded ends (Fig. 2, c), namely we assume that the
profile function H ∈ C∞(−1, 1) in the definition (1.1) of the domain Ωh satisfies

H(±1) = 0, H(z) > 0 for z ∈ (−1, 1),

H(z) = (1∓ z)γ(H± + H̃±(1∓ z)) for ± z ∈ [0, 1],

γ ∈ (0, 1), H± > 0, H̃± ∈ C∞[0, 1], H̃±(0) = 0. (6.1)

If Ωh is an ellipsoid, relations (6.1) hold for it with γ = 1/2. We let the end zones Γh
± still be

of the form (1.4). A simple modification of the calculation (4.2) shows that

h−1H(z)−1 = h−1−γρ−γ
± H−1

± (1 +O(h+ hγξ±d )),

where the stretched coordinates

ξ± = (ξ±• , ξ
±
d ) = h−1−γ(H±ρ

γ
±)

−1(y, 1− hρ± ∓ z) (6.2)

were used. The changes x 7→ ξ± and h 7→ 0 lead again to the problem (4.8) in the cylinder
Π = ω × R, and this must be solved in order to describe the boundary layer phenomenon.
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b)a) c) d) f)e)

Figure 6.1. Spindle with broken (a) and blunted (c) ends. Domains to describe
the boundary layers: smi-infinite cylinder (b) and paraboloid (d). Piecewise
smooth profiles function H gives rise to the composite spindle (e) and cylinder
(f).

We now assume that

Γh
± = {x ∈ ∂Ωh : ±z > 1− hσρ±}, ρ± > 0, σ = (1− γ)−1 > 1 + γ > 1, (6.3)

that is, we diminish the Dirichlet zone, which means that the dilation coefficient must increase
in comparison with (6.2):

ξ± = (ξ±• , ξ
±
d ) = (h−σy, h−σ(1∓ z)). (6.4)

The exponent σ of the power of the small parameter h in formulas (6.3) and (6.4) was chosen
such that, due to relations (1.1) and (6.1), the factor h−1−γσ+σ turns into one in the expression

h−1H±(±1∓ hσρ±)
−1y = h−1(hσρ±)

−γ(H± +O(hσ))−1hσξ±• .

The changes x 7→ ξ± and h 7→ 0 transform the sets Ωh and Γh
±, respectively, into the paraboloid

Π⊂
± = {ξ± : H−1

± (ξ±d )
−σρ−γ

± ξ±• ∈ ω}

and the subset Γ⊂
± = {ξ± ∈ Π⊂

± : ξ±d < ρ±} of its surface. Thus, the boundary layer is described
by means of the solutions of the mixed boundary value problem

−∆ξ±w
±(ξ±) = f±(ξ±), ξ± ∈ Π⊂

±, (6.5)

w±(ξ±) = 0, ξ± ∈ Γ⊂
±, (6.6)

∂ν(ξ±)w
±(ξ±) = 0, ξ± ∈ ∂Π⊂

± \ Γ⊂
±. (6.7)

The compatibility conditions in this problem and the properties of its solutions depend on the
relation between dimension d and the exponent γ in formulas (6.1). Let us present a known
assertion (see, e.g., the monograph [23]), which can also be easily verified.

We introduce the space H(Π⊂
±) as the completion of the subspace C∞

c (Π⊂
± \ Γ⊂

±) of functions
satisfying the Dirichlet condition (6.6) with respect to the norm

∥w±;H(Π⊂
±)∥ = ∥∇ξ±w

±;L2(Π⊂
±)∥.

We consider the variational formulation of the problem (6.5)–(6.7), namely the integral identity
[1]

(∇ξ±w
±,∇ξ±ψ

±)Π⊂
±
= F±(ψ±), ψ± ∈ H(Π⊂

±). (6.8)
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Here, F± ∈ H(Π⊂
±)

∗ ia a linear continuous functional in the space H(Π⊂
±), for example,

F±(ψ±) = (f±, ψ±)Π⊂
±
in the case f± ∈ C∞

c (Π⊂
±). If

γ > γd := (d− 1)−1 ⩾ 1, (6.9)

the variational problem (6.8) is uniquely solvable in H(Π⊂
±) but the differential problem (6.5)–

(6.7) has a solution with the asymptotic form

W±(ξ±) = K±
Π + (1 + ξ±d )

1+γ(1−d)
(
1 +O((1 + ξ±d )

−1)
)

(6.10)

at infinity, where K±
Π is some constant. If condition (6.9) holds, the solution (6.10) does not

belong to H(Π⊂
±) because it cannot be approximated by functions in C∞

c (Π⊂
±). At the same

time, the set (6.10) is contained in the space H(Π⊂
±) in the case

γ < γd. (6.11)

Hence, problem (6.8) with the right-hand side F± ∈ H(Π⊂
±)

∗ loses the property of unique
solvability and and its solution w± ∈ H(Π⊂

±) exists only under the orthogonality condition
F±(W±) = 0.

In both cases (6.9) and (6.11) the inner expansions of the solutions of the problem (1.5)–(1.7)
in the “ellipsoid” Ωh are of the form

uh(x) = ch±W
±(ξ±) + . . . .

In the critical case γ = γd, the expansions of the solutions of the homogeneous problem
(6.5)–(6.7) include a logarithm:

W±(ξ±) = K±
Π + ln(1 + ξ±d )

(
1 +O((1 + ξ±d )

−1)
)
.

The structures of the asymptotic expansions are similar to those in § 5.
The information presented above suffices for the construction of the limit problem and the

asymptotics of the solutions of the spectral problem (1.5)–(1.7) in the domain Ωh defined by
formulas (1.1) and (6.1). The authors do not know existing publications on this topic, but the
linear elasticity problem has been studied in [7, 8] in bodies with similar geometry under some
restrictions on the exponent γ in (6.1).
In the most interesting case γ = 1 of this paper (cf., (1.2) and (6.1)) the last inequality in

(6.3) does not make sense, but the Dirichlet zones Γh
± of the problem (1.5)–(1.7) can still be

defined by the first equality in (6.3) by using any exponent σ > 1. Hence, the corresponding
modifications of the asymptotic structures are minor, namely the dilation coefficient h−2 in the
coordinates (4.1) must be changed into h−1−σ.

6.2. On the smoothness of the boundary. All calculations and results remain true even
if the boundary ∂ω is only Lipschitz instead of the infinite smoothness required in Section 1 § 1.
In order deal with classical solutions to the limit equation (2.9), it suffices to assume that the
function

(−1, 1) ∋ z 7→ (1− z2)−1H(z)

is in the Hölder class C1,δ[−1, 1] with δ ∈ (0, 1). In the weak formulation of the equation, (2.14),
much weaker restrictions on the coefficient Hd−1 suffice, for instance, it can be a piecewise
continuous function with jumps at the interior points of the interval (−1, 1) (Fig. 2, e). In
addition, near the break points there emerges an “interior” boundary layer, which is described
by the solutions of the Neumann problem in the composite cylinder (Fig. 2, f).

6.3. Complete asymptotic expansions. In Section 1 § 2 we derived the limit problem
(2.4), (2.6) by extracting only the main terms from the differential operators ∆x and ∂ν(x)
(see relations (2.3) and (2.5)). However, these operators can be split into infinite asymptotic
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series with the help of the Taylor decompositions of the functions H̃± in (1.2). Analogous
splittings of the operators (4.7) appeared in § 4 when constructing boundary layers related with
the coordinate change x 7→ ξ± of (4.1). Thus, there arises the question on the continuation of
the asymptotic procedure and on the derivation of asymptotic series for the eigenvalues and
eigenvectors. In § 4 and § 5 we employed the method of matched expansions (see [20, 17] etc)
which is convenient for the analysis of the main asymptotic terms but the method of composite
expansions (see [14, 16, 18] etc) is much simpler for the construction of the whole asymptotic
series.

In this section we let d ⩾ 3, while the exceptional case d = 2 is discussed in Remark 6.2. We
start by a simple assertion.

Lemma 6.1. The equation (2.9) with µ = µn has, in addition to the eigenfunction vn, also
the singular solution

Vn(z) = V̂n(z) +
∑
±

±χ±(z)vn(±1)−1H1−d
± (1∓ z)2−d, (6.12)

where χ± are the cut-off functions (4.14) and the remainder satisfies the estimate∣∣∂jzV̂n(z)
∣∣ ⩽ cj(1∓ z)3−d−j(1 + | ln(1∓ z)|)δd,3δj,0 , j ∈ N0 = N ∪ {0}. (6.13)

Proof. The term V̂n(z) is solved from the equation

−∂z(H(z)d−1∂zV̂n(z))− µnH(z)d−1V̂n(z) = Fn(z)

:=
∑
±

± H1−d
±

vn(±1)

(
∂zH(z)d−1∂z + µnH(z)d−1

) (
χ±(z)(1∓ z)2−d

)
, z ∈ (−1, 1). (6.14)

The right-hand side Fn ∈ C∞(−1, 1) is bounded and continuous for z ∈ [−1, 1], which follows
from the representations (1.2) for the coefficient H and (2.20) for the solution V1 of the model
equation (2.19) . The information in Section 1 § 5 on the problem operator of (6.14) implies
that there exists one compatibility condition (according to the number of eigenfunctions) and
it is fulfilled:

1∫
−1

vn(z)Fn(z)dz

= −
∑
±

± H1−d
±

vn(±1)
lim
ε→+0

1−ε∫
−1+ε

vn(z)
(
∂zH(z)d−1∂z + µnH(z)d−1

) (
χ±(z)(1∓ z)2−d

)
dz

= − lim
ε→+0

∑
±

H1−d
±

vn(±1)

(
vn(z)H(z)d−1∂z(1∓ z)2−d

− (1∓ z)2−dH(z)d−1∂zvn(z)
)∣∣∣

z=±1∓ε

= (d− 2) lim
ε→+0

(Hd−1
+ εd−1H1−d

+ ε1−d −Hd−1
− εd−1H1−d

− ε1−d) = 0.

Thus, equation (6.13) indeed has a solution satisfying the inequalities (6.14). ⊠

For d ⩾ 3, we look for the formal asymptotic series for the eigenpairs {λhn, uhn} of the problem
(1.5)–(1.7) in the form

λhn ∼
∞∑
j=0

hjµnj (6.15)
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and

uhn(x) ∼
∞∑
j=0

(
Xh(z)(v′

nj(z) + cnjvn(z) + hd−2CnjVn(z))

+
∑
±

h1+jχh
±(z)w

±
nj(η, ξ

±
d )

)
. (6.16)

Here, Xh and χh
± are the cut-off functions (3.23) and (4.22), ξ± and η the stretched coordinates

(see (4.1) and (1.1)) and the functions Π ∋ ξ± 7→ w±
nj(ξ

±) are exponentially decaying solutions
of the mixed boundary value problem (cf., problem (4.8))

−∆ξ±w
±
nj(ξ

±) = f±
nj(ξ

±), ξ± ∈ Π,

w±
nj(ξ

±) = 0, ξ ∈ (∂Π)−,

∂ν′w
±
nj(ξ

±) = g±nj(ξ
±), ξ± ∈ (∂Π)+. (6.17)

Furthermore, vn and Vn are the eigenfunction and the singular solution of equation (2.9) with
µ = µn, mentioned in Lemma 6.1, and v′

nj ∈ H is a solution of equation

−∂z(H(z)d−1∂zv
′
nj(z))− µnH(z)d−1v′

nj(z)

= µnjH(z)d−1vn(z) + f ′nj(z), z ∈ (−1, 1), (6.18)

subject to the orthogonality condition

(Hd−1v′
n,vn) = 0. (6.19)

Thus, the constants cnj,Cnj and the coefficients µnj of the series (6.15) remain to be determined.
Besides,

µn0 = µn, cn0 = 1,

but we did not compute the quantities Cn0 and v′
n0 in § 3 and § 4 because this was neither

needed for the justification of main asymptotic terms for d > 3, nor were exact formulas used
for the correction terms in the asymptotic solution (4.18), d = 3.
Since the derivation of the limit problems (2.4), (2.6) and (4.8) was based on the main terms of

the differential operators (2.5) and (4.7), it is not surprising that there appear inhomogeneities
in problems (6.17) and (6.18). Explicit expressions for the right-hand sides f±

nj, g
±
nj and f ′

nj can
be found by multiplying the formal series and collecting coefficients of the same powers of the
small parameter h, which is simple but scrupulous work (cf., the monograph [16, Ch. 4, 5, 16])
and thus left beyond the scope of this paper. Instead, we explain how the arising problems
on the interval (−1, 1) and in the cylinder Π are solved. As above in similar situations, the
existence condition for the solution v′

nj of the equation (6.18) gives the expression of the term

µnj = −(f ′nj,vn)

in the series (6.15). The uniqueness of the solution v′
nj is achieved by posing the orthogonality

condition (6.19). Recall that ( , ) is the natural scalar product in L2(−1, 1) and the eigenfunction
vn is normalized by (2.18).

It is a somewhat more complicated question to make the boundary layer terms w±
nj to de-

cay. To this end we mention that the functions f±
nj and g±nj come from the commuting of the

differential operators with the cut-off function (3.23), which equals χ(ξ±d ) near the terminals
Γh
± of the spindle Ωh (cf., comments to formula (4.49) in Section 4 § 4) and from the action of

the differential operators to the terms w±
n0, . . . , w

±
nj−1, which decay at an exponential rate as
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|ξ±d | → ∞. As a result, the right-hand sides of the problem (6.17) decay at the same exponential
rate and therefore, this problem has a solution

w±
nj(ξ

±) = w̃±
nj(ξ

±) + a±njχ(ξ
±
d ) (6.20)

with a finite Dirichlet integral ∥∇ξ±w
±
nj;L

2(Π)∥2, where a±nj are some constants and eκ|ξ
±
d |w̃±

nj ∈
H1(Π), κ > 0. The requirements

a±nj = 0 (6.21)

imply the equality w±
nj = w̃±

nj. Hence, the decay property of the boundary layer, which is an
inherent property in the method of composite asymptotic expansions, is achieved by a proper
choice of the coefficients cnj and Cnj in the ansatz (6.16). Indeed, calculations in Section 1 § 4
and the equalities (6.12) show that

cnjvn(z) + hd−2CnjVn(z) = a±
nj + . . . for ± z = 1− hρ± +O(h2),

a±
nj = cnjvn(±1)±Cnjvn(±1)−1H1−d

± ρ2−d
± . (6.22)

Thus, the right-hand side f±
nj of the Poisson equation can be written as

f±
nj(ξ

±) = a±
nj∆ξ±χ(ξ

±
d ) + f̂ ±

nj(ξ
±)

where the first term has a compact support, since the Laplacian acts to the cut-off function

(2.13), and the other data f̂ ±
nj and g±nj has been defined in the previous steps of the iterative

process. Hence, the constants a±nj of the decompositions (6.20) satisfy

a±nj = a±
nj + â±

nj. (6.23)

Here, the numbers â±
nj are known, hence, by formulas (6.22) and (6.23), the equalities (6.21)

turn into a system of two linear equations for the unknowns cnj and Cnj; the matrix of the
system with the determinant

det

(
vn(+1) vn(+1)−1H1−d

+ ρ2−d
+

vn(−1) −vn(−1)−1H1−d
− ρ2−d

−

)
= −

∑
±

vn(±1)

vn(∓1)
H1−d

∓ ρ2−d
∓

is non-degenerate due to Lemma 2.4.

Remark 6.2. Analogous but much more complicated calculations are needed to construct
infinite asymptotic series for the eigenpairs of problem (1.5)–(1.7) for the planar spindle. Also,
there appear some differences: the coefficients of the series depend analytically on the variable
h−1 = | lnh|−1, the terms hd−2CnjVn(z) disappear and the requirement of the decay of the
boundary layer terms w±

nj leads to asymptotic conditions at the points z = ±1 for the solutions
of the equation (6.18) (cf., the statement of problem (5.32) and see the end of Section 4 § 6).
⊠

6.4. Stationary problem. We consider the Poisson equation

−∆xu
h(x) = fh(x), x ∈ Ωh, (6.24)

with boundary conditions (1.6) and (1.7). The null spectral parameter λh = 0 can be included
in the equation (6.24), and since it stays close to the first eigenvalue λh1 of the problem (1.5)–
(1.7) by Theorems 4.5 and 5.8, we note that solutions to the problem (6.24), (1.6), (1.7) may
have singular components. Let us now confirm this fact by using asymptotic analysis. We
assume that the right-hand side of equation (6.24) is of the form

fh(x) = h−2H(s)−2F (η, z) + f̃ h(x)
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where η = h−1H(s)−1y, f̃ h is a small remainder and F is a smooth function in the set ω×[−1, 1].

For simplicity, let us assume that f̃ h = 0 and F (η,±1) = 0. Repeating the dimension reduction
procedure in Section 1 § 2 with small modifications, we see that the main terms of the possible
asymptotic ansatz (2.2) are to be found from the Neumann problem

−H(z)−2∆ηV (η, z) = ∂2zv(z) + F (η, z), η ∈ ω,

H(z)−2∂ν′(η)V (η, z) = H(z)−1∂zH(z)η · ν ′(η)∂zv(z), η ∈ ∂ω,

and from its compatibility condition, which turns into the ordinary differential equation

|ω|∂2zv(z) + (d− 1)|ω|H(z)−1∂zH(z)∂zv(z) +

∫
ω

F (η, z)dη = 0. (6.25)

This is the same as the equation (5.3) with the right-hand side

f(z) =
1

|ω|

∫
ω

F (η, z)dη, (6.26)

and the compatibility condition in (6.25) is but the equality (5.9).
If fh is such that condition (5.9) fails, the ansatz (2.2) must be modified. To this end, in the

case d ⩾ 3 we allow for the solution the growth

v(z) = H1−d
± (1∓ z)2−d(c± +O((1∓ z))) (6.27)

as z → ±1. Such a solution is certainly not unique, although it exists, if

(Hd−1f , 1) = −(∂zH
d−1∂zv, 1)

= − lim
ε→+0

∑
±

±H(±1∓ ε)d−1∂zv(±1∓ ε) = (d− 2)(c+ + c−) (6.28)

(see Lemma 6.1 and the generalized Green’s formula (5.26)).

As was shown in Section 1§̇ 4, the singularity of the function v is compensated by the bound-
ary layer near the terminals Γh

± and requires the following ansatz in the middle part of the
spindle Ωh:

h2−dc0 + v(z). (6.29)

In addition, the coefficients c± in the expansions (6.27) are related to the constant c0 by the
equations

c± = −ρd−2
± c0. (6.30)

As a result, (6.28) and (6.30) yield the formula

c0 = −
(
ρd−2
+ + ρd−2

−
)−1 1

d− 2

1∫
−1

H(z)d−1f(z) dz. (6.31)

It is clear that

|c0|+
∑
±

|c±| ⩽ c∥f ;L∥. (6.32)

We now consider the planar spindle. If d = 2, equation (5.3) with the right-hand side (6.26)
has the singular solution

v(z) = ṽ(z) +
∑
±

χ±(z)H
−1
± b± ln(1∓ z),
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assuming there holds

(Hf , 1) = b+ + b− (6.33)

(cf., the generalized Green’s formula (5.26)). To construct boundary layers near the ends Γh
±,

we follow Section 3 § 5 and impose for the constant term in the ansatz

a+ v(z) (6.34)

the conditions

a+ b±H
−1
± (lnh+ ln ρ±) = 0. (6.35)

Solving the system (6.33), (6.35) of three algebraic equations, we find that

a := a(lnh) =

(
H+

| lnh| − ln ρ+
+

H−

| lnh| − ln ρ−

)−1

(Hf , 1),

b± := b±(lnh) =
H±a(lnh)

| lnh| − ln ρ±
. (6.36)

For a small h, the quantities (6.36) are properly defined and there holds the inequality

(1 + | lnh|)|a|+
∑
±

|b±| ⩽ c∥f ;L∥. (6.37)

Due to the formulas (6.31), (6.32) and (6.36), (6.37) as well as (6.26), Proposition 4.6 can be
applied to the ansätze (6.29) and (6.34) and it implies that the norm of the inverse operator of
the problem (6.24), (1.6), (1.7). is of order h2−d(1 + | lnh|)δd,2 .

6.5. Discussing results in the case d = 2. Formulas (6.36) show that the main term
(6.34) in the asymptotics of solutions to problem (6.24), (1.6), (1.7) is a rational function of
the large parameter h = | lnh|. Such a dependence is also inherited by higher-order terms
including the boundary layers. Similar asymptotic structures were discovered for the first time
in the paper [35] devoted to the Dirichlet problem for the Poisson equation in a planar domain
with a small hole of diameter h ≪ 1; the paper only contains expansions of the solutions
as series of inverse powers of the parameter | lnh|. The sums of the above-mentioned series
were calculated in [35]. The phenomenon of the rational dependence on logarithms has been
discovered in other situatons, too (see the monographs [16, 17]) and not only for second-order
equations but also for elliptic systems and higher-order equations, for example, the bi-harmonic
equation describing the Kirchhoff plates (see, e.g., [6, § 30]). Moreover, in the monograph [16,
Ch. 4] it was predicted that the asymptotic terms may also contain powers his with imaginary
exponents (cf., the study [36] of the Laplace equation with the Steklov boundary condition in
a specific geometry).

Asymptotic constructions for spectral problems are of course similar to those for stationary
problems. In the case d ⩾ 3 the structure of the solutions of the problem (6.24), (1.6), (1.7)
and the eigenfunctions of the problem (1.5)–(1.7) are quite similar and include power series
of the small parameter h with coefficients which are polynomials of | lnh| (see Remark 4.3).
However, the eigenpairs {λhn, uhn} for the planar spindle Ωh ⊂ R2 are characterized by analytic
dependence on | lnh|−1 instead of rational (Theorem 5.8). This kind of a result was for the first
time obtained in the paper [37] for the spectral Dirichlet problem in a planar domain with a
small hole. This approach has become useful also in other problems in mathematical physics
as well (see the book [16, Ch. 9 and 10]).

It is not difficult to show the analyticity of the functions (5.34) by analysing the perturbed
pencil (5.33). On the other hand, there are certain obstacles in the examination of the spectra
of operator pencils, and, therefore, our interpretation of (5.33) as a self-adjoint operator with
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domain (5.25), (5.30) is fundamentally important because the existing analytical and compu-
tational methods for self-adjoint operators have needed significant improvements here.

Another method of studying the spectra of problems in domains with singularly perturbed
boundaries was proposed in the papers [38, 39, 40]. For the Dirichlet and Neumann problems in
a d-dimensional domain with holes, it was shown that simple eigenvalues are analytic functions
of the variable h (d ⩾ 3) or of the two variables h and | lnh|−1 (d = 2). The authors do not
know if such a technique applies to the problem considered in this paper.

The authors are thankful to the anonymous referee for careful reading of the paper and
helpful advise for correction of the proofs, derivation of auxiliary estimates and improvement
of demonstration.

The first named author was partially supported by the Russian Foundation on Basic Research,
project 18-01-00325.
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