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Abstract
We consider the linear water-wave problem in a periodic channel �h ⊂ R

3, which
is shallow except for a periodic array of deep potholes in it. Motivated by applica-
tions to surface wave propagation phenomena, we study the band-gap structure of
the essential spectrum in the linear water-wave system, which includes the spectral
Steklov boundary condition posed on the free water surface. We apply methods of
asymptotic analysis, where the most involved step is the construction and analysis of
an appropriate boundary layer in a neighborhood of the joint of the potholes with the
thin part of the channel. Consequently, the existence of a spectral gap for small enough
h is proven.

Keywords linear water wave equation · periodic channel · shallow channel · spectral
gap

1 Introduction

1.1 Formulation of the water-wave problem

Let x = (y, z) ∈ R
2 × R be the Cartesian coordinate system and let H : �0 =

R × (−�, �) → R be a smooth function, which is periodic in the variable x1 = y1
for y = (y1, y2) ∈ �0 as well as positive; precisely, H(y) ≥ H0 > 0 in �0.
By rescaling, we reduce the period to one and make all coordinates and geometric
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Fig. 1 a Periodic channel, b cross-section of a voluminous container, pothole

parameters dimensionless. We also introduce a domain �• ⊂ R
3, which is contained

in the cylinder (−1/2, 1/2)×(−�, �)×R and has a smooth boundary ∂�• and compact
closure �• = �• ∪ ∂�•. We assume that the lower part � = {x ∈ �• : z < 0}
(Fig. 1b) is non-empty and denote its translates

� j = {x : (y1 − j, y2, z) ∈ �} ∀ j ∈ Z = {0,±1,±2, . . .}. (1)

The periodic channel (Fig. 1a)

�h = �h ∪ ⋃

j∈Z

� j (2)

consists, in addition to the deep pits (1), of the thin periodic layer

�h = {x = (y, z) : 0 > z > −h H(y), y ∈ �0}, (3)

where h > 0 is a small parameter. For the simplicity of the presentation (see Remark
1) we assume that the subdomain {x ∈ �• : |z| < h•} includes the straight vertical
cylinder θ × (−h•, h•), where h• > 0 is a constant and θ = {x ∈ �• : x3 = z = 0}
is the cross-section of �•, i.e., the surface ϒ = {x ∈ ∂� : |z| < h•} is cylindrical
and perpendicular to the plane {x : z = 0}. Notice that we will not distinguish in the
notation between the three-dimensional sets �◦, θ, ∂θ and their embeddings into the
above-mentioned horizontal plane.

In the domain�h we consider the water-wave problem, cf. [14], which consists of
the Laplace equation for the velocity potential uh ,

−	uh(x) = 0, x ∈ �h, (4)

the Neumann (no penetration) boundary condition on the bottom and walls,

∂νu
h(x) = 0, x ∈ �h = ∂�h\�0, (5)
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Band-gap structure of the spectrum of the water-wave… 265

and the Steklov (kinematic) spectral condition on the free surface,

∂zuh(x) = λhuh(x), x = (y, 0) ∈ �0. (6)

Here,	 stands for the Laplacian, ∂ν is the outward normal derivative, ∂z = ∂/∂z, and
λh = g−1k2h is a spectral parameter, where g is the acceleration of gravity and kh is
the physical wave number.

As for the other general notation used in this paper, we write N = {1, 2, 3, . . .},
N0 = {0} ∪ N, and R

+
0 for the set of non-negative real numbers. Given a domain

 ⊂ R
d , the symbol || stands for its volume in R

d and (·, ·) stands for the natural
scalar product in Lebesgue space L2(), and Hk(), k ∈ N, for the standard Sobolev
space of order k on . The norm of a function f belonging to a Banach function
space X is denoted by ‖ f ; X‖. For r > 0 and a ∈ R

N , B(a, r) (respectively, S(a, r))
stand for the Euclidean ball (resp. ball surface) with centre a and radius r . By c,C
(respectively, ck , Ck , c(k) etc.) we mean positive constants (resp. constants depending
on a parameter k) which do not depend on functions or variables appearing in the
inequalities, but which may still vary from place to place. The gradient and Laplace
operators ∇ and 	 (respectively, in ∇y , 	y etc.) act in the variable x (respectively, y
etc.).

1.2 The goals of the paper

Our aim is to investigate the band-gap structure of the spectrum of the water-wave
problem (4)–(6) and in particular to detect gaps in its essential spectrum. At the end of
Sect. 1 we will discuss the standard approach of the Floquet–Bloch–Gelfand-theory,
which transforms the problem into a model spectral problem in a bounded domain.
The model problem will be treated by the methods of asymptotic analysis in Sect.
2, where the asymptotic ansätze and their essential terms are derived. In Sect. 3, we
consider the relationship of themodel and limit problems, where the latter corresponds
to the case h = 0. The main result, Theorem 1 contains the crucial estimate, up to cor-
rections of order O(h2(1+| ln h|)), between the eigenvalues of the limit problem and
those of the model problem (which form the spectral bands of the original problem).
Finally, in Sect. 4 we consider the limit problem in more detail under some additional
assumptions. We introduce a new geometric parameter ε > 0 and observe that, for
small enough ε, the limit problem has a spectral gap. The estimate (98) in Theorem 1
then assures that, for small enough h, a gap is opened also in the essential spectrum
of the problem (4)–(6), although it may be smaller than the one for the limit problem.

Besides the Steklov spectral condition and periodic structure, one more character-
istic feature of the problem under consideration is described by junctions of massive
bodies with thin ligaments. For example, the dumbbell, which is a union of two mas-
sive domains connected by a thin cylinder, is a classical object in asymptotic analysis,
and the spectral Laplace–Neumann problem and asymptotic expansions for eigenval-
ues and eigenfunctions have been considered in many papers. Concerning asymptotic
methods, we will here partly follow the approach in [21] and [22], although the aims
in these references are different as they include topics like self-adjoint extension of the
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266 S. A. Nazarov, J. Taskinen

problem operator and eigenvalue estimates also in the high-frequency range, instead
of spectral gaps corresponding to low frequencies in the present work.Wemention the
paper [7], where the two-dimensional version of the present problem was treated with
result on the existence of arbitrarily many spectral gaps for thin enough (small h > 0)
connecting canals of voluminous containers. However, we emphasize that in the lower
dimensional case the limit problem is an ordinary differential equation, the solutions of
which can be found explicitly and quite precise information of its spectrum, including
spectral gaps, can be obtained by a quite elementary approach. Here, the limit problem
is still a spectral Laplace problem, and precise enough information on its spectrum
is more difficult to gain. Also, it is clear that the structure of the asymptotic terms is
essentially different and more complicated in the case d = 3.

Of course, neither the present paper nor [7] are the first studies of spectral gaps
by means of asymptotic analysis. Let us mention [3,4,6,20,23], where the detection
of open gaps is based on a periodic perforation of strips and cylinders or singular
perturbations of a similar type, an approach which will also be used in Sect. 4.

1.3 Model problem in the periodicity cell

Our approach to the problem (4)–(6) is based on the Floquet–Bloch–Gelfand- (FBG-
)transform, which converts the problem on the periodic channel �h into one on the
periodicity cell

� h = {x ∈ �h : |y1| < 1/2}. (7)

The boundary ∂� h includes the free water surface ω0 = {x ∈ �0 : |y1| < 1/2} and
the lateral surface ςh = {x ∈ �h : |y1| < 1/2}. We recall that the FBG-transform is
defined by

u(x) �→ U (x, η) = 1√
2π

∑

j∈Z

e−iη j u(x1 + j, x2, x3),

where x = (x1, x2, x3) ∈ �h on the left while, on the right, we have x ∈ � h and
η ∈ [−π, π ]; this is the dual variable or the Floquet parameter. For more details, see
[9] and e.g. [27, XII.16], [24, § 3.4], [18, Cor. 3.4.3], [13, Sec. 2.2]. Applying the
FBG-transform to the problem (4)–(6), we obtain a family of model problems in the
periodicity cell � h parametrized by η,

−	U h(η; x) = 0, x ∈ � h, (8)

∂νU
h(η; x) = 0, x ∈ ςh, (9)

∂zU h(η; x) = �h(η)U h(η; x), x ∈ ω0, (10)

U h(η; x)
∣
∣
∣
y1=1/2

= eiηU h(η; x)
∣
∣
∣
y1=−1/2

, (11)

∂U h

∂x1
(η; x)

∣
∣
∣
y1=1/2

= eiη ∂U h

∂x1
(η; x)

∣
∣
∣
y1=−1/2

. (12)
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Band-gap structure of the spectrum of the water-wave… 267

Here, � = �(h, η) is a new notation for the spectral parameter λ.
As is well known, the FBG-transform establishes an isometric isomorphism

L2(�h)  L2(0, 2π; L2(� h)),

where L2(0, 2π; B) is the Lebesgue space of functions with values in the Banach
space B, endowed with the norm

‖ f ; L2(0, 2π; B)‖ =
( ∫ 2π

0
‖ f (η); B‖2dη

)1/2
.

We denote by H1
η (�

h), where η ∈ [0, 2π), the subspace of the Sobolev space
H1(� h) consisting of functions satisfying the quasiperiodic boundary condition (11).
The FBG-transform is also an isomorphism from the Sobolev space H1(�h) onto
H1(0, 2π; H1

η (�
h)); see the references above.

Our approach to the spectral properties of the model is similar to [21,25] and others.
Given η ∈ [−π, π ], we write the variational formulation of the problem (8)–(12) for
the unknown function U ∈ H1

η (�
h) and the spectral parameter �(η) as

(∇U h(η; ·),∇ψh(η; ·))� h

= �h(η)(U h(η; ·), ψh(η; ·))ω0 , ∀ψh(η; ·) ∈ H1
η (�

h). (13)

We denote in the sequel by Hh
η the space H1

η (�
h) endowed with the new scalar

product

〈uh, ψh〉h = (∇uh,∇ψh)
� h + h

(
uh, ψh)

ω0
, (14)

where η is omitted from the notation and the inner product in ω0 is understood in the
sense of traces, and define a self-adjoint, positive operator Kh

η : Hh
η → Hh

η by using
the identity

〈Kh
ηuh, ψh〉h = (

uh, ψh)
ω0

∀ uh, ψh ∈ Hh
η. (15)

The operatorKh
η is also compact due to the compactness of the embedding H1(� h) ⊂

L2(ω0). The integral identity (13) corresponding to the problem (8)–(12) is then equiv-
alent with the standard spectral equation in the Hilbert space Hh

η ,

Kh
ηU h = κhU h,

with the new spectral parameter

κh = κh(η) = (
�h(η)+ h

)−1
. (16)
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Fig. 2 a Cross-section of the structure of a pothole, b graphs of cut-off functions

According to [5, Thm.10.1.5, 10.2.2] the spectrum ofKh
η consists of null, which is the

only point in the essential spectrum, and a positive sequence of eigenvalues belonging
to the discrete spectrum

κh
1 ≥ κh

2 ≥ . . . ≥ κh
m ≥ . . . → +0, (17)

and, owing to (15) and (14), the norm of the operatorKh
η does not exceed h−1 so that

κh
1 ≤ 1. (18)

Formula (16) and the properties of the sequence
(
κh

k (η)
)∞

k=1 mean that the eigenvalues
of the problem (8)–(12) form an unbounded sequence

0 ≤ �h
1(η) ≤ �h

2(η) ≤ . . . ≤ �h
k (η) ≤ . . . → +∞, (19)

where multiplicities have been taken into account. Note that the first inequality in (19)
follows from (18) and (16) but also directly from the integral identity (13). We denote
for every k by U h

k (η; ·) ∈ H1
η (�

h) the eigenfunction corresponding to �h
k (η), which

fulfil the normalization and orthogonality conditions

(
U h

m(η; ·),U h
n (η; ·))

ω0
= δm,n, m, n ∈ N, (20)

where on the right-hand side there is the Kronecker delta.
Finally, the functions η �→ �h

k (η) are continuous and 2π -periodic (see for example
[11, Ch.9], [13, Sec. 3.1]). Hence, the spectral bands Bh

m = {�h
m(η) : η ∈ [0, 2π)} of

the problem (4)–(6) indeed are compact intervals, and, by well-known principles of
the FBG-theory, the essential spectrum Sh

ess of the problem (4)–(6) can be presented
as

Sh
ess = ⋃

m∈N

Bh
m .
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2 Formal asymptotic analysis

2.1 Asymptotic ansätze

We search for an eigenvalue of the problem (8)–(12) in the form

�h(η) = hμ(η)+ . . . . (21)

Here, and later in this section, dots stand for higher order terms, which are inessential
for our preliminary analysis and will eventually be estimated in Theorem 1. Inside
the thin part� h

� = � h\� of the periodicity cell, we employ the standard asymptotic
decomposition in shallow water domains

U h(η; x) = v0(η; y)+ h2v′(η; y, ζ )+ . . . in� h
� , (22)

cf. [7,8,21,22] and others. Here, ζ = h−1z is the stretched vertical coordinate. We
note that

∂ν = (
1 + h2|∇y H(y)|2)−1/2( − ∂z − h∇y H(y) · ∇y

)
(23)

at the bottom part ςh
� = {x ∈ ω0\θ : z = −h H(y)} and insert the ansätze into the

Eq. (8), restricted to � h
� , and to the boundary conditions (9) and (10), restricted to

ςh
� and ω0

� = ω0\θ , respectively. Separating terms of the same order in h yields the
problems

−∂2ζ v0(η; y) = 0 for ζ ∈ (−H(y), 0),

∂ζ v
0(η; y) = 0 for ζ = −H(y) and ζ = 0

(which trivially holds, since v is independent of ζ in (22)), and

−∂2ζ v′(η; y, ζ ) = 	yv
0(η; y), ζ ∈ (−H(y), 0),

−∂ζ v′(η; y,−H(y)) = ∇y H(y) · ∇yv
0(η; y), −∂ζ v′(η; y, 0) = μv0(η; y).

(24)

Equations (24) form a Neumann problem for an ordinary differential equation, and it
has a solution, if and only if the compatibility condition

0∫

−H(y)

	yv
0(η; y)dζ + ∇y H(y) · ∇yv

0(η; y)+ μ(η)v0(η; y) = 0

is satisfied. This can be written as the differential equation

− ∇y · H(y)∇yv
0(η; y) = μ(η)v0(η; y), y ∈ ω0

� . (25)
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270 S. A. Nazarov, J. Taskinen

Due to the formof the ansatz (22), the conditions (9), (11) and (12) lead to the following
boundary and quasiperiodicity conditions

±∂v
0

∂ y2
(η; y1,±�) = 0, |y1| < 1

2
, (26)

v0
(
η; 1

2
, y2

)
= eiηv0

(
η;−1

2
, y2

)
, |y2| < �, (27)

∂v0

∂ y1

(
η; 1

2
, y2

)
= eiη ∂v

0

∂ y1

(
η;−1

2
, y2

)
, |y2| < �. (28)

It remains to derive a condition on the interior boundary ∂θ of the domainωh
� ⊂ R

2.
To this end we use the asymptotic ansatz, cf. [7,21,22],

U h(η; x) = V 0(η; x)+ hV ′(η; x)+ . . . (29)

in themassive part� of the periodicity cell (7).We insert the ansätze (29) and (21) into
the Eq. (8) in�, into the Steklov condition (10) in θ and into the Neumann condition
(9) on the surface ςh ∩ ∂�. The curved two-dimensional ring

υh = {x : y ∈ ∂θ,−h H(y) < z < 0} (30)

does not appear in the boundary condition (9) and it also disappears on the limit
h → +0 so that it is natural to compose the problems

−	V 0(η; x) = 0 for x ∈ �, ∂νV 0(η; x) = 0 for x ∈ ∂�\∂θ, (31)

and

−	V ′(η; x) = 0 for x ∈ �, ∂νV ′(η; x) = 0 for x ∈ ∂�\θ,
−∂z V ′(η; x) = μ(η)V 0(η; x), x ∈ θ. (32)

According to (31), the main asymptotic term in (29) is a constant,

V 0(η; x) = a0(η); (33)

however, the Neumann problem (32) has no bounded solution, if μ(η) �= 0 and
a0(η) �= 0. This leads to the conclusion that the problem (32) has to be modified
[remember how we treated the ring (30)].

2.2 Boundary layer

We will link the outer expansion (22) and (29) by using the method of matched
asymptotic expansions, see the monographs [10,28] and the papers [7,21,22], where
applications to the water-wave problem are considered. To construct the inner expan-
sion in the vicinity of vh , we introduce the local curvilinear coordinates (s, n, z) in a
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(a) (b)

Fig. 3 a The scaled domain  = K ∪ P, b the domains α in the non-perpendicular case

three-dimensional neighborhood V of the contour ∂θ , such that s is the arc length on
∂θ , n is the oriented distance to ∂θ on ω0 with n > 0 inside θ , and z = x3. We keep s
unscaled but change n and z into the stretched coordinates

ξ = (ξ1, ξ2) = 1

h

1

H(s)
(n, z) with H(s) = H(y)

∣
∣
∂θ
. (34)

The coordinate change x �→ (s, ξ) and the formal replacement h = 0 transform the
subdomain � h ∩ V into the set

{
(s, ξ) : s ∈ ∂θ, ξ ∈ }

where is the union of the fourth quadrant of the plane, K = {ξ ∈ R
2 : ξ1 > 0, ξ2 <

0} and the semi-infinite strip P = {ξ ∈ R
2 : ξ1 ≤ 0, ξ2 ∈ (−1, 0)} of unit width

[recall the denominator H(s) in (34); see Fig. 3a].
We have ∂ν = ∂n = h−1∂/∂ξ1 for y ∈ ∂θ , z ∈ (−h•, 0) with h• > 0 defined in

Sect. 1.1 and ∂z = h−1∂/∂ξ2 on ω0. The Laplacian 	x is written in the curvilinear
coordinates as

(
1 + nκ(s)

)−1
( ∂

∂s

(
1 + nκ(s)

) ∂

∂s
+ ∂

∂n

(
1 + nκ(s)

)−1 ∂

∂n

)
+ ∂2

∂z2
, (35)

whereκ(s) is the curvature of the contour ∂θ � s. Thus, the coordinate change x �→ ξ

together with formulas (35) and (23) and passing formally to the limit h → +0 turn
(8)–(10) into the Neumann problem

−	ξw(ξ) = 0, ξ ∈ , ∂ν(ξ)w(ξ) = 0, ξ ∈ ∂\P, (36)

where P = (0,−1); this is the only corner point with opening α = 3π/2 on the
boundary ∂.

Remark 1 If the surface ∂� is not perpendicular to the plane {x : z = 0} on the
contour ∂θ , then, instead of the union3π/2 = K ∪ P (Fig. 3b) we obtain the domain

α(s) = Kα(s) ∪ {ξ : ξ1 ∈ R, ξ2 ∈ (−1, 0)},

where Kα(s) = {ξ : ξ2 < 0, ξ1 > −ξ2 cot(α(s))} is the angle of opening α(s) ∈
(π, 2π). In this case the formal asymptotic analysis would remain almost the same,
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272 S. A. Nazarov, J. Taskinen

but the justification procedure of Sect. 3 would become more involved with more
cumbersome calculations.

To follow the matching procedure in [7,21], we need to find the solutions of the
problem (36) with linear behavior at the infinity in P. One of them is obvious, the
constant function. However, there also exists a harmonic function W in  satisfying
the Neumann condition such that

W (ξ) =
{
ξ1 + c + O(eπξ1), ξ1 → −∞, ξ ∈ P,

2π−1 ln |ξ | + O(|ξ |−1), |ξ1| → +∞, ξ ∈ K,
(37)

see for example [22, §2]. Here c is an absolute constant which can be found by
solving the problem by an appropriate conformal mapping, but we do not need the
exact value in the following. Note that the solution is made unique by the requirement
that the constant term of the solution, which remains undetermined by the Neumann
condition, equals 0 in the quadrant K.

Furthermore, it follows from the Kondratiev theory (see [12] and, e.g., [24, Ch.2])
that all solutions of (36) with at most polynomial growth rate in P and logarithmic in
K are given by the linear combinations

c0 + c1W (ξ), c0, c1 ∈ R.

Let us now realize the matching procedure. The Taylor formula in the variable n
converts the outer expansion (22) in the thin domain � h

� into

U h(η; x) = v(η; s, 0)+ n∂nv(η; s, 0)+ · · · + h2v′(η; s, 0)+ · · ·
= v(η; s, 0)+ h H(s)∂nv(η; s, 0)+ · · · , (38)

where v(η; s, n) is the function v(η; ·) written in the curvilinear coordinates. Com-
paring terms of order 1 = h0 in the outer expansion (38) and (29) with the inner
expansions

U h(x) = c0(η; s)+ hc1(η; s)W
(
h−1H(s)−1n, (h−1H(s)−1z

) + . . . , (39)

we conclude that

v0(η; s, 0) = c0(η; s) = a0(η), (40)

where a0(η) is taken from (33).
To continue, we compare (38) and (39) at the level h. The asymptotics (37) in P

requires that

c1(η; s) = H(s)∂nv
0(η; s, 0).

Hence, in view of the representation (37) in K, the correction term of the outer expan-
sion (29) in the massive part � of the periodicity cell � h must have the following
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Band-gap structure of the spectrum of the water-wave… 273

behavior at edge ∂θ of the boundary ∂�:

V ′(η; x) = 2

π
H(s)∂nv

0(η; s, 0) ln r + O(1) as r = (n2 + z2)1/2 → +0. (41)

It should be mentioned that the thin ring (30) does not involve any boundary con-
dition and it shrinks into the edge ∂θ of the container � so that it is not possible to
make a priori any conclusion on the behavior of V ′(η; x) as x approaches ∂θ . At the
same time, the matching procedure leads to the relation (41), which completes the
formulation of the Neumann problem for V ′.

A solution of the problem (32), (41) can be found in the form

V ′(η; x) = χ(x)
2

π
H(s)∂nv

0(η; s, 0) ln r + V̂ ′(η; x),

where χ is a smooth cut-off function which is equal to 1 in the vicinity of ∂θ and
has support in � ∩ V . The function V̂ ′(η, x) can be found from the Poisson equation
with the right-hand side f̂ such that r δ f̂ ∈ L2(�) and with Neumann data in L2(∂θ).
Here, r(x) = dist (x, ∂θ) and δ > 0 is arbitrary. Hence, the existence of V̂ ′ ∈ H1(�)

follows by posing one compatibility condition. This can of course be derived from the
original problem (32), (41) by integrating by parts in the truncated domain �(�) =
{x ∈ � : r(x) > �} and sending � to +0. Indeed,

μmes2(θ) a0(η) = lim
�→+0

∫

{y∈θ :r>�}
∂z V ′(η; y, 0) dy

= lim
�→+0

∫

{x∈�∩V :r=�}
∂r V ′(η; x) dsx

=
∫

∂θ

H(s)∂nv
0(η; s, 0)ds

2

π

π/2∫

0

dϕ =
∫

∂θ

H(s)∂nv
0(η; s, 0)ds,

where ϕ is the angular variable of the polar coordinate system (r , ϕ) in planes perpen-
dicular to the contour ∂θ .

As a result of our calculations, we conclude by associating the following conditions
on ∂θ to the problems (25)–(28) ,

v0(η; s, 0) = a0(η), s ∈ ∂θ,
∫

∂θ

H(s)∂nv
0(η; s, 0)ds = μ(η)a0(η)mes2(θ). (42)

The quantity a0(η) has not been fixed yet, but it must be found by solving the obtained
eigenvalue problem (25)–(28), (42), which we call the limit problem.
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2.3 The spectrum of the limit problem

To present the variational formulation of the problem (25)–(28), (42) we introduce the
following subspace of the Sobolev space H1(ω0

� ):

H(η) = {
v0 ∈ H1(ω0

� ) : v0 satisfies (27) and is constant on ∂θ ⊂ ∂ω0
�

}
. (43)

Notice that the space (43) involves only the stable periodicity condition (27), while
the other condition (28) is the intrinsic one in the terminology of [15].

We denote the a priori unknown constant in (43) by v0θ ∈ C. Owing to (42) and
(43) we have

∫

∂θ

H(s)v0(η; s, 0)ψ(η; s, 0)ds = μ(η)v0θψθmes2(θ)

for any solution v0 ∈ H2(ω0
� ) of the limit problem and test function ψ(η; ·) ∈ H(η),

hence, multiplying (25) by ψ(η; x), integrating by parts, and taking into account the
boundary and quasiperiodicity conditions (25)–(28) yield the integral identity

(
H∇yv

0(η; ·),∇yψ(η; ·))
ω0�

= μ(η)
(
(v0(η; ·), ψ(η; ·))

ω0�
+ v0θ (η)ψθ (η)mes2(θ) ∀ψ(η; ·) ∈ H(η), (44)

where (·, ·)ω0� is the natural scalar product of the Lebesgue space L2(ω0
� ).

Since the embeddings of H1(ω0
� ) into L2(ω0

� ) and L2(∂θ) are compact, we observe

that (43) is a closed subspace of H1(ω0
� ). Moreover, the sesquilinear form on left-hand

side of (44) is positive, thus Hermitian, and closed in H1(ω0
� ). These observations

obviously imply the following assertion.

Proposition 1 The spectrum of the problem (44) is discrete and it consists of the
positive monotone unbounded sequence of eigenvalues

0 ≤ μ1(η) ≤ μ2(η) ≤ . . . ≤ μm(η) ≤ . . . → +∞ (45)

where multiplicities are taken into account. The corresponding eigenfunctions v01(η; ·),
v02(η; ·), . . . , v0m(η; ·), . . . ∈ H(η) can be subject to normalization and orthogonality
conditions

(
v0m(η; ·), v0n(η; ·))

ω0�
+ v0mθ (η)v0nθ (η)mes2(θ) = δm,n m, n ∈ N. (46)

Since the boundary ∂θ was assumed smooth, also the eigenfunctions v0m(η, ·) are
smooth, see [1,2], and therefore the eigenpairs {μm(η), v

0
m(η, ·)} of the variational

problem (44) are solutions of the differential problem (25)–(28), (31), too.
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The first eigenvalue and eigenfunction of the limit problem satisfy the relations

0 = μ1(0) < μ1(η) for η ∈ [−π, 0) ∪ (0, π ], v01(0; y) = (2�)−1/2.

It is remarkable that the first eigenpair {�h
1(0),U

h
1 (0, x)}of the original problem (8)–

(12) with η = 0 has the same form {0, (2�)−1/2}.

3 Justification of asymptotics

3.1 Convergence theorem

We consider an eigenpair {�h
n(η),U

h
n (η; ·)} of the problem (13) with a fixed number

n ∈ N, where U h
n (η; ·) is normalized as in (20) and

�h
n(η) ≤ C (n)h for h ∈ (0, h(n)] (47)

for some positive h(n) andC (n); the bound (47)will be derived in Remark 2 in Sect. 3.4.
Hence, there exists a positive sequence {h j } j∈N tending to 0 such that

h−1
j �

h j
n (η) → μ̂n(η) ∈ [0,+∞). (48)

In what follows we omit the argument h and the index n from the notation and also
write simply h instead of h j .

We pick up a function ψ ∈ C∞(ω0
� ) which satisfies the first quasiperiodicity con-

dition (27) and coincides with ψθ ∈ C on ∂θ . We insert the special test function

ψh(x) =
{
ψ(y), x ∈ � h

� ,

ψθ , x ∈ �,

into the integral identity (13) and rewrite it as follows:

h−1
∫

� h
�

∇yU h(x) · ∇yψ(y)dx − h−1�h
∫

ω0�

U h(y, 0)ψ(y)dy

= h−1�h
∫

θ

U h(y, 0)ψθdy. (49)

We set  h = U h in (13) and use (47), (20) to derive the estimate

‖∇U h; L2(� h)‖2 = �h‖U h; L2(ω0)‖2 = �h ≤ ch
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so that the Poincaré and trace inequalities in the massive part � yield

U h(x) = U h
0 + U h⊥(x), U h

0 ∈ C,

∫

�

U h⊥(x)dx = 0,

‖U h⊥; L2(�)‖2 ≤ c‖∇U h⊥; L2(�)‖2 = c‖∇U h; L2(�)‖2
≤ c�h‖U h; L2(ω0)‖2 ≤ ch,

‖U h⊥; L2(θ)‖2 ≤ c‖U h⊥; H1(�)‖2 ≤ ch. (50)

Hence, we can pass to a subsequence of {h j } j∈N, and still keep the above convention
on the notation, so that

U h
∣
∣
z=0 → v̂θ ∈ C strongly in L2(θ). (51)

Therefore we obtain for the right-hand side I h
ri (ψ) of (49)

I h
ri (ψ) → μ̂mes2(θ) v̂θ ψθ . (52)

To process the left-hand side I h
le(ψ) of (49) we define the stretched domain � 1

� =
{(y, ζ ) : y ∈ ω0

� ,−H(y) < ζ < 0} and observe that the function Uh(y, ζ ) =
U h(y, h−1z) satisfies

‖Uh(·, 0); L2(ω0
� )‖2 + ‖∇yUh(·, 0); L2(� 1

� )‖2 + h−2‖∂ζUh(·, 0); L2(� 1
� )‖2

= ‖U h(·, 0); L2(ω0
� )‖2 + h−1‖∇yU h; L2(� h

� )‖2 + h−1‖∂zU h; L2(� h
� )‖2

≤ (1 + h−1�h)‖U h(·, 0); L2(ω0)‖2 ≤ C . (53)

Thus, observing that the H1(� 1
� )-norm of Uh is uniformly bounded, we again find a

subsequence of {h j } j∈N such that

Uh → v̂ weakly in H1(� 1
� ),

Uh(·, 0) → v̂ strongly in L2(ω0
� ), (54)

where v̂ ∈ H1(� 0
� ) is a function independent of ζ (recall the factor h−1 of the norm

‖∂ζUh; L2(� 1
� )‖ in (53)). Finally,

I h
le(ψ) →

∫

ω0�

H(y)∇y v̂(y) · ∇yψ(y)dy − μ̂
∫

ω0�

H(y)̂v(y) · ψ(y)dy (55)

and, moreover, from the normalization of U h and the strong convergence in (51) and
(54) we derive the equality

‖̂v; L2(ω0
� )‖2 + |̂vθ |2mes2(θ) = 1. (56)
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Formulas (49) and (52) demonstrate that the limits μ̂ in (48) and v̂ in (54) satisfy
the integral identity (44), thus, in view of (56), v̂ ∈ H(η) is a non- trivial eigenfunction
of the limit problem (44), corresponding to its eigenvalue μ̂.

Lemma 1 The limits μ̂ in (48) and v̂ in (54) compose an eigenpair of the limit problem
(44), or, (25)–(28), (42).

The Proof of Lemma 1 is completed only in Remark 2 in Sect. 3.4, but on the other
hand, it is needed only at the end of the Proof of Theorem 1.

3.2 Operator formulation of themodel problem in the periodicity cell

The next assertion is known as the "lemma on almost eigenvalues and eigenvectors"
[29] and it is a consequence of the spectral decomposition of the resolvent, see, e.g.
[5, Ch.6].

Lemma 2 Let the function Uh ∈ Hh
η and number kh ∈ R+ be such that

‖Uh;Hh
η‖ = 1 and ‖Kh

ηUh − khUh;Hh
η‖ =: δh ∈ (0, kh). (57)

Then, there exists an eigenvalue κh
m (with some index m) of the operator Kh

η such that

|kh − κh
m | ≤ δh . (58)

Furthermore, for any δh∗ ∈ (δh, kh) one can find a column of coefficients bh =(
bh

Mh , . . . , b
h
Mh+Xh−1

)
satisfying

∥
∥
∥Uh −

Mh+Xh−1∑

p=Mh

bh
puh

p;Hh
η

∥
∥
∥ ≤ δh

δh∗
,

Mh+Xh−1∑

p=Mh

|bh
p|2 = 1, (59)

where the sequence κh
Mh , . . . , κ

h
Mh+Xh−1

consists of all eigenvalues ofKh
η contained in

the closed interval [kh − δh∗ , kh + δh∗ ] and uh
Mh , . . . , u

h
Mh+Xh−1

are the corresponding

eigenvectors, which are orthonormalized in Hh
η .

3.3 Global approximation and estimation of the discrepancies

To glue the outer and inner expansion constructed in Sect. 2 we employ a trick, which
uses cut-off functions with overlapping supports, see [16, Ch.2] and [19] and Fig. 2b).
Consequently, we define the following smooth functions

Xh(x) = 1 for x ∈ � h
� , n < −2h,

Xh(x) = 0 for x ∈ � or x ∈ � h
� , n > −h; (60)

χ(x) = 1 for x ∈ � h
� ∩ V, n > −r0 or x ∈ � ∩ V, r < r0,
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χ(x) = 0 for x ∈ � h
� , n < −2r0 or x ∈ �, r > 2r0; (61)

X h(x) = 1 for x ∈ �, r > 2Hθh,

X h(x) = 0 for x ∈ � h
� or x ∈ �, r < Hθh. (62)

Here, r0 is a positive number so small that {x ∈ � h : r < 2r0} ⊂ V and Hθ =
max
y∈∂θ H(y) and will be finally fixed only in Lemma 5.

If {μ(η), v(η; ·)} is an eigenpair of the limit problem (25)–(28), (42), formulas (16)
and (21) suggest to take

kh(η) = h−1(μ(η)+ 1
)−1 (63)

as the "almost eigenvalue" of the operator Kh
η . In the following we will omit η from

the notation.
We take the following composite function as an "almost eigenvector":

Wh = Xh(x)
(
v0(y)+ h2v′(y, h−1z)

)

+χ(x)
(

a0 + h H(y)∂nv
0(s, 0)W

(
h−1H(y)−1n, h−1H(y)−1z

) − ha1
h(s)

)

−Xh(x)χ(x)
(
v0(s, 0)+ n∂nv

0(s, 0)
)
, x ∈ � h

� ; (64)

Wh = X h(x)
(
V 0 + hV ′(x)

)

+χ(x)
(

a0 + h H(s)∂nv
0(s, 0)W

(
h−1H(s)−1n, h−1H(s)−1z

) − ha1
h(s)

)

−X h(x)χ(x)
(
a0 + h H(s)∂nv

0(s, 0)
2

π
ln

r

h H(s)

)
, x ∈ �. (65)

Let us explain the complicated structure of this global asymptotic approximation of
the eigenfunction v(η, ·).

• In both expressions (64) and (65) the first two lines on the right-hand sides contain
terms which have been matched in Sect. 2, but subtracting the terms on the third lines
(with factors Xhχ and X hh, respectively), compensates such a duplication.

• The function v′ is found as a solution of the problem (24) and it is made unique
by imposing the orthogonality condition

0∫

−H(y)

v′(y, ζ )dζ = 0, y ∈ ω0
� .

•The arguments of the inner term (37) are different in (64) and (65), but nevertheless
the function Wh belongs to H1(� h) because H(y) becomes H(s) on the common
boundary surface (30) of � h

� and �.
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• The constant a0 = V 0 is taken from (33) and (40). The behavior of V ′ near the
edge ∂θ is described by the formula

V ′(x) = 2

π
H(s)∂nv(s, 0) ln r + V ′

0(s)+ Ṽ ′(x), x ∈ � ∩ V, (66)

cf. (41). Here, V ′
0 ∈ C∞(∂θ) and

|∂k
z ∂
�
n∂

m
s Ṽ ′(x)A ≤ ck,�,mr1−k−�(1 + | ln r |), x ∈ � ∩ V; (67)

the orthogonality condition

∫

�

V ′(x)dx = 0

makes both V ′ and V ′
0 uniquely defined.

• The function a1
h in (65) is determined by

a1
h(s) = V ′

0(s)− H(s)∂nv(s, 0)
2

π
ln(h H(s)). (68)

Recalling our definitions (64) and (60), (61), we see that the functionWh coincides
with v(y) + h2v′(y, ζ ) near that ends {x ∈ ∂� h : y1 = ±1/2} of the cell (7), and
therefore, satisfies the quasi-periodicity condition (11) because (27), (28) hold for v
as well as v′. Thus, the function Wh lies in H1

η (�
h) and we can normalize it as

Uh = ‖Wh;Hh
η‖−1Wh . (69)

Let us evaluate the quantity δh , (57), defined by a couple {kh,Uh}, using (14), (15)
and (63)

δh = ‖Kh
ηUh − khUh; H h

η ‖ = sup
∣
∣〈Kh

ηUh − khUh,Vh〉h
∣
∣

= kh‖Wh;Hh
η‖−1 sup

∣
∣(h + hμ)(Wh,Vh)ω0

−(∇Wh,∇Vh)� h − h(Wh,Vh)ω0
∣
∣

= h−1(1 + μ)−1‖Wh;Hh
η‖−1 sup

∣
∣(∇Wh,∇Vh)� h

−hμ(Wh,Vh)ω0
∣
∣, (70)

where the supremum is computed over the unit ball of Hh
η so that we have

‖Vh;Hh
η‖ ≤ 1. (71)

Our aim is to show that δh ≤ c(1 + | ln h|). This will follow in Corollary 1 from
Lemmas 3 and 5.
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Lemma 3 We have

∣
∣(∇Wh,∇Vh)� h − hμ(Wh,Vh)ω0

∣
∣ ≤ ch3/2(1 + | ln h|) (72)

for all Vh belonging to the unit ball of Hh
η .

Proof To evaluate the right-hand side of (70), we write

(∇Wh,∇Vh)� h − hμ(Wh,Vh)ω0

= I�(Vh)+ I�(Vh)+ I(Vh)+ Ia(Vh), (73)

where the terms will be defined in the following. First of all, we set

I�(Vh) = (∇(v0 + h2v′),∇(XhVh)
)
� h
�

− hμ(v0 + h2v′, XhVh)ωh
�

+(
(v0 + h2v′)∇ Xh,∇Vh)

� h
�

− (∇(v0 + h2v′),Vh∇ Xh)
� h
�

=: I 1�(Vh)+ I 2�(Vh)+ I 3�(Vh)+ I 4�(Vh). (74)

Here, we commuted the gradient operator ∇ with the cut-off function Xh . Observing
that, by (60), XhVh = 0 on υh and integrating by parts yield

I 1�(Vh)+ I 2�(Vh)

= −(
	(v0 + h2v′), XhVh)

� h
�

+ (
∂z − hμ)(v0 + h2v′), XhVh)

ω0�

+(
∂ν(v

0 + h2v′), XhVh)
� h
�
.

The consideration in Sect. 2.1 gives the relations

	(v0 + h2v′) = h2	yv
′, (∂z − hμ)(v0 + h2v′) = −h3μv′,

(1 + h2|∇y H |2)1/2(∂νv0 + h2v′) = −h3∇y H · ∇yv
′.

Hence, using the evident estimate

‖Vh; L2(� h
� )‖2 + h‖Vh; L2(ωh

� )‖2
≤ c

(
h2‖∂zVh; L2(� h

� )‖2 + h‖Vh; L2(ω0
� )‖2

) ≤ c,

see (71), gives us

|I 1�(Vh)+ I 2�(V)|
≤ c

(
h2(mes3(�

h
� ))

1/2‖Vh; L2(� h
� )‖ + h3(mes2(ω

0
� ))

1/2‖Vh; L2(ω0
� )‖

+h2(mes2(ω
h
� ))

1/2‖Vh; L2(ωh
� )‖

)
≤ c

(
h2h1/2 + h3h−1/2 + h3h−1/2)

= 3ch5/2. (75)
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The remaining terms I 3�(Vh) and I 4�(Vh) will be taken into account later.
On the massive domain � we set

Vh(x) = Vh
0 + Vh⊥(x), where

∫

�

Vh⊥(x)dx = 0,

and using definition (14) together with the Poincaré and trace inequalities, cf. (50), we
obtain

h1/2|Vh
0 | + ‖Vh⊥; H1(�)‖ ≤ c‖Vh;Hh

η‖ ≤ c. (76)

Then, we define and estimate

I�(Vh) = (∇(X h(V 0 + hV ′)),∇Vh)
�

− hμ(X h(V 0 + hV ′),Vh)θ

= −(
	(V 0 + hV ′),X hVh⊥

)
�

+ (
∂ν(V

0 + hV ′),X hVh⊥
)
∂�\θ

+( − ∂ν − hμ)(V 0 + hV ′),X hVh⊥
)
θ

− hμ
(
X h(V 0 + hV ′),Vh

0

)
θ

+(
(V 0 + hV ′)∇X h,∇Vh⊥

)
�

− (∇(V 0 + hV ′),Vh⊥∇X h)
�

=:
6∑

j=1

I j
�(V

h). (77)

Recall that V 0 is constant and that, by Sect. 2,

	V ′ = 0 in �, ∂νV ′ = 0 in ∂�\θ, (∂z − hμ)(V 0 + hV ′) = −h2μV ′ in θ,
|V ′(y, 0)| ≤ c(1 + | ln r |) ≤ c(1 + | ln h|) for y ∈ θ ∩ suppX h,

hence, we have

I 1�(Vh) = 0, I 2�(Vh) = 0,

|I 3�(Vh)| ≤ ch2(1 + | ln h|)‖Vh⊥; L2(θ)‖ ≤ ch2(1 + | ln h|).

The last two terms will be treated in the next paragraph, while the estimate (76) yields

∣
∣I 4�(Vh)− hμV 0Vh

0 mes2(θ)
∣
∣

= hμ
∣
∣
(
(1 − X h)V 0,Vh)

θ
+ h(X h V ′,Vh)θ

∣
∣

≤ ch
(
mes2(θ

h
X )|V 0| + h‖V ′; L2(θ)‖)‖Vh;Hh

η‖
≤ ch(h + h)h−1/2‖Vh;Hh

η‖ ≤ 2ch3/2,

where, according to (62),

θh
X = {y ∈ θ : X h(y, 0) �= 1} ⊂ {y ∈ θ : r < 2Hθh}.
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The last couples of terms in (74) and (77) will be compensated by parts of the
expression

Ia(Vh) = (∇(Xhχ(v0θ + n∂zv
0
θ )),∇vh)

� h
�

− hμ
(
Xhχ(v0θ + n∂nv

0
θ )),Vh)

ω0�

+(∇(X hχ(a0 + h Ah − ha1),∇Vh)
�

−hμ
(
X hχ(a0 + h Ah − ha1),Vh)

θ
, (78)

where ∂nvθ (s) = ∂nv
0(s, 0) and Ah(s, r) = H(s)∂nv

0
θ (s)

2
π
ln r

h H(s) . Taking into
account the position of the supports in (60)–(62) shows that

∇(Xhχ) = ∇ Xh + ∇χ, ∇(X hχ) = ∇X h + ∇χ,

and we rewrite (78) as follows:

Ia(Vh)

= −(∇(v0θ + n∂nv
0
θ ),∇(XhχVh)

)
� h
�

+ hμ
(
v0θ + n∂nv

0
θ , XhχVh)

ωh
�

−(
(v0θ + n∂nv

0
θ )∇ Xh,∇Vh)

� h
�

+ (∇(v0θ + n∂nv
0
θ ),Vh∇ Xh)

� h
�

−(
(v0θ + n∂nv

0
θ )∇χ,∇Vh)

� h
�

+ (∇(v0θ + n∂nv
0
θ ),Vh∇χ)

� h
�

−(∇(a0 + h Ah − ha1
h),∇(X hχVh⊥)

)
�

+ hμ
(
a0 + h Ah − ha1

h,X hχVh)
θ

−(
(a0 + h Ah − ha1

h)∇X h,∇Vh⊥
)
�

+ (∇(a0 + h Ah − ha1
h),Vh∇X h⊥

)
�

−(∇(a0 + h Ah − ha1
h)∇χ,∇Vh⊥

)
�

+ (∇(a0 + h Ah − ha1
h),Vh∇χ)

�

=:
12∑

j=1

I j
a (Vh). (79)

In view of (60) and (62) we have

n = O(h) in T h = supp |∇ Xh |, r = O(h) in T h = supp |∇X h |,
|∇ Xh(x)| + |∇X h(x)| ≤ ch−1, mes3T h + mes3T h ≤ ch2.

Hence, using the relations

|v0(y)− v0θ (s)− n∂nv
0
θ (s)| ≤ c(dist (y, ∂θ))2, |v′(y, ζ )| ≤ c,

V 0 = a0,
∣
∣V 0(x)+ hV ′(x)− a0 − h Ah(s, r)+ ha1

h(s)
∣
∣ ≤ c dist (x, ∂θ),

we conclude that

|I 3�(Vh)+ I 3a (Vh)| ≤ ch−1(mes3T h)1/2h2‖∇Vh; L2(T h)‖ ≤ ch2,

|I 5�(Vh)+ I 9a (Vh)| ≤ ch−1(mes3T h)1/2h2‖∇Vh; L2(T h)‖ ≤ ch2.
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The estimates

|I 4�(Vh)+ I 4a (Vh)| ≤ ch−1(mes3T h)1/2h‖Vh; L2(T h)‖ ≤ ch3/2

|I 6�(Vh)+ I 10a (Vh)| ≤ ch−1(mes3T h)1/2h‖Vh⊥; L2(T h)‖ ≤
≤ ch3/2(1 + | ln h|) (80)

are obtained in the same way, but with the help of the next lemma. The remaining
terms in (79) will be considered later, but notice that until now all terms of (74) and
(77) have been taken into account. ��
Lemma 4 The following inequalities hold true:

‖Vh; L2(T h)‖ ≤ ch1/2‖Vh;Hh
η‖,

‖Vh⊥; L2(T h)‖ ≤ ch1/2(1 + | ln h|)‖Vh⊥; H1(�)‖. (81)

Proof of Lemma 4 First of all, repeating the calculation (53) with an evident modifica-
tion yields

‖Vh; L2(� h
� )‖2 ≤ c

(
h‖Vh; L2(ω0

� )‖2 + h2‖∂zVh; L2(� h
� )‖2 ≤ ‖Vh;Hh

η‖2.
(82)

Then, we write the Newton-Leibnitz formula in the form

Vh(s, n, z) =
n∫

n0

∂

∂t

(
χ� (t)Vh(s, t, z)

)
dt, (83)

where n0 > 0 is fixed such that {x ∈ � h
� : n > −n0} ⊂ υ and χ� is a smooth cut-off

function,

χ� (n) = 1 for n > −n0/3, χ� (n) = 0 for n < −2n0/3.

Integrating (83) over (−2h, 0) � n, ∂θ � s and (−h H(y), 0) � z, in other words over
T h � x , leads to the inequality

∫

T h

|Vh(x)|2dx ≤ ch
∫

� h
�

(|∇Vh(x)|2 + |Vh(x)|2)dx,

which is nothing but the first inequality in (81).
The second inequality in (81) follows from the estimate

‖Vh⊥; H1(�)‖ ≤ c‖Vh;Hh
η‖,
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cf. (50), and the one-dimensional Hardy inequality with logarithm

r0∫

0

∣
∣
∣ ln

r

r0

∣
∣
∣
−2|V(r)|2 dr

r
≤ 4

r0∫

0

∣
∣
∣
dV
dr

∣
∣
∣
2
rdr

and the fact that r−2| ln r |−2 ≥ ch−2(1 + | ln h|)−2 for x ∈ T h . �

We complete the Proof of Lemma 3. Let us write the term I(Vh) as follows:

I(Vh) = (∇W� ,∇(χVh)
)
� h
�

− hμ
(
W� , χVh)

ω0�

+(∇W�,∇(χVh)
)
�

− hμ
(
W�, χVh)

θ

+(
W�∇χ,∇Vh)

� h
�

− (∇W� ,Vh∇χ)
� h
�

+(
W�∇χ,∇Vh)

�
− (∇W�,Vh∇χ)

�
=

8∑

k=1

I(Vh), (84)

where W� and W� are the multipliers of χ in the middle of the right-hand sides in
(64) and (65), respectively; recall that the arguments of W in these sums differ from
each other.

We treat the sums (84) and (79) together and startwith the simplest terms.According
to (37) and (34), the modulus of the difference

h H(y)∂nv
0(s, 0)W

(
h−1H(y)−1n, h−1H(y)−1z

) − n∂nv
0(s, 0)

= h H(y)∂nv
0(s, 0)c + O(e−π |n|/(h H(y)) (85)

is bounded by ch, we obtain

∣
∣I 5(Vh)+ I 5a (Vh)

∣
∣ ≤ ch(mes3�

h
� )

1/2‖Vh; L2(� h
� )‖ ≤ ch3/2. (86)

In a similar way, by (66) and (67) we observe that the expression

h H(s)∂nv
0(s, 0)W

(
h−1H(s)−1n, h−1H(s)−1z

)

−ha1
h(s)− h H(s)v0(s, 0)

2

π
ln

r

h H(s)
(87)

is O
(
h2r(1 + | ln r |)) in � and thus O(h2) in supp |∇χ |. Hence,

∣
∣I 7(Vh)+ I 11a (Vh)

∣
∣ ≤ ch2‖Vh⊥; L2(�)‖ ≤ ch2.

As for the pairs I 6(Vh), I 6a (Vh) and I 8(Vh), I 12a (Vh), we have to take into account
the formula

∇ = (
(1 + nκ(s))−1∂s, ∂n, ∂z

)
. (88)
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We observe that none of the three derivatives of (88) affects the above presented
boundedness for the expression (85). The same holds concerning the estimate for the
bounded of the expression (87), except on the set supp |∇χ |, the position of which
is however at a positive distance from the edge ∂θ containing the singularities of the
solutions. Thus, we conclude that

∣
∣I 6(Vh)+ I 6a (Vh)

∣
∣ ≤ ch3/2‖Vh; L2(� h

� )‖ ≤ ch3/2,
∣
∣I 8(Vh)+ I 12a (Vh)

∣
∣ ≤ ch2‖Vh; L2(�)‖ ≤ ch3/2. (89)

On the first line we also used (82) and on the second one the inequality

‖Vh; L2(�)‖ ≤ c
(‖∇Vh; L2(�)‖ + ‖Vh; L2(θ)‖) ≤ ch−1/2‖Vh;Hh

η‖

coming from the definition of the scalar product inHh
η .

We are left with the sums

I 1(Vh)+ I 3(Vh), I 2(Vh)+ I 4(Vh) (90)

and

I 1a (Vh)+ I 7a (Vh), I 2a (Vh)+ I 8a (Vh) (91)

in (84) and (79), respectively. The two-dimensional integrals included into the sec-
ond sums in (90) and (91) are treated using the information we already have on the
expressions (85) and (86), which gives us

∣
∣I 2(Vh)+ I 2a (Vh)

∣
∣ ≤ ch2‖Vh; L2(ω0

� )‖ ≤ ch3/2,
∣
∣I 4(Vh)+ I 8a (Vh)

∣
∣ ≤ h2‖Vh; L2(θ)‖ ≤ ch3/2.

Here we also applied the inequality ‖Vh; L2(ω0)‖ ≤ h−1/2‖Vh;Hh
η‖, which is a

consequence of the definition (14).
To concludewith the first sums in (90) and (91), we need to take into account several

aspects. To start with, the first component on the gradient operator (88), which acts in
the integrals over the sets� h

� and�, is treated in the same way as in (89); notice that

in the bound ch2r(1+ | ln r |) of the modulus of (87), the factor r(1+ | ln r |) is small
near the edge ∂θ . Next, the factor nκ(s) in the Jacobian of the differential

dx = (1 + nκ(s))dsdndz

is also O(r). Together, these compensate the singularities of ∇ξW (ξ) of the solution
(37) of the Neumann problem (36) at the corner point P .
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Finally, recalling that the arguments of the function W are different in (64) and
(65), we write

∂

∂z

(
W

( n

h H(y)
,

z

h H(y)

)
− W

( n

h H(s)
,

z

h H(s)

))
= 1

h

( 1

H(y)
− 1

H(s)

)∂W

∂ξ2
(ξ),

∂

∂n

(
W

( n

h H(y)
,

z

h H(y)

)
− W

( n

h H(s)
,

z

h H(s)

))

= 1

h

( 1

H(y)
− 1

H(s)

)∂W

∂ξ1
(ξ)− n

h

∂s H(y)

H(y)2
∂W

∂ξ1
(ξ)− z

h

∂s H(y)

H(y)2
∂W

∂ξ2
(ξ).

Again, in � h
� there appears a factor of order O(n), due to |H(y) − H(s)| = O(n),

see Sect. 2.2. This and the obvious relation

1∫

0

n2e−2δn/hdn = O(h), δ > 0,

yield an additional factor h1/2 in the above estimates, thus compensating the coefficient
h−1 in (34).

We denote by Î q
(Vh) and Î q

a (Vh) the expressions in (90) and (31) after the above
mentioned simplifications have been made. We have

Î 1a (Vh)+ Î 3(Vh)

=
∫

∂θ

∫



∇ξ
(
a0 + h H(s)∂nv

0(s, 0)W (ξ)− ha1
h(s)

) · ∇ξ (χVh)dξds,

Î 2a (Vh) = −
∫

∂θ

∫

P

∇ξ
(
v0(s, 0)+ hξ1∂nv

0(s, 0)
) · ∇ξ (χXhVh)dξds,

Î 7a (Vh)

= −
∫

∂θ

∫

K

∇ξ
(

a0 + h H(s)∂nv
0(s, 0)

2

π
ln

r

h H(s)

)
· ∇ξ (χX hVh)dξds. (92)

These integrals involve several solutions of the Neumann Laplacian in the semi-strip
P, the quadrant K and in their union , see Sect. 2.2, as well as test functions with
compact support, which in particular vanish near the end of P and the corner point of
K. As a consequence, the integrals (92) vanish.

This completes the consideration of the terms in (74), (77), (79) and (84). Lemma
3 thus follows by combining the formulas (70)–(74) with the inequalities (75)–(92).
�

Note that the worst (largest) bound for the left-hand side of (72) appears in (80).
We also need the following estimates for the approximate eigenfunctions.

Lemma 5 Let μm(η), m ∈ N, be the eigenvalues (45) and let v0m(η; ·) be the cor-
responding eigenfunctions of the problem (44), orthonormalized as in (46). Then,
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the functions Wh
m, which are defined in (64), (65) by using v0m and small enough

r0 = r0(m) > 0, satisfy for some h̃m > 0 the relation

‖Wh
m − v0m; L2(ω0)‖ ≤ 2−m−2 ∀ h ≤ h̃m . (93)

Consequently, for every m ≥ 2 and 0 < h < h̃m, the sequence (Wh
n )

m
n=1 is linearly

independent, and there also holds, for some constants c1, c2 > 0,

c1h1/2 ≤ ‖Wh
m;Hh

η‖ ≤ c2h1/2 ∀ h ≤ h̃m . (94)

Proof. Let us consider the defining formulas (64), (65). By standard elliptic reg-
ularity results, [1,2], the smoothness of the boundary ∂ω0

� , and the definition as the

solution of (25)–(28), (42), the functions v0, ∂nv
0, 	yv

0 are bounded by a constant
independent of h and η in the domainω0 (we again drop the indexm from the notation).
Consequently, by (24), also v′ is bounded in the same way.

By (37), we have W (h−1H(s)−1n, h−1H(s)−1z) ≤ ch−1, hence,

∣
∣h H(y)∂nv

0(s, 0)W
(
h−1H(s)−1n, h−1H(s)−1z

)∣
∣ ≤ c′

on ω0. The modulus of the function a1
h(s) is bounded by ch| ln h|, see (68). Thus, the

second and third rows of (64) can be written, by taking x = (y, 0), as χ(y)Fh(y),
y ∈ ω0

� , where Fh is a function, which is bounded by a constant independent of h.
Choosing r0 = r0(m) > 0 small enough in the definition of χ , (61), we get

‖χFh; L2(ω0
� )‖ ≤ 2−m−4.

In the sameway, the second and third rows of (65) can bewritten asχ(y)Fh(y), y ∈ θ,
for a bounded extension of Fh into θ . Diminishing the number r0 > 0, if necessary,
yields also

‖χFh; L2(θ)‖ ≤ 2−m−4 ⇒ ‖χFh; L2(ω0)‖ ≤ 2−m−3 (95)

for all h. Finally, in the subdomain ω̃h = {y ∈ ω0 : Xh(y) = 1 or X h(y) = 1} we
have

Wh = v0 + χFh + F̃h, (96)

where F̃h equals h2v′(y, 0) on ω0
� and hV ′ on θ so that ‖F̃h; L2(ω0)‖ ≤ ch. Since

the area of ω0\ω̃h is O(h) and both functions Wh and v0 are bounded, the relation
(93) follows from (95) and (96) by choosing h̃m small enough.

The claim on the linear independence of the sequence follows from the orthonor-
mality relation (46) (note that the expression on the left-hand side of (46) is nothing
but the natural inner product of L2(ω0), since the eigenfunctions v0m are constant on
θ ), (93) and the well-known result that a small perturbation of a sequence of vectors
forming an orthonormal bases is still linearly independent.
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The lower bound in (94) follows from (46), (93) and the definition of the norm
of Hh

η in (14). The upper bound is a matter of a straightforward calculation of the
Hh
η-norm of the representation (64)–(65). �
We can now conclude with the estimation of δh , (70): by (94), the multiplier of the

last sup | . . . | in (70) does not exceed ch−1‖Wh;Hh
η‖−1 ≤ Ch−3/2. Thus, Lemma 3

yields

Corollary 1 For 0 < h < h̃, there holds the bound

δh ≤ h−3/2h3/2(1 + | ln h|) = c(1 + | ln h|). (97)

Here, h̃ > 0 means the number h̃m , found in Lemma 5 for the approximate eigen-
vector under consideration.

3.4 Theorem on asymptotics

Let us state our main asymptotic result on the eigenvalues of the model problem.

Theorem 1 For all n ∈ N there exist positive numbers hn and cn such that the entries of
the eigenvalue sequences (19) and (45) of the problems (8)–(12) and (44), respectively,
are related by

|�h
n(η)− hμn(η)| ≤ cnh2(1 + | ln h|) ∀ h ∈ (0, hn], η ∈ [−π, π ]. (98)

Evidently, the numbers hn and cn can be chosen independently of η, since the
dependence of the eigenvalues �h

n and μn on η ∈ [−π, π ] is continuous; cf. [13].
As for the proof, one technical difficulty is caused by the possible higher multiplic-

ities of the eigenvalues of the limit problem. To treat this we need to proceed in several
steps and thus start by showing the bound (98) with μm in place μn for some m ∈ N,
which is for the moment unspecified. In (58) of Lemma 2 and (70), (97) we found an
eigenvalue κh

n = κh
n (η) of the model problem such that for an eigenvalue kh

m = kh
m(η)

of the limit problem there holds

|κh
n − kh

m | ≤ c(1 + | ln h|).

We have by (16) and (63),

c(1 + | ln h|) ≥ |κh
n − kh

m | =
∣
∣
∣

1

�h
n + h

− 1

hμm + h

∣
∣
∣ (99)

hence,

|�h
n − hμm | = |�h

n + h − (hμm + h)|
≤ c(1 + | ln h|)(�h

n + h
)(

hμm + h
)
. (100)
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Here, μm is bounded by some constant cm,n > 0 (as it is a continuous function of
η ∈ [−π, π ]) so that (100) and the triangle inequality give us

(1 + c′
m,nh)�h

n ≤ hμm + (1 + | ln h|)h(cm,n + 1) ≤ c′′
m,n(1 + | ln h|)h.

Inserting this again to the right hand side of (100) yields �h
n ≤ hμm + O(h2(1 +

| ln h|)2) = O(h). Using this and (100) once more gives us

|�h
n − hμm | ≤ Cnh2(1 + | ln h|), (101)

i.e. (98) holds true with μm in the place of μn .

Remark 2 Proof of Lemma 1. We can now complete the proof for the formula (47)
and thus also Lemma 1. Indeed, fixing m ∈ N, we have found, as a consequence of
(101), for each eigenvalue μk , k ≤ m, with multiplicity κk at least κk eigenvalues
�h

J (k), . . . , �
h
J (k)+κk−1 belonging to the the interval

[
hμk − Ckh2(1 + | ln h|), hμk + Ckh2(1 + | ln h|)] (102)

for h ∈ (0, h(k)). At this point we do not know, if there are eigenvalues outside the
segments (102), nevertheless, we can conclude that, for h < min{h(1), . . . , h(m)},
there are at least m −1 eigenvalues in the intervals (102) with k = 1, . . . ,m −1. Thus,
J (m) ≥ m and, hence,

�h
m+ j (η) ≤ �h

J (m)+ j (η) ≤ hμm + Cmh2(1 + | ln h|) ≤ C ′
mh, j = 0, . . . ,κm − 1.

Lemma 6 Let n ∈ N and η ∈ [0, 2π) be fixed and consider the eigenvalue μn =
μn(η), see (45), and denote its multiplicity by J = J (n, η) ∈ N. Then, for some
ĥ > 0, the interval

�n,η=
[
h(μn − Cn), h(μn + Cn)

]
, (103)

contains for all h ∈ (0, ĥ] at least J eigenvalues �h
p(η) with multiplicities counted.

In (103), the numberCn = Cn(η) is, say, half of the distance ofμn(η) to the nearest
different eigenvalue of the limit problem.

Proof. Given J orthonormalized eigenvectors v0p(n)+ j , j = 1, . . . ,J , see (46),

corresponding toμn we construct J approximate eigenvectorsWh
p(n)+ j for all j as in

(64), (65) by using the vectors v0p(n)+ j . Lemma 5 then shows that the vectorsWh
p(n)+ j ,

j = 1, . . . ,J form a linearly independent sequence, if h is small enough.
For all j , we take Uh

p(n)+ j = Wh
p(n)+ j‖Wh

p(n)+ j ; H h
η ‖−1, see (69), and δh∗ = h−3/4

in Lemma2; note that the latter choice is possible, since δh∗ ∈ (δh, kh) and kh is of order
h−1. Due to (70) and the estimate (97) in Corollary 1, the inequality (59) holds with
δh/δh∗ = ch3/4(1 + | ln h|) and with the true eigenvectors U h

k(n)+ j , j = 1, . . . ,X h ,

see (20), of Kh
η in place of uh

p, with the corresponding eigenvalues κh
k(n)+ j , (17),
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belonging to the interval [kn − δh∗ , kn + δh∗ ].We denote for a moment by� and κ any
of the eigenvalues �h

k(n)+ j and κ
h
k(n)+ j , j = 1, . . . ,X h , respectively, and obtain by

the relations (16), (63)

h−3/4 = δh∗ ≥ |κh − kh
n | =

∣
∣
∣

1

�h + h
− 1

hμn + h

∣
∣
∣ = |�h − hμ|

h(�h + h)(μ+ 1)
.

Hence, since �h ≤ ch by (47), we get

|�h − hμn| ≤ ch5/4 (104)

and this shows that the eigenvalues�h
k(n)+ j , j = 1, . . . ,X h , belong to�n,η.According

to (14), (59), we get for some numbers b j ,

∥
∥
∥Uh

p(n)+ j −
X h
∑

j=1

b jU
h
p(n)+ j ; L2(ω0)

∥
∥
∥

≤ h−1/2
∥
∥
∥Uh

p(n)+ j −
X h
∑

j=1

b jU
h
p(n)+ j ;Hh

η

∥
∥
∥ ≤ h−1/2 δ

h

δh∗
≤ ch1/5. (105)

In view of the normalization of the vectors Uh
p(n)+ j , multiplying (105) by ‖Wh

p(n)+ j ;
H h
η ‖ ≤ ch1/2 (see (94)) also yields

∥
∥
∥Wh

p(n)+ j −
X h
∑

j=1

b′
jU

h
p(n)+ j ; L2(ω0)

∥
∥
∥ ≤ ch7/10

for some numbers b′
j . Now, if X h < J and h is small enough, we arrive at a contra-

diction, since, by (93) in Lemma 5, the J vectorsWh
p(n)+ j form a nearly orthonormal

sequence in L2(ω0) and the subspace spanned by the vectors U h
p(n)+ j is only X h-

dimensional. �
Proof of Theorem 1. From Lemma 6 we actually obtain that given n ∈ N, (101)

holds for some m ≤ n: note that the entries in both sequences (19) and (45) are in an
increasing order and that the intervals (103) are disjoint.

It thus suffices to show that m ≥ n in (101), and to this end it is enough to prove
that in the notation of Remark 6, the case J < X h cannot happen; here, J is the
multiplicity of μn and X h is the total multiplicity of the eigenvalues �h

p( j) belonging
to the interval �n,η, (103).

Suppose that for some ĥ > 0 we have J < X h , for infinitely many h ∈ (0, ĥ)
forming a set with 0 as an accumulation point. Then, for each such h have X h eigen-
functions U h

p( j), j = 1, . . . ,X h which are orthogonal to each other in the norm of

L2(ω0), see (20). According to Lemma 1 and its proof, and the choice of the interval
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�n,η we find a sequence {hq}∞q=1 such that

h−1
q �

hq

p( j)(η) → μn(η) as q → +∞

for all j = 1, . . . ,X h , and also the eigenfunctions U h
p( j) converge to some eigenfunc-

tions v0p( j) of the eigenvalueμn(η) in the norm of L2(ω0
� ), as q → +∞; see (54). This

leads to the conclusion that the X h limit functions v0p( j) are also mutually orthogonal

in L2(ω0
� ) so that they in particular are linearly independent. Thus, there exist at least

J + 1, linearly independent eigenfunctions of the limit problem corresponding to μn ,
which contradicts the choice of J .

Now, the eigenvalues of both the model and limit problems are arranged into an
increasing order, so the indices m and n must be the same in (101), i.e., (98) holds. �

4 Detecting spectral gaps

4.1 Limit problemwith a new small parameter

In order to analyse the possible existence of spectral gaps in the spectrum (20) of the
Steklov problem (4)–(6), we consider the limit problem (25),(26),(28),(42) with the
additional assumptions that

H(y) = 1, θε = {y : ζ := ε−1y ∈ θ1}, (106)

where θ1 is a domain in R
2 surrounded by a smooth simple closed contour ∂θ1 and

ε > 0 is a new small parameter. We denote by {vε(y), με(η)} an eigenpair of the limit
problem in this special case. Sending ε → +0, which means glueing the small hole,
we end up with the following problem in the rectangle ω = (−1/2, 1/2)× (−�, �):

−	yv
0(η; y)0μ0(η)v0(η; y), y ∈ ω,

±∂v
0

∂ y2
(η; y1,±�) = 0, |y1| < 1

2
,

v0
(
η; 1

2
, y2

)
= eiηv0

(
η;−1

2
, y2

)
, |y2| < �

∂v0

∂ y1

(
η; 1

2
, y2

)
= eiη ∂v

0

∂ y1

(
η;−1

2
, y2

)
, |y2| < �, (107)

the solutions of which are given by the formulas

μ0
jk(η) = (2π j + η)2 + π2k2

4�2
,

v0jk(η; y) = ei(2π j+η)y1 cos
(πk

2�
(y2 + �)

)
, j ∈ Z, k ∈ N0
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-O-

(b)(a)

O

Fig. 4 a Dispersion curves, b opening of narrow gaps

The dispersion curves μ = μ0
jk(η), η ∈ [−π, π ], form the grid in Fig. 4a), where the

disposition of its knots is drawn in the case

1

6
< � <

1

4
.

We will consider the behavior of the dispersion curves of the above described
singular perturbation problem and show that the knots, marked with ◦ in Fig. 4a),
disintegrate and give rise to small spectral gaps of width O(ε2), which are presented
by thick lines on the ordinate axis.

Asymptotic analysis as used here was initiated [20] and it has been applied in differ-
ent spectral problems with singular and regular perturbation of boundaries, see [3,6]
and others. However, in view of non-standard integro-differential boundary conditions
(42) on the small contour ∂θε, explicit formulas for the asymptotics of eigenvalues
μεjk(η) would be required although error estimates would not be needed: the problem

in ω\θε has a variational formulation, and the justification scheme follows word-by-
word those in [3,6,20].

4.2 Asymptotic ansätze

We consider the perturbation of the knot (0, 4π2) as in Fig. 4a). The eigenvalue
μ±10(0) = 4π2 of the problem (107) has multiplicity two and eigenfunctions are

v±10(y) = e±2π iy1 . (108)

Following [3,20] we define the fast Floquet variable

ψ = ε−2η
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and introduce the asymptotic representation

με(η) = 4π2 + ε2μ′(ψ)+ . . . . (109)

The corresponding eigenfunctions are sought in the form

vε(η; y) = v0(ψ; y)+ ε2v2(ψ; u)+ εχθ (y)
(
w0(ψ; ε−1y)+ εw1(ψ; ε−1y)

) + . . .

where χθ ∈ C∞(ω) is a cut-off function such that

χθ (y) = 1, if |y1| < 1/6 and |y2| < �/3,
χθ (y) = 0, if |y1| > 1/3 or |y2| > 2�/3,

v
p
± are solutions of regular type inω andwq are boundary layerswritten in the stretched

coordinates ζ , see (106), in the aperture domain ϒ = R
2\θ1.

The first regular term consists of the linear combination

v0(ψ; y) = A(ψ)e+2π iy1 + B(ψ)e−2π iy1 (110)

where the coefficients are to be determined. The second term v2± satisfies the equations

−	yv
2(ψ; y)− 4π2v2(ψ; y) = μ′(ψ)v0(ψ; y)+ f (ψ; y), y ∈ ω, (111)

∂v2

∂ y2
(ψ; y1,+�)− ∂v2

∂ y2
(ψ; y1,−�) = 0, |ya | < 1

2
, (112)

while, due to the relation eiη = eiε2ψ = 1 + iε2ψ + O(ε4ψ2), the quasi-periodicity
conditions become

v2
(
ψ; 1

2
, y2

)
= v2

(
ψ;−1

2
, y2

)
+ iψv0

(
ψ;−1

2
, y2

)
, |y2| < �

∂v2

∂ y1

(
ψ; 1

2
, y2

)
= ∂v2

∂ y1

(
ψ;−1

2
, y2

)
+ iψ

∂v0

∂ y1

(
ψ;−1

2
, y2

)
, |y2| < �.

(113)

The right-hand side f will be determined in the next section after the examination of
boundary layers. Then, the two compatibility conditions in problem (112)–(113) will
give us the correction term in (109) as well as coefficients of the linear combination
(110).
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4.3 Boundary layer

Stretching the coordinates y �→ ζ = ε−1y and setting ε = 0 turn the Eq. (25) with
H = 1 and (42) with θ = θε into

−	ζw(ζ ) = 0, ζ ∈ R
2\θ1, (114)

w(ζ ) = a ∈ R, ζ ∈ ∂θ1,
∫

∂θ1

∂νw(ζ )dsζ = 0. (115)

Indeed, we have

	y + με(η) = ε−2(	ζ + ε2με(η)), με(η)mes2θ
ε = O(ε2)

and, therefore, in the limit ε → +0 the Helmholtz operator becomes the Laplacian
and the right hand side of the integral condition (42) vanishes.

We write the Taylor formula

v0(ψ; y) = v0(ψ; 0)+ y · ∇yv
0(ψ; 0)+ O(|y|2)

= v2(ψ; 0)+ εζ · ∇yv
0(ψ; 0)+ O(ε2|ζ |2).

Since the constant a is arbitrary, the first term v0(0) does not leave a discrepancy in
the problem (114), (115). Furthermore,

∫

∂θ1

∂νζ j dsζ =
∫

∂θ1

ν j (ζ )dsζ = 0, j = 1, 2,

and therefore we need to find a harmonic function w satisfying

w j (ζ ) = a j − ζ j , ζ ∈ ∂θ1. (116)

We recall the definition of the polarization matrix P(θ1) [26, Appendix G], which
is a (2 × 2)-matrix (a tensor of rank 2) and is composed from the coefficients in the
decomposition of the decaying solution of the problem (114), (116),

w j (ζ j ) = 1

2π

2∑

k=1

Pjk(θ
1)
ζk

|ζ |2 + w̃ j (ζ ), w̃ j (ζ ) = O
( 1

|ζ |2
)

(117)

The matrix P(θ1) is symmetric and positive definite, see [26], and the last condition
in (115) is fulfilled due to Green’s formula

∫

∂θ1

∂νw j (ζ )dsζ = − lim
R→+∞

∫

∂BR

∂w j

∂|ζ | (ζ )dsζ = 0
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and the decay rate O(|ζ |−2) of the gradient ∇ζw j (ζ ), see (117). Thus, this leads us
to set

w1(ψ; ζ ) =
2∑

k=1

w j (ζ )
∂v0

∂ y j
(ψ; 0). (118)

According to [17], [16, Ch.9,10] we also need to examine the next boundary layer
term w2(η; ζ ) which takes into account the second-order term

Q(ψ; y) = 1

2

2∑

p,q=1

yp yq
∂2v0

∂ yp∂ yq
(ψ; 0)

in the Taylor formula for v0. Noting that |θε| = ε2|θ1| we get
∫

∂θ1

∂νQ(ψ; ζ )dsζ =
∫

θ1

	ζ Q(ψ; ζ )dζ = |θ1|	yv
0(ψ; 0) = −4π2|θ1|v0(ψ; 0).

Consequently, the functions w2 must satisfy the Laplace equation as well as the con-
ditions

w2(ψ; ζ ) = a2(ψ)− Q(ψ; ζ ),
∫

∂θ1

∂νw
2(ψ; ζ ;ψ)dsζ = 4π2|θ1|v0(ψ; 0, ψ) =: T 0(ψ) (119)

and thus it can be decomposed as

w2(ψ; ζ ) = T 0(ψ)
1

2π
ln

1

|ζ | + T 1(ψ; ln ε)+ w̃2(ψ; ζ ), w̃2(ψ; ζ ) = O
( 1

|ζ |
)
.

Wemention that the harmonic functionsw2± grow at infinity and thus it is convenient
to choose the constant

T 1(ψ; ln ε) = T 0(ψ)
1

2π
ln

1

ε
,

which allows us to write

ε2w2(ψ; ζ ) = ε2T 0(ψ)
1

2π
ln

1

|y| + O
( ε3

|y|
)
. (120)

Finally, we take into account (118), (117) and obtain

εw1(ψ; ζ ) = ε2

2π

2∑

j,k=1

Pjk(θ
1)

yk

|yk |
∂v0

∂ yk
(ψ; 0)+ O

( ε3

|y|
)
. (121)
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Now we insert the ansatz (119) into the equation (25), separate terms of order ε2, and
taking into account (120), (121), complete the composition of the equation (112) by
setting

f (ψ; y) = ([
	y, χθ (y)

] + μ0(ψ)χθ (y)
)
T (ψ; y), where

T (ψ; y) = T 0(ψ)
1

2π
ln

1

|y| +
2∑

j,k=1

Pjk(θ
1)

yk

|yk |
∂v0

∂ yk
(ψ; 0).

4.4 Algebraic system for�′(Ã)

Since 4π2 is an eigenvalue of multiplicity 2, the problem (112)–(113) must be associ-
ated with two compatibility conditions, which can be derived by inserting a possible
solution v2± and the eigenfunctions (108) into Green’s formula

I 1±(ψ)+ I 2±(ψ) := μ′±(ψ)
∫

ω

v±10(y)v
0(ψ; y)dy +

∫

ω

v±10(y) f±(ψ; y)dy

=
�∫

−�

(
v2(ψ; y)

∂v±10

∂ y1
(y)− v±10(y)

∂v2

∂ y1
(ψ; y)

)∣
∣
∣
∣

y1=1/2

y1=−1/2
dy2 =: I 3±(ψ). (122)

Let us compute the integrals I p
±(ψ). Owing to (108) and (110), we readily obtain

I 1+(ψ) = 2�A(ψ)μ′(ψ), I 1−(ψ) = 2�B(ψ)μ′(ψ).

Using Green’s formula in the perforated rectangle ω\Bδ yields

I 2±(ψ) = − lim
δ→+0

∫

ω\Bδ

v±10(y)(	y + 4π2)
(
χδ(y)T (ψ; y)

)
dy

= lim
δ→+0

∫

ω\Bδ

(
T (ψ; y)∂|y|v±10(y)− v±10(y)∂|y|T (ψ; y)

)
dsy

= 4π2(|θ ′|(A(ψ)+ B(ψ)
) ± P11(θ

′)
(
(A(ψ)− B(ψ)

)
.

Recalling the relations (113) gives us

I 3±(ψ) = 4π�ψ
((

A(ψ)+ B(ψ)
) + (

(A(ψ)− B(ψ)
))

⇒ I 3+(ψ) = 8π�ψ A(ψ), I 3−(ψ) = −8π�ψ A(ψ). (123)
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(b) (c)(a)

Fig. 5 a, b Knot of the dispersion curves, c disintegrating knot

Combining formulas (122)–(123) we arrive at the system of linear algebraic equations

(
P+(θ1)− 8π�ψ

)
A(ψ)+ P−(θ1)B(ψ) = −2�A(ψ)μ′(ψ),

P−(θ1)A(ψ)+
(
P+(θ1)+ 8π�ψ

)
B(ψ) = −2�B(ψ)μ′(ψ),

where

P±(θ1) = 4π2(|θ1| ± P11(θ
1)

)
.

Thus,

μ′±(ψ) = − 1

2�

(
P±(θ1)±

√
P±(θ1)2 + 64π2�2ψ2

)
.

4.5 Conclusions on spectral gaps

IfP−(θ1) = 0, the graphs of the functionsψ �→ μ′±(ψ) include two crossing straight
lines (Fig. 5a), but in the case

P−(θ1) �= 0 (124)

the graphs turn into two disjoint parabolas (Fig. 5c). Thus, in the same way as in the
papers cited above, we conclude that the knot (4π2, 0) in Fig. 4b disintegrates as in
Fig. 4c, and causes a spectral gap of width �−1ε2P−(θ1))+ O(ε3) with the center at
the point 4π2 − (2�)−1ε2P+(θ1)+ O(ε3).

To give an example where (124) holds, we observe that for a horizontal crack
θ1 = {ζ : ζ2 = 0, |ζ1| < L} we have

|θ ′| = 0 and P11(θ
′) = πL2 > 0,

see [26, Appendix G].
An example of a smooth domain with (124) is given by observing that for a thin

ellipse θ1δ with axes 1 and δ we have (see again [26, Appendix G])

|θ1δ | = O(δ) and P11(θ
1
δ ) = π2(1 + O(δ2))/4 > 0.

.
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The equality P−(θ) = 0 does not yet imply the non-existence of a gap, but this
depends on higher order asymptotic terms.

Similar calculations can be applied to study the existence of gaps near all knots
marked with ◦ in Fig. 4b. On the other hand, the knots marked with •, which are
obtained as the intersection of either two ascending or two descending curves, never
get disjoined (see an explanation in, e.g., [20]).
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