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Determinants of expression of SARS- CoV- 2 entry- related 
genes in upper and lower airways

To the Editor,
The coronavirus disease 2019 (COVID- 19) pandemic is caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS- CoV- 2). To bet-
ter understand COVID- 19 the genetic and environmental factors on 
susceptibility and severity, detailed knowledge of regulation of genes 
required for viral entry into respiratory epithelial cells is needed.

We assessed the gene expression of SARS- CoV- 2 receptors 
and activating proteases, and their regulation by smoking, inhaled- 
corticosteroids (ICS), genetics/epigenetics using nasal and bronchial 
samples from nine independent cohorts (see extended methods, 
Table S1).

SARS- CoV- 2 cell entry factor (SCEF) genes have higher expres-
sion levels in nose than bronchi in matched samples across two co-
horts (Figure 1A– D, Table S2), mirroring results from previous smaller 
studies.1,2 Smoking was associated with higher expression of ACE2, 
TMPRSS2, FURIN, and BSG in bronchial brushes, supporting a recent 
meta- analysis,3 but not in nasal brushes (Figure 1E,F). In contrast, 
smoking was associated with lower expression of CTSL in nasal and 
bronchial brushings (Table S3). The impact of smoking on the expres-
sion of ACE2 and BSG gene expression differs significantly between 
these tissues (Table S4). None of these genes were associated with 
sex or age. Cell- type deconvolution of RNA- seq data revealed that 
all SCEF genes strongly correlated with predicted secretory cell pro-
portions across tissues (Figure 1G– I), in particular ACE2 (Figure 1J), 
in line with recent scRNA- seq data.3,4 We observed higher propor-
tions of secretory cells (goblet & club cells) in bronchial samples from 
current smokers compared to ex/never- smokers, which was not ob-
served in nasal brushes (Figure 1K), which may explain the lack of 
increase of ACE2 expression in nasal samples. We next performed 
a cross- sectional analysis for nasal samples in four adult cohorts 
(NORM/OLIVA (n = 76), CRUKPAP (n = 405), U- BIOPRED (n = 89), 
and INCI (n = 79)); and one pediatric cohort: PIAMA (n = 291); and 
for bronchial samples in five populations: INDURAIN (n = 184), U- 
BIOPRED (n = 108), GLUCOLD (n = 56), CRUKPAP (n = 228) and 
NORM/TIP (n = 167). In upper airways, CTSL expression was lower 
in current smokers compared to non- smokers (Table S5). In lower 
airways, higher levels of ACE2 and TMPRSS2 were identified in cur-
rent versus never/ex- smokers, whereas smoking was associated with 
higher FURIN and BSG levels in brushed cells only (Figure 2A– F, Table 

S6). Acute smoke exposure (n = 63) and secondhand smoking (infants 
of parents who smoked n = 9 or did not smoke, n = 13) were found 
to associate with higher ACE2 expression (Figure 2G,H, Table S7 and 
S8).

No studies have investigated the longitudinal effects of ICS 
on SCEF genes in paired biopsies.5,6 In steroid- naive COPD pa-
tients, 6 months ICS ± LABA treatment decreased ACE2 expression 
(p = 0.009, Figure 2I, Table S9) compared to placebo in bronchial 
biopsies, while BSG and FURIN increased (p = 0.012 and p = 0.046, 
respectively).

No association of genetic variation with expression of SCEF 
genes was found in a well- powered meta- analysis of nasal: NORM 
(n = 93), CRUKPAP (n = 339) and PIAMA (n = 303), and bronchial 
samples: NORM/TIP (n = 150) and CRUKPAP (n = 215, Table S10). 
We next investigated whether DNA- methylation is associated with 
SCEF expression. In pediatric nasal samples (PIAMA; n = 245), we 
identified eQTMs for CTSL, BSG, NRP1, FURIN, and TMPRSS2 ex-
pression (Table S11). Bronchial eQTMs were analyzed in an adult 
cohort (INDURAIN; n = 169). We identified 143 eQTMs for the dif-
ferent SCEF genes (Figure 2J, Table S12). The nasal eQTMs were 
influenced by age and sex, but not smoking (Table S13), whereas 
bronchial eQTMs for TMPRSS2 were associated with smoking and 
age (Table S14). ACE2 expression in bronchial biopsies was associ-
ated with 6 CpG sites, two of which were in the promoter region 
of the adjacent TMEM27 gene. ACE2 and TMEM27 expression was 
correlated (Figure 2K.L) and both associated with methylation of 
cg20473453 (Figure 2M), indicating possible co- regulation of ACE2 
and TMEM27.

In conclusion, although SCEF genes are more highly expressed 
in upper airways, first and secondhand smoke exposure only ap-
pears to influence the expression of these genes in the lower air-
ways. CpG methylation, but not genetic variation, was associated 
with expression of several SCEF genes in bronchus and nose, which 
was associated with age, gender, and smoking. Finally, ICS decreases 
expression of ACE2 in bronchial biopsies. Together, these results in-
dicate that the enhanced SCEF expression in the lower airways due 
to cigarette smoke exposure and the reduced expression in subjects 
taking ICS may underlie the increased susceptibility to COVID- 19 in 
smokers and the clinical efficacy of ICS.

This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, 
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F I G U R E  1  Expression genes required for SARS- CoV- 2 entry into cells in nasal and bronchial brushes and relationship with goblets cells. 
Heatmaps and plots of SARS- CoV- 2 cell entry related in matched nasal and bronchial brushes from the NORM (n = 77) (A & C) and CRUKPAP 
(n = 162) cohorts (B & D). Plots comparing ACE2, TMPRSS2, CTSL, BSG, FURIN, and NRP1 expression in current and ex/never- smokers in 
nasal and bronchial brushes, (E) NORM and (F) CRUKPAP. Plots comparing ACE2 expression in ex- smokers and duration of smoke cessation 
in nasal and bronchial brushes. (G) UMAP of merged bronchial biopsy and nasal brush single cell datasets. (H) Heatmap of selected genes 
associated with each epithelial cell type. (I) Correlation heatmap of cellular deconvolution cell proportions compared to SARS- CoV- 2 cell 
entry related (Spearman's (rho) correlation was conducted). (J) Association of cellular deconvolution of Goblet cells with ACE2 expression. (K) 
Goblet/secretory cell fraction separated based on tissue type and smoking status. Cellular deconvolution was performed using AutoGeneS. 
Statistics for deconvolution results were conducted using Mann- Whitney test, while the correlation heatmap was analyzed using Spearman 
correlation. *p < 0.05, ***p value < 0.001 Abbreviations: MI, microarray intensity; VST, variance- stabilizing transformation. Statistics for 
deconvolution results were conducted using Mann- Whitney test for unpaired and Wilcoxon for paired
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F I G U R E  2  Transcriptional response of SARS- CoV- 2 cell entry related genes to clinical characteristics, methylation, and environmental 
stimuli. Expression of (A) ACE2, (B) TMPRSS2, (C) CTSL, (D) BSG, (E) NRP1, and (F) FURIN in bronchial biopsies; INDURAIN (n = 207), U- 
BIOPRED (n = 108) and GLUCOLD (n = 56) and bronchial brushes CRUKPAP dataset (n = 228) and NORM/TIP (n = 167), separated based on 
smoking status. The effect of acute smoke exposure on (G) ACE2 in bronchial brushings 24 h after smoking and not smoking 3 cigarettes. 
(H) The influence of secondhand smoke in children of SARS- CoV- 2 cell entry related in bronchial biopsies. The influence of 6 month ICS 
and Placebo compared to baseline from bronchial biopsies of COPD patients, (I) ACE2. Top eQTM for (J) ACE2. (K) Correlation of ACE2 and 
TMEM27 (Spearman's (rho) correlation was conducted). (L) Diagram of the top CpG site associated with ACE2 expression. (M) EQTM for 
TMEM27 and the top CpG site associated with ACE2 expression. Statistics was done using an unpaired t- test. *p < 0.05 Abbreviations: MI, 
microarray intensity VST, variance- stabilizing transformation
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