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Abstract
Existing methods for explaining black box learning models often focus on building local
explanations of the models’ behaviour for particular data items. It is possible to create global
explanations for all data items, but these explanations generally have low fidelity for
complex black box models. We propose a new supervised manifold visualisation method,
SLISEMAP, that simultaneously finds local explanations for all data items and builds a (typ-
ically) two-dimensional global visualisation of the black box model such that data items
with similar local explanations are projected nearby. We provide a mathematical derivation
of our problem and an open source implementation implemented using the GPU-optimised
PyTorch library. We compare SLISEMAP to multiple popular dimensionality reduction
methods and find that SLISEMAP is able to utilise labelled data to create embeddings with
consistent local white box models. We also compare SLISEMAP to other model-agnostic local
explanation methods and show that SLISEMAP provides comparable explanations and that the
visualisations can give a broader understanding of black box regression and classification
models.

Keywords Manifold visualisation · Explainable AI · Local approximation

1 Introduction

In the past 20 years, manifold visualisation methods are a major development in unsuper-
vised learning. The trend that started from ISOMAP in 2000 (Tenenbaum et al., 2000) has
resulted in hundreds of methods to be developed, popular examples of which include
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methods such as t-SNE (van der Maaten & Hinton, 2008) and UMAP (McInnes et al.,
2020). Manifold visualisation methods can be used to embed data into typically two or three
dimensions while preserving some of the relevant features of the data. These methods have
proven to be invaluable and central to exploring and understanding complex datasets in
fields from genetics (Kobak & Berens, 2019; Diaz-Papkovich et al., 2021) to astronomy
(Anders et al., 2018) and linguistics (Levine et al., 2020).

Another recent development is explainable artificial intelligence (XAI), where the
objective is to understand and explore black box supervised learning algorithms; see Gui-
dotti et al. (2019) for a recent survey. The explanation methods can roughly be divided into
global and local methods. Global methods try to explain the global behaviour of a super-
vised learning method by constructing a global understandable (white box) surrogate model
that approximates the complex black box model. The drawback of the global approach is
that for a sufficiently complex model, there is no simple surrogate model that would
replicate the whole model with reasonable fidelity.

The alternative is local explanations focusing on how individual data items are classified
or regressed. The advantage is that it is often possible to give high-fidelity, inter-
pretable local explanations. The obvious disadvantage is that an explanation that is good for
one data item may be useless for the other data items. A common model-agnostic approach
for local explanations is to locally approximate the black box model with an inter-
pretable white box model. These white box models are used to better understand the
decision process by, e.g., showing which variables affect the outcome and how to achieve a
different outcome.

In this paper, we combine the above two developments, namely, manifold visualisations
and local explanations, to obtain global supervised manifold visualisations of the space of
local explanations by using outputs of various black box supervised learning algorithms. We
call the algorithm SLISEMAP.

The idea of SLISEMAP is straightforward: we want to find an embedding of data points into
a (typically) two-dimensional plane such that the same interpretable model explains the
supervised learning model of the data points nearby in the embedding. The embedding of
the data points and the local models associated with each point in the embedding form a
global explanation of the supervised learning model as a combination of the local expla-
nations. At the same time, our method produces a visualisation of the data where the data
points that are being classified (or regressed) with the same rules are shown nearby.

Example 1 First, consider a toy regression example where we have 99 data points com-
posed of 4-dimensional covariates represented by rows of matrix X 2 R99�4 and a pre-
trained black box regression model given by function f : R4 ! R, which we want to study.
The response vector y 2 R99 is given by the regression estimates as yi ¼ f ðXi�Þ, where Xi�
denotes the ith row of the matrix X. Unknown to the user, the elements of matrix X have
been sampled at random from a normal distribution with zero mean and unit variance, and
the regression function f is given by f ðxÞ ¼ max x1:3 ¼ maxj2f1;2;3g xj, where x 2 R4. In
other words, the regression utilises the first three attributes in a nonlinear manner while
ignoring the fourth attribute altogether.

Now, assume the user wishes to study the black box regression function and the dataset by
embedding this 4-dimensional toy dataset into two dimensions. Any dimensionality
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reduction method that only take the covariate matrix X into account, and ignore the response
variables in y, would see only Gaussian noise; resulting in a limited insight about the data
and the regression function, as shown in the PCA visualisation of Fig. 1 (left).

Then, consider a variant of SLISEMAP, where ordinary least squares linear regression is
used as an interpretable white box model. SLISEMAP will produce an embedding where the
data are split into three clusters indexed by ci ¼ argmaxj2f1;2;3g Xij, as shown in Fig. 1

(right). Each of the clusters corresponds to a different white box model denoted by gi :
R4 ! R for all i 2 f1; . . .; 99g and are in this example simply given by giðxÞ ¼ xci.

For these toy data, SLISEMAP can, therefore, partition the data into three clusters, each
modelled locally to good accuracy by a separate linear white box model. The SLISEMAP

embedding, together with the white box models, produces a global explanation of the black
box model. The SLISEMAP embedding could help an analyst find “functional groups” of data
points, with each group modelled by a simple linear model. This kind of “reverse-engi-
neering” of the black box model can be instrumental in understanding how the black box
model works and where it does not.

Uninformative directions in the data space, such as the 4th attribute in this example, are
automatically ignored; SLISEMAP follows the possibly nonlinear manifold relevant for the
supervised learning task. Note that in each of the three clusters in the SLISEMAP embedding,
the value of the response variable yi obeys an identical distribution: nearby points in the
SLISEMAP embedding have similar white box models, not necessarily similar values of the
response variables!

Example 2 A property of local explanations is that there may be several explanations, with
roughly equally good fidelity, for any given data point. Consider the toy dataset described
above, but let us assume that the user wants to add a new point x0 where some of the
maximal variables are identical, x0i ¼ x0j ¼ max x01:3, where i; j 2 f1; 2; 3g and i 6¼ j. This

new point would fit equally well into both clusters i and j and, hence, has two potential local
explanations. As shown later in the experiments, this also occurs with real datasets, and

Fig. 1 PCA (left) and SLISEMAP (right) embeddings of a toy dataset described in the text. The toy data matrix
consists of 4-dimensional Gaussian noise in X 2 R99�4, and the response vector y 2 R99 comes from a black
box model f ðxÞ ¼ max x1:3. The legend in the plots corresponds to the value of ci ¼ argmaxj2f1;2;3g Xij. We
have added some jitter to the SLISEMAP embeddings to make the points in the clusters stand out
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SLISEMAP can be used to reveal this ambiguity, unlike more traditional local explanation
methods that output only one white box model.

Example 3 As a more realistic and complex example, Fig. 2 shows the visualisation of a
black box model that classifies 2 versus 3 in the classic MNIST (Lecun et al., 1998) dataset
of hand-written digits. Here, the black box model is a convolutional neural network, and the
white box model is a logistic regression classifier that takes the flattened image pixels as an
input vector. The images are projected onto a two-dimensional plane such that the black box
classifier for nearby images can, with reasonable fidelity, be approximated by the same
logistic regression model. The digits are split into four visually separable clusters, with
digits in each cluster classified by different sets of pixels. The logistic regression coefficients
for different image pixels are shown in Fig. 2 (right). For example, the classifier separates
the 2 s and 3 s at the bottom right mainly by identifying the lower curve in 3 s, while in the
images on the left, the classifier is looking for black pixels below the centre. Seeing this
visualisation enables us to find similar points in terms of the supervised learning problem
and understand how the model classifies the data items.

The benefits of SLISEMAP compared to prior manifold visualisation or explanation methods
include the following: (i) SLISEMAP finds visual patterns, like clusters, such that all data items
within the same cluster are explained by the same simple model. For example, in Fig. 1
SLISEMAP reveals three clusters, while Fig. 2 shows roughly four clusters of digits that can be
separated by a given subset of pixels. (ii) Unlike existing local explanation methods, SLI-

SEMAP provides both global and local explanations of the data. For example, Fig. 2 com-
pactly shows the explanations for all digits, in addition to the fact that roughly four linear
models are sufficient to explain the classification of all digits to a reasonable fidelity. (iii)

Fig. 2 SLISEMAP visualisation of 2:s and 3:s in the MNIST dataset with a black box deep learning classifier
that tries to classify the digits into 2:s and 3:s. The left shows the embedding of the digits in two dimensions,
with a random selection of digits shown as images. The white box models are logistic regressions that use the
image pixels as attributes. The right shows the same embedding, but the images show the regression
coefficients associated with each pixel for the same selection of digits. The colour intensity indicates the
magnitude of the coefficient. We can see from the right image that nearby digits are described by similar white
box models
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SLISEMAP can be used to discover a nonlinear structure in a dataset, as shown in Fig. 2 and
later in Sect. 4.4.

1.1 Contributions

The contributions of this paper are as follows: (i) We define a criterion for a supervised
manifold embedding that shows local explanations and give an efficient algorithm to find
such embeddings. (ii) We show experimentally that our method results in informative and
useful visualisations, and local white box models can be used to explain and understand
supervised learning models. (iii) We compare our contribution to manifold visualisation
methods and local explanation methods.

2 Related work

This section briefly reviews the explainable AI and dimensionality reduction methods.

2.1 Explainable artificial intelligence

Explainable AI aims to provide insights into how black box (machine learning) models
operate through various kinds of explanations. The explanations are used to analyse the
black box models (Lapuschkin et al., 2019), when checking the results, e.g., looking for bias
and systematic misclassifications (Selvaraju et al., 2020), and to discover issues and defi-
ciencies in the data (Ribeiro et al., 2016). Furthermore, explanations can sometimes be a
legal requirement (Goodman & Flaxman, 2017) or be used as a tool for facilitating AI and
human collaboration (Samek et al., 2019).

The explanations of black box models can be generally divided into the exploration of
global aspects, i.e., the entire model (Baehrens et al., 2010; Henelius et al., 2014, 2017;
Adler et al., 2018; Datta et al., 2016), or inspection of local attributes, i.e., individual
decisions (Ribeiro et al., 2016, 2018; Fong & Vedaldi, 2017; Lundberg & Lee, 2017); See
Guidotti et al. (2019) for a recent survey and references. On a global level, the scope of the
explanations is on understanding how the model has produced predictions, where the why is
usually beyond human comprehension due to model complexity. On this level, we can
examine which features affect the predictions most (Fisher et al., 2019) and what interac-
tions there are between features (Goldstein et al., 2015; Henelius et al., 2014, 2017).

However, we are interested in local explanation methods, specifically those that can be
used for any type of model (model-agnostic) and do not require any model modifications
(post hoc). A common approach in this niche is to locally approximate the black box model
with a simpler white box model. One of the first such methods, LIME (Ribeiro et al., 2016),
generates interpretations for user-defined areas of interest by perturbing the data and training
a linear model based on the predictions. Another similar method is SHAP (Lundberg & Lee,
2017), which finds the weights based on Shapley value estimation (Shapley, 1951). Non-
linear white box models, such as decision rules (Guidotti et al., 2018; Ribeiro et al., 2018),
can also be used.

Many of these methods generate local explanations based on perturbed data, but
designing a good data generation process is nontrivial (Guidotti et al., 2019; Laugel et al.,
2018; Molnar, 2019), e.g., replacing pixels in an image with random noise seldom results in
natural-looking images. One method that only utilises existing data is called SLISE (Björk-
lund et al., 2019, 2022), which finds the largest subset of data items that can be
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approximated (up to a given accuracy) by a sparse linear model. The work presented here
can be seen as a global extension of SLISE.

2.2 Dimensionality reduction

Another way of assessing high-dimensional data is to reduce the number of covariates by,
e.g., removing uninformative and redundant features or combining multiple features into
single elements, thus making the data more interpretable. There are advantages of utilising
dimensional reduction, as it removes correlated features in the data and allows for easier
visualisation, e.g., in two dimensions. Still, combined features can also become less inter-
pretable, and some information will inevitably be lost. The most straightforward dimen-
sional reduction techniques are methods operating on the whole dataset by keeping the most
dominant features with, e.g., backward elimination and forward selection, or by finding a
combination of new features.

These methods include principal component analysis (PCA) and other linear methods
(Cunningham & Ghahramani, 2015). Other approaches include locally linear embedding
(LLE, MLLE) (Roweis & Saul, 2000; Zhang & Wang, 2006), spectral embedding (Belkin &
Niyogi, 2003) and multidimensional scaling (MDS) (Kruskal, 1964), global-distance pre-
serving MDS (Mead, 1992), ISOMAP (Tenenbaum et al., 2000), t-SNE (van der Maaten &
Hinton, 2008), and UMAP (McInnes et al., 2020). Recently, some supervised methods have
also become available, based on t-SNE (Kang et al., 2021; Hajderanj et al., 2019) and
UMAP (McInnes et al., 2018).

There are some recent developments toward combining dimensionality reduction with
explainable AI. Anbtawi (2019) presents an interactive tool which embeds data with
standard t-SNE, and the user can examine the explanations of individual data items created
by LIME. However, there are no interactions between t-SNE and LIME. Meanwhile, Bibal et al.
(2020) use LIME to explain the t-SNE embedding, with no supervised learning method
involved.

2.3 Local linear models

Local linear models, such as Nelles et al. (2000), estimate a response variable by fitting
linear models to neighbourhoods of data items. Cheng and Wu (2013) improves the com-
putational efficiency by using dimensionality reduction, after which they apply local linear
models on the embedding. These methods use local models, similar to SLISEMAP. However,
they are regression methods and do not produce visualisations or explanations.

3 Definitions and algorithms

3.1 Problem definition

A dataset consists of n data points ðx1; y1Þ; . . .; ðxn; ynÞ, where xi 2 X are the covariates and
yi 2 Y are responses for one data point and i 2 ½n� ¼ f1; . . .; ng. X and Y are the domains
of the covariates and responses, respectively. In this paper and in our software implemen-
tation, we restrict ourselves to real spaces, X ¼ Rm and Y ¼ Rp, but the derivations in this
subsection are general and would be valid, for example, for categorical variables as well.

The goal is to find a local white box model gi : X ! Y for every data point ðxi; yiÞ,
where i 2 ½n�. We use ~yij ¼ giðxjÞ to denote the estimate of yj obtained by a white box
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model associated with data point xi. Again, while the derivation is general, in this paper, we
focus on cases where the white box model, gi, is either a linear projection (for regression
problems) or multinomial logistic regression (for classification problems), as defined later in
Sect. 3.3.

If we have access to a trained black box supervised learning algorithm f : X ! Y, then
we can use estimates given by the model ŷi ¼ f ðxiÞ instead of yi. This will make the local
models gi local approximations of the black box model. These approximations can then also
be used to explain the predictions of the black box model as in Björklund et al. (2019).

Additionally, we want to find a lower-dimensional embedding Zi� for every data point
i 2 ½n�, where Zi� denotes the ith row of matrix Z 2 Rn�d . Our objective is that neighbouring
data items in the embedding space have similar local models gi. Since we focus on visu-
alisation, in our examples, Zi� is typically 2-dimensional (d ¼ 2).

We denote by Dij the Euclidean distance between the points Zi� and Zj� in the embedding,
where

Dij ¼
Xd

k¼1
Zik � Zjk

� �2� �1=2
: ð1Þ

We define the soft neighbourhood by using a softmax function as follows:

Wij ¼ e�DijPn
k¼1 e

�Dik
: ð2Þ

We define the radius of the d-dimensional embedding to be the square root of the variance
of the embedding or

radiusðZÞ ¼ 1

n

Xn
i¼1

Xd
k¼1

Z2
ik

 !1=2

: ð3Þ

We further define a loss function l : Y � Y ! R� 0 for the white box models. Here, we use
the shorthand notation

Lij ¼ lð~yij; yjÞ ¼ lðgiðxjÞ; yjÞ: ð4Þ
In this work, we use quadratic losses (for regression) and Hellinger distances between
multinomial distributions (for classification), which we define later in Sect. 3.3.

The local white box model gi can optionally have a regularisation term, which we denote
by Gi. Since SLISEMAP consists of local models, regularisation can be important to handle
small neighbourhoods. In this paper, we will use Lasso regularisation (Tibshirani, 1996) to
be later defined in Eqs. (9) and (12) in Sect. 3.3.

Recall that the goal is that all points in the (soft) neighbourhood of point Zi� to be
modelled well by the local white box model gi. Mathematically, this can be formalised as
minimising the following weighted loss:

Li ¼
Xn

j¼1
WijLij þ Gi; ð5Þ

Each local model gi has its own set of weights Wi�, of which Wii is the largest (due to
Dii ¼ 0). This is what makes the models local. If the embedding, and therefore W, is fixed,
we can obtain the local models simply by minimising the loss of Eq. (5).

Our final loss function is obtained by summing all losses given by Eq. (5). We summarise
everything in the main problem definition:

123

Machine Learning (2023) 112:1–43 7



Problem 1 SLISEMAP Given dataset ðx1; y1Þ; . . .; ðxn; ynÞ, white box functions gi and regu-
larisation terms Gi for i 2 ½n�, loss function l, and the desired radius of the embedding
zradius [ 0, find the parameters for g1; . . .; gn and embedding Z 2 Rn�d that minimise the
loss given by

L ¼
Xn
i¼1

Xn
j¼1

WijLij þ
Xn
i¼1

Gi: ð6Þ

where Lij ¼ lðgiðxjÞ; yjÞ, Wij ¼ e�Dij=
Pn

k¼1 e
�Dik , and Dij ¼ ðPd

k¼1 ðZik � ZjkÞ2Þ1=2, with
the constraint that radiusðZÞ ¼ zradius.

The loss function is invariant with respect to the rotation, which means that the embedding
is invariant under rotation. The zradius parameter essentially fixes the sizes of the neigh-
bourhoods. At the limit of small zradius, all points will be compressed close to the origin, and
hence, all points will be described by the same local model. On the other hand, if zradius is
very large, the points are far away from each other, and the neighbourhood of each of the
points consists only of the point itself.

3.2 Adding new data points to an existing solution

Often, it is useful to add new data points to an existing embedding without recomputing the
whole embedding. Here, we define an auxiliary problem to this end.

Assume that we have a new data point denoted by ðxnþ1; ynþ1Þ. Define parameters for a

new local model gnþ1 and a new embedding matrix by Z0 2 Rðnþ1Þ�d, such that the first
n rows are the solution to Problem 1. We formulate the problem of adding a new point to an
existing SLISEMAP solution as follows:

Problem 2 SLISEMAP-NEW Given the definitions above and a new data point ðxnþ1; ynþ1Þ,
find the parameters for gnþ1 and Z

0
nþ1;� 2 Rd such that the loss of Eq. (6) is minimised; when

gnþ1 is added to the set of local models and Z is replaced by Z0.

Solving Problem 2 is much easier than solving the full Problem 1 because in Problem 2,
only the parameters for the new point need to be found, as opposed to the parameters for the
n points in the full Problem 1. As a drawback, solving the full problem should result in
slightly smaller loss. However, the difference should asymptotically vanish at the limit of
large n. We study this difference experimentally in Sect. 4.6.

3.3 Slisemap for regression and classification

While the definitions in Sect. 3.1 were general, in this paper, we focus on regression and
classification problems where the covariates are given by m-dimensional real vectors, or
X ¼ Rm. We denote the data matrix by X 2 Rn�m, where the rows correspond to the
covariates or Xi� ¼ xi. If necessary, we include in the data matrix a column of ones to
account for the intercept terms.

Regression In regression problems, we use linear regression as the white box model.
More specifically, we assume that the dependent variables are real numbers or Y ¼ R. The
white box regression model is given by a linear function
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gRðx; bÞ ¼ xTb; ð7Þ
where b 2 Rm, and the loss is quadratic,

lRð~y; yÞ ¼ ~y� yð Þ2: ð8Þ
The linear regression model gR is parametrised by the vector b 2 Rm. If we gather the
parameter vectors from all the local models in Problem 1 into one matrix B 2 Rn�m such
that the row Bi� gives the parameter vector of the local model gi, then the parameters being
optimised in Problem 1 are B and Z.

We use Lasso regularisation, see Eq. (5), for any i 2 ½n� given by

GR
i ¼ k�

Xm
j¼1

Bij

�� ��; ð9Þ

where k is a parameter setting the strength of the regularisation. We can then write Eq. (6) to

be optimised explicitly as LRðX; y;B;ZÞ with Lij ¼ ðXBT Þij � yj

� �2
.

Classification In classification problems, we assume that the black box classifier outputs
class probabilities for p classes. We use multinomial logistic regression as the white box
model. The dependent variables are multinomial probabilities in p-dimensional simplex or
Y ¼ fy 2 R

p
� 0 j

Pp
i¼1 yi ¼ 1g. Multinomial logistic regression can be parametrised by

b 2 Rðp�1Þm. The white box classification model is that of the multinomial logistic
regression (Hastie et al., 2009),

~yi ¼ gCðx; bÞi ¼

exp xTbðði�1Þmþ1Þ:ðimÞ
� �

1þPp�1
j¼1 exp xTbððj�1Þmþ1Þ:ðjmÞ

� � if i\p

1

1þPp�1
j¼1 exp xTbððj�1Þmþ1Þ:ðjmÞ

� � if i ¼ p

8>>>><
>>>>:

; ð10Þ

We used ba:b to denote an ðb� aþ 1Þ-dimensional vector ðba; baþ1; . . .; bbÞT. When using
gC as the white box model in Problem 1, we can express the parameters for all the local

models using a matrix B 2 Rn�ðp�1Þm, where the ith row Bi� corresponds to the parameter
vector of the ith data point.

The loss function could be any distance measure between multinomial probabilities, such
as Kullback–Leibler (KL) divergence. Here, however, we choose the more numerically
stable squared Hellinger distance (Ali & Silvey, 1966; Liese & Vajda, 2006),

lCð~y; yÞ ¼ 1

2

Xp
i¼1

ffiffiffiffi
~yi

p
� ffiffiffiffi

yi
p� �2

¼ 1�
Xp
i¼1

ffiffiffiffiffiffiffiffi
~yiyi

p
: ð11Þ

The squared Hellinger distance is symmetric and bounded in interval [0, 1], unlike the KL,
which is not symmetric or upper bounded. The squared Hellinger distance has convenient
information-theoretic properties; for example, it is proportional to a tight lower bound for
the KL divergence.

Note that when there are only two classes (p ¼ 2), the multinomial logistic regression
reduces to the standard logistic regression.
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As in the regression formulation, we use Lasso regularisation for i 2 ½n� given by

GC
i ¼ k�

Xðp�1Þm

j¼1

Bij

�� ��: ð12Þ

where k is a parameter setting the strength of the regularisation.
We can then write Eq. (6) to be explicitly optimised as LCðX; y;B;ZÞ with Lij ¼

lCðgCiðxjÞ; yjÞ expressed by using the Hellinger loss lC of Eq. (11) and multinomial logistic
regression gC of Eq. (10).

Alternative formulation for binary classification In case the targets are given by a black
box model, we can also use an alternative formulation for binary classification (p ¼ 2).
Here, we simply transform the probability ŷ1 with a logit function, ŷ01 ¼ logðŷ1=ð1� ŷ1ÞÞ,
from the interval [0, 1] to the interval ½�1;1� and then run SLISEMAP for regression with
quadratic loss, as above. Using a logit transformation followed by a linear model matches
the behaviour of SHAP (Lundberg & Lee, 2017) and SLISE (Björklund et al., 2019).

3.4 Algorithm

Pseudocode for SLISEMAP is given in Algorithm 1. As the initial values for the embedding Z,
we use the principal component projection of the data (PCA). Then, we optimise the values
of B and Z by minimising the loss given by Eq. (6).
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In our algorithm, we keep the radius of the embedding Z constant by always dividing it
by radiusðZÞ during the optimisation. Due to this normalisation, the loss term LðÞ does not
depend on the radius of Z. Thus, for numerical stability, we add a small penalty term

ðradiusðZÞ � 1Þ2 to the loss (line 8 of Algorithm 1).
For the implementation of “argmin” in Algorithm 1, we use PyTorch (Paszke et al.,

2019), which enables us to optionally take advantage of GPU acceleration. The optimisation
of B and Z is performed using the L-BFGS (Nocedal, 1980) optimiser of PyTorch. As
explained earlier, in this paper, we assume that the data are real valued and use the white box
models and losses of Sect. 3.3 to study regression and classification problems.

In addition to the L-BFGS gradient search, we use an additional heuristic (function
Escape in Algorithm 1) to help with escaping local optima. The heuristic consists of
moving each item (embedding and local model) to the soft neighbourhood, given by W in
Eq. (2), that have the most suitable local models. This process is repeated until no further
improvement is found. We empirically validate the advantage of using the escape heuristic
in Appendix B.

The pseudocode for Problem 2 (adding new data points to a SLISEMAP solution) is also
given in Algorithm 1 (function Slisemap-new). Here, we use the same escape heuristic
to find a suitable neighbourhood as a starting point and then optimise the embedding and
local model for the new data item(s) with PyTorch and L-BFGS.

The source code, published under an open source MIT license, as well as the code
needed to replicate all of the experiments in this paper, is available via GitHub (Björklund
et al., 2022b).

3.5 Computational complexity

Evaluation of the loss function of Eq. (6) requires at least Oðn2mÞ iterations for linear
regression and Oðn2mpÞ for multinomial logistic regression. Because, for every local model
O(n), the prediction and loss O(mp) must be calculated for every data item O(n). The
calculation of the soft neighbourhoods requires Oðn2dÞ (from calculating the Euclidean
distances), but d\mp in most circumstances.

However, this is an iterative algorithm, where Eq. (6) has to be evaluated multiple times.
While it is difficult to provide strict running time limits for iterative optimisation algorithms
such as L-BFGS—we study this experimentally in Sect. 4—it is obvious that the algorithm
may not scale well for very large (n) datasets.

However, usually it is sufficient to subsample min ðn; n0Þ data points, where n0 is a
suitably chosen constant, optimise for the loss function (Problem 1), and then add points to
the existing solution (Problem 2). By this procedure, the asymptotic complexity of SLISEMAP

is linear with respect to the number of data points n. Especially for visualisation purposes, it
often makes no sense to compute exact projection for a huge number of data points:
visualisations cannot show more data points than there are pixels, so having an extremely
accurate solution to the full optimisation problem instead of an approximate solution usually
brings little additional benefit. Instead, finding a quick solution for sub-sampled data and
adding the necessary number of data points to the embedding works well in practice, as
shown in the experiments of Sect. 4.6.
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4 Experiments

In the experiments, we usually embed the data into two dimensions (d ¼ 2) and normalise
data attributes, columns of the data matrix X, to zero mean and unit variance as well as add
an intercept term (column of ones) before running SLISEMAP. Furthermore, unless otherwise
mentioned, we subsample the large datasets into 1000 data items and run all experiments ten
times.

Most datasets have been used in two scenarios, first as normal regression or classification
using the definitions from Sect. 3.3, and second in an XAI-inspired scenario where the
targets are predictions from black box models, using the alternative formulation from
Sect. 3.3 in the case of classification. When the white box model is a linear regression, we
use k ¼ 10�4 as the regularisation coefficient and k ¼ 10�2 for logistic regression. An
overview of the datasets and black box models can be seen in Table 1.

As explained earlier, we used PyTorch version 1.11 (Paszke et al., 2019). The runtime
experiments were run on a server having an AMD Epyc processor at 2.4 GHz with 4 cores
and 16 GB of memory allocated and an NVIDIA Tesla V100 GPU. The code to run the
experiments is available via GitHub (Björklund et al., 2022b).

4.1 Datasets

In this section, we describe the datasets used in the experiments. The datasets and the black
box models are available from OpenML (https://openml.org) (Vanschoren et al., 2014). A
quick summary can be seen in Table 1.

Synthetic data We create synthetic regression data (RSYNTH) as follows: given parameters
dataset size n (number of data items) and m (number data attributes), as well as k ¼ 3
(number of clusters) and s ¼ 0:25 (standard deviation of the clusters). We first sample
j 2 ½k� coefficient vectors bj 2 Rm from a normal distribution with zero mean and unit
variance and cluster centroids cj 2 Rm from a normal distribution with zero mean and
standard deviation of s. We then create data items i 2 ½n� by sampling the cluster index
ji 2 ½k� uniformly and then generating a data vector xi by sampling from a normal distri-
bution with a mean of cji and unit variance. The dependent variable is given by
yi ¼ xTi bji þ �i, where �i is Gaussian noise with zero mean and standard deviation of 0.1.

Air Quality data, cleaned and filtered as in Oikarinen et al. (2021), contains 7355
instances of 12 different air quality measurements, one of which is used as a dependent
variable and the others as covariates.

Table 1 An overview of the datasets and black box models used in the experiments

Dataset Size Task Black box model

RSYNTH n� m Regression –

Air quality 7355� 11 Regression Random forest

Boston 506� 13 Regression SVM

Spam 4601� 57 Classification Random forest

Higgs 98 049� 28 Classification Gradient boosting

Covertype 581 011� 54 Classification Logit boost

MNIST 70 000� 784 Classification Convolutional neural network
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Boston Housing Dataset collected by the US census service from the Boston Standard
Metropolitan Statistical Area in 1970. The size of the dataset is 506 items with 14 attributes,
including the median value of owner-occupied homes that is used as the dependent variable.

Boston Housing Dataset collected by the US census service from the Boston Standard
Metropolitan Statistical Area in 1970. The size of the dataset is 506 items with 14 attributes,
including the median value of owner-occupied homes that is used as the dependent variable.

Spam (Cranor & LaMacchia, 1998) is a UCI dataset containing both spam, i.e., unso-
licited commercial email, as well as professional and personal emails. There are 4601
instances with 57 attributes (mostly word frequencies) in the dataset.

Higgs (Baldi et al., 2014) is a UCI dataset containing 11 million simulated collision
events for benchmarking classification algorithms. The dependent variable is whether a
collision produces Higgs bosons. There are 28 attributes, the first 21 featuring kinematic
properties measured by the particle detectors, and the last seven are functions of the first 21.

Covertype is a UCI dataset with over half a million instances, used to classify forest
cover type (seven different types, but we only use the first two) from 54 attributes. The areas
represent natural forests with minimal human-caused disturbances.

MNIST (Lecun et al., 1998) is the classic machine learning dataset of handwritten digits
from 0 to 9. Each digit is represented by a 28 � 28 greyscale image (784 pixels with integer
pixel values between 0 and 255). Due to the large number of pixels, we create a binary
classification task by limiting the available digits to 2 and 3 and subsample them to 5000
data items.

4.2 Metrics

To compare different SLISEMAP solutions, we want to be able to objectively measure the
performance. To accomplish that, we consider the following metrics.

Loss The most obvious thing to measure is the loss we are trying to minimise; see Eq. 6.
However, the loss will change based on the parameters and the size of the dataset.

Cluster Purity For the synthetic dataset, we know the ground truth, which means that we
can compare the original clusters to the embedding found by SLISEMAP. If we denote the true
cluster id:s as c1; . . .; cn, we can measure how well low-dimensional embeddings reconstruct
the true clusters:

1

n

Xn

i¼1
jk-NNðiÞ \ fj j ci ¼ cjgj=k; ð13Þ

where k-NNðiÞ is the set of k nearest neighbours (of item i) in the embedding space, using
Euclidean distance, and j 2 ½n�. A larger value (closer to one) indicates that the dimen-
sionality reduction has found the true clusters.

Fidelity The fidelity of a local model (Guidotti et al., 2019) measures how well it can
predict the correct outcome. Using the losses defined in Sect. 3.3, we obtain:

1

n

Xn

i¼1
lðgiðxiÞ; yiÞ: ð14Þ

We are interested not only in how the local models perform on the corresponding data items
but also in how well they work for the neighbours in the embedding space, using, e.g., the k
nearest neighbours:
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1

n

Xn

i¼1

1

k

X
j2k�NNðiÞ lðgiðxjÞ; yjÞ: ð15Þ

A smaller value indicates better fidelity.
Coverage We also want local models that generalise to other data points. Otherwise, it

would be trivial to find solutions. The coverage (Guidotti et al., 2019) of a local model can
be measured by counting the number of data items that have a loss less than a threshold l0:

1

n

Xn

i¼1

1

n

Xn

j¼1
ðlðgiðxjÞ; yjÞ\l0Þ: ð16Þ

This requires us to select the loss threshold l0. Unless otherwise mentioned, in this paper, we
choose the threshold to be the 0.3 quantile of the losses of a global model (without the
distance-based weights). Furthermore, we also want this behaviour to be reflected in the
low-dimensional embedding. To verify this information, we limit the coverage testing to
only the k nearest neighbours:

1

n

Xn

i¼1

1

k

X
j2k�NNðiÞðlðgiðxjÞ; yjÞ\l0Þ: ð17Þ

A larger coverage value (closer to one) is better.

Fig. 3 Fidelity of the local models versus the fraction of nearest neighbours (in the fidelity calculation) for
different values of zradius. Smaller fidelity is better, especially for the nearest neighbours. Here, 3� zradius � 4
results in the best coverage
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4.3 Parameter selection

SLISEMAP has one unusual parameter that needs to be selected: zradius. If zradius is too small,
then all data items are in the same cluster, resulting in underfitting local models that are
almost identical to the global model. However, if zradius is too large, then the neighbourhoods
become singular, which causes the local models to overfit.

In Fig. 3, we investigate how different values of zradius affect the fidelity of the local
models. Unless the local model is underfitting, the fidelity for the corresponding data item
should be close to zero. Then, as the number of nearest neighbours grows, the fidelity
should stay as low as possible for as long as possible to avoid overfitting. Based on these
results, zradius values from three to four seem to work well for all datasets.

We also consider how the coverage of the local models depends on the zradius. The
coverage plots can be seen in Appendix A and support the same conclusion as the fidelity
results. Thus, we use zradius ¼ 3:5 as the default value for all the other experiments in this
paper.

4.4 Visualisations of the datasets

While fidelity and coverage can be used for the quantitative analysis of zradius, there is still
room for a qualitative comparison to account for subjective preferences. In Fig. 4, we plot
the low-dimensional embeddings for different zradius values. At small values of zradius, all
points converge to the same cluster, as expected. With large values, the points form smaller
and smaller clusters, potentially leading to overfitting. Based on Fig. 4, zradius values
between three and four seem optimal, which matches the conclusions from above.

Fig. 4 The low-dimensional embedding of the BOSTON dataset with different values for zradius. Large values
(bottom right) lead to sparse solutions with small clusters and potentially overfit local models. Small values of
zradius (top left) create a single dense cluster in the centre, with all (non-)local models being almost identical
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With SLISEMAP, we obtain not only an embedding but also local models for the data items.
Data items that are nearby in the embedding space should have similar local models. We can
verify this by clustering the local models independently of the embeddings and comparing
these clusters to the structure in the embedding. Furthermore, models far apart in the
embedding should look different due to the different local weights.

In Fig. 5, we cluster the coefficients of the local models using k-means clustering (on the
BOSTON dataset). Here, we see that the clusters in the local models clearly match clusters in
the embedding and that the clusters have different local models. Looking at the local
models, we notice something curious: the number of rooms (RM) has a positive coefficient
for most of the data, but in one cluster it is even negative! Investigating this cluster reveals
that this cluster represents industrial locations with a high property tax (see density plots in
Appendix C), making large homes less desirable. This insight could, e.g., be used in city
planning and construction decisions.

A plot of the MNIST data is shown in Fig. 2 in the introduction, where we can see that
some local models focus heavily on the bottom curve of 3:s, while others compare the
differences between the pixels in the centre and the pixels just below the centre.

4.5 Uniqueness

In SLISEMAP, the embedding is influenced by the local models. Thus, if multiple local models
are suitable for a particular data item, then the optimal embedding might be ambiguous.
Some overlap between the local models is expected, and neighbouring (in the embedding)
local models should be especially similar, due to the distance-based kernels in the loss
function, Eq. 6. We also expect the hyperplanes of the local models to intersect, and any data
items at these intersections will fit both models equally well.

In Fig. 6, we select seven data items from the BOSTON dataset and plot scatterplots of the
embedding, where the colour of each dot represents how suitable that local model is for the
selected data item. We see that not all local models suit all data items, i.e., the local models
are actually local. Furthermore, neighbouring points tend to have the most suitable local
models, as expected. However, some data items fit well into multiple neighbourhoods.

Fig. 5 Clustering the local models (right) to see if they correspond to clusters in the embedding (left). This
also shows that the clusters in the embedding (left) have distinct local models (right). The barplot (right) only
shows the five most important attributes of the BOSTON dataset
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These data items with multiple potential neighbourhoods make the solutions non-unique,
since there are multiple local optima with almost equally good losses. However, as shown in
Fig. 5, the local models in the different neighbourhoods are different, and this is important
for the data items in Fig. 6 matching only a single neighbourhood.

4.6 Subset sampling

With large datasets, the quadratic scaling of SLISEMAP, see Sect. 3.5, can become problematic.
One solution is to run SLISEMAP on a random subset of the data, and then, post hoc, add
unseen data items whenever necessary (see Sect. 3.2). With larger subsets, we expect better
results, but with diminishing returns after the dataset is sufficiently covered.

To investigate how much data are needed, we randomly select 1000 data items from the
large datasets to be unseen test data and train SLISEMAP solutions on increasing numbers of
data items sampled from the remaining data. Then, we add the unseen data items, using

Fig. 6 A SLISEMAP embedding for the BOSTON dataset. The embedding is plotted seven times with different
data items selected. The points in the embedding are coloured based on how well the corresponding local
model fits the selected data item. Some data items only fit local models that are nearby in the embedding (the
same neighbourhood), while some data items are more general

Fig. 7 Adding new data items to SLISEMAP solutions trained on subsampled datasets. With a sufficiently large
training dataset, the fidelity of unseen test data matches that of the training data. For most of these datasets,
only a couple of hundreds of initial data items are required. Lower fidelity for the test data is better
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Slisemap-new from Algorithm 1. We repeat this process ten times for each dataset and
compare the fidelity, Eq. (14), between the training data and the test data.

The results can be seen in Fig. 7. If the training dataset is too small, then the local models
tend to overfit, but for most datasets, only a couple of hundred data items are needed to
stabilise the results. This also coincides with the fidelities of the unseen test data
approaching the fidelities of the training data.

4.7 Higher dimensional embeddings

In most experiments discussed in this paper, we use a two-dimensional embedding (d ¼ 2).
This is because a two-dimensional embedding is easy to visualise, which we consider to be
an important use-case for the embedding. However, SLISEMAP is not limited to only two
dimensions, which we demonstrate in this section.

Using the same fidelity and coverage metrics as in Sect. 4.3, we can find the best zradius
value for higher dimensional embeddings. In Fig. 8 and Appendix D, we demonstrate that
the same default parameter value of zradius ¼ 3:5, which works well for two-dimensional
embeddings, is also suitable for higher dimensions.

With two-dimensional embeddings, the intercluster distances are only independent for up
to three clusters. This means that we expect higher dimensional embeddings to produce
slightly lower losses if there are more than three clusters. In Fig. 9, we compare the losses
for different numbers of dimensions. For some datasets, we indeed see minor improvements

Fig. 8 Coverage of the local models versus the fraction of nearest neighbours (in the coverage calculation)
for different values of zradius and different numbers of embedding dimensions d. As the threshold for the
coverage, we use the 0.3 quantile of the losses from a global model. Larger coverage is better, especially for
the nearest neighbours. Here, 3� zradius � 3:5 results in the best coverage, even for higher dimensional
embeddings. The full plot is available in Appendix D
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in the loss with increasing dimensionality. But, for example, in RSYNTH we know that there
are only three clusters, so higher dimensional embeddings offer no advantage.

4.8 GPU acceleration

Since we implement SLISEMAP using PyTorch, the calculations can be accelerated using a
GPU. Running SLISEMAP on a GPU should be faster than running on a CPU, especially for
larger datasets. In Fig. 10, we apply SLISEMAP on RSYNTH datasets with different sizes, both
with and without GPU acceleration. The GPU implementation has some overhead, making
it slower for small datasets (less than 400� 10) but substantially faster for larger datasets.

Fig. 9 Comparing losses for different numbers of embedding dimensions d. With higher-dimensional
embeddings, we expect either minor improvements to the loss due to more flexible distances between
multiple clusters or that the loss stays roughly the same

Fig. 10 Runtimes for different dataset sizes (using the RSYNTH dataset). GPU acceleration (cuda) brings some
overhead but offers better parallelisation on large datasets. Note the logarithmic scale of the axis

123

Machine Learning (2023) 112:1–43 19



4.9 Comparison to dimensionality reduction methods

The feature that differentiates SLISEMAP from other dimensionality reduction methods is that
SLISEMAP provides both a low-dimensional embedding and local models. To demonstrate that
doing this optimisation simultaneously is necessary, we take the embeddings from other
dimensionality reduction methods and fit local models post hoc (essentially running SLISE-

MAP with a fixed Z given by the dimensionality reduction methods).
We use the following dimensionality reduction methods from the Scikit-learn

package (Pedregosa et al., 2011) for the comparison: PCA, LLE (Roweis & Saul, 2000),
MLLE (Zhang & Wang, 2006), MDS (Kruskal, 1964), ISOMAP (Tenenbaum et al., 2000),
and t-SNE (van der Maaten, 2014). We also consider UMAP (McInnes et al., 2020).

A selection of the results can be seen in Table 2 (results for all datasets can be found in
Appendix F). Since none of the other methods consider the relationship between X and y
(most do not even use y), their post hoc local models are, unsurprisingly, nonoptimal.
However, the downside of using SLISEMAP is the additional time required for convergence.
An empirical scalability comparison of the dimensionality reduction methods can be seen in
Appendix E.

4.10 Comparison to local explanation methods

If we have access to a black box model, we can use SLISEMAP to find local and inter-
pretable approximations of that black box model. In this section, we investigate how good
the approximations are by checking both how local and how general the local models are.
We also compare against other model-agnostic, local explanation methods. Furthermore,
SLISEMAP finds all local models simultaneously, which could provide a speed benefit.

Of the local, model-agnostic, approximating explanations methods mentioned in Sect. 2,
SLISEMAP is most closely related to SLISE Björklund et al. (2019). SLISE uses robust regression
(Björklund et al., 2022) on data that have been centred on the selected data item to produce
the local approximation. LIME (Ribeiro et al., 2016) creates a neighbourhood of synthetic
data by mutating the selected data item (and using the black box model to obtain predic-
tions). To increase interpretability LIME, normally, discretise continuous variables into binary
variables (e.g., into quantiles). Then, LIME fits a least squares linear model to the synthetic
neighbourhood to form the local approximation. SHAP (Lundberg & Lee, 2017) tries to
estimate the Shapley value of keeping a variable in the selected data item versus changing it.
This is conceptually quite similar to the discretisation in LIME. The model-agnostic variants
of SHAP generally accomplishes this by creating variants of the selected data item where
some of the variables are sampled from the dataset. These Shapley values are then used as
the local approximation.

In addition to the methods outlined above, SLISEMAP, SLISE, SHAP, and LIME (with and
without discretisation), we also consider a global model as a reference. The global models
allow us to check that the local approximations are indeed local (better fidelity than the
global model) and how general the approximations are (by comparing the coverage). As the
threshold for measuring coverage as well as the error tolerance parameter in SLISE, we use
the 0.3 quantile of the losses of the global model. The results can be seen in Table 3.
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By definition, SLISE an SHAP have perfect fidelity for the data item corresponding to the
local model, with SLISEMAP not far behind. The global model is obviously not local and, thus,
should have the worst fidelity. However, there is nothing in the LIME procedure that ensures
that the local approximation matches the selected data item. This results in the fidelity of
LIME being comparable to the global model.

One of the advantages of SLISE is specifically optimising the subset size, which results in
outstanding coverage. The local models in SLISEMAP are affected by the low-dimensional
embedding. This reduced flexibility results in lower coverage than SLISE but better coverage
than both LIME and SHAP. Both SHAP and LIME create synthetic neighbourhoods, which results
in local models that are more difficult to generalise to real data items, reducing the coverage.

By computing all the local approximations at the same time, SLISEMAP tends to be faster
than the methods doing it one-by-one, the exception being LIME with no discretisation.
Furthermore, SLISEMAP also finds a low-dimensional embedding that can be used to visualise
and compare different data items, different local approximations, and how they relate to
each other.

Table 3 Comparison of the local white box models given by SLISEMAP, SLISE, SHAP, LIME, and LIME with no
discretisation

Dataset Method Fidelity Coverage Time (s)

BOSTON (XAI) 404� 13 Slisemap 0:00� 0:00 0:35� 0:01 17:85� 5:03

SLISE 0:00� 0:00 0:46� 0:02 70:23� 2:16

SHAP 0:00� 0:00 0:13� 0:01 167:58� 7:50

LIME 0:26� 0:02 0:14� 0:01 1587:75� 31:26

LIME (nd) 0:16� 0:01 0:21� 0:01 48:65� 1:09

Global 0:11� 0:01 0:30� 0:00 0:01� 0:00

AIR QUALITY (XAI) 1000� 11 Slisemap 0:00� 0:00 0:27� 0:01 110:64� 52:63

SLISE 0:00� 0:00 0:35� 0:01 805:92� 12:71

SHAP 0:01� 0:00 0:08� 0:00 438:18� 4:54

LIME 0:23� 0:05 0:09� 0:00 3786:65� 53:35

LIME (nd) 0:09� 0:01 0:26� 0:02 78:58� 0:50

Global 0:08� 0:01 0:30� 0:00 0:03� 0:00

SPAM (XAI) 1000� 57 Slisemap 0:16� 0:03 0:23� 0:01 277:70� 45:89

SLISE 0:00� 0:00 0:57� 0:01 607:47� 64:91

SHAP 0:00� 0:00 0:15� 0:01 1927:36� 9:44

LIME 3:08� 0:21 0:20� 0:01 4482:63� 61:03

LIME (nd) 9:56� 0:27 0:09� 0:01 205:86� 1:42

Global 3:10� 0:12 0:30� 0:00 0:32� 0:15

HIGGS (XAI) 1000� 28 Slisemap 0:05� 0:01 0:28� 0:01 238:95� 78:29

SLISE 0:00� 0:00 0:41� 0:01 536:44� 75:22

SHAP 0:00� 0:00 0:24� 0:01 492:45� 13:74

LIME 0:85� 0:07 0:27� 0:01 8639:86� 167:58

LIME (nd) 1:34� 0:05 0:27� 0:01 156:91� 2:85

Global 1:19� 0:06 0:30� 0:00 0:03� 0:00

A global model is included as reference. The error tolerance for SLISE and the coverage is selected such that
the global model has a coverage of 0.3, and the running times are without GPU-acceleration. Smaller fidelity
and larger coverage are better, the best results are marked with bold
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5 Conclusions

In this paper, we present a novel supervised manifold embedding method, SLISEMAP, that
embeds data items into a lower-dimensional space such that nearby data items are modelled
by the same white box model. Therefore, in addition to reducing the dimensionality of the
data, SLISEMAP creates a visualisation that can be used to globally explore and explain black
box classification and regression models.

We show that the state-of-the-art dimensionality reduction methods, unsurprisingly,
cannot be used to explain classifiers or regression models. On the other hand, the state-of-
the-art tools used to explain black box models typically only provide local explanations for
single examples, whereas SLISEMAP gives an overview of all local explanations.

Interesting future work would be to explore how SLISEMAP visualisations can be used to
better understand data, both with and without a black box model, and to help build better
models. For example, if a SLISEMAP visualisation could show that some group of data items
should be handled differently. Future work could also explore how to use SLISEMAP to detect
anomalous behaviours, such as outliers or concept drift. Finally, the scaling of SLISEMAP

could be improved by, e.g., using stochastic optimisation or prototypes.
The source code for SLISEMAP, published under an open source MIT license, as well as the

code needed to replicate all of the experiments in this paper, is available via GitHub
(Björklund et al., 2022b).

Appendices

A Additional parameter selection results

In Fig. 11, we see how the coverage depends on the choice of value for zradius. The ideal
value would be one where the coverage starts high and stays high as the number of nearest
neighbours grows. If the coverage starts small, then we are probably underfitting, and if the
coverage quickly drops, then we are probably overfitting. A zradius value between three and
four seems to be a good choice, which supports the conclusions in Sect. 4.3.
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B Escape heuristic

In Sect. 3.4, we describe a “escape” heuristic that we use to avoid getting stuck in a local
optimum, which should yield better solutions. In Table 4, we evaluate whether this is
necessary. Using no heuristic would mean drastically faster running times. However, the
solutions are nonoptimal compared to the full SLISEMAP solutions.

Fig. 11 Coverage of the local models versus the fraction of nearest neighbours (in the coverage calculation)
for different values for zradius. As the threshold for the coverage, we use the 0.3 quantile of the losses from a
global model. Larger coverage is better, especially for the nearest neighbours. Here, 3� zradius � 4 results in
the best coverage
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C Density plots for the clusters

In Sect. 4.4, we qualitatively investigate a SLISEMAP solution for the BOSTON dataset. We find
five clusters with different local models. To further study these clusters, we plot density
plots for the clusters and variables in the dataset. The plots can be seen in Fig. 12. For
example, we see that cluster 1 contains more industrial (INDUS) locations than average as
well as better access to highways (RAD).

Table 4 Comparing SLISEMAP with and without the escape heuristic

Dataset Method Loss Fidelity NN Coverage
NN

Cluster
Purity

Time (s)

BOSTON:
404� 13

Slisemap 7:34� 0:48 0:03� 0:01 0:84� 0:03 18:76� 5:30

No escape 7:65� 0:55 0:05� 0:01 0:78� 0:04 2:35� 0:58

BOSTON (XAI):
404� 13

Slisemap 5:21� 0:33 0:02� 0:00 0:84� 0:02 15:99� 4:17

No escape 5:62� 0:53 0:03� 0:01 0:80� 0:03 2:33� 0:50

AIR QUALITY:
1000� 11

Slisemap 7:29� 0:99 0:02� 0:00 0:75� 0:07 85:85� 22:77

No escape 7:38� 0:75 0:03� 0:00 0:73� 0:06 13:88� 2:15

AIR QUALITY

(XAI):
1000� 11

Slisemap 4:11� 0:36 0:01� 0:00 0:76� 0:04 118:95� 43:55

No escape 4:28� 0:35 0:01� 0:00 0:75� 0:05 11:24� 3:31

SPAM:
1000� 57

Slisemap 49:90� 0:14 0:01� 0:00 1:00� 0:00 102:27� 49:00

No escape 70:84� 2:63 0:05� 0:01 0:95� 0:01 38:91� 2:10

SPAM (XAI):
1000� 57

Slisemap 451:05� 24:87 0:26� 0:14 0:91� 0:02 172:56� 68:68

No escape 597:57� 47:22 0:65� 0:20 0:86� 0:03 16:48� 3:36

HIGGS:
1000� 28

Slisemap 54:55� 5:10 0:02� 0:01 0:99� 0:01 386:45� 182:21

No escape 218:88� 85:72 0:20� 0:09 0:56� 0:28 43:81� 4:55

HIGGS (XAI):
1000� 28

Slisemap 113:98� 8:94 0:10� 0:02 0:85� 0:02 185:68� 48:97

No escape 188:48� 16:79 0:37� 0:05 0:72� 0:02 12:89� 2:04

COVERTYPE:
1000� 54

Slisemap 55:10� 2:83 0:01� 0:00 1:00� 0:00 110:65� 36:01

No escape 66:83� 1:69 0:02� 0:00 0:98� 0:01 37:82� 2:25

COVERTYPE

(XAI):
1000� 54

Slisemap 69:84� 2:21 0:03� 0:00 0:86� 0:03 215:81� 73:36

No escape 74:96� 5:25 0:06� 0:02 0:82� 0:05 19:24� 2:84

RSYNTH:
400� 15

Slisemap 58:46� 15:41 0:02� 0:02 1:00� 0:00 0:92� 0:02 11:99� 4:81

No escape 495:20� 79:90 2:53� 0:58 0:77� 0:02 0:38� 0:02 2:80� 0:25

Here we use 20% as the number of nearest neighbours, and the best results are in bold

Not using the heuristic would be substantially faster, but result in much worse solutions
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D Higher-dimensional parameter selection results

When using SLISEMAP with embeddings of higher dimensions than two, in Sect. 4.7, we need
to select new values for the parameter zradius. For this, we employ the same procedure as in
Sect. 4.3 and Appendix A. The results for the fidelity can be seen in Fig. 13, and the results
for coverage can be seen in Fig. 14. These results support using 3:0� zradius � 3:5 for all
datasets and different numbers of embedding dimensions. Thus, we use the same default
value, zradius ¼ 3:5, for higher dimensions as we do for two dimensions.

Fig. 12 Density plots for the BOSTON dataset with clusters from the local models given by SLISEMAP
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Fig. 13 Fidelity of the local models versus the fraction of nearest neighbours (in the fidelity calculation) for
different values of zradius and different numbers of embedding dimensions d. Smaller fidelity is better,
especially for the nearest neighbours. Here, 3� zradius � 3:5 results in the best fidelity, even for higher
dimensional embeddings
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Fig. 14 Coverage of the local models versus the fraction of nearest neighbours (in the coverage calculation)
for different values for zradius and different numbers of embedding dimensions d. As the threshold for
coverage, we use the 0.3 quantile of the losses from a global model. Larger coverage is better, especially for
the nearest neighbours. Here, 3� zradius � 3:5 results in the best coverage, even for higher dimensional
embeddings
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E Scaling dimensionality reduction methods

In Sect. 4.8 we compare how SLISEMAP scales with the size of the dataset when running on a
GPU versus a CPU. In Fig. 15 we do the same but compare (CPU) SLISEMAP to other
dimensionality reduction methods. Here we also use the RSYNTH dataset, and increase the
number of data items (left) or the number of variables (right) respectively. Most methods
scale superlinearly with the number of data items, except for UMAP and t-SNE that use
stochastic updates (as a form subsampling). With increasing an increasing number of
dimensions the methods based on distances have an almost constant scaling (beside the
initial distance calculation). SLISEMAP is generally an order of magnitude slower than the
other methods, but produce more than just a low-dimensional embedding (i.e. the local
models).

F Additional dimensionality reduction results

In Sect. 4.9, we compare SLISEMAP to other dimensionality reduction methods by post hoc
training local models on the embeddings. In this appendix are additional comparisons to
more datasets. We also include spectral embedding (Belkin & Niyogi, 2003), nonmetric
MDS (Kruskal, 1964), and supervised UMAP (McInnes et al., 2018) in the methods. In
Table 5, we specifically investigate the synthetic dataset and find that SLISEMAP is the only
method able to reconstruct the ground truth clusters. In Table 6 is the full results for all the
real datasets. In conclusion, SLISEMAP is the slowest of the methods but also the only one to
provide reasonable local models.

Fig. 15 The scalability of the different dimensionality reduction methods on the RSYNTH dataset is compared
empirically. UMAP uses stochastic updates to handle an increasing number of data items (n), and methods that
are based on distances (i.e., not PCA and SLISEMAP) are not really affected by increasing the number of variables
(m). Note the logarithmic scales
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