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Abstract. The paper introduces an architecture for robot-to-robot co-
operation which takes into consideration how situational context aug-
mented with peer modeling fosters cooperation opportunity identifica-
tion and cooperation planning. The presented architecture allows devel-
oping, training, testing, and deploying dynamic cooperation solutions
for diverse autonomous robots using ontology-based reasoning. The ar-
chitecture operates in three different worlds: in the Real World with
real robots, in a 3D Virtual World by emulating the real environments
and robots, and in an abstract Block World that enables developing and
studying large-scale cooperation scenarios. We describe an assessment
practice for our architecture and cooperation procedures, which is based
on scenarios implemented in all three worlds, and provide initial results
of stress testing the cooperation procedures in the Block World. More-
over, as the core part of our architecture can operate in all the three
worlds, development of the robot cooperation with the architecture can
regularly accommodate insights gained from experimenting and testing
in one world as improvements in another. We report our insights from
developing the architecture and cooperation procedures as additional re-
search outcomes.

Keywords: Robot software architecture · Robot cooperation ·
Ontology-based reasoning · Peer modeling · Autonomous robots.

1 Introduction

Understanding the context of the robots plays a key role in autonomous robot co-
operation. Situational context is a term used to describe why some phenomenon
occurs in a specific situation and what actions can be associated with this situa-
tion [4]. This paper presents an extended and revised version of an architecture
that fosters the situational awareness of cooperative robots, originally presented
in 2021 CASA Workshop [14].

Information relevant to autonomous cooperation is pivotal in our approach
to cooperation planning: A robot must be able to form an understanding of both
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(a) the other robots and their resources and (b) the environment where the co-
operation is intended to take place. Our architectural approach does not provide
a solution to form a complete or joint contextual understanding between the
robots. Instead, the architecture enables each robot to form its own view of the
situation. The robots then use their situational context model and understanding
as a basis for forming joint action plans for meeting their personal goals.

In most autonomous robot approaches, the goal of the individual robot and
its cooperation behavior is fixed during the design. This leaves little room for
novel dynamic cooperation where new (joint) actions and plans could be formed
or goals adjusted after deployment in heterogeneous encounters with diverse
peers or other computational actors. Nonetheless, this kind of creative use of
complementary capabilities could highly benefit the whole robot population as-
sociated with a specific location, especially when the population is sparse and
consists of low-end consumer robots built for singular tasks, e.g., cleaning, with
ample idle time to allocate to other goals.

To optimize the use of context, and to develop the capabilities of the robots to
understand their situation and cooperation possibilities, the architecture enables
development in three conceptually and operationally different worlds. The devel-
opment approach involves the Real World, a 3D Virtual World, and a 2D Block
World, and a shared associated software architecture and frameworks, which can
operate in all of the three worlds. Each of the worlds allows the designer to focus
on different aspects of the development effort.

The 2D Block World works as a test bed for developing an ontology-based un-
derstanding of the cooperation context for the robots as it allows the simulation
of large number of diverse robots in different cooperation scenarios. Ontology-
based reasoning and planning provide robots a shared understanding of “how the
world works” and thus are crucial in our approach for multi-robot cooperation.

We adopt DUL (DOLCE+DnS Ultralite)1 as our base ontology. DUL is well
suited for autonomous robot reasoning (see, e.g., KnowRob 2.0 [3]), where it
serves as a top-level ontology, which specific applications are supposed to ex-
tend through their own ontology classes and relations. For this work we have
developed a preliminary extension to DUL to showcase the applicability of our
general approach.

In the Real World and the 3D Virtual World implementations, we have
focused on robots based on the Robot Operating System (ROS), specifically
ROS2 [18]. Briefly put, ROS2 is an open-source robot development framework
where different nodes, or programs, communicate asynchronously using DDS,
allowing nodes to subscribe and publish to topics shared over a network. Be-
ing a leading open-source project in robotics, ROS (and ROS2) has an active
development community.

Our approach to autonomous robot cooperation aims to support ad hoc en-
counters between heterogeneous autonomous robots, each of which have their
own individual goals. These goals can be used to define various plans, or work-
flows, which include different types of tasks. Typically, the cooperation tasks can

1 http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS Ultralite
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be categorized into loosely and tightly coupled cooperation tasks [7]: Tightly cou-
pled tasks cannot be performed by one robot but require multiple robots to work
cooperatively; Loosely coupled tasks, on the other hand, can be performed by a
single robot but the task can be performed more efficiently with cooperation.

The proposed software architecture enables cooperation in both tightly cou-
pled and loosely coupled tasks mainly through peer modeling, which has been
argued to be a requirement for cooperation [5]. The robots can exchange, learn,
use and evaluate models of themselves and their peers to identify and exploit
cooperation opportunities. Although the architecture proposes means for co-
ordination and communication, implementing tightly coupled tasks, however,
requires more work from the developer.

The rest of this paper is structured as follows. In Section 2, we introduce
the relevant cooperation concepts related to our architecture. In Section 3, we
describe our solution – a software architecture that enables the development,
training, and testing of cooperation between autonomous robots. In Section 4,
we explain the current status of two core elements of our cooperation solution:
the ontology extension and the planner which uses the ontology. In Section 5, we
describe the scenario-based assessment practice of our architecture, and results
of preliminary stress tests of the architecture in the 2D Block World. In Section
6, we report our insights on developing the autonomous robot cooperation with
the three-world approach. In Section 7, we cover related work and discussion.
Finally, in Section 8, we draw the conclusions for this work.

2 Cooperation Concepts

To understand our architecture, we first introduce the ontological concepts we
use to enable cooperation. The basic concepts introduced here are part of the
DUL ontology, but we extend them in our work to provide concrete solutions
and a better understanding of the situational context at hand (see Section 4.1).

The robots’ essential operation revolves around goals, which we model as
environment states, describing desirable situations the robot should find itself
in. A goal can be, e.g., to keep a room clean or deliver a package to a specific
place. A robot may have multiple or even conflicting goals.

To achieve its goals (either by itself or in cooperation), a robot forms plans
which consist of tasks. A plan describes how a certain goal is achieved, i.e., which
tasks should be done and their (partial) order. To make a plan concrete, each
task needs to be assigned to a robot (or a set of robots). In DUL this type of
plan, where each task has a designed executor(s), is called a workflow.

Tasks are the individual elements from which plans and workflows are com-
posed of. Each task includes some objective(s) to be achieved, e.g., open a par-
ticular door, move to a specific place, etc. Tasks can be hierarchically nested
in two ways. First, there can be general tasks (open a door) and refinements of
those tasks (open a door by pulling the handle). Second, lower-level tasks may
be combined to compose higher-level tasks, e.g., moving, opening a door, and
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moving again can be seen as one higher-level moving task. These task structures
are used when generating and communicating workflows.

Tasks have defined start and end conditions. However, the actions (see below)
can be partly responsible for checking these conditions. The start condition is
checked before the task can be attempted, e.g., to open a door manually, the
robot must be next to it. The end conditions are checked to see if the task was
completed successfully, e.g., if the door is open. The task end conditions can be
modeled as individual, low-level goals.

To achieve tasks, each robot has actions by which the tasks can be completed.
The robot may have multiple (sets of) actions that achieve the same task, and an
action may be utilized in multiple tasks. Where goals, plans, workflows, and tasks
are platform-independent, actions need to be implemented on each platform (and
world) separately.

To allow cooperation, robots communicate their goals, suggested workflows,
and tasks to develop workflows, including multiple robots. To make this com-
munication more fluent, robots maintain a model of themselves and each of the
peers they have encountered. In general, these models may hold any important
information of the robot in question, such as their physical properties, capabili-
ties, i.e., which tasks they can perform, the robot’s goals, and the history of the
workflows they have been included in and their success.

3 Software Architecture for Autonomous Robot
Cooperation

At the core of our research is the CACDAR architecture (Creative and Adaptive
Collaboration between Diverse Autonomous Robots). The architecture, with its
components and the leveraged services, is depicted in Figure 1. The architecture
can operate in all three worlds, the 2D Block World, the 3D Virtual World, and
the Real World, and it also enables feedback loops for the developers between
these three different worlds, allowing them to manually – or automatically –
incorporate insights gained from one world to another in order to advance the
situational context awareness that fosters the robot cooperation (see Section 6).

Next, we introduce the high level descriptions of all the components and
their development end goals. The current status of (some of) the main elements
enabling cooperation are explained in the next section.

3.1 Cooperative Brain Service

The critical enabling service for the novel and valuable cooperation is the
platform-agnostic Cooperative Brain Service, which encloses several components.
The Cooperative Brain Service is responsible for the high-level functionality of
the robot such as the planning of future tasks and cooperation (see Planner),
scheduling of tasks to be executed (see Scheduler) by Task Runtime, and it gath-
ers information from sensors, the operation and communication of the robot with
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Fig. 1: CACDAR architecture.

other robots into Knowledge Manager which it uses in its reasoning. For coop-
eration, the service needs to be able to understand the requests of another robot
for help, and then try to reason if it would (a) have the missing resources, or
(b) would have free resources or less important tasks so that it could free up
the resources for the cooperation. The availability of such resources (e.g., time
and battery) are estimated in collaboration with the Scheduler and the Task
Runtime components.

However, the most crucial responsibility of the service is to estimate whether
it will meet its own goals. It constantly keeps track of its resources and what
resources other robots have allocated for helping it to meet its goals. Hence,
it leverages Knowledge Manager and Task Runtime components by observing
changes in the models that represent the other robots and environment, and then
notifies the Planner which can alter its workflow and tasks (e.g., by replanning
tasks with missing resources or reorganizing tasks in its workflow).
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3.2 Knowledge Manager

Knowledge Manager takes care of maintaining the robot’s understanding of the
world and the information associated with the cooperation. The main input
source for the component is the robot’s (platform-dependent) service components
that the robot uses for observing and sensing. Knowledge Manager may also
exchange information with the components of other robots Knowledge Manager
via respective Cooperative Brain Services with Coop Messages.
Knowledge Manager maintains the following models that enable novel and valu-
able cooperation as well as individual goal-oriented behavior of the robot:

Situational Context Model captures information considering the current
situation of the robot, e.g., where it and other robots currently are, what is
the state of the environment objects near it, and other dynamic properties.
The model’s contents can be updated using feedback from sensors, Environment
Model (e.g., by making queries of possible state changes in the physical objects
represented in the ontology if they are not directly perceived), Self and Peer
Models, and direct communication with other actors, such as robots, through
Coop Messages. To this extent, Situational Context Model operates in tandem
with the environment and peer models to provide a unified view of the most cur-
rent understanding of the situation. This model can be used directly in Planner,
whereas other models provide more fractured view of the situation.

Environment Model connects actions in the operating environment, e.g.,
moving or object manipulation, into state changes in the ontological objects.
The model should represent the environment and the objects in it in sufficient
detail so that it can be used to derive reasonable Situational Context Model and
reason about possible consequences of actions in particular situations. It can
be updated using feedback from the environment (either perceived or received
through communication). The level of detail in the Environment Model varies
across the different world types. In 2D Block World, the model is sufficient to
possess simple logical states, e.g., is the door open or closed, while in Virtual and
the Real World the model may be more elaborate, e.g., a door can be partially
closed and currently opening. However, to keep the ”backward functionality”
intact from Real World back to 2D Block World, individual object states and
actions that manipulate them in Real World model should be mappable into the
2D Block World model.

Self Model and Peer Models contain information about the robot itself
and its peers. In general, each peer has its own model, but aggregate models,
e.g., considering certain classes of robots, are possible. Robots exchange informa-
tion considering themselves (drawn from their Self Model and other knowledge
sources) when they first meet their peers and update and replace this informa-
tion through communication and observations. Where Situational Context Model
offers current information of the state of the world, and Environment Model of-
fers an understanding of how the world works, these models provide knowledge
of what are the goals of each robot, which tasks are possible for the robot, and
what restrictions the robot may have for performing specific tasks, e.g., if the
robot can only open specific types of doors. From the cooperation perspective,
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these models are highly relevant, as their information is needed in Planner when
determining which peers can perform a particular Task.

Task to Action Mapping Models contains knowledge about mapping the
task realizations to actions. This knowledge is mainly about the robot’s tasks,
but peers’ tasks to action mapping information can also be partially stored. This
applies especially to cases if the robots are of the same type. Additionally, other
peers may provide some information about their action mapping for a particular
task, e.g., resource estimates, timing information, or constraints that can be used
in reasoning.

Workflow History Model contains the information on earlier cooperation
situations, such as performed task sequences, their configurations, and execution
results. The information is used for improving the quality of the cooperation by
analyzing which workflows have previously worked well and which ones have
failed.

Task Hierarchy Models are used as configuration models for creating task
hierarchies (consisting of task-goal-plan nodes), e.g., options for decomposing
tasks or goals and constraints for valid hierarchy configurations. The model
can be used to determine whether a particular task hierarchy configuration is
valid, and the hierarchies can, then, be used by Planner or other components in
Knowledge Manager, e.g., to represent aggregated high-level capabilities of the
peers.

3.3 Planner

Planner is responsible for constructing Workflows which are then, e.g., passed
to Scheduler for execution or stored for later use. As input, Planner is given some
starting situation, e.g. the current Situational Context, a desired end condition,
e.g. the current Goal, and other related parameters, e.g. restrictions for the
workflow. Planner leverages the information maintained by Knowledge Manager
in its attempts to select the robot and its peers to specific roles and to assign
them Tasks. For actually assigning Tasks for its peer robots, Planner negotiates
with the Planner components of different robots. The purpose is to ensure that
the robot has a correct understanding of the capabilities of its peer (i.e., Tasks
it can perform) and that the peer has sufficient resources, e.g., time and battery
power, to participate in the workflow.

Goal Model defines a single mission (e.g. a task) that is expected to be
carried out by a single robot or a set of robots. However, it does not define how
the actual plan and the mission is expected to be performed. Instead, a Goal
Model can set some ground rules for the robot behavior, like time constraints or
quality attributes. A Goal Model is used for deriving start and end conditions
for specific tasks. It may also affect what types of robots get selected into the
roles of the cooperation.

Workflow Model consists of a Goal Model and a partially ordered list of
Task Models where each task is assigned to a (set of) robots. By default, Planner
tries to put together a Workflow Model where the robot itself is in the primary
role, and its peers are assigned only if the robot cannot meet the Goal. However,



8 S. Linkola et al.

the Goal Model can affect how the workflow is put together: As the Goal Model
contains information regarding the mission of a single robot, it can then define
the mission to be highly cooperative or act as a leader. For example, consider
that one robot is expected to act as a supervisor for the other robots – its mission
is then defined to coordinate the others and their cooperation.

3.4 Task Runtime

Different types of robots can feature very differing underlying platforms for de-
velopment and interfacing in general. Therefore, the platform is essentially what
dictates how actions have to be implemented. The Task Runtime is accordingly
designed so that support for new platforms can be added at will, in the form of
platform modules. However, special care needs to be taken when implementing
2D Block World platforms, as they operate in discrete time and not in continuous
time. Currently supported platforms are ROS2 and a simple iterative simulation
platform for 2D Block World built on top of Creamas2.

Task. The self-adaptive aspects of the architecture come into play when
the autonomous operation or cooperation requires certain resources. Each robot
describes its capabilities by communicating to others what kind of tasks they can
execute. A task may consist of other tasks, that is, a task may group together
other tasks to obtain a higher-level behavior. As an example, consider that a
robot can perform a task Guide. Such task then consists of other tasks, like
Move, Turn, Navigate, etc.

Action is the mapping from the behavior modeled with tasks to the actual
implementation of a specific task. Actions are generally platform-specific, but
there can be alternative versions of actions for different robots even within the
same platform. Similar to the tasks, also actions can be composed of a set of
other actions. For instance, conforming Action: Guide may leverage various other
action implementations.

3.5 Robot’s Services

For actuating and sensing the events coming from the world, the architecture
enables leveraging various services and communication between them. In Fig-
ure 1, such services have been illustrated: an imaginary actuating Service A is
used, for example controlling the robot, and at the same time, it sends data
to Analysis Service A. While we have mainly used ROS2 based services in our
current implementation, the Cooperation Brain is not tied to any specific robot
technology. Hence the services may also be realized as ROS1 services or any
other type of service technology (e.g., as a Docker-based microservice), or, in
case of 2D Block World, simple asynchronous function calls.

2 https://creamas.readthedocs.io/en/latest/
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3.6 Scheduler

Scheduler component is part of the Task Runtime component. Scheduler’s main
duty is to fetch tasks to be executed in Task Runtime. To this end, it queries
from the Brain if there are tasks to be executed, which may cause the Planner
to plan a new workflow, converts the responded tasks to their platform specific
implementations, and delivers the runnable Actions to the Task Runtime. The
Scheduler also ensures that the situation is correct for running the task, i.e.
the task’s start conditions are satisfied, and it communicates back to the other
Brain components if that is not the case. The Scheduler can also use the resource
estimates to ensure that the robot has the promised resources for performing the
task.

3.7 Coop Communication Service

In order to cooperate effectively in varying situations and environments, the
robots require a communication platform that can relay messages between the
components deployed on various robots. The base technology for inter-robot
communication is Socket.IO. It provides a relatively reliable and fast enough
communication channel for negotiating about the cooperation-related activities,
like tasks and roles in workflows, and providing feedback.

In our present research, we mainly leverage ROS2-based robots. ROS2, on
the other hand, leverages DDS technology for communication between the ROS2
services. Hence, in the future, our implementation may change using DDS also for
the cooperation communication to make the architecture more streamlined. The
downside, however, is that setting up a DDS-based communication infrastructure
can be challenging for robots that lack the required resources, and as there are
several different DDS implementations, incompatibility issues may emerge and
issues with licensing. For this reason, the implementation yet relies on our service
and Socket.IO technology. Additionally, to support also non-ROS2 based robots,
we have been discussing implementing a communication bridge that would allow
ROS and other types of robots and smart objects and resources (e.g., sensors,
existing facility service systems, smart home systems, etc.) in the environments
to participate and enhance the cooperation.

Coop Message is the base unit of the communication in the CACDAR ar-
chitecture. Two other base message types – BroadcastMessage and Direct Mes-
sage – are inherited from the base. The idea is that the communication lan-
guage is extended by inheriting new subtypes. The only requirement is that
each message has a sender. The actual communication messages are based on
FIPA Communicative Act Library Specification [8] from which we use a subset.

Broadcast Messages are sent publicly to all robots and services connected
to the Coop Communication Service. Typical use cases for these messages are
when a new robot arrives at a specific venue and then gets connected to the Coop
Communication Service located at this venue. The robot may then greet other
connected robots by broadcasting its name and the tasks it considers capable
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of performing. The robot may also request help from other robots by trying to
describe its goal to other robots.

Direct messages, on the other hand, are sent directly from one robot to a
set of recipients. These messages are mainly used for negotiating a cooperation
plan and communicating during the execution of the plan.

4 Current Status

In this section, we present the current implementation status of our ontology
extension and the Planner component, two of the main elements enabling the
cooperative behaviour.

4.1 Ontology

The collaboration of our robots is based on ontological reasoning. While rigorous
ontology development is not the main focus of our study, developing an ontology
based on a well-known general ontology enables new collaboration possibilities
for the robots: As long as the robots are familiar with the top level ontology, they
can reason about the concepts presented to them, even if they are not familiar
with the exact ontological classes used by another robot. Here we explain our
ontology development process and illustrate a few classes from our ontology.

In our ontology development effort we have consulted the approach advocated
by Noy and McGuinness [15]. They describe an iterative process of creating an
ontological model of the world in a specific domain. After considering the scope
and domain of the ontology, Noy and McGuinness encourage defining compe-
tency questions3 to guide the ontology development before considering existing
ontologies, enumerating terms, defining classes and hierarchies, properties, their
value types, and finally creating instances of the ontology classes.

As stated before, we decided to extend the domain general DUL
(DOLCE+DnS Ultralite) ontology to fit collaboration in the intended sample
use cases. The domain of our work thus is general robot-to-robot collaboration
and from the use case we derive that the collaboration in this case considers
planning of navigation in a physical space. To aid our design we considered the
following competency questions:

1. What objects in the environment are important for the robot to recognize
and how will the robot tell them apart? (e.g. a door or a room in our use
case of package delivery)

2. Which concepts are necessary for the robot to conduct a simple task alone?
(e.g. moving from one room to another)

3. Which concepts are essential for collaborative plan construction?
4. How will the robot ask for help?

3 After Gruninger, M. and Fox, M.S. (1995). Methodology for the Design and Evalu-
ation of Ontologies. In: Proceedings of the Workshop on Basic Ontological Issues in
Knowledge Sharing, IJCAI-95, Montreal.
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5. How will the robot maintain an understanding of its capabilities?

6. How will the robot maintain an understanding of its peers’ capabilities?

The first two questions (1-2) deal directly with the physical properies of
the domain and suggest additions to the ontology supporting the description of
spaces and their relations through doorways. The two following questions (3-4)
relate to the ability of the robot to plan and initiate collaboration. Finally the
last two questions (5-6) deal with the robots ability to recognize and model itself
and its peers as agents in the world. In our current ontology development effort
we have focused on questions 1-4.

The existing DUL ontology has general classes which can be used to describe
any domain. The full DUL ontology is out of the scope of this paper, but we
describe some general principles that support our extension. The DUL ontology
offers several classes to represent physical objects and agents, which we extend
in our own implementation. Examples of our extensions can be seen in Table 1.
The DUL ontology also has several classes for representing social concepts, such
as the class Task, which is inherited by our extensions describing specific kind
of tasks in the domain, such as OpenDoorTask. Finally some classes represent
information rather than events or physical objects.

The separation between PhysicalObject and subclasses of the
InformationEntity class in the DUL Ontology means that some aspects
of our ontological extension need to be represented by two separate classes to
connect the information and the physical object representing it in the simula-
tions or the real world. This is linked to the problem of symbolic grounding.
We chose to circumvent it by using QR codes to tag the physical objects in
our simulations and the real world. In our ontology the QRCode class represents
the information stored in a QR Code tag, while the QRCodeTag represents the
physical or virtual entity. These further link to other ontological objects, such
as doors. The grounding problem could also have been solved by using for
example machine learning to recognize the objects, but as it is not the focus of
our project, we chose the QR code + tag approach.

Our ontology development effort is a living project and it is developed further
to raise to the challenge of creative collaboration as we move on to investigate
the ontological questions 5-6.

4.2 Planner

We have implemented the first working version of the planner, where emphasis
has been given to forming operational plans for physical navigation in enclosures
consisting of rooms which are connected with doors, i.e. floor plans resembling
typical offices and other buildings. We chose to implement our own planner
software as it needs to constantly communicate with the peers in the context,
therefore making the existing software solutions for ontology-based reasoning,
e.g. KnowRob 2.0 [3], only partially suitable for our needs. In the future, some
of the subroutines of the planner may be refactored to utilise existing solutions.
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Class (DUL inheritance) Description Current Usage

NavigateToTask
(DUL:Task)

General task to move
around in the world.

Used to move between two
points.

DeliverObjectTask
(DUL:Task)

Task to deliver objects to
their destinations.

Used to deliver packages to
their destination locations.
The robot must check it is
next to the destination be-
fore it can deliver an object.

Point2D
(DUL:SpaceRegion)

Singular point with (x, y)
coordinates.

Represents the location of
any DUL:PhysicalObject.
The coordinates are internal
to the robot.

Room (DUL:SpaceRegion) General area construct.
Rooms are connected to
other rooms (or areas) by
doors (or other portals).

The robot can move be-
tween any two points in the
same room using only Navi-
gateToTask.

Door
(DUL:DesignedArtifact)

Any object which can act as
a closeable portal between
two (or more) rooms

A robot with proper capa-
bilities can open a door be-
tween two rooms to move
between them, but it must
be next to the door to do
this.

DeliveryObject
(DUL:DesignedArtifact)

Objects to be delivered Used to represent the real
objects with knowledge of
their destinations, etc..

QRCode
(DUL:InformationObject)

Represents a QR code which
can be attached to any
DUL:PhysicalObject

Robot identifies objects, e.g.
doors and delivery loca-
tions, in its environment by
recognising and reading QR
codes.

Table 1: Examples of ontological concepts used in planning and other reasoning.

Next, we briefly describe the operation of the current planner. The full descrip-
tion of the component is out of the scope of this paper.

The current planner closely follows the famous A* heuristic search algo-
rithm [10], which is quaranteed to find the shortest path in a graph (for us, a
sequence of tasks) if the search’s properties conform to some general assump-
tions. For now, the path cost is simply the time estimated to complete all the
tasks in it, but it can be expanded to take into account other resources as well.
A* search uses a heuristic function to guide the search to more promising di-
rections. In our current implementation, with the focus for physical navigation,
the heuristic is the time estimated for travel from current position to the goal
position via straight line distance.

The A* algorithm operates on (directed) weighted graphs. We can construct
the search graph using the instances of ontology classes and their relations.
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Starting from a single node, the starting location, the algorithm considers which
tasks are possible to execute from the current node and adds them to the task
graph as edges between nodes representing states. For example, in a room we
can ask which all other points are in this room and expand the search with
instances of NavigateToTask to those points, or in points next to doors, we can
expand the search with OpenDoorTasks allowing the search procedure to cover
also other rooms.

To better accommodate our needs, we have made a few modifications to
the basic A*. First, for some of the tasks it is crucial to verify if their start-
ing conditions are satisfied before the task can be expanded, e.g. the manual
OpenDoorTask can be added as an edge to the graph only, if the robot is next
to a door it can open manually. Second, the planner communicates with peers
to find executors for tasks which the robot can not do itself. In such cases it
can use the time estimates of the peers to compute the path cost estimates.
Third, for some closely associated task sequences, the planner utilises task hier-
archies to achieve more complete behaviour. For example, if the current goal is
to find a route to a certain point, and the robot is not guiding anybody, then
OpenDoorTask, NavigateToTask and CloseDoorTask are added automatically
to the task graph as tasks related to entering a new room before a new search
expansion is done.

After a task sequence required to achieve the goal task is found, the planner
communicates to the peers which tasks are done by which peers based on their
request responses. The planner also inserts into the robot’s own task sequence
WaitTask with proper end condition before any task that (1) is done by a peer
and (2) is required to be completed before the robot can continue to its next
task towards its goal.

5 Asessing Cooperative Behaviour in the Three Worlds

To evaluate the implementation of our architecture we developed scenarios that
represent the desired qualities of the system: autonomy, cooperation with diverse
peers, self-adaptation and functioning in changing or uncertain environments.
First, we elaborate on our scenario development process, and then we discuss
the implementation and results of testing our architecture using randomised
scenarios in the 2D Block World.

5.1 Scenario Development

In this section we describe the assessment practice of our architecture revolving
around scenarios, and the properties we have identified as preliminary require-
ments for the scenarios. We report our insights on developing the architecture
using an example scenario in Section 6.3.

We defined a scenario to consist of a context and an activity (associated with
some goals) in one of the worlds. Both the context and the activity can have
variable properties. Variables of the context include the physical context, e.g. a
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floor plan and objects residing in it, and the participants of the scenario, e.g. the
robots operating in it. The variables for the activities include parameters specific
to that activity, such as goal states and start locations for the participants. A
scenario that is executed forms a situation. A situation describes how things
are at a particular time in a particular context when the robots are performing
particular activities. The situation defines the current status of the system and
can consider also the inner states of the robots.

These scenarios were developed to be implementable in the three different
worlds: 2D Block World, 3D Virtual World, and Real World. The main purpose
of developing the system for all three platforms was to evaluate its feasibility
similar to building a skeleton system for evaluating software architecture (see
e.g. Rozanski and Woods [17, p.225]). The use of the different worlds allows us
to evaluate further aspects of the system: Through building a sample system for
Real World we evaluate the feasibility of our system. Simulating the system in
the 3D Virtual World allows us to test the variability and deployability of the
system as we can change the simulated hardware and the environment of the
system easily. Finally evaluating the system in the 2D Block World allows us
to test the logic with different single-agent service configurations, as well as the
robustness of the system with large sets of agents. Together the multiple worlds,
multiple scenarios approach allows us to achieve reliability through iterative
development and experimentation.

We conducted our scenario development iteratively starting from a simple
’follow me’ scenario in which one robot follows the other to a target (see Mäkitalo
et al. [14]). From this simple scenario we derived alternative activities and con-
texts to enable for more robust testing that would allow us to validate the capa-
bility of the system in working autonomously under variable scenarios including
changes and uncertainty.

After implementing the initial scenario in the three worlds, we decided on the
materials for the physical context of the scenarios. We selected 3mm thick cel-
lular board as the physical building material and designed the physical scenario
creation based on 50cm x 50cm modular wall pieces supporting easy implemen-
tation in all three worlds. The modularity allows for building various enclosures,
which we also call floor plans. The enclosures can be used to test how coop-
eration and the base software function in changing or uncertain environments,
supporting our goals of self-adaptation and autonomy. In our scenarios the en-
closures resemble house floor plans, which typically include rooms. The different
rooms (as well as other physical objects relevant for robots) are labeled using
QR codes to facilitate their recognition.

Next we defined a number of activities to be implemented in an enclosure
built from the physical or simulated modular squares. These activities focused
on the collaboration aspects of testing. These activities are described in detail
in Table 2. The first three tasks are variations of the same theme. The value
of separating the guiding task into three different activities becomes apparent if
additional restrictions are posed on the system, such as access rights. The first
three activities are suitable for static scenarios, in the sense that the properties
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Label Task Description

Guide 1 Guide robot from point A to
point B

In this task one robot guides another from
a point to another in a situation where the
first robot does not know the location or
route to point B. The robots need to com-
municate using ontological concepts. The
guidance could be for example related to a
package delivery scenario, or regular main-
tenance performed by a robot visiting a
new environment.

Guide 2 Guide robot from room A to
room B where there are two
or more routes available that
are equally good.

In this task one robot guides another from
one room to another, but there are more
than one optimal route. This can be used
to test additional constraints, e.g. situa-
tions in which access rights required to
complete the two routes are different.

Guide 3 Guide robot from room A
to room B, when there
are several routes available
with different assessments of
route quality or cost.

In this task one robot guides another from
one room to another, but there are routes
with varied levels of optimality. This can
be used to test additional constraints, e.g.
situations in which the required access to
complete the routes is different.

Pickup Pick up a package in room A
and bring it back to room B.

In this task one robot picks up a package
stored in a room. It can be combined with
the guiding task. As the robot picks up
the package its weight and dimensions may
change, meaning it may need to select an
alternative route back.

Table 2: Set of test activities for our scenario-based assessment practice.

of the participating robots or the environment do not change during the scenario
involving the activity. They can still be used to test for autonomy, cooperation
with diverse peers, self-adaptation and functioning in uncertain environments,
as the participating robots and the context, or the start or end locations of the
guiding activity can be changed before each test run. Any of these activities
can be used to construct a dynamic scenario by blocking the route from one
room to another during the activity, or changing access rights. However, the
fourth activity, ’Pickup’ has some inherent dynamism as the properties of the
participating robot can change if it picks up a large delivery. This can for example
prevent the use of certain doors on the way back.

In our scenarios the differences between participating robots are defined
through robot capabilities. E.g. one robot is able to follow, one to guide and
a third to open doors. It is however possible also to further derivate between
robot properties by allowing them different access levels to different areas of
the physical enclosure. This can enable more complex collaborative tasks, such
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Size #DL #DO #Objects Delivered% Steps Time

20 x 20 4 10 440 100% 129 0.279 (0.002)
50 x 50 10 10 2720 100% 351.5 2.326 (0.007)
200 x 200 20 10 43280 100% 1487.5 112.3 (0.076)
400 x 400 50 10 172960 100% 3084.7 953.6 (0.309)

Table 3: Results of tests in 2D Block World simulations. The setting on each
row has been run 10 times and run averages are reported. Size is the scenario’s
floor plan size, #DL is the number of delivery locations, #DO is the number
of delivery objects, #Objects is the number of Point2D and Door objects in
the scenario, Delivered% is the percentage of successful deliveries, Steps is the
average number of simulation steps required to deliver all the objects, and Time
is the average time the simulation took to complete with time per step in paren-
theses.

as a robot having to be lead by two others to reach a final destination going
through areas the two other robots are not allowed to be in alone. The use of
differently capabled robots in our scenarios makes them suitable for evaluat-
ing tightly coupled cooperation, but they could be used for evaluating loosely
coupled cooperation, if the same capabilities were given to all robots.

5.2 Stress Testing in 2D Block World

We conducted stress testing of our architecture, and especially the Planner com-
ponent, by building on top of the basic scenarios described above in 2D Block
World iterative simulations. We created a diverse set of floor plans consisting of
different sized rooms, doors between them, and a few delivery points spawned
in random locations across the floor plan. Specifically, we created 10 floor plans
for each 2D Block World size: 20 x 20, 50 x 50, 200 x 200 and 400 x 400. For
each floor plan, we spawned two robots to random places with different capabil-
ities: one that could open doors and guide, and one that could follow and deliver
objects. The delivery robot did not have an understanding of the floor plan, i.e.
it had to ask for guidance to the delivery points, and it was initialised with 10
delivery objects with random, specific delivery point destinations.

The purpose of the expanded scenario was to verify that (1) the planner was
able to find a proper cooperation plan for each DeliveryTask, (2) the robots
were able to execute the plan so that the object was delivered in the end, and
(3) to ensure that the execution time of the planner did not grow too much as
a function of the floor plan size. We report our results in Table 3.

We make two main observations from Table 3. First and foremost, the planner
is able to construct a proper cooperative plan and the agents are able to exe-
cute it in all the randomly initialised scenarios (see Delivered% for each row).
This is strong evidence that both the planner is working correctly and that the
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2D Block World implementations of the actions are properly implemented. Sec-
ond, we see that the time to execute each simulation step grows as the scenario
size grows (both the size and the number of ontological objects). However, the
growth is non-existent when dividing the step time with the number of ontologi-
cal objects in the scenario. This indicates that the planner is able to consider the
plan candidates in an efficient way and expand the search to the most promising
directions, and that the number of ontological objects in the agent’s knowledge
does not affect (on this scale) the performance too much. However, based on
these observations, we have already identified certain bottlenecks in our archi-
tecture implementation where inefficient list lookups of ontology objects could
be refactored to more efficient solutions.

6 Three-world Development Process

We chose to develop our architecture for three different worlds the Real World,
the 3D Virtual World and a simple 2D Block World to facilitate different de-
velopment targets. The 2D Block World offers a simple environment to test the
architectural adaptation logic, as well as for stress testing. The 3D Virtual World
offers a way to progressively transfer the implementations to the Real World via
controlled platforms featuring 3D physics simulation. Finally, the Real World
helps us to identify potential gaps left by the simulations as well as test the
applicability of the architecture in real scenarios. We began with simple tests
run in the Real World, and now conduct our development concurrently on the
different worlds, creating feedback loops from one world to the other. The effect
of this feedback loop on our development effort is illustrated in Figure 2. In this
section we describe some of the lessons learned in our development efforts on the
three worlds.

6.1 Introducing ROS and Real-World Robots

We deemed it beneficial to familiarize ourselves with physical robot development
from early on and started by prototyping with robots in the Real World. Our
initial development was done on Rosbot 2.0 and TurtleBot3, both affordable
robotic platforms using the Robot Operating System (ROS) as their development
platform. However we soon moved on to using the newer version of ROS, named
ROS2, as it offered better functionality, and we also started using exclusively
the TurtleBot3, as it had much better ROS2 support at that point.

TurtleBot3 is an economical robot intended primarily for educational and
research use. It is equipped with a pair of wheels and a LIDAR for scanning
surroundings. The system is modular and the composition of different robots
can be changed with relative ease. For example, cameras can be added to the
robots to enable more complex sensing of the world. This proved important, as
in our project the robots do not share any common understanding of the world,
such as a common map or even a common coordinate system. Therefore one
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2D Block World 3D Virtual World Real World

Adaptation logic

Navigation & robot 
capabilities

Controlled testingAdaptation logic

Planning logic

Real world data for scenarios

Fig. 2: Examples of lessons learned feedback loops between three development
and evaluation worlds. The three worlds each bring their own development prop-
erties, but some of these properties also affect other worlds. For example data
from the Real World, including robot types and configurations, guide the work
on the simulated worlds.

of the preliminary coordinated Actions we implemented consists of one robot
following another with the help of QR codes [14].

During experimentation in the Real World, several realities of robot devel-
opment became apparent: Lighting conditions would affect the detection of QR
codes greatly, even the slightest of obstacles such as cables were insurmountable
for the TurtleBot3, and having to reset the positions of the robots manually
every attempt was also rather inconvenient in the long run. We also did not
have the equipment or means for complicated feats such as having the robots
carry objects. Finally, the worsening COVID-19 pandemic shut down Real World
development, so we focused on the 3D Virtual World environment next.

6.2 Bringing Cooperation from Real World to 3D Virtual World

As the intermediate world of the three-world approach, we chose Gazebo4 for
our first simulation environment, as it integrates well with ROS2, supporting the
reuse of the implementation of our architecture in the three worlds. Gazebo also
supported a smooth transition from the Real World to the 3D Virtual World, as
it already includes a well implemented, accurate model for Turtlebot3. Therefore
the QR code based robot following method, for one, worked in the 3D Virtual
World as-is (see Figure 3 for cooperation development in Gazebo with Turtle-
bots).

However, we did face some challenges with the 3D Virtual World implemen-
tation when trying to run multiple robots in a single Gazebo simulation. When
using ROS2 in Real World, each robot is typically assigned its own ROS2 do-
main. However, when using Gazebo with ROS2, all the simulated robots have to

4 http://gazebosim.org/
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Fig. 3: Cooperation scenario running in the 3D Virtual World: Gazebo.

use the same ROS2 domain. Unfortunately, this means the ROS2 topics used by
the simulated robots would overlap by default, making it impossible to commu-
nicate with the robots separately. To avoid this overlap issue, separate names-
paces had to be assigned to differentiate the topics of the robots. However, while
this namespace approach is commonly used in ROS1, support for it is much
more limited in ROS2, so the platform change required developing some code
workarounds.

Currently we can run several Turtlebots in the same simulation in Gazebo.
However increasing the number of robots increases the processing power required
to run the simulation significantly. This limits the current simulation run on a
virtualized Ubuntu 20.04 on a business laptop to 3 robots, and even then the
simulation runs between 0.4–0.7 times of the normal speed.

Despite the initial challenges, the benefits of the 3D Virtual World approach
are clear: The simulation environment can be edited and reset at will, although
we are currently experiencing some Gazebo-specific bugs with these features.
Troublesome aspects of the real world such as light conditions causing problems
with QR code detection are not an issue in Gazebo, and delivery of objects can
be simulated with ease by spawning and despawning items.

6.3 Building Example Scenario for Cooperation Development

After getting the first scenario in Gazebo working, we built an example scenario
following the ideas explained in Section 5.1 in all three worlds (see Figure 4).
After building the scenario we soon observed that the following method, which
worked in our previous scenario, was bound to break in the 3D Virtual Worldand
the Real Worldin the new scenario due to two main factors.

First, the interoperation of navigation and SLAM (simultaneous localisation
and mapping) implementations in ROS2 were prone to create artifacts from
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(a) Block world (b) Gazebo (c) Physical world

Fig. 4: An example enclosure in the three worlds: 2D Block World with iterative
discrete time simulation, Gazebo 3D Virtual World, and Real World.

previous observations in the follower’s navigation map. That is, the follower
continuously observed spaces previously occupied by the guide still as occupied
even though the guide had already moved away. This resulted in poor behaviour
in tight spaces as the follower could not navigate around the artifacts, and the
underlying implementations did not clear the artifacts if the follower was nearly
stationary. Second, the sharp navigation angles of the guide accompanied with
the thinness of the walls was causing problems for the following method, which
was implemented by keeping the guiding robot’s QR code as close to the center
of the camera stream as possible. Due to this the follower repeatedly bumped
into walls.

Fortunately, due to our three world development approach, we could still
continue the development of other parts of the architecture and cooperation pro-
cedures even though a single platform (Turtlebot3 with ROS2) Action achieving
single Task was temporarily broken. It was easy to verify that the problem was
in the underlying action implementation and not in the core workings of the
architecture. Moreover, we could begin to test how to circumvent these kind of
problems in the future by making the following method more robust. For this, we
could temporarily easen the properties of the 3D Virtual World, e.g. by making
the corridors of the scenario wider and making the walls thicker.

7 Related work and Discussion

In this section, we discuss related research on architectures enabling autonomous
robot cooperation, leveraging ontologies for forming an understanding of the
cooperation possibilities and situations, task planning and decision making in
the context of autonomous robot cooperation, as well as changing environment
in our development approach.

7.1 Architectures for Autonomous Robot Cooperation

Autonomous robots cooperating in uncertain and constantly changing environ-
ments have been studied for many years. The general interest in the overall
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topic has spawned several research subfields, e.g., swarm robotics [1], collabora-
tive robotics (cf. [9]) and unmanned autonomous vehicles (UAV) (cf. [13]).

We find that the closest works related to our work from the architectural
perspective are related to tightly coupled multi-robot cooperation. For example,
Chaimowicz et al. [6] have studied an architecture in which the key feature is
flexibility, which enables changes in leadership and assignment of roles during
the execution of a task. While their approach allows dynamical behavior, the
cooperation is still tightly coupled. In our approach, each robot is expected to
individually execute their tasks and then ask for help when needed. Hence, the
cooperation is less tightly coupled. In addition, the aim is not to jointly execute
predefined tasks but instead, enable the robots to model their environment and
their peers so that they could independently form new cooperative plans and
meet their personal goals.

The use case of transportation of objects has been studied by several re-
searchers over the years, including Chaimowicz et al. [6]. Recently, Zhang et
al. [20] as well as Manko et al. [12] have studied control architecture that is us-
ing deep reinforcement learning in the transportation of large or heavy objects
with a particular focus on decentralized decision making. While these approaches
have similarities to our work, our work aims to enable individual robots to fulfill
their personal goals instead of the group’s goal. Hence our architecture would
likely not be well-suited for such tightly coupled cooperation. However, we can
learn from their experiences on how they use deep learning technologies and
Q-learning-based algorithms for training the robots to execute a tightly coupled
task, and in the future, we could try a similar approach in our 2D Block World.

7.2 Ontologies for Cooperation

Ontologies have been widely used to make agents and robots understand the
structures of the physical and social world around them [16, 3], and initia-
tives considering their usage to build robot collectives that can communicate
and cooperate have been suggested before, e.g., RoboEarth [2]. In contrast to
RoboEarth, where most of the reasoning happens in the cloud, cooperation un-
derstanding and planning in our architecture take place inside the individual
robots. The robots do not share their world views in general as they are as-
sumed to hold also information that should not be shared with others, such as
maps of restricted areas or passwords. Instead, they will only exchange informa-
tion relevant to the current situation and goals directly with each other. That
said, cloud-based solutions, such as RoboEarth, could be integrated into the
architecture as optional components.

Mainly due to the advent of IoT, ontologies prove to be an exciting starting
point for robots to understand the world as the built environment is getting
populated with intelligent devices capable of communicating with other com-
putational actors. This means that, e.g., a door can be opened using software
communication alone and does not have to rely on physical door manipulation,
and that sensors and other IoT devices may send information of their physical
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composition, purpose, and capabilities using ontological representations. Espe-
cially on low-end robots this benefits cooperation, as the robot does not need to
perceive these attributes from its raw sensor inputs such as camera streams.

7.3 Planning for Agents and Robots

Single robot planning may be approached from multiple perspectives. Two often
used ones are heuristic shortest path search, such as the famous A* algorithm [10]
and its dynamic counterparts, and solutions used for logical optimization prob-
lems, e.g. (weighted) maximum satisfiability solvers. The shortest path search
provides (estimates) for moving from one node to another in a graph and aims
to find the path of nodes with the shortest length, and logical optimization aims
to find a (maximal or minimal) set of clauses that satisfy certain conditions.
Dynamic shortest path algorithms fit well in environments where the robot may
not fully understand its situation, e.g., the robot does not have a complete map
or the map is bound to change, and logical optimization excels in cases where it
is crucial to ensure the correctness of the solution beforehand.

However, our goal is to provide a planner that uses both logical verifications
of the workflows through the fulfillment of each tasks’ start and end conditions
and a heuristic estimate of its execution resources through peer models and
communication. Our approach differs from typical multi-robot task planning
(see, e.g., [19]) in that one robot initiates the planning of the workflow phase
(task decomposition), and it communicates, based on its peer models, with other
robots to find suitable members to execute the tasks (task allocation).

7.4 Changing Environment and Three-world Develoment

In Real World, there are innumerable factors that can potentially affect the
robots’ ability to perform, such as the lighting conditions and cables on the
floor. Of course, for our project’s purposes, this would not seem a significant
issue, as we can perform our tests also in carefully designed, controlled envi-
ronments. However, this does not remove the fundamental issue of unexpected
factors. How would this uncertainty be dealt with within a hypothetical prac-
tical environment? One possible approach would be introducing some degree of
self-healing (see, e.g. Kounev et al. [11]) properties in the design, both in terms
of the robots’ performance and the cooperation context. Currently, extensive
work on this aspect is beyond the scope of this project, however.

In contrast to the unpredictable Real World, the simulated 3D environments
are inherently about control and thus easier to work with. Nevertheless, there can
still be considerable effort to set up a simulation the desired way, as seen with
the difficulties in deploying multiple robots simultaneously in Gazebo. It also
became apparent that multi-robot simulation can involve substantial hardware
requirements. Still, we have found the Gazebo 3D simulation fulfills its purpose
satisfactorily as a platform where cooperative actions can be developed for Real
World (ROS2) robots in a more controlled manner.
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However, it could also be noted that while the usage of 3D simulation does
simplify some aspects, designing Actions for the Task Runtime remains an en-
deavor that relies on detailed knowledge in leveraging a particular robot’s inner
workings. Contrary to how the primary interests of this project are in the dy-
namic and creative aspects of robot cooperation, there remains a nontrivial effort
necessary in creating the actual units of implementation, Actions. For this pur-
pose, ROS2 has been of great help with its high quality open source solutions
for features such as robot navigation. Yet conversely, it became apparent that it
can be even impractically laborious to implement new Actions where the ROS2
support falls short.

8 Conclusions

In this paper, we presented a new software architecture and development ap-
proach for diverse multi-robot cooperation. The core ideas of our approach in-
clude (a) improving the robot’s understanding of its situational context for coop-
eration by peer modeling, (b) an ontology that enables the robots to understand
and share information about the world and (c) three conceptually and opera-
tionally different worlds where the development of cooperative behaviour takes
place: 2D Block World, 3D Virtual World, and Real World. The peer models
enable the robots to take the capabilities and goals of their peers into account in
their reasoning, the ontology can be used as a shared basis for communication
and forming cooperation plans, and the different worlds serve different devel-
opment purposes, e.g. testing different components and services, in the overall
cooperation development process.

To test the feasibility of our architecture’s core, we conducted stress testing
in 2D Block World and verified that the ontology-based reasoning and planning
is able to find and execute suitable cooperation plans in all the random scenarios
encountered. This gives our architecture implementation a stable starting point
to improve its other aspects, e.g. situational context awareness through peer
modeling, which in turn should result in better suited cooperation plans.
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