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Abstract
Over the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic 
with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain 
to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has 
resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have 
had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While 
intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine’s effects in treating 
depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine’s 
complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism 
of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different 
uses of ketamine, with an emphasis on examining ketamine’s rapid antidepressant effects spanning molecular, cellular, and 
network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine 
used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine’s action.
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Abbreviations
AMPAR  α-Amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid receptor
BDNF  Brain-derived neurotrophic factor
BPRS  Brief Psychiatric Rating Scale
CADSS  Clinician-Administered Dissociative States 

Scale
DAT  Dopamine reuptake transporter
DHNK  Dehydronorketamine
DMN  Default-mode network
Drd1  Dopamine receptor D1
eEF2  Eukaryotic elongation factor 2

ECT  Electroconvulsive therapy
EEG  Electroencephalogram
ENCORE-D  Encoding, consolidation, and renormaliza-

tion in depression
ERK  Extracellular signal-regulated kinase
FST  Forced swimming test
GABA  Gamma-aminobutyric acid
GSK3β  Glycogen synthase kinase 3 beta
HCN  Hyperpolarization-activated cyclic 

nucleotide
HDRS  Hamilton Depression Rating Scale
HMS  Hood’s Mysticism Scale
HNK  Hydroxynorketamine
IEG  Immediate early gene
IL-PFC  Infralimbic prefrontal cortex
im  Intramuscular
ip  Intraperitoneal
iv  Intravenous
LHb  Lateral habenula
LTP  Long-term potentiation
MADRS  Montgomery-Åsberg Rating Scale
MAPK  Mitogen-activated protein kinase
MDD  Major depressive disorder
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MKP1  Mitogen-activated protein kinase phos-
phatase 1

mTOR  Mammalian target of rapamycin
NET  Noradrenaline reuptake transporter
NK  Norketamine
NMDAR  N-Methyl-d-aspartate receptor
PCC  Posterior cingulate cortex
PCP  Phencyclidine
PET  Positron emission tomography
PSD95  Postsynaptic density protein 95
p70-S6K  P70-S6 kinase
rTMS  Repetitive transcranial magnetic 

stimulation
sc  Subcutaneous
SERT  Serotonin reuptake transporter
sgACC   Subgenual anterior cingulate cortex
SWA  Slow-wave activity
SWS  Slow-wave sleep
TrkB  Tropomyosin receptor kinase B
VGSC  Voltage-gated sodium channel

Introduction

Over the past 50 years, the use of ketamine for anesthe-
sia has become widespread in both human and veterinary 
medicine. Its safety and short duration and unique mode of 
action have made ketamine an important drug in emergency 
medicine and pain management around the world. The study 
and use of ketamine for the treatment of several new indica-
tions, ranging from pain syndromes to drug addiction and 
psychiatric disorders, is constantly growing. In experimental 
research, ketamine has unarguably contributed to a better 
understanding of the glutamatergic system and the develop-
ment of animal models of schizophrenia [1].

Perhaps the greatest contribution to the legacy of keta-
mine has been the discovery of its rapid-acting antidepres-
sant effects [2], which has effectively revitalized interest in 
the development of new antidepressant drugs with a novel 
mode of action. Indeed, the past decade has seen a rapid 
increase in the number of research papers associated with 
ketamine’s antidepressant effects [3]. It can be argued that 
even beyond its important role in anesthesia, ketamine is a 
top contender for being the drug with the largest impact for 
research and treatment of psychiatric disorders in the past 
several decades.

The ability of ketamine to provide a rapid relief of 
depressive symptoms, often within hours, has brought it to 
the forefront of treating severe treatment-resistant depres-
sion [4]. Despite its relatively fast pharmacokinetics, the 
antidepressant effects of ketamine are sustained for up to 
1–2 weeks [5]. This rapid onset of ketamine’s action com-
bined with a sustained response lasting far beyond its acute 

pharmacological effects has puzzled researchers and medi-
cal doctors. In contrast, typical antidepressant drugs, such 
as selective serotonin reuptake inhibitors, often require 
weeks or even months of continuous medication to elicit 
their beneficial effects [6]. While the last 2 decades of basic 
and clinical research have significantly contributed to the 
understanding of ketamine’s complex profile of effects and 
its potential for the treatment of psychiatric disorders, the 
precise neurobiological basis of its antidepressant action 
remains unclear.

With a vast amount of research aimed at untangling the 
mysteries of its action, an ever-increasing number of molec-
ular targets and mechanisms have been associated with the 
antidepressant effects of ketamine [7]. A myriad of novel 
drug candidates, essentially mimicking certain aspects of 
ketamine’s action, have risen out of preclinical research. 
However, to date, no new drug has conformed to the high 
expectations, with multiple candidates failing in recent 
clinical trials [8–10]. The shortcomings of animal models 
of depression are often discussed as a plausible explana-
tion for these failures of translational research, but many 
other aspects also require further examination. In the rush to 
understand the molecular complexities of ketamine’s action, 
both basic and clinical researches have overlooked details 
related to the administration and dosing time of ketamine 
[11, 12]. For example, studies directly comparing different 
dosing parameters and pharmacokinetics between human 
and rodent studies are still lacking.

With many new ketamine studies published each year, 
staying up to date becomes a challenge. Thus, the purpose 
of this review is both to introduce the reader to the vari-
ous uses of ketamine from anesthesia to pain management 
and psychiatric use and to provide a thorough overview of 
the current understanding of ketamine’s effects in treating 
depression. Herein, the multifaceted profile of ketamine’s 
effects is reviewed, and studies addressing molecular, cel-
lular, and network mechanisms are introduced. A special 
emphasis is placed on discussing issues associated with the 
dosing of ketamine in both basic and clinical research as 
well as on discussing some of the latest hypotheses related 
to ketamine’s antidepressant mechanisms.

An overview of ketamine and its many uses

What is ketamine?

Ketamine is an anesthetic drug first synthesized in 1962 at 
the Parke-Davis pharmaceutical company following the dis-
covery of phencyclidine (PCP), another anesthetic belong-
ing to the arylcyclohexylamine chemical class [13]. At that 
time, several different drugs sharing a similar structure 
were screened in search of an optimal candidate for further 
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development—preferably one that lacked the unwanted psy-
chotropic effects of PCP. On the basis of the results of these 
experiments, ketamine became the lead compound for future 
development. Edward Domino led the first human experi-
ments, which found ketamine to be a safe and short-acting 
anesthetic. However, ketamine was not entirely devoid of 
psychotropic effects and was considered a dissociative anes-
thetic [14].

Ketamine refers to the mixture of two water-soluble, 
optical stereoisomers: S( +) and R(−)-ketamine. It is phar-
maceutically produced in both racemic and enantiopure 
preparations. The main mode of ketamine’s pharmacologi-
cal action is the blockade of N-methyl-d-aspartate receptors 
(NMDARs), ion channels mainly involved in excitatory glu-
tamatergic neurotransmission. Both enantiomers share the 
ability to block NMDARs but differ slightly in their potency. 
S-ketamine is often preferred in clinical anesthesia owing 
to its stronger ability to block NMDARs, whereas R-ket-
amine has a lower affinity for NMDARs [15]. Ketamine, 
PCP, and dizocilpine (also known as MK-801)—the clas-
sical NMDAR antagonists—are non-competitive inhibitors 
of NMDARs [16, 17]. By entering the ion channel and then 
being captured inside the closing pore, they elicit a trap-
ping block (Fig. 1). In contrast, drugs such as memantine act 
as partial trapping blockers, which only hinder the channel 
closure but do not entirely prevent it from functioning [18].

Although ketamine exerts its most pronounced effects 
through the blockade of NMDARs, it has been proposed 
to also affect many other targets, including dopaminergic, 
serotonergic, adrenergic, opioidergic, cholinergic, and 
sigma receptors [1, 15, 19]. Ketamine also acts on serotonin, 
noradrenaline, and dopamine reuptake transporters (SERT, 
NET, and DAT respectively) and various ion channels, 
such as voltage-gated sodium channels (VGSCs) [20] and 
hyperpolarization-activated cyclic nucleotide (HCN)-gated 
channels [21].

After administration, ketamine is rapidly distributed in 
the body and has low plasma protein binding and a short 
elimination half-life of approximately 2–4 h in humans 
[22–25]. The rate of metabolism and elimination of keta-
mine in mice is much faster than that in humans, with a 
serum half-life of approximately 13 min [26]. The initial 
metabolite is (R,S)-norketamine (NK), but (2R,6R;2S,6S)-
hydroxynorketamine (HNK) and (R,S)-dehydronorketamine 
(DHNK) are the major circulating metabolites in human 
plasma [27, 28]. The peak plasma concentration for NK 
is reached in approximately 1.3 h, and that for DHNK and 
HNK is reached in 3.8 h [28]. Plasma levels of HNK and 
DHNK can be measured 24 h after the infusion and may 
remain detectable for up to 48 h. The initial metabolic reac-
tion—N-demethylation to NK—is mainly catalyzed by liver 
cytochrome P450 enzymes CYP2B6 and CYP3A4. These 
steps are followed by hydroxylation to generate HNK and 

DHNK [29]. In addition, several minor metabolic pathways 
also exist. For a more thorough take on ketamine’s basic 
pharmacology, pharmacokinetics, and metabolism, see the 
review by Zanos et al. [15].

Dissociation and anesthesia

What makes ketamine unique from most other sedatives and 
anesthetics is the state of dissociative anesthesia produced 

Fig. 1  Ketamine acts as a non-competitive blocker N-methyl-d-as-
partate receptor (NMDAR) ion channels. Racemic ketamine contains 
two optical stereoisomers: S( +) and R(−)-ketamine. Both isomers 
act as non-competitive blockers, sharing the ability to enter NMDAR 
ion channels and to exhibit a trapping block. S-ketamine is often 
preferred in clinical anesthesia because it has a higher affinity for 
NMDARs than R-ketamine
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by the blockade of NMDARs at high doses. Ketamine 
does not primarily act through gamma-aminobutyric acid 
(GABA) receptors like most other anesthetics that possess 
sedative or hypnotic properties [19]. The dissociative effects 
of ketamine can be described by the experience of being 
conscious while being drawn away from sensory percep-
tions. Higher doses produce a dose-dependent deepening of 
the dissociative state towards dream-like states of open- and 
closed-eye visuals and strong perturbations of thought and 
bodily sensation [30], which may be explained by the unique 
shifting of intracortical dynamics under the effects of keta-
mine [31, 32]. A high dose of ketamine results in a state of 
deep dissociation accompanied by amnesia and loss of con-
sciousness because NMDARs are important components of 
excitatory neurotransmission, long-term potentiation (LTP), 
and memory formation. Notably, the psychoactive qualities 
of ketamine are also sought by recreational users, as evi-
denced by the surge in using ketamine as a drug of abuse 
from the 1970s to this day [23].

The electrophysiological effects of ketamine can be meas-
ured using electroencephalography (EEG), where ketamine 
demonstrates different dynamics than many other anesthet-
ics [33]. In nonhuman primates, upon ketamine anesthesia, 
high beta-gamma electroencephalogram (EEG) oscillations 
emerge at first and deepen towards slow-delta oscillations 
[31]. In human volunteers, the loss of behavioral responsive-
ness has been associated with the onset of EEG slow-wave 
activity (SWA) [33]. Moreover, high-density EEG studies in 
human volunteers demonstrate that during ketamine anesthe-
sia, theta, gamma, and delta power increased in frontal and 
posterior channel clusters, whereas posterior alpha power 
decreased both under anesthetic and subanesthetic doses 
[34].

Owing to its non-GABAergic mechanism of action, 
ketamine is a safe and effective choice for emergency anes-
thesia in a prehospital setting. Ketamine offers a relatively 

wide dosing range, produces a sympathomimetic effect 
that supports cardiovascular stability along with mainte-
nance of respiratory function, and provides a good level of 
analgesia comparable to that produced by morphine [35]. 
During dissociative anesthesia, the basic reflexes are well 
preserved [36]. For the induction of anesthesia, doses of 
racemic ketamine are typically in the range of 1–2 mg/
kg administered as an intravenous bolus (Fig. 2), which 
produce a state of dissociative anesthesia within 1–2 min 
of injection [35]. After induction, a continuous dose of 
1–6 mg/kg per h is required to maintain the effect. In con-
trast, doses of S-ketamine required for the induction of 
general anesthesia are 0.5–1 mg/kg, followed by a con-
tinuous infusion of 0.5–3 mg/kg per h [19]. In veterinary 
medicine and animal research, ketamine is very commonly 
used in combination with xylazine, a sedative α2 adrener-
gic receptor agonist [37].

Ketamine can be efficiently administered via multiple 
routes, including oral, sublingual, intranasal, intramus-
cular, intraosseous, rectal, and subcutaneous routes, but 
the highest bioavailability and fastest onset are achieved 
by intravenous administration [35, 38]. At present, keta-
mine is used in emergency units for anesthesia and pro-
cedural sedation in various patient populations ranging 
from children to adults. In this context, the wide dosing 
range, the ability to administer intramuscular doses, and 
the analgesic properties are particularly useful and make it 
possible to administer ketamine in field conditions where 
no anesthesiologist or monitoring equipment is available 
[39]. However, ketamine is not widely preferred as a sole 
agent for general anesthesia performed in hospitals owing 
to its psychotomimetic effects and the potential to produce 
emergence phenomena, manifesting as profound confusion 
or hyperexcitation upon waking up from the dissociative 
state in up to 20% of adults [35].

Fig. 2  Some of the current and 
emerging clinical uses of keta-
mine along with examples of 
commonly used doses. Clinical 
applications not yet commonly 
adopted are followed by an 
asterix
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Pain management

Ketamine’s analgesic effects, which emerge even at suban-
esthetic doses, and its good safety profile have prompted 
its use in the treatment of both acute and chronic pain 
and in procedural sedation of pediatric patients [40]. The 
analgesic effects of racemic ketamine become apparent at 
intravenous doses of 0.25–0.5 mg/kg, which corresponds 
to 0.125–0.25 mg/kg of S-ketamine [19]. In a prehospital 
setting, ketamine may produce analgesia comparable to that 
produced by morphine or fentanyl without as much respira-
tory depression [41, 42]. For short-term pain relief, low 
intravenous doses of ketamine provide analgesic effective-
ness and safety equivalent to those of intravenous morphine 
for short-term pain relief [43]. However, ketamine is often 
used together with other pain medications. For example, 
a low dose of ketamine combined with a reduced dose of 
hydromorphone promotes rapid and effective pain relief in 
emergency department patients suffering from acute pain 
[44].

A large Cochrane review found that perioperative intra-
venous ketamine reduces the need for postoperative analge-
sics and decreases perceived pain intensity [45]. Ketamine 
alone, however, may not prevent chronic postoperative pain 
[46–49]. In addition to its use in treating acute pain, keta-
mine is also used in chronic pain syndromes, where it exerts 
beneficial effects through the inhibition of NMDARs [50]. 
Ketamine has been suggested to be effective in treating many 
different types of chronic pain, such as neuropathic pain 
[51] and phantom limb pain [52, 53], cancer pain [54], and 
migraine with prolonged aura [55]. Ketamine may be par-
ticularly useful in instances where opioids no longer provide 
sufficient pain relief because it has been suggested to reduce 
opioid tolerance and pain hypersensitivity [56, 57]. Moreo-
ver, the antidepressant effects of ketamine may be beneficial 
when treating patients with chronic pain because depression 
and pain syndromes often co-exist [58].

Psychiatric use

In the 1970s, the psychoactive side effects of ketamine 
were desirable in psychiatric investigations where the drug 
was used as an abreactive agent. A variety of doses more 
than capable of producing psychotropic experiences were 
employed in early trials [59, 60] with relatively positive, 
although anecdotal, outcomes. Moreover, early observations 
of NMDAR antagonist-induced transient psychotomimetic 
effects paved the way for the advancement of the idea that 
glutamatergic neurotransmission was a key component in 
schizophrenia, and led to the development of ketamine-, 
PCP-, and MK-801-induced animal models of schizophrenia 
[61]. More recently, the use of ketamine in treating various 
psychiatric disorders has regained momentum. Apart from 

ketamine’s use as a rapid-acting antidepressant drug—which 
will be more thoroughly discussed in the subsequent sec-
tion—its use as a novel pharmacotherapeutic intervention for 
the treatment of post-traumatic stress disorder (PTSD) [62] 
and substance use disorders [63] has also been explored.

Post-traumatic stress disorder is a condition triggered by 
the experience of going through a traumatic event [64, 65]. 
Symptoms may include mental re-experience of the trau-
matic event and uncontrollable thoughts related to it as well 
as severe anxiety, arousal, and reactivity. Post-traumatic 
stress disorder may manifest as negative cognition and 
mood, and it is often comorbid with depression. Moreover, 
current pharmacotherapies are often insufficiently effective 
[66]. Because ketamine is commonly used in emergency 
anesthesia and analgesia, studies have examined the effects 
of ketamine administered acutely after physical trauma on 
the subsequent emergence of PTSD symptoms. On the one 
hand, two observational studies suggest that ketamine wors-
ens the risk of developing PTSD symptoms [67, 68]; how-
ever, questions have been raised about their methodology 
[62]. On the other hand, a retrospective review of medical 
records of burn victims suggested reduced prevalence of 
PTSD among those receiving intraoperative ketamine [69]. 
However, a subsequent study found no differences [70]. 
Animal studies of PTSD-like behavior have also shown no 
changes [71] or slightly detrimental [72] outcomes.

Clinical studies of ketamine in patients suffering from 
chronic PTSD have been positive. The first randomized 
controlled study in this context demonstrated that a single 
subanesthetic dose of iv ketamine (0.5 mg/kg) was supe-
rior to midazolam (0.045 mg/kg) in rapidly reducing PTSD 
(and depressive) symptoms within 24 h [73]; however, PTSD 
symptoms often started to recur 48 h post-infusion, and no 
significant difference was detected at 1 week post-infusion. 
Another open-label trial studied repeated iv ketamine infu-
sions (0.5 mg/kg; six infusions over 12 days) and found rapid 
improvement in both PTSD and depressive symptoms, with 
the median time to relapse in PTSD remitters being 41 days 
[74]. Most recently, the first randomized controlled trial of 
repeated ketamine in PTSD found ketamine to elicit better 
improvement than the active control group receiving mida-
zolam [75]. Overall, ketamine seems to hold promise in 
treating PTSD, but more studies are warranted. For a more 
thorough take on ketamine in the treatment of PTSD, see the 
review by Feder et al. [62].

Ketamine has been suggested to have beneficial effects 
in treating drug addiction. Rodent studies have shown that 
ketamine reduces ethanol consumption in alcohol-preferring 
rats [76, 77] and reduces morphine-induced place prefer-
ence [78]. Several clinical studies provide support for the 
potential of ketamine in the treatment of alcoholism as well 
as opioid and cocaine addiction and cannabis use disorder 
[79–85]. In this context, mystical-type experiences mediated 
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by the psychoactive profile of the drug have been suggested 
to be important [86]. At present, evidence for the use of keta-
mine in this context is only beginning to emerge, and further 
research is needed to properly evaluate its effectiveness and 
safety in treating substance use disorders [63].

Ketamine as an antidepressant drug

Rapid onset of action

The seminal study by Berman et al. [2] was the first to dem-
onstrate the rapid-acting antidepressant effects of an intrave-
nous subanesthetic infusion of ketamine in patients suffering 
from major depressive disorder (MDD). Since then, a num-
ber of clinical trials have replicated these results [87–89] and 
extended the findings to treatment-resistant patients, which 
has rapidly increased the use of ketamine for the treatment 
of depression. Other administration routes and doses have 
also been successfully used, with several trials indicating the 
antidepressant action of intranasally [90, 91] and orally [92, 
93] administered ketamine. However, despite 2 decades of 
active research, there is still no clear consensus on the dose 
dependency of ketamine’s effects or the superiority of dif-
ferent administration routes in treating depression.

The factors that separate ketamine from traditional anti-
depressant drugs are its rapid onset of action and effective-
ness in treatment-resistant patients. Ketamine’s antidepres-
sant effects develop within hours of drug administration and 
may last from a couple of days to approximately 2 weeks 
following a single dose [5]. The antidepressant effects often 
peak at 24 h after the infusion [94]. Similar antidepressant 
effects have also been observed in patients suffering from 
bipolar depression [95, 96]. These effects of ketamine on 
depression are remarkably more rapid than those of tradi-
tional antidepressants, which may take several weeks or 
months to develop. Ketamine’s rapid onset of action is par-
ticularly useful in treating depressed patients who exhibit 
suicidality because ketamine also rapidly ameliorates sui-
cidal ideation [97, 98]. Because the antidepressant effects 
of ketamine are relatively transient, repeated doses are often 
required to maintain them. However, repeated doses may 
not produce markedly enhanced antidepressant effects than 
a single ketamine treatment [99].

Intravenous, intramuscular, and subcutaneous 
administration

For the treatment of depression, ketamine is typically 
infused intravenously over 40 min at a subanesthetic dose 
of 0.5 mg/kg; the intramuscular and subcutaneous routes 
are generally less used [38]. The low subanesthetic doses 
combined with a slow iv infusion rate produce only minor 

psychoactive effects and mitigate the occurrence of dis-
sociative/psychedelic experiences—generally considered 
unwanted—that become more common towards the higher 
end of the subanesthetic spectrum. Bolus doses are rarely 
used owing to poor tolerability. However, an open lon-
gitudinal study suggested that a rapid bolus injection of 
0.5 mg/kg ketamine also has rapid antidepressant effects 
with relatively good tolerability [100], whereas a study 
of S-ketamine (0.25 mg/kg; iv over 10 min) reported that 
11.1% of the patients described their experience as very 
disturbing.

Several small studies have examined the dose-depend-
ent effects of ketamine in depressed patients while also 
comparing different administration routes. For example, a 
placebo-controlled cohort-based pilot trial investigated the 
effects of ketamine on depressive patients using dose titra-
tion from 0.1 to 0.5 mg/kg with intravenous, intramuscular, 
and subcutaneous routes of delivery [101]. The experiment 
included 15 patients who received ascending doses. Differ-
ent administration routes produced comparable antidepres-
sant effects, whereas the dose required for an antidepressant 
response varied between individuals, suggesting that dose 
titration should be done on an individual basis. In this study, 
higher doses resulted in greater antidepressant effects and, as 
expected, more pronounced psychotomimetic effects. Nota-
bly, as discussed by the authors, subcutaneous delivery is a 
promising method for ketamine administration because the 
plasma levels of ketamine are similar to those observed in 
intravenous administration and because it is convenient to 
administer.

Another small dose–response trial compared four differ-
ent ketamine doses (0.1, 0.2, 0.3, and 0.4 mg/kg) admin-
istered to four patients as an iv infusion over 2–5 min in a 
placebo-controlled double-blind crossover design [102]. The 
results of this study neatly demonstrate the dose dependency 
of the psychoactive effects and suggest that antidepressant 
efficacy of ketamine increases with increasing subanesthetic 
dose. The dose dependency of ketamine’s antidepressant 
effects has been further addressed in a systematic review 
and meta-analysis of nine ketamine trials for the treatment 
of depression [103]. The authors categorized ketamine doses 
used in the different studies into low (0.5 mg/kg iv) or very 
low doses (50 mg intranasal spray, 0.1–0.4 mg/kg iv, and 
0.1–0.5 mg/kg iv or sc). Six of these trials used a low dose of 
ketamine, whereas three used a very low dose. They reported 
that a low dose of ketamine appeared superior to a very 
low dose, but a substantial heterogeneity was observed in 
the clinical response; one-fifth of patients showed remission 
at 1 week, whereas most others experienced short-lasting 
benefits. More recently, a double-blind active placebo-con-
trolled trial compared several subanesthetic ketamine doses, 
but only the higher doses (0.5 mg/kg and 1.0 mg/kg) were 
found to have clinically meaningful effects [104].
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S-ketamine has been studied considerably less in terms of 
the iv dosage range, but 0.25 mg/kg of S-ketamine has been 
shown to be non-inferior to the standard dose (0.5 mg/kg) 
of racemic ketamine [105]. One trial used 0.2 and 0.4 mg/
kg of S-ketamine administered intravenously over 40 min 
and demonstrated robust efficacy [106]. The authors note 
that the lower dose may allow for higher tolerability while 
maintaining efficacy.

Taken together, these studies suggest that there is a range 
of therapeutically active subanesthetic doses of ketamine. 
For racemic ketamine, doses towards the higher end of the 
range may be more effective; however, existing studies do 
not provide conclusive evidence. Large-scale studies com-
paring the various routes of administration are also lacking, 
as are studies comparing the effectiveness of different infu-
sion rates. Moreover, it also remains unclear whether there 
are minimum and maximum effective doses for achieving 
antidepressant responses and whether patients who do not 
respond to lower doses would benefit from higher doses—
and vice versa.

Intranasal administration

The majority of studies concerning the antidepressant 
effects of ketamine have focused on investigating intrave-
nous administration, in which doses are determined by the 
subject’s weight. In contrast, trials for intranasal ketamine 
typically use predetermined bolus doses. These intrana-
sal doses of ketamine (and S-ketamine) commonly range 
between 20 and 100 mg [91, 107–110]. While the bioavaila-
bility of intranasal ketamine is estimated to be approximately 
25–50% [19, 111], this route of administration is faster to use 
and more convenient than intravenous infusion. With S-keta-
mine being approved by the U.S. Food and Drug Administra-
tion (FDA) for alleviating symptoms of treatment-resistant 
depression in 2019, the use of intranasal S-ketamine is likely 
to increase in the coming years. However, concerns have 
been expressed over the cost-effectiveness of this intranasal 
formulation [112].

Intranasal administration of 50 mg of ketamine has shown 
relatively similar treatment outcomes to those of standard 
ketamine infusion [91]. Similarly, intranasal S-ketamine 
doses ranging 28–84 mg have been compared by the phar-
maceutical company Janssen in a phase II trial [90]. Remark-
ably, this study also found that higher doses produced more 
sustained remission. Similar to racemic ketamine admin-
istered via infusion, intranasally administered S-ketamine 
(84 mg) also reduces suicidality in patients at imminent risk 
of suicide [113]. The safety and efficacy of intranasal S-ket-
amine have been studied in several phase III trials; Popova 
et al. [114] demonstrated a statistically significant effect of 
intranasal S-ketamine combined with a new oral antidepres-
sant in treatment-resistant depression in comparison with 

antidepressant/placebo, whereas two other studies failed to 
find statistically significant differences [108, 109]. In addi-
tion, one study addressed intranasal S-ketamine combined 
with an oral antidepressant for relapse prevention [107]. This 
study found that the continuation of S-ketamine treatment 
with an oral antidepressant was superior in delaying relapse 
than the antidepressant plus placebo.

While intranasal S-ketamine clearly has some benefi-
cial effects in the treatment of depression, the magnitude 
of these effects, among other things, remains a matter of 
debate [115–117]. Indeed, a re-analysis of the four phase III 
studies submitted to the FDA suggests that intranasal S-keta-
mine may only improve depressive symptoms by reducing 4 
points on the Montgomery-Åsberg Depression Rating Scale 
(MADRS), a scale that ranges from 0 to 60 [118]. At present, 
it remains unclear how well S-ketamine, or intranasal admin-
istration in general, performs when compared with racemic 
ketamine administered as an intravenous infusion. A recent 
non-inferiority study comparing intravenous S-ketamine 
versus racemic ketamine suggests that their antidepressant 
effects may not be markedly different [105]. Indeed, off-label 
administration of racemic ketamine remains an attractive 
option for clinicians for intravenous use because it is readily 
available, low cost, and easily adaptable to nasal administra-
tion via sinus nebulizers.

Psychoactive effects and the therapeutic context

Most clinical research on ketamine’s antidepressant action 
has focused on using low subanesthetic doses that minimize 
the emergence of psychotomimetic side effects. Moreover, 
the majority of studies have addressed the effectiveness of 
ketamine from a purely pharmacotherapeutic rather than 
psychotherapeutic perspective. With the resurgence of psy-
chedelic research and therapy, the issue of the importance 
of subjective experience and the set and setting has been 
brought up also in association with ketamine treatment 
[119]. The underlying idea is that psychedelic therapy can 
be considered to be a drug-assisted form of psychotherapy 
rather than pure pharmacotherapy [120]. In this context, psy-
chological factors such as the preceding preparation as well 
as subsequent integration of the experience are thought to 
be important for influencing therapeutic outcomes by some 
researchers. While some preliminary studies of psychedelics 
support the notion that psychoactive effects and therapeutic 
context are associated with therapeutic effects [120–122], 
further research is required to thoroughly address their 
significance.

Regarding ketamine treatment, these questions have not 
been studied to any significant extent and remain largely 
unanswered. However, some clinical studies have suggested 
that the psychoactive or dissociative effects of ketamine 
during administration could be associated with producing 
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therapeutic responses. For example, Sos et al. [123] performed 
a double-blind, crossover, placebo-controlled trial and found 
a substantial relationship between the antidepressant effects 
and psychotomimetic effects of ketamine. In this study, the 
more intense psychotomimetic effects, assessed by the Brief 
Psychiatric Rating Scale (BPRS), were positively correlated 
with improved mood ratings on the MADRS 7 days after 
ketamine infusion. A study by Luckenbaugh et al. [124] also 
investigated whether psychoactive effects were important for 
the emergence of antidepressant responses by analyzing 108 
treatment-resistant depressive patients from three studies that 
used a single subanesthetic ketamine dose (0.5 mg/kg iv over 
40 min). Two of these were double blind, and the third had 
an open-label design. The authors found a significant correla-
tion between increased Clinician-Administered Dissociative 
States Scale (CADSS) score at 40 min and improved Hamilton 
Depression Rating Scale (HDRS) scores at 230 min and on day 
7. Moreover, a more recent study by Niciu et al. [125] reported 
that dissociative symptoms (also measured by CADSS) were 
associated with the antidepressant responses after 0.5 mg/kg 
(iv) ketamine. In contrast, another study found no correlation 
between CADSS and HDRS responses at any time following 
the ketamine infusion [126].

Notably, some recent studies have focused on examining the 
subjective properties of ketamine. A small study—not related 
to depression—investigating eight cocaine-dependent individ-
uals found that ketamine produced significantly greater acute 
mystical-type effects (measured by Hood’s Mysticism Scale) 
than the active control lorazepam [127]. The HMS score, but 
not the CADSS score, was found to mediate the effect of keta-
mine on the motivation to quit cocaine on the following day. In 
another interesting approach, Stocker et al. [128] screened 62 
YouTube videos of depressed patients narrating their subjec-
tive experience of receiving ketamine and found that 27.4% 
of the individuals reported an experience of floating that they 
associated with the amelioration of their depressive symptoms. 
The connection between treatment response and the floating 
sensation was subsequently investigated in a double-blind, 
crossover, placebo-controlled clinical trial, which concluded 
that the two were not associated [129]. However, identifying 
clinically usable markers of treatment response and new means 
to improve the psychological effectiveness of psychoactive 
pharmacotherapies remains an important avenue for further 
research.

Towards a neurobiological understanding 
of ketamine’s antidepressant effects

Discovery of the role of NMDARs

Among the first studies to promote the idea of the antide-
pressant-like action of NMDAR antagonists was the work 

by Trullas and Skolnick [130] in mice. They demonstrated 
that the NMDAR antagonists AP-7 and MK-801 reduced 
the behavioral immobility of animals subjected to the forced 
swimming test (FST), a classical test to assess antidepres-
sant-like properties. In a subsequent study, Skolnick et al. 
[131] demonstrated that chronic treatments with traditional 
antidepressants alter radioligand binding to NMDARs in 
the cerebral cortex. These results suggested NMDARs as a 
common target for the action of traditional antidepressants 
and prompted further investigations into the modulation of 
glutamatergic neurotransmission in the treatment of depres-
sion [132]. Remarkably, the first clinical note of the putative 
antidepressant effects of d-cycloserine, an NMDAR modula-
tor, was published in 1959 [133], but it took several decades 
before NMDAR antagonists were considered as potential 
antidepressant therapeutics.

Since the discovery of ketamine’s antidepressant potential 
in the late 1990s [2], basic research has focused on identify-
ing the neuronal, molecular, and metabolic targets impor-
tant for ketamine’s effects. A large number of studies have 
examined the effects of ketamine in various animal models 
of depression, with most studies providing strong support 
for the antidepressant-like action of ketamine in rodents 
[134–139]. An important research line in the study of keta-
mine’s effects emerged from the study of chronic stress-
induced synaptic alterations and dendritic atrophy [140], 
also associated with dysfunctional neurotrophic support 
[141], processes that were found to be positively affected 
by ketamine [142]. Most importantly, the relative similarity 
of ketamine’s effects in animal models of depression and 
in clinical studies provides some basis for the translational 
significance of these findings.

Cortical excitation and glutamate

The main mechanisms believed to underlie ketamine’s anti-
depressant effects converge on the increase in cortical exci-
tation and glutamate release and burst, which are thought 
to trigger subsequent molecular and physiological changes 
leading to the remediation of depressive symptoms [138]. 
Because NMDARs are important components of excitatory 
glutamatergic neurotransmission, one could expect that by 
blocking these receptors, ketamine treatment would cause 
cortical inhibition rather than excitation. These paradoxical 
effects may be explained by the disinhibition hypothesis, 
which proposes that subanesthetic doses of ketamine pref-
erentially inhibit NMDARs present in GABAergic interneu-
rons (Fig. 3a). This decreases the inhibition of excitatory 
pyramidal neurons and increases glutamate release and 
burst [132, 143–145], which continue to activate neuro-
trophic signaling mechanisms leading to the amelioration of 
chronic stress-induced synaptic deficits [146]. Two recently 
published animal studies strongly support the disinhibition 
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hypothesis [147, 148] as the mechanism for subanesthetic 
ketamine-induced neuronal activation.

Other proposed molecular hypotheses of ketamine’s 
action include the direct antagonism of extrasynaptic 
NMDARs on pyramidal neurons, which disrupts the tonic 
activation of NMDARs by ambient glutamate and results in 
homeostatic synaptic plasticity and a compensatory increase 
in excitatory drive in the prefrontal cortex (Fig. 3d) [145]. 
These changes are thought to be mediated by the blockade 
of extrasynaptic NMDARs containing GluN2B subunits 
[149]. Furthermore, ketamine has been suggested to inhibit 
NMDAR-mediated spontaneous neurotransmission (Fig. 3e) 
[150] and to trigger an increase in the translation of pro-
teins such as the brain-derived neurotrophic factor (BDNF), 
a crucial mediator of synaptic plasticity, by reducing the 
phosphorylation of eukaryotic elongation factor 2 (eEF2), 
thus leading to antidepressant-like effects [150–152]. In con-
trast, several recent studies suggest that ketamine’s effects 
are mediated through its HNK metabolites independently 
of NMDAR inhibition (Fig. 3b) [134]. Altogether, these 
hypotheses are not mutually exclusive and may together 
explain the molecular changes observed after ketamine 
administration.

Regardless of the chosen hypothetical framework, stud-
ies have demonstrated that ketamine possesses excitatory 
effects that are highly dose dependent. In rats, anesthetic 
doses of 200 mg/kg (ip) decreased acute glutamate activity 
measured by microdialysis, whereas lower doses (10, 20, 
and 30 mg/kg) increased glutamate outflow in the prefrontal 
cortex [144]. In another study, subanesthetic ketamine pro-
voked transient changes in glutamate cycling in the medial 
prefrontal cortex of rats [153]. The glutamate surge follow-
ing ketamine administration may produce its rapid-acting 
antidepressant effects through the modulation of α-amino-
3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors 
(AMPARs) because the blockade of these receptors abol-
ishes ketamine’s antidepressant-like behavioral responses 
in mice and rats [154–156]. Moreover, positive allosteric 
AMPAR modulators produce antidepressant-like behavioral 
effects in rodents (Knapp et al., 2002; Li et al., 2001) and 
upregulate BDNF synthesis [159, 160].

Intracellular signaling pathways

Based on rodent studies, ketamine-induced activation of 
AMPARs is thought to result in the modulation of a sub-
set of molecular pathways involved in synaptic plasticity, 
which lead to antidepressant-like effects. For example, ket-
amine induces the rapid translation and release of BDNF 
[150, 161], resulting in the activation and phosphoryla-
tion of the BDNF receptor, tropomyosin receptor kinase 
B (TrkB) [150, 162]. BDNF-TrkB signaling constitutes a 
major component of synaptic plasticity regulation [163, 

164], which is crucial for counteracting the negative syn-
aptic effects of stress, restoring altered network activ-
ity and producing antidepressant-like effects [142, 146, 
165–168]. Indeed, the antidepressant-like effects of suban-
esthetic ketamine and its HNK metabolites are diminished 
in  BDNFmet66met knock-in mice that exhibit compromised 
activity-dependent BDNF release [169, 170]. The rapid 
onset of ketamine’s antidepressant effects is hypothesized 
to be associated with the rapid activity-dependent release 
of BDNF. However, somewhat unexpectedly, our recent 
studies demonstrate that the activation of TrkB and asso-
ciated signaling pathways is more prominent with high, 
sedative-anesthetic doses of ketamine than with subanes-
thetic doses of ketamine [171] and sedative doses of non-
excitatory drugs such as medetomidine [172].

Other downstream signaling pathways and targets con-
sidered to be important in ketamine’s effects are glycogen 
synthase kinase 3 beta (GSK3β) [135, 150], extracellu-
lar signal-regulated kinase 1/2 [ERK1/2, also known as 
p44/42-mitogen-activated protein kinase (p44/42-MAPK)] 
[173], and mammalian target of rapamycin (mTOR) [136] 
along with its effector p70-S6 kinase (p70-S6K) [174]. In 
mice, the inhibition of GSK3β by ketamine through the 
phosphorylation of the serine 9 residue has been suggested 
to be necessary for the rapid antidepressant-like effects 
observed [135], which may lead to the augmentation of 
AMPAR-mediated signaling by diminished internaliza-
tion of GluA1 subunits (Fig. 3c) [175]. Studies investigat-
ing ketamine together with co-administered lithium—an 
unspecific GSK3 inhibitor—found additive antidepressant-
like effects in rodents [176]; however, lithium did not 
facilitate or prolong the effects of ketamine in depressed 
patients [177]. Moreover, it is important to remember that 
GSK3β is a promiscuous kinase involved in various cel-
lular processes [178] and the serine 9 phosphorylation is 
also regulated by several anesthetic drugs other than keta-
mine [171, 172, 179, 180].

Increased glutamate activity under the effects of suban-
esthetic ketamine leads to upregulation of p44/42-MAPK 
activation, whereas higher anesthetic doses reduce MAPK 
phosphorylation [136, 171]. Increased MAPK signaling is 
correlated with the antidepressant effects of ketamine in 
rodents [173], which could be associated with its role in 
regulating AMPAR trafficking and synaptic potentiation 
[181]. Indeed, studies have demonstrated that the acute 
blockade of MAPK signaling results in a depressive pheno-
type in rodents, and that BDNF ± mice are more sensitive to 
develop a depressive phenotype when administered a low 
dose of MAPK kinase inhibitor [182]. Moreover, increased 
expression of mitogen-activated protein kinase phosphatase 
1 (MKP1), a negative regulator of MAPK, results in the 
emergence of depressive behavior in rodents, whereas mice 
lacking MKP1 are resilient to stress [183].
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Fig. 3  An overview of some of the proposed molecular mechanisms 
underlying ketamine’s rapid antidepressant action. a The disinhibi-
tion hypothesis. Ketamine preferentially blocks N-methyl-d-aspartate 
receptors (NMDARs) on gamma-aminobutyric acid (GABA)-ergic 
inhibitory interneurons, leading to a decrease in the inhibitory tone 
exerted on excitatory pyramidal neurons. Increased glutamate release 
acts on postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptors (AMPARs) and induces cellular effects such 
as the release of brain-derived neurotrophic factor (BDNF) and acti-
vation of its receptor tropomyosin receptor kinase B (TrkB) and the 
regulation of downstream pathways important for synaptic plasticity 
and protein synthesis. Downstream effects include activation of mito-
gen-activated protein kinase (MAPK) and mammalian target of rapa-

mycin (mTOR) and regulation of AMPAR dynamics and scaffolding 
proteins such as postsynaptic density protein 95 (PSD95). b Hydrox-
ynorketamine metabolites may modulate postsynaptic AMPAR sign-
aling, leading to various downstream effects. c Inhibition of glycogen 
synthase kinase 3 β (GSK3β) by ketamine reduces phosphorylation 
of PSD95, which augments AMPAR signaling by reducing the inter-
nalization of AMPAR subunits, among other effects. d Ketamine may 
also block extrasynaptic NMDARs, normally tonically activated by 
glutamate, and induce mTOR activity. e The blockade of spontaneous 
NMDAR-mediated neurotransmission can have effects that lead to the 
disinhibition of BDNF translation via eukaryotic elongation factor 2 
(eEF2)-dependent mechanisms
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Ultimately, activity-induced signaling cascades such as 
MAPK mediate their effects to the nucleus, where the activ-
ity of transcription factors is regulated [184]. Subsequent 
changes in the expression of immediate early genes (IEGs), 
particularly those encoding proteins involved in synaptic 
transmission and function, could be involved in the emer-
gence of antidepressant effects. Here, ketamine-induced 
expression of IEGs such as Homer1 [185–189] could be 
particularly important. This notion is supported by a recent 
study, where the administration of cell-permeable TAT-
Homer1a essentially recapitulated the behavioral responses 
induced by ketamine in rodents [190].

Finally, the molecular determinants of ketamine’s action 
are thought to converge on the mTOR complex, which is 
involved in cellular protein synthesis and metabolism. As 
demonstrated by Li et al. (2010), subanesthetic doses of 
ketamine increase levels of synaptic protein and formation 
of dendritic spines in the prefrontal cortex of rats. Ketamine 
acutely induces the phosphorylation of mTOR, p70-S6K, 
eukaryotic translation initiation factor 4E-binding protein 
1, p44/42-MAPK, and Akt, which are believed to influence 
the subsequently upregulated expression of synaptic pro-
teins such as Arc, synapsin I, postsynaptic density protein 
95 (PSD95), and GluR1 [136]. Notably, the effects of keta-
mine on synaptogenesis and behavior are reversed with the 
blockade of mTOR activity by the intracerebroventricular 
administration of rapamycin [136]. Following these pivotal 
findings, several other animal studies have investigated the 
role of mTOR in the therapeutic effects of ketamine, with 
promising results [137, 191, 192]. In particular, mTOR has 
been suggested to be involved in the sustained, rather than 
acute, antidepressant effects following ketamine adminis-
tration [137]. However, understanding the function of the 
mTOR complex in ketamine’s antidepressant effects is com-
plicated by a recent clinical trial, which found that mTOR 
inhibitor rapamycin increases the duration of ketamine’s 
antidepressant effects rather than diminishing them [193].

Cellular‑level findings in animal models

Several studies have identified the actions of ketamine on 
the infralimbic prefrontal cortex (IL-PFC). The inactiva-
tion of this region using muscimol blocked the antidepres-
sant effects of systemic ketamine, whereas microinfusion 
of ketamine into the IL-PFC essentially recapitulated them 
[194]. Optogenetic targeting and stimulation of the IL-PFC 
was also found to produce both rapid and sustained anti-
depressant effects and to increase the number and func-
tion of dendritic spines. Recent rodent studies have further 
elaborated the cellular targets underlying these effects by 
examining the role of pyramidal neurons expressing dopa-
mine receptor D1 and D2 (Drd1 and Drd2, respectively) 
[195]. Optogenetic activation of Drd1 pyramidal cells in the 

medial PFC resulted in rapid and sustained antidepressant 
effects, whereas stimulation of Drd2 neurons was found to 
be ineffective.

In rodents, the ketamine-induced amelioration of depres-
sive-like behavior is particularly associated with acute 
changes in prefrontal circuit function, which is followed by 
increased dendritic spine formation [137]. The increase in 
or restoration of dendritic spines is not required for exert-
ing ketamine’s immediate effects but are instead critical for 
sustaining the antidepressant effect over time. Moreover, 
interference with ketamine-induced prefrontal spine forma-
tion blocked effects on motivated escape behavior but had no 
influence on sucrose preference, indicating that spinogenesis 
in other brain areas may support other behaviors [137].

Ketamine also decreases the activation and burst firing 
of neurons in the lateral habenula (LHb), effects that were 
associated with acute antidepressant effects in congenitally 
helpless rats [196]. The local blockade of either NMDARs 
or low-voltage-sensitive T-type calcium channels in the LHb 
was found to be sufficient for the induction of rapid anti-
depressant effects. Essentially, these findings suggest that 
ketamine’s mood elevating effects result from the blockade 
of NMDAR-dependent LHb bursts, which disinhibits down-
stream monoaminergic reward centers [196].

Electrophysiological and metabolic measures

In terms of more general mechanisms, subanesthetic 
doses of ketamine increase metabolic activity in the pre-
frontal cortex in healthy volunteers, as measured by 
 [18F]-fluorodeoxyglucose positron emission tomography 
(PET) [197]. These findings correspond well to other find-
ings suggesting increased glutamate neurotransmission 
in the prefrontal cortex of healthy and depressed subjects 
receiving ketamine [198, 199]. The disinhibition hypoth-
esis, which entails a decrease in the activity of GABAer-
gic interneurons and disinhibition of excitatory pyramidal 
neurons, also provides a putative mechanism for the com-
monly observed increase in high-frequency gamma oscil-
lations on cortical EEG following ketamine administration 
[172, 200–202]. Notably, Nugent et al. [202] found that 
large increases in gamma power were associated with better 
antidepressant outcomes in subjects with MDD with lower 
baseline gamma, whereas this relationship was inverse in 
subjects with MDD with higher baseline gamma. Ketamine 
also enhanced gamma responses to somatosensory stimuli at 
230 min and day 1 in ketamine responders when compared 
with non-responders, suggesting that increases in synaptic 
strength coincide with antidepressant effects [203, 204]. A 
7 T 1H-magnetic resonance spectroscopy study showed no 
difference in glutamate levels of the pregenual cingulate 
cortex 24 h post ketamine administration, suggesting that 
glutamate levels are not altered in the long term [205]. These 
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studies, coupled with abundant molecular evidence, support 
the notion that subanesthetic ketamine acutely increases cor-
tical excitation and glutamate activity, which drive subse-
quent synaptic alterations.

In rats, lower doses (60 mg/kg) of ketamine promote 
behavioral arousal along with theta-range EEG activity and 
induction of Fos immunoreactivity in the arousal system 
[206]. In contrast, rats treated with higher doses (150 mg/kg) 
of ketamine are briefly sedated, but signs of hyperarousal 
emerge once the acute effects of ketamine subside. Nota-
bly, the arousal-promoting effects of subanesthetic doses of 
ketamine are followed by the increase of delta frequency 
power during subsequent sleep [207]. Similar intriguing 
findings were also observed in human studies, in which 
increased sleep SWA the night following subanesthetic ket-
amine administration was associated with the therapeutic 
efficacy of the treatment [208]. The facilitation of SWA is 
also evident after sleep deprivation, electroconvulsive ther-
apy, repetitive transcranial magnetic stimulation (rTMS), 
and nitrous oxide administration in humans—all treatments 
with rapid antidepressant potential [172, 209–211]. These 
observations suggest that the facilitation of SWA is a homeo-
static response to the preceding cortical activation elicited 
by ketamine and other treatments potentially sharing rapid 
antidepressant effects [12, 209].

Clinical neuroimaging

The neuroimaging literature related to ketamine’s antidepres-
sant effects has identified convergent brain regions of inter-
est in the prefrontal cortex, including specific cortical areas 
such as the subgenual anterior cingulate cortex (sgACC) 
and the posterior cingulate cortex (PCC) as well as the hip-
pocampus (for a thorough review, see Ionescu et al. [212]). 
The sgACC, in particular, has been a focus of numerous 
studies because earlier studies have found depressed patients 
to exhibit overactivity of the sgACC, which is suggested to 
normalize upon recovery after treatment [213–216]. A recent 
study in nonhuman primates demonstrated that ketamine is 
indeed able to reverse the depressive-like impairments and 
metabolic changes produced by the overactivation of the 
sgACC [217]. The hyperactivity of the sgACC has also been 
observed during task performance in depressed patients, 
where ketamine may act to normalize sgACC hyperactiv-
ity to positive incentives [218]. However, many findings 
related to the activity of the sgACC remain inconclusive. 
For example, PET studies have reported no change [219] or 
increased metabolism in the sgACC in response to ketamine 
in depressed patients [220]. One study compared ketamine 
and lanicemine, a promising putative rapid-acting antide-
pressant at the time, and found them to increase sgACC acti-
vation in depressed patients [221]. Since then, lanicemine 
development has been abandoned after a failure to meet trial 

endpoints [10]. Nevertheless, another trial found ketamine, 
but not lanicemine, to increase prefrontal global connectivity 
[222], hinting at a possible difference between effective and 
non-effective NMDAR antagonists. This effect of ketamine 
on connectivity has also been observed in other trials [223, 
224] and hypothesized to represent the effects of ketamine 
on the induction of glutamate neurotransmission.

One focus of functional imaging studies is related to 
the activity and connectivity of the default-mode network 
(DMN), which correlates with the severity of depression 
and rumination [225–227]. A recent double-blind, placebo-
controlled, crossover study demonstrated that the connec-
tivity between insula and the DMN was normalized when 
measured 2 days after ketamine treatment [228]. This change 
was reversed after 10 days, which corresponds well with the 
duration of ketamine’s antidepressant effects. Moreover, a 
study examining ketamine’s effects on fMRI activity during 
an emotional processing task showed that participants with 
MDD exhibited greater brain activity than healthy controls 
after placebo infusion, whereas ketamine reduced brain 
activity to a level similar to that in placebo-treated healthy 
controls [229]. Reduction in activity was observed in large 
regions throughout the brain, including areas related to the 
DMN. Several studies by the same group support the notion 
of ketamine normalizing patterns of brain activity in MDD 
patients [202, 228, 230].

Emerging hypotheses of ketamine’s action

Understanding the precise mechanistic basis of ketamine’s 
antidepressant effects has been the target of hundreds of 
studies in the past decades. These studies have verified 
the ability of subanesthetic ketamine doses to boost glu-
tamatergic firing and to increase AMPAR function, which 
continue to be among key areas of interest [7, 138]. For 
many researchers, the prevailing view is that ketamine has 
almost a unique ability to regulate a chain of molecular 
events connected with the facilitation of synaptic plasticity, 
ultimately steering functional activity towards the ameliora-
tion of depressive symptoms. This view has prompted the 
targeting of individual effectors within complex signaling 
pathways with the deterministic aim of isolating the root of 
antidepressant action. These efforts have not been entirely 
in vain because several studies have demonstrated the anti-
depressant-like behavioral actions of BDNF [231] as well 
as the direct activation of TrkB [232] and mTOR [233] in 
rodents. However, these perspectives may fail to appreciate 
the full complexity of the molecular signaling events asso-
ciated with neuronal plasticity, where single effectors are 
part of a much larger web of activity-dependent molecular 
interactions. Most importantly, clinical evidence strongly 
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connecting any of the proposed molecular targets to the 
amelioration of depressive symptoms is currently lacking.

The remarkably rapid yet relatively sustained antide-
pressant effects of ketamine—often emerging within hours 
and lasting for up to a week—are a challenging problem 
to understand. Notably, the recent discovery of the antide-
pressant-like effects of ketamine’s HNK metabolites have 
led to a hypothesis in which the gradual buildup of these 
metabolites, (2R,6R)-hydroxynorketamine in particular, has 
been suggested to explain ketamine’s antidepressant potency 
[134] (Fig. 4a). The HNK metabolites differ from the phar-
macological effects of ketamine and challenge the notion 
of ketamine’s effects being dependent on NMDAR inhibi-
tion. Antidepressant-relevant concentrations of (2R,6R)-
hydroxynorketamine do not block NMDAR function but still 
result in antidepressant-like responses in rodents [234]. This 
hypothesis, however, remains controversial in light of more 
recent preclinical [171, 235, 236] and clinical data [237, 
238]. More specifically, recent studies evaluating the plasma 
levels of these metabolites after ketamine treatment reported 
contradictory observations—higher levels of 2R,6R-HNK 
were associated with less clinical improvement [237, 238]. 
These metabolites remain the topic of ongoing research and 
debate, while patient studies are still underway.

Several new hypotheses emerged in the recent years 
explore the neurobiological phenomena underlying anti-
depressant effects instead of solely crediting ketamine, its 
metabolites, or any other specific molecular entity for the 
amelioration of depressive symptoms. It can be argued 
that because ketamine is rapidly metabolized, its lasting 

antidepressant effects must be the result of neurobiological 
adaptations triggered during the brief period of its acute 
pharmacological action. On the basis of the noteworthy 
findings of rapid antidepressant-like effects produced by 
NMDAR enhancers in rodents and those showing the anti-
depressant-like effects of the negative allosteric GABA-A 
receptor modulator MRK-015, Workman et al. [239] pro-
posed that rapid-acting antidepressants engage mechanisms 
of homeostatic plasticity to treat depression (Fig. 4b). In par-
ticular, they highlight the ability of these treatments to either 
strongly increase or decrease neuronal activity, which causes 
neurons and neuronal circuits to homeostatically self-cor-
rect. In this context, ketamine and other putative treatments 
may act as disruptors of the homeostatic balance, triggering 
the activation of self-correcting homeostatic mechanisms 
that are otherwise insufficiently activated in MDD. Impor-
tantly, their work also discusses the idea that drug–target 
interactions should be considered as a means of inducing 
homeostatic responses within neurons, rather than solely 
focusing on the target (i.e., receptor–ligand) activity.

A substantially large number of molecular and cellu-
lar changes associated with ketamine are also associated 
with the physiological processes of sleep and wake [12]. 
While a general lack of consideration of sleep exists in 
both basic and clinical research involving ketamine’s anti-
depressant effects [11], some recent studies and hypoth-
eses have begun to investigate the effects of ketamine 
from the perspective of the neurobiology of sleep and 
circadian rhythms. For example, a model by Duncan et al. 
[240] aims to uncover the effects of ketamine through 

Fig. 4  Emerging hypotheses of ketamine’s action. a The metabolism 
of ketamine to its hydroxynorketamine metabolites, and particularly 
(2R,6R)-hydroxynorketamine, is responsible for mediating the rapid 
antidepressant effects. b Ketamine disrupts neuronal homeostasis, 
which triggers self-correcting mechanisms. c Ketamine regulates both 
circadian and homeostatic processes of sleep to elicit antidepressant 

effects. d The hypothesis of encoding, consolidation and renormaliza-
tion in depression (ENCORE-D) proposes that ketamine alters neural 
encoding of information, the consolidation of synaptic change, and 
the renormalization of synaptic strength during sleep to elicit acute 
and sustained antidepressant effects
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the homeostatic and circadian components of sleep. In 
this context, treatment with ketamine leads not only to 
increased neuronal plasticity, slow-wave sleep (SWS), and 
enhanced sleep quality but also to modulation of circadian 
timing and output (Fig. 4c). These effects culminate in 
the reduction in the circadian mood component. Indeed, 
clinical studies have demonstrated an association between 
ketamine’s antidepressant effects and circadian rhythms 
[240, 241] as well as a correlation between ketamine-
induced changes in the levels of BDNF, amount of SWS, 
quality of sleep, and subsequent mood changes in MDD 
[208, 242]. Moreover, it remains plausible that the anti-
depressant effects of ketamine are modulated by home-
ostatic sleep pressure and/or circadian time at the time 
of administration since cortical excitability in humans 
[243–245], and the anesthetic effects of ketamine in ani-
mal studies, are regulated by these factors [246, 247]. In 
any case, a significant translational gap exists due to the 
fact that most rodent species are nocturnal and sleep pre-
dominantly during the day when most drug treatments are 
given, whereas patients receive ketamine almost exclu-
sively during the waking hours [11]. Understanding how 
sleep and circadian rhythms may influence treatment out-
comes remains a very important theme for future studies 
in both basic and clinical research.

Building upon the themes of synaptic homeostasis 
and sleep, the hypothesis of encoding, consolidation, and 
renormalization in depression (ENCORE-D) proposes 
that ketamine’s rapid and sustained effects are produced 
and consolidated throughout wake and sleep in several 
phases [209] (Fig. 4d). It suggests that ketamine’s ability 
to increase cortical excitation triggers intrinsic mecha-
nisms of synaptic plasticity both acutely and upon drug 
withdrawal, leading to the facilitated encoding of infor-
mation and increase in synaptic strength. These changes 
are further consolidated during subsequent steps involv-
ing changes in transcription and protein synthesis. The 
final stage of ketamine-induced change is suggested to be 
reached on the night following treatment, during a period 
of deep sleep dominated by SWA. Here, ENCORE-D 
suggests that synapses in previously activated networks 
undergo renormalization of synaptic strength, a concept 
hypothesized within the framework of the the synaptic 
homeostasis hypothesis (SHY) [248, 249], ultimately 
giving rise to sustained alterations in network func-
tion. While remaining highly speculative and in need of 
experimental proof, the ENCORE-D framework provides 
several novel conceptual ideas about how the effects of 
rapid-acting antidepressants may be associated with the 
physiological mechanisms of wake and sleep in producing 
antidepressant outcomes [209].

Conclusions

The past 50 years have transformed ketamine from a pow-
erful battlefield anesthetic to the wonder drug of modern 
psychiatry, with new indications still being uncovered. 
Intensive research efforts aimed at understanding the pre-
cise mechanisms underlying ketamine’s effects have resulted 
in important advances in our understanding of depression 
and stimulated new concepts of molecular and cellular neu-
ropharmacology. However, as with anything new, the glim-
mer of ketamine may have distracted both basic and clinical 
researchers from addressing fundamental issues. Certain 
questions, such as whether increasing doses in patients that 
respond poorly to lower doses is beneficial and whether 
anesthetic doses lack antidepressant effects, remain unan-
swered. There are also no comprehensive comparisons of 
the effectiveness of different administration routes or the rate 
and time administration. Moreover, the circadian time, dose, 
and method of administration in animal studies often differ 
significantly from those in clinical practice and lack proper 
translational validation. Future studies aimed at addressing 
these and other basic questions will hopefully advance our 
understanding of the pharmacological and neurobiologi-
cal mechanisms of ketamine in the treatment of psychiatric 
disorders.
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