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Preface

Gödel’s Princeton Lectures on Intuitionism of 1941 are preserved in two note-
books written in longhand English. They contain a detailed presentation of his
famous functional interpretation of arithmetic and have been studied in con-
nection with the editing of Gödel’s Collected Works, in particular for the light
they shed on a lecture on intuitionistic logic he gave at Yale. The writing is on
the whole quite clear, with occasional additions and remarks in German short-
hand, and a gap toward the end, at pages 89–106. It turned out in 2017 that the
missing pages were inside an envelope in another place, ten reels apart in the mi-
cro�lm edition of Gödel’s manuscripts. That discovery was the starting point
of the present edition. Gödel’s Arbeitshefte or mathematical workbooks, espe-
cially number 9, have close connections to the Princeton Lectures. This source
and others, including the Resultate Grundlagen notebook series, are described
in the introduction written by the �rst editor.

The reader may ask why Gödel didn’t publish his lectures at the time, or
at least their main results. The answer should be that he failed to achieve his
central aim, clearly indicated by the mentioned sources, namely to extend the
functional interpretation to the trans�nite to obtain a proof of the consistency
of analysis.

Bill Howard generously shared his knowledge of Gödel’s functional inter-
pretation with us, and told about his encounters with Gödel, as reported in the
introduction. We are very glad to dedicate this little volume to him.
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Introduction:
Gödel’s functional interpretation in context

In the spring of 1941, Kurt Gödel held a lecture course on intuitionistic logic at
the Institute for Advanced Study in Princeton. Two spiral notebooks labelled
simply “Vorl.” and two sets of loose notes contain handwritten notes for the
lecture course. The lecture notes divide into two themes. The �rst part is an
introduction to intuitionistic logic. The second part is a detailed presentation
of Gödel’s functional interpretation of Heyting Arithmetic and its applications.

The general aim of the lectures is to examine the constructivity of intu-
itionistic logic. In the �rst part of the lectures, Gödel focuses heavily on the
interconnection between intuitionistic and classical logic. The standard proof
explanation of the intuitionistic logic was, he believed, not adequate to show
the constructive character of intuitionistic logic. By reinterpreting intuitionis-
tic logic in a more precise way, Gödel wants to prove that Heyting Arithmetic is
properly constructive in the sense that it has the existence property. This reinter-
pretation is Gödel’s functional system Σ, and the Princeton course is the most
detailed presentation of it.

The theme of the lectures was closely connected to Gödel’s previous talks
of 1933 and 1938, as well as a lecture given at Yale University in April 1941. In
the lecture “The present situation in the foundations of mathematics” given in
Cambridge, Massachusetts, in 1933, Gödel argues that intuitionistic logic is not
an ideal basis for a constructive foundation of mathematics because of the na-
ture of its logical operations and the proof explanation. In his “Zilsel lecture” of
1938, he mentions an alternative interpretation of the logical operations in terms
of a system of primitive recursive functionals of higher types. Finally, the system
is developed in detail in the Princeton course and the Yale lecture. These results
– apart from the Princeton lectures – were published posthumously in Gödel’s
Collected Works in 1995; the �rst published article on the functional interpre-
tation appeared 17 years after the Princeton course, in the journal Dialectica in
1958.

In what follows, I will give an overview of the lecture course, highlighting
the features which are missing from the other works of the 1930s and early 1940s.
Apart from higher level of detail, the new aspects include an alternative version
of Gödel’s negative translation between Peano and Heyting Arithmetic (Gödel
1933b), the “truth table theorem” that proves that classical and intuitionistic
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propositional logics coincide under the assumption of decidability of atomic
formulas, and a presentation of applications of the functional system Σ only
mentioned in the Yale lecture. However, even where Gödel considers themes al-
ready mentioned in the other works, we often gain new insight into his views on
particular issues. In this sense, the Princeton lectures complement the shorter
lectures and give a richer picture of Gödel’s early views on intuitionism.

Content of the lectures

If Gödel’s lecture course had a speci�c title, it is not known to us: the IAS Bul-
letin of October 1941 tells only that “Dr. Gödel lectured on some results con-
cerning intuitionistic logic,” and that in the academic year 1941-1942, “he will
continue his researches on this subject and its connection with the continuum
problem.” The course consisted of at least nine lectures, although the notes
are not divided into sections. However, Gödel seems to have started each lec-
ture with a review of the previous lecture’s contents; there are, in total, nine of
this kind of “last time...” summaries. At the Institute for Advanced Study, the
Spring Semester lasted from 1st February to 1st May, and Gödel probably gave his
course around this time. For the most part, the notes are clearly written and easy
to understand, although toward the end more advanced themes are introduced.
In a letter of 4th May 1941 to his brother, Gödel wrote that there were only three
students left at the end of his course.1 The wartime circumstances were proba-
bly one cause for the lack of attendance – and perhaps Gödel’s rigorous yet terse
presentation had scared away some of the listeners.

The lectures divide into two main parts. The �rst part, p. 1–47 of the lecture
notes, introduces intuitionistic propositional and predicate logic and studies the
interconnections between intuitionistic and classical logic. The second part, p.
48–117, concerns the functional interpretation of Heyting arithmetic. More-
over, Gödel’s mathematical notebooks, the Arbeitshefte, contain early sketches
of proofs featured in the lectures. The notebooks 7–10 (030025–030028)2 prob-
ably date from early 1941; Heft 7 (030025) is dated 1.1.1941 and inHeft 9 (030027)
we �nd the date “Feb 1941.”3 The earliest drafts of the functional system Σ in
Hefte 7 and 9 are all titled “Gentzen” or “Gentzen Bew[[eis]].” This probably
refers to Gentzen’s �rst consistency proof of 1935 (Gentzen 1935/ 1974), which

1 The letter is quoted in (Van Atten 2015, 201).
2 The items in Gödel’s Papers are referred to by their document code.
3 Gödel was not in the habit of writing down dates of his notebook entries; he often only

marked the change of the year.
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he chose not to publish because of Gödel’s and Paul Bernays’ critique, involving
a reduction procedure reminiscent of the “no-counterexample” interpretation
of Gödel’s Σ. The later proofs do not mention Gentzen.

It is beyond the scope of this introduction to consider Gödel’s shorthand
notebooks in depth. Unlike the lectures, the Arbeitshefte do not contain �n-
ished proofs ready for publication, there are many un�nished sketches, trial and
error, and long computations.4 However, inArbeitsheft 9, p. 2–3, we �nd a num-
bered list written in shorthand and titled “Vorl. 1941 Sommer,” which is clearly
a plan for the Princeton lectures. The plan contains twelve points. Item number
2′, a later addition on p. 2, summarizes Gödel’s general agenda:

On the basis of the intuitionistic axioms formulated by Heyting,
criticism against them [especially the availability of negative uni-
versal statements.] What is a properly intuitionistic system [in par-
ticular, existential statements super�uous]. Thenalso classical num-
ber theoryderivable. Thiswould perhaps be a reasonagainst [[Heyting’s
logic]], but not correct, because the Brouwerian concepts are express-
ible in a systemwhere no such unclarities occur. That is the goal of the
lectures. It results also in a consistency proof for number theory. First,
however, the intuitionistic Heyting system and its properties.5

Although Gödel’s goal is philosophically motivated, the lectures are mostly for-
mal in nature. Nevertheless, each proof or formal explanation seems carefully
planned to support the overarching goal of demonstrating the problems of in-
tuitionistic logic and then giving an alternative interpretation in order to prove
that intuitionistic logic (or, at least, arithmetic) is properly constructive. The
lack of philosophical remarks is not surprising, as Gödel’s early style was in gen-

4 The other mathematical notebook series, Resultate Grundlagen, contains the �nished
proofs, but only two of them (the “constructive negation translation” discussed below and an
inductive proof of computability of Σ-functionals; see (Hämeen-Anttila 2020, 98–102)) are di-
rectly related to the Princeton lectures.

5 Aufgrund dieser intuit[[uitionistischen]] Axiome formuliert [von Heyting] Kritik dage-
gen [insbesondere Vorhandensein der Negationen von Allaussagen]. Was ist ein wirklich in-
tuit[[ionistisches]] [[System]]? [Insbesondere Existenzaussagen über�üssig]. Daher auch klassische
Zahlentheorie ableitbar. Das [[wäre]] vielleicht ein Grund dagegen, aber nicht richtig, denn die
Brouwer’schen Begri�e [[sind]] ausdrückbar in einem System, in welchem keine solchen Unklar-
heiten vorkommen. Das ist der Zweck der Vorlesungen. Ergibt auch Widerspruchsfreiheitsbeweis
für Zahlentheorie. Zunächst aber intuit[[ionistisches]] Heyt[[ing’sches]] System und seine Eigen-
schaften.
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eral very concise and rather formal.6 It is only in the 1958 article in Dialectica
where we �nd Gödel’s – now more mature – philosophical views on construc-
tivity fully laid out.

Gödel’s full plan (Arbeitsheft 9, p. 2–3) includes the following themes:

1. De�nition of the logical connectives.

2. Basic intuitionistic logic, non-constructive existential statements and their
origin, namely the axiomsA ∨ ∼A and∼∼A ⊃ A.

3. The exclusion of these principles in intuitionistic logic and the de�nition
of negation in terms of absurdity. The axioms concerning negation can
thus be left out.

4. The intuitionistic predicate calculus.

5. Derivability and non-derivability in intuitionistic calculus; in particular,
the addition of either of the two principlesA∨∼A and∼∼A ⊃ A gives
classical logic.

6. “System S”7 has the properties of an intuitionistic system.

7. The interpretation Σ as well as the construction of existential statements.

8. Proof of the soundness of the intuitionistic axioms with respect to system
Σ.

9. Consistency of number theory:

(a) Formalization of classical number theory;

(b) Interpretation of the aforementioned system;

(c) The negative translation for the system S.

10. Proof of consistency of¬(p)(p ∨ ¬p).
6 Kreisel (1987, 144) describes the early works as “concise and cavalier, apparently sco�ng

[. . . ] at the antics of the rhetoric.” The later works, quite the contrary, are more sensitive to
philosophical issues in particular.

7 System Σ seems to refer to the quanti�ed system Σ of the Princeton lectures here. S, on the
other hand, probably refers to the quanti�er-free version denoted by Σ in the Princeton lectures.
At one place Σ is written as a mirror image, resembling number 3.
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11. Computability of all functions in S.

12. Proof that consistency is not provable in any smaller system.

For the most part, the lectures proceed according to Gödel’s plan; however,
items 11 and 12 are not covered in the lectures. Of particular interest is the issue
of computability of higher-type functions, which Gödel still thought he could
prove successfully at this point. I will discuss this below in the section on the
system Σ.

The more detailed overview of the Princeton lectures is divided into four
themes. I will start with Gödel’s presentation of intuitionistic logic and its prop-
erties, especially in relation to classical logic. The second theme is Gödel’s crit-
icism of intuitionism and the sources of this criticism. The third part discusses
Gödel’s presentation of the functional system and the features not covered in
the Yale lecture of the same year. Finally, I will consider the last theme of Gödel’s
lecture, namely the applications of the quanti�ed functional system Σ.

Sources

The lecture notes can be found in two spiral notebooks (040407, 040408) and a
dozen loose pages (040409) �led together in Gödel’s papers. Elsewhere (030077)
we can �nd an envelope with “Beweis d. Gültigkeit d. int. Ax” written on it
which contains the soundness proof for the functional interpretation.8 The ori-
ginal transcripts were made from micro�lm copies of the original notes, which
were later controlled against the originals at the Princeton University Library.

The pages in the envelope have originally been numbered from 1 to 16. The
page numbers have then been erased and replaced by new ones continuing the
page numbering in the second spiral notebook. The envelope also contains a slip
explaining how the loose pages should be ordered.

The lecture notes are mainly written in longhand English, with some short-
hand additions in German. Gödel was used to writing his personal notes in Ga-
belsberger shorthand; e.g., the Arbeitshefte are almost entirely written in this
script. We have transcribed and translated these additions, and where there might
be a possibility of misunderstanding or a longer shorthand passage, added the
German transcription as well.

Because the Gabelsberger system is language-speci�c and Gödel was lectu-
ring in English, he had to write, for the most part, in longhand. However, even

8 As far as I know, these missing pages were �rst discovered by Van Atten (2015).
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his longhand writing retains many characteristics common to shorthand wri-
ting. These include the frequent use of abbreviations and the lack of punctuati-
on or capital letters, and occasionally, a shorthand German word can be found
in the middle of an English sentence. E.g., a passage on p. 66 of Gödel’s notes
reads:

to be more exact if Ti should contain some var di� from x1 . . . xn
we form �rst termsT ′i by repl the überflüssige var by arb. const. and
then these are correct Df. with T ′i inst of Ti For n = 0 we obtain
the following special caseA(u1−−un y1 . . . yr) is dem in Σ if and
only if there are constα1 . . . αn such thatA(α1 . . . αn y1 . . . yr)
is dem in Σ

For someone accustomed to stenographic writing, the slow pace of longhand
writing is surely frustrating, and this is probably one reason for Gödel’s frequent
use of abbreviations. To maintain readability, we have not indicated where an
abbreviation has been completed or a comma or a full stop added. Only in ca-
ses where the interpretation is not completely straightforward have we indicated
the completion of a word. For the most part, however, we felt that Gödel’s (occa-
sionally non-idiomatic) style of writing should be respected, and have avoided
editing the text beyond those small completions and corrections, even where
Gödel’s grammar or choice of words could seem somewhat awkward.

Gödel’s formal notation is not entirely uniform, and in this case, we have
chosen to edit it more heavily. E.g., Gödel uses both brackets and dots to indi-
cate order in formulas, so the formula (A → B) → C might sometimes be
written A → B . → . C . We have chosen to use the former notation which
is easier to read. Gödel uses both · and . for conjunction, and sometimes he lea-
ves the conjunction out altogether, so that A · B becomes AB. Here, too, we
have opted for the symbol ·which occurs most often in the original text. Gödel
employs, as Heyting did in his 1930s works, two di�erent sets of connectives for
intuitionistic and classical logic: {¬,&, v,→,�} and {∼, ·,∨,⊃,≡}, respec-
tively. (The quanti�ers have no special symbols in intuitionistic logic.) These we
have, of course, left untouched.

Gödel denotes arbitrary formulas by upper case A,B,C . . . and occasio-
nally withP,Q; however, he sometimes uses what is known as Sütterlin-Schrift
instead of Latin letters. For formulas, where Gödel alternates between the two
notations, we have chosen to use latin letters. However, Gödel consistently de-
notes sequences of variables by Sütterlin letters �x, �y, �z, . . . and individual va-
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riables by lowercase Latinx, y, z . . .. A printer would have typeset the Sütterlin
letters in Fraktur, and this is the convention we have adopted in this case.

As mentioned, Gödel did not divide the notes into sections. The start of a
new lecture is indicated only by Gödel’s “last time . . .” summaries. These have
been indicated in bold.

The intuitionistic viewpoint

Gödel starts with the question, “what is constructive reasoning in mathema-
tics?” He �rst shows some examples ofnon-constructive reasoning, which is here
de�ned as those ways of inference of classical mathematics which allow for non-
constructive existence proofs, i.e., proofs of existential statements (∃x)ϕ(x)
without a corresponding instance ϕ(a). The task, then, is to formalize mathe-
matics in a way that avoids these undesirable consequences. This means that
we need to avoid the two principles known to lead to such non-constructive
existence statements, namely the Principle of Excluded Middle A ∨ ∼A and
the Double Negation Elimination∼∼A ⊃ A. Of course, there might be other
axioms or rules that have the same e�ect, so we need to be careful in choosing
the right axioms.

The principle by which the intuitionists have chosen their axioms, Gödel
remarks, is that they are taken as primitive and based simply on evidence (p. 7).
Gödel makes it clear that there is room for improvement, and indeed, giving a
formal as opposed to an intuitive interpretation of the logical operations is his
main objective in the second part of the lectures. For now, however, he simply
introduces what is today known as the proof explanation or the BHK (Brouwer-
Heyting-Kolmogorov) interpretation of the intuitionistic operators.

He then presents the rules of intuitionistic propositional logic, which he
attributes to two sources: Gerhard Gentzen’s “Untersuchungen über das logi-
sche Schliessen” (Gentzen 1934-35) and Arend Heyting’s “Die formalen Regeln
der intuitionistischen Logik” and “Die formalen Regeln der intuitionistischen
Mathematik” (Heyting 1930a,b). Although Gödel’s view of deduction was, as
opposed to Gentzen’s, axiomatic in nature, his axioms and rules resemble more
closely Gentzen’s simple system than Heyting’s 1930 formalism, which has ele-
ven axioms but rules only for Modus Ponens, propositional substitution, and
conjunction introduction. The same holds for Gödel’s formulation of intuitio-
nistic predicate logic.

The interrelation between classical and intuitionistic logic is of particular
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interest to Gödel. His own negative translation of 1932 (Gödel 1933b) showed
that Heyting Arithmetic is equiconsistent with Peano Arithmetic, settling the
question of whether intuitionistic methods surpass the �nitistic ones. On p. 24–
27 and 40–45, Gödel presents two further results on the connection between in-
tuitionistic and classical systems. The �rst shows that the conditions for classical
truth tables for propositional logic can be modelled in intuitionistic propositio-
nal logic. The second is a variant of the negative translation for predicate logic,
using, however, “a more constructive notion of negation” than intuitionistic
absurdity.

Between intuitionistic and classical logic

The truth conditions for each classical formula can be expressed in what is called
a truth table. Given any valuation of its constituents, the rules for evaluating a
compound formula can be expressed in a table such as this one forA ⊃ B:

A B A ⊃ B
T T T
T F F
F T T
F F T

Any connective of classical propositional logic can be given a meaning in terms
of its truth table. For intuitionistic logic, however, this is not possible.9 From the
intuitionistic point of view, one can say that classical logic is the logic of �nitary
domains. For a decidable sentence, the Principle of Excluded Middle is valida-
ted, as truth and provability will then coincide. Gödel’s truth table theorem (p.
24–27) proves this for propositional logic.

Assume we are given a truth table for an arbitrary expressionA the atomic
components of which are p1, p2, . . . , pn. Its truth table then has 2n rows to
cover all possible valuations. Let pji denote the proposition formed as follows:
pji = pi if pi is T on the jth row of the table, and otherwise pji = ¬pi.

Denote by primitive conjunction of A a conjunction Ck =
n∧
i=1

pki for so-

me row Rk in the truth table of A. In other words, this is a conjunction that
expresses one valuation in a truth table. What Gödel wishes to show is:

9 Another result of Gödel’s (Gödel 1932) shows that intuitionistic logic cannot be represented
in any �nite-valued truth semantics.
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Theorem. WheneverA is a classical tautology, there is an intuitionistic deriva-
tion ofCj → A for each primitive conjunctionCj , 1 ≤ j ≤ n, obtainable from
the truth table ofA.

The result follows from the fact that for any A and 1 ≤ j ≤ n, Cj → A
or Cj → ¬A, depending on whether the valuation on row j makes A true or
false, is provable in intuitionistic logic. This can easily be proven by induction
on the structure of A. A tautology is never false, and therefore we always have
Cj → A.

Nevertheless, a further principle is needed to proveA. Notice �rst that sin-
ce any row in the truth table of A veri�es A, it does not matter whether or not
a given atomic constituent of A is negated or not in one of its primitive con-
junctions Ck. Therefore intuitionistic logic validates both p1&C ′k → A and

¬p1&C ′k → A, whereC ′k =
n∧
i=2

pki . If we were able to eliminate p1 somehow

to obtainC ′k → A, we could arrive toA by iteration.
However, the principle needed to concludeC ′k → A is the inference

A→ B
¬A→ B
B

which is equivalent to (A∨¬A)→ B. ThatCk → A intuitionistically implies
A is then equivalent to the derivability of

((p1 ∨ ¬p1)&(p2 ∨ ¬p2)& . . .&(pn ∨ ¬pn))→ A

that is to say, the decidability of every atomic proposition. This is indeed as-
sumed by classical logic, but for intuitionistic logic, it holds generally only in
�nite domains. Classical logic appears now as the special case of intuitionistic
logic where the basic predicates and relations are decidable. A prime example is
equality between natural numbers.

The second small theorem that Gödel proves is a form of a negative translati-
on. The possibility of a translation of classical logic into intuitionistic logic relies
on the fact that the fragment of classical logic which contains only {⊃, ·, ( )} is
identical with the corresponding fragment {→,&, ( )} of intuitionistic logic.
Gödel’s 1932 translation, discovered independently by Gentzen, interprets the
connectives∨ and (∃) in terms of the classical equivalences



10

(A ∨B) ≡ ¬(¬A · ¬B) and (∃x)A ≡ ¬(x)¬A

Then if, for a certain theory, the translations of the axioms of the classical theory
hold in the intuitionistic theory, the translation gives a mapping from classical
to intuitionistic logic so that the translation of each classical theorem is vali-
dated in the intuitionistic theory. In particular, this holds for the classical and
intuitionistic theories of arithmetic.

The proof for the equivalence of the existence- and disjunction-free frag-
ments is particularly impressive, says Gödel, for it assumes only positive logic,
the perfectly unobjectionable rules of modus ponens, syllogism, the axioms of
export and import, and the rules for the universal quanti�er. This is the same re-
mark that Gödel makes in the Zilsel lecture, except that there he believes that an
additional axiom p→ q ≡ ¬p∨q for atomic p, q is needed. However, Sieg and
Parsons comment, the use of this axiom in the proof is not necessary, and mi-
nimal logic su�ces (Sieg and Parsons 1995, 73). Gödel may have made the same
discovery, although here he does not explain the base case for atomic sentences.

The translation is more complex for predicate logic than for propositional
logic. As discovered by Kolmogorov, one can obtain the translation for the latter
system simply by pre�xing every classical formula with two negations. This is
not possible for predicate logic. However, a variant of this theorem is provable:
for a “more constructive kind of negation than absurdity,” it holds that if A
is a theorem of an appropriate classical theory, the (ordinary) negation of the
constructive negated statement is provable.

We �rst de�ne the constructive negation translation ofA as follows:

Acon :=

{
A for atomicA
¬Acon otherwise

Acon := ¬A for atomicA

(B&C)con := Bcon ∨ Ccon

(B ∨ C)con := Bcon&Ccon

(B → C)con := (¬B)con&Ccon

((x)B)con := (∃x)Acon
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((∃x)B)con := (x)Acon

(¬B)con :=

{
¬¬B for atomicB
(Bcon)con otherwise

We then have:

Theorem. IfA is derivable in a classical first-order theory, thenAcon is derivable
in its corresponding intuitionistic theory.

The theorem holds, of course, under the same assumptions on the theory in
question as the original negative translation.

The constructive negation translation is di�erent from the standard trans-
lations of Gödel-Gentzen, Kuroda (1951), and Krivine (1990). It is, nevertheless,
equivalent in the sense that it maps classical logic into the negative fragment of
intuitionistic logic. It does have the special property that apart from the �rst
negation which binds the whole formula, negations occur only in front of ato-
mic propositions or negated atoms. This results in a rather complicated rule for
evaluating negated expressions, as the negation must �rst be translated into con-
structive form which will then be transformed again by a second application of
the constructive negation.

Gödel states on p. 41 that thisAcon is “in a sense the most constructive state-
ment equivalent toA.” This is not entirely correct, as by Gödel’s translation po-
sitive atomic propositions translate into double-negated ones, and a more con-
structive interpretation would be to drop the double negation. However, it is
possible to show that for a compound formulaB, (Bcon)con = Bcon2 is equi-
valent toB[pi/¬¬pi] for any non-negated atomic component pi ofB.10 From
this, it follows that for n greater than 2,Bconn reduces toBconn−2 .

The result is a translation which is not optimal in the sense that it need not
contain the least possible amount of negations (see Ferreira and Oliva 2010),
but one can say that it has a low negation complexity (in the sense that except
for the �rst negation binding the whole formula, negations bind only atomic
propositions).

For Gödel, the interconnections between intuitionistic and classical calcu-
lus are not only of formal interest, but they reveal a foundational relationship
between the classical and intuitionistic theories which are intertranslatable in

10 For the case of implicationC → D, one needs to treat it as¬C ∨D.
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this sense. He �nishes the constructive negation translation with the following
remark on p. 45.1:

The results obtained have been pretty much surprising in so far
as they show that in a sense the whole classical logic is contained
in the intuitionistic logic. Of course it is contained only formally
i.e. the same formulas can be proved but the meaning of these for-
mulas is completely di�erent (e.g. ¬(x)ϕ(x) [[and]] ∼(x)ϕ(x)).
But this di�erence of meaning makes the result still more surpri-
sing since this means that the non-constructive classical logic has
a constructive interpretation. And this makes one doubtful whe-
ther intuitionistic logic really is constructive or if not perhaps so-
me non-constructive elements are hidden in the axioms, which is
quite possible regarding the great complicatedness in the primitive
terms.

It was this worry that drove Gödel into rede�ning intuitionistic connectives in a
way that he believed was more secure. Before examining his solution, however,
I will brie�y discuss his general criticism of intuitionistic logic and the proof
interpretation.

Vagueness and absurdity: Gödel’s critique of intuitionism

The passage on p. 45.1 suggests that there are two grounds on which, according
to Gödel, intuitionistic logic is suspicious. The �rst he already mentioned at the
beginning of the lectures: the intuitionistic connectives, understood through
the concept of a proof, lack clarity and well-de�nedness. The second is the in-
timate connection of classical and intuitionistic predicate logic. These two ob-
jections are already raised in the Cambridge lecture of 1933, and repeated in the
lectures of 1938 and 1941.

The proof explanation is the source of vagueness in intuitionistic logic. Com-
pared to the relatively sharp critique of 1933, 1938, and the Yale lecture of 1941,
Gödel stays quite neutral, saying that the notion of a proof is “perhaps not so
absolutely clear.” The main idea is that a proof in the intuitionistic sense is, as
Gödel noted already in 1933 (Gödel 1933a, 53), understood as absolute, but such
a notion of proof is no longer enumerable.

Gödel’s main source for the proof explanation was Heyting. In the Prince-
ton lectures, Gödel refers to Heyting’s 1930 works (Heyting 1930a,b). Here the
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proof explanation is not yet mentioned. We also know that Gödel heard Hey-
ting’s Königsberg lecture in 1930 (Heyting 1931). Finally, he had seen an early
version of Heyting’s 1934 book (Heyting 1934), which grew out of a joint pro-
ject of his and Heyting’s. Although the 1930 papers do not discuss the proof
explanation,11 the meaning of the connectives in terms of provability is mentio-
ned both in the Königsberg lecture and the book. However, what exactly counts
as an intuitionistic proof is never de�ned exhaustively by Heyting or Brouwer;
not because of sloppiness, but because from the Brouwerian viewpoint, there
is no exhaustive de�nition. Intuitionistic mathematics is, in principle, incom-
pletable, and intuitionistic logic as a description of intuitionistic mathematics
shares the same property.

Gödel’s second line of thought is in fact already stated in the Menger Collo-
quium talk, delivered in June of 1932. In the last paragraph of the paper, Gödel
remarks that

Theorem 1 [[of intertranslatability of HA and PA]] [...] shows that
the system of intuitionistic arithmetic and number theory is only
apparently narrower than the classical one, and in truth contains
it, albeit with a somewhat deviant interpretation. The reason for
this is to be found in the fact that the intuitionistic prohibition
against restating negative universal propositions as purely existen-
tial propositions ceases to have any e�ect because the predicate of
absurdity can be applied to universal propositions, and this leads
to propositions that formally are exactly the same as those asserted
in classical mathematics. Intuitionism appears to introduce genu-
ine restrictions only for analysis and set theory; these restrictions,
however, are due to the rejection, not of the principle of exclu-
ded middle, but of notions introduced by impredicative de�niti-
ons [...] (Gödel 1933b, 295)

These are, in essence, the same remarks that Gödel makes on the three loose
pages 39.1, 39.2, 39.3, probably ripped o� from the �rst notebook and stacked
between pages 63iv and 64 of the second notebook. It seems that the three pa-
ges where Gödel discusses the relationship between intuitionistic and classical
theories were originally meant to continue the discussion on p. 38. Apparently,

11 Heyting later expressed his dissatisfaction with his early works, as they “diverted the atten-
tion from the underlying ideas to the formal system itself” (Heyting 1978, 15).
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Gödel then changed his mind and decided to introduce the constructive nega-
tion translation instead.

A point that Gödel makes several times in his works of the 1930s and ear-
ly 1940s is that intuitionistic logic allows to prove negated universal statements
¬(x)ϕwithout exhibiting an instance ¬ϕ[a/x]. This is because a negated sen-
tence is seen as a hypothetical statement, and this is something that both Brou-
wer and Heyting saw clearly. However, not everyone agreed with this interpre-
tation of intuitionistic negation. In 1926, Hermann Weyl stated the law of the
excluded middle as follows: either all numbers have a property P or else there
is a number which has the property ¬P , i.e., (x)P (x) ∨ (∃x)¬P (x) (Weyl
1926, 42). From this then follows ¬(x)P (x) → (∃x)¬P (x). A negation of
a universal statement must then be forbidden, for that would be an existential
statement. Weyl expressed the opinion that quanti�ed statements are not pro-
per judgments but rather “judgment-instructions” (Urteilsanweisungen, in the
case of the universal quanti�er) or “judgment-abstracts” (Urteilsabstrakte, exis-
tential quanti�er) (Weyl 1921, 71). In this way, his view was in fact much stricter
than that of Brouwer and in fact very close to Hilbert’s �nitism, where the ac-
ceptance of excluded middle leads to the rejection of quanti�ers.

Gödel stated in 1975 that he �rst read Brouwer as late as in 1940 (Gödel
2003a). He wrote to his brother in 21st September 1941 asking Rudolf Gödel
to obtain a copy of Brouwer’s dissertation for him.12 He probably attended one
of Brouwer’s two lectures in Vienna in 1928 (Wang 1989, xx) and seems to have
known of Brouwer’s earlier articles.

However, it is more likely that Gödel’s view of intuitionism and its logic
came from Weyl, whose works he had read in the 1930s,13 as well as Hilbert and
Bernays. Indeed, Hilbert, too, stated in his in�uential “Über das Unendliche”
– which Gödel knew – that universal statements are not capable of being nega-
ted (nicht negationsfähig) (Hilbert 1926, 173). This has the consequence, Hilbert
says, that it does not hold that every equation must be either satis�ed for all num-
bers or have a numerical counterexample. This he interprets, as Weyl does, as a
case of the Principle of Excluded Middle.

12 Quoted in (Van Atten 2015, 189–190).
13 We found bibliographic notes mentioning (Weyl 1926), which was quoted above, in a note-

book titled Altes Excerpten Heft I (1931– ) (030079), most of which can be found in (von Plato
2021). The same notebook also contains some brief notes related to Weyl’s “Die heutige Erkennt-
nislage in der Mathematik” (Weyl 1925), which Gödel borrowed from the University of Vienna
library in November 1932. Since both Gödel and Weyl were a�liated with the IAS at Princeton,
they also knew each other personally.
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Apparently, Gödel saw the negative translation between classical and intui-
tionistic arithmetic as a source of doubt for the constructivity of intuitionistic
quanti�ers. Otherwise, it would have made little sense to him to mention it in
each of the 1932, 1933, 1938, and 1941 (Yale) papers in connection with the pro-
blem of negated universals. In general, it seems as though his views on intuitio-
nistic logic had not changed much between 1932 and 1941.

It goes without saying that this interpretation of the intuitionistic negati-
on and the quanti�ers is, at the very least, rather unfair to Brouwer’s original
conception of intuitionism. Already in his dissertation in 1907, Brouwer made
a clear distinction between an existential statement as a construction and a state-
ment expressing that a construction is blocked or incompatible with some other
proven fact. One could say, following Bernays (1935) as well as the �rst volume
of Grundlagen der Mathematik (see Hilbert and Bernays 1934, 43) – both of
which Gödel had read carefully – that the point at which intuitionism surpasses
�nitism is that it allows for ideal elements to appear in presuppositions. Thus,
even if (x)A were a non-�nitary statement, one could presuppose it in a proof
of an implication. The permissibility of ideal presuppositions is the additional
abstract element – which Gödel does acknowledge in 1958 – that intuitionistic
logic has and �nitary systems have not.

At this point, Gödel was still more focused on the logical than the philoso-
phical issues, and this is perhaps a reason why he took his negative translation to
be so important, even though he admitted it to be purely formal. In any case, the-
se considerations led Gödel to develop his own, formal and system-speci�c, in-
terpretation of intuitionistic logic in terms of functionals of higher types. Whe-
reas Gödel mentions the idea already in 1938, the Princeton course is the earliest
source where Gödel considers the system in full detail.

Theconstructive systemΣ andthe calculabilityquestion

Despite his criticism, Gödel’s goal is not to prove that intuitionistic mathematics
is in general defective. Rather, it is the proof explanation of the logical connec-
tives that is ill-de�ned. With a more precise interpretation of the logical connec-
tives, intuitionistic logic can be shown to be properly constructive at least in the
case of speci�c formal systems.

Gödel now gives precise criteria for a “strictly” constructive system. There
are three requirements:14

14 An interesting detail, compared to the Yale lecture as well as the Dialectica paper of 1958,
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1. The propositional connectives bind only quanti�er-free expressions.

2. The theory contains no existential quanti�ers.15

3. Primitive relations are decidable and primitive functions are calculable.

This is a slight reformulation of the conditions given in the lectures of 1933 and
1938 and the Yale lecture of 1941. Condition 1 is replaced in the Cambridge and
Yale lectures with the less restrictive prohibition of negated universal statements.
Given that Gödel’s primary worries concern the use of the implication, and mo-
re speci�cally, absurdity, the broadening of the conditions makes little di�erence
in practice. Condition 3 is repeated in all of the lectures. Obviously, intuitioni-
stic arithmetic does not satisfy conditions 1 and 2.

What is missing, compared to the 1933 and 1938 lectures, is the condition (ex-
pressed slightly di�erently in the two papers) that the basic objects of the theory
should be somehow graspable or �nitely generated. In 1938 he demands that our
basic objects be “surveyable (überblickbar), that is, denumerable” (Gödel 1938,
91). This condition disquali�es, in particular, the proof explanation of intuitio-
nistic logic as constructive in a way that cannot necessarily be overcome.16

Gödel presents a system Σ as a system that satis�es the three conditions of
strict constructivity. The system Σ is essentially equivalent to Primitive Recur-
sive Arithmetic with the addition of primitive recursive functionals of higher
types. The types form a hierarchy of levels depending on the level of the highest-
level argument or the value. The level of an integer (in Gödel’s notation, type I)
is 0. The level of a functional of type t1τt2 (or t2 7→ t1) equals max(lev(t1),
lev(t2)) + 1.17

The atomic expressions of Σ are of the form a = b, where both a and b
have the type I . For compound expressions, we can use the classical connectives

is that in this series of lectures, Gödel never uses the notion “�nitistic” in connection with this
properly constructive system. In the other works, he does mention that the “lowest level”, i.e.,
his constructive system Σ restricted to functionals of type 1 and lower, is probably what Hilbert
thought of as �nitist mathematics.

15 Except perhaps as a de�ned notion: ∃xA := A[α/x] for some constant expression α.
16 However, Gödel’s remark in 1938 that this condition is problematic “because of the concept

of function” (1938, 91) brings Gödel’s own interpretation by higher-type functionals into questi-
on (Sieg and Parsons 1995, 70). In any case, this is not an issue that Gödel discusses here or in the
Yale lecture.

17 Conventionally, the level of a functional of type t2 7→ t1 would be equal to max(lev(t2)+
1, lev(t1)).
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{∼, ·, ∨, ⊃}, as there is no danger of applying propositional connectives to
quanti�ed statements. Higher-level equality is a de�ned notion and denoted by
=̇. ForA,B of type other than I ,A .

= B i� for any complete argument series18

x,A(x) = B(x).
Gödel’s axioms consist of the axioms of classical propositional logic, which

can now be applied without restriction as Σ is quanti�er free, the usual axioms
for successor as well as for explicit de�nition and de�nition by primitive recursi-
on extended to functionals of all �nite types. As rules, we have Modus Ponens,
the rule of substitution, and complete induction. Moreover, there is a rule of
(weak) extensionality, formulated as follows (note thatP is automatically quan-
ti�er free):

P ⊃ S(x)=̇T (x)
Ext

P ⊃ ϕ(S) ≡ ϕ(T )

Whereas Gödel does not mention identity and its treatment in the Yale lec-
ture, it seems that at this point, he did not (seriously; see below) consider the
intensional de�nition of identity adopted in the 1958 Dialectica article. In the
Princeton lectures, he was particularly concerned with the question of compu-
tability of higher-type functionals, something that he only mentions in passing
in the Yale lecture.

Σ satis�es the �rst two requirements simply because it is quanti�er free. The
primitive relation = is obviously decidable. However, the status of higher-type
functionals is not quite clear. In the Yale lecture, Gödel mentions the question
of calculability but says that a proof is “pretty complicated,” and will not be dis-
cussed in the lecture (Gödel 1941, 195). The truth is that Gödel did not have a
satisfactory proof at hand. The Yale lecture took place on 15th April 1941, but
given that Gödel’s Princeton course had started already in February, his discus-
sion of the calculability issue here probably preceded the Yale lecture. His sketch
of a list of contents in Arbeitsheft 9 suggests that he thought he could obtain a
proof, and still in the middle of the lectures (p. 63iv) he refers to a proof that
will be given later. The fact that Gödel never returned to that proof seems to
indicate that he simply did not get it ready in time.

However, Gödel does give two alternatives for a proof, which are also men-
tioned by Anne Troelstra in his introduction to the Yale lecture (Troelstra 1995).

18 Gödel de�nes a complete argument series for an expression A as a sequence of terms of
appropriate typesB1, . . . , Bn such thatA(B1)(B2) . . . (Bn) reduces to type I .
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The �rst option is to show, by simple induction, that for any complete argu-
ment series a for a term f , there is an integer k such that f(a) = k is provable.
For functions of levelL1 this is clear. Because f(a) of levelLk has an argument
type less thanLk, we can apply the inductive hypothesis to obtain the result. As
Troelstra mentions, this resembles the approach in (Tait 1967). However, it is
not good enough for Gödel, as it requires the use of the full intuitionistic logic,
in having to apply complete induction to a quantified statement of the form
( )(∃).

The �rst remarks on the inductive computability proof are followed by a
cancelled passage (p. 61–62) which reads:

So our attitude must be this that the axioms of Σ (in part[[icular]]
the schemes of de�nition) must be admitted as constructive wi-
thout proof and it is shown that the axioms of intuitionistic lo-
gics can be deduced from them with suitable de�nitions. This so
it seems to me is a program

This is the course that Gödel took in the Dialectica paper, allowing, in a sense,
for the same kind of vagueness that appears in the justi�cation of intuitionistic
axioms on the basis of “intuitive evidence.” Perhaps for this very reason, Gödel
rejected this alternative in 1941.

In the beginning of the next lecture, Gödel returns to the calculability ques-
tion with a new suggestion, remarking that there is another proof which does
not rely on HA. This strategy utilizes trans�nite induction up to ε0. The idea
is to show that one can de�ne a sequence of substitutions to a given functional
f that reduces to an integer term after a bounded number of steps. This would
involve two steps; associating an ordinal< ε0 with each term and showing that
the ordinal is diminished by every replacement into the term (the “complete ar-
gument series”), and then appealing to the well-foundedness of ordinals below
ε0.

This method, employed before in Gentzen’s and Wilhelm Ackermann’s con-
sistency proofs for Peano Arithmetic (Gentzen 1936; Ackermann 1940), presup-
poses that the use of trans�nite induction can be “justi�ed” in some sense; ho-
wever, as Gödel notes (p. 63iv), it does not look simpler than the system Σ itself
in any obvious way. In the Zilsel lecture, Gödel states that Gentzen’s method
of trans�nite induction, even if not strictly constructive, has “a high degree of
intuitiveness” (Gödel 1938, 107). The main problem for Gödel in 1938 is that
the property “α is an ordinal” is impredicative; this is not speci�c to Gentzen’s
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proof but to trans�nite induction in general. Therefore, it is not clear how he
would justify the use of the principle in his own proof.

In his notebooks from the early 1940s, we can see that Gödel was very in-
terested in Gentzen’s method of trans�nite induction. However, it seems that
he never came up with a proof that would satisfy him.19 In 1958, Gödel no lon-
ger mentions the proof of calculability, instead returning to his previous idea of
assuming computability without a formal proof. Later, William Howard gave a
reductive proof using trans�nite ordinals (Howard 1970), but at the time, Gödel
did not seem to like it.20

Interpretation of intuitionistic arithmetic in systemΣ

The system Σ, which extends the quanti�er-free system Σ with existential and
universal quanti�ers, functions like what is called simply the system Σ in the
Yale lecture of April 1941. The notation, however, is rather unique. Instead of
quanti�ers, two new types of variables are introduced: universal variables x and
existential variables x. Thus, e.g., a statement conventionally written as

(∃y)(x)A(x, y)

expressed in the Σ notation as

A(x, y)

A matrix M [ξ1, . . . ξn] is an expression in which the terms that occur are
not speci�ed as to their type or variable type (free, universal, or existential).

19 The Arbeitshefte, in particular, contain dozens of pages of notes on trans�nite ordinals and
functionals of �nite types. These notes have so far not been investigated in detail but at a �rst
glance, it seems that, as one would expect, they do not contain a �nished proof.

20 In an email message to Jan von Plato on 8th June 2007, Howard refers to a conversation
between him and Gödel in 1972:

GÖDEL: “You must work out an assignment of ordinals to terms for primitive
recursive functions of �nite type, such that a calculation step lowers the assigned
ordinal.”
BH: “But I did this in my paper.”
GÖDEL: “It is not satisfactory; it is too complicated; one cannot see why it
works.”

It appears that still in the 1970s, over thirty years later, Gödel had not let go of the idea of
�nding a proof.
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We represent a matrix completed with arguments as M [t1, . . . tn]. This corre-
sponds, in the standard notation, to a quanti�ed expression

(∃y1) . . . (∃yk)(x1) . . . (xl)M [t′1, t
′
2, . . . t

′
n]

where all overlined or underlined variables in t1, t2 . . . tn have been turned into
normal ones, y1 . . . yk are all the overlined variables and x1 . . . xl all the under-
lined variables in the original expressions.

The motivation for using this notation over the standard one is not expli-
citly stated in the lectures. In the early presentations of the functional interpre-
tation (1938 and 1941), as well as in the Dialectica article, Gödel uses quanti�er
notation; many of his preparatory notes for the Princeton course are also writ-
ten in the ordinary notation. In fact, the only place we seem to �nd this style
of notation in Gödel’s notes are in parts of Arbeitsheft 9 and in Arbeitsheft 10.
One advantage is brevity, especially in the longer proofs which we �nd on p.
89–106. Furthermore, Gödel may have wanted to emphasize the di�erence bet-
ween intuitionistic quanti�ers and those of his functional system. Indeed, on p.
81 he suggests using Σ,Π to talk about existential and universal quanti�ers in
the quanti�ed system Σ.

The goal, then, is to de�ne a translation A′ for each intuitionistic formula
A, such that it maintains the validity of the (translations of the) intuitionistic
axioms in system Σ. The soundness of the interpretation gives a relative consis-
tency proof for HA with respect to Σ.

Save for notation, the interpretation of intuitionistic logic in the system
Σ does not di�er from that given in the Yale lecture or the Dialectica article
of 1958.21 For atomic sentences, the Σ-interpretation is the formula itself. Take
A′ = M [a, f, x] and B′ = N [b, g, y], where a, b are sequences of free varia-
bles, and where all the variables ofA andB are assumed to be mutually disjoint.
The interpretation is de�ned as follows:

1. (A&B)′ := M [a, f, x] ·N [b, g, y]

2. (A vB)′ := (M [a, f, x] · u = 0) ∨ (N [b, g, y] · u = 1)

3. (A→ B)′ := M [a, f, q(f, y)] ⊃ N [b, p(f), y]

21 Except for the erroneous disjunction clause, which gives the translation of AvB as
M [a, f, x]∨N [b, g, y] in the Yale lecture. Gödel originally makes the same mistake of de�ning the
translation of disjunction similarly to that of conjunction in the Princeton lectures, but corrects
it soon after.



21

4. (∃xA)′ := M [x, a, f, x]

5. (∀xA)′ := M [x, a, g(x), x]

In 2, umust not occur inA,B; similarly for q, p in 3. In 4 and 5, x is a variable
free inA. Negation ¬A is here interpreted asA→ ⊥

Pages 89 to 106 contain fairly detailed proofs of the derivability of the in-
tuitionistic axioms and rules; Gödel probably did not go through every one of
them during the lectures. As mentioned before, these pages were ripped o� from
a notebook and �led elsewhere, probably because the proofs were mostly routi-
ne and very formal in nature.

The main di�erence to the Yale lecture is the level of detail: in Yale, obvious-
ly, Gödel does not go through all of the proofs. Two points are worth mentio-
ning in the context of the Princeton lectures and Gödel’s aim of giving a proof
of constructivity for intuitionistic logic. Whereas the desired proof is obtained
by the interpretation (see next section), one can ask what actually is needed for
this proof and whether those methods are acceptable from a constructive view-
point. The �rst question, then, is whether the translation is intuitionistically
acceptable and the second whether everything needed to prove the validity of
the intuitionistic axioms in Σ is acceptable.

As for the �rst question, the equivalence of the intuitionistic formulas and
their translations is not necessarily itself provable in Heyting Arithmetic exten-
ded to �nite types, i.e., ΣI (or as it is nowadays denoted,HAω). We do have

`ΣI
A ⇒ `ΣI

A′

but in general, not the other way around. Problems arise with the translation of
( ) and⊃. In the case of the universal quanti�er, what is needed for extracting
M [x, a, g(x), x] from M [x, a, f, x] is the Axiom of Choice (for �nite types).
AC is usually accepted when x is of type I , but it is not necessarily intuitionisti-
cally acceptable in general.

The case for ⊃ is more complicated. In the Princeton lectures, as well as
in Yale, Gödel gives a fairly detailed informal explanation for the justi�cation
of the interpretation of implication. However, as Spector has shown (Spector
1962), the full formal demonstration of the equivalence of A ⊃ B and its
Σ-translation requires two principles that go beyond HA: extended versions
of Markov’s Principle and Independence of Premise. The version of Markov’s
Principle that is needed is:
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(MP′)
¬(x)A(x) ⊃ (∃x)¬A(x)

where A is quanti�er free and x of any �nite type; and moreover, we need the
Independence of Premise

(IP′)
(∀xA ⊃ (∃x)B(x)) ⊃ (∃x)(∀xA ⊃ B(x))

where x is of any �nite type.
Neither of the principles is valid in intuitionistic logic. Even if not intui-

tionistically acceptable, MP can be interpreted constructively as unbounded
search, where x is assumed to be a variable of type Int: ifA(n) is indeed decida-
ble for any natural number, then one can run through all the natural numbers
until one �nds a counterexample a such that A(a) ⊃ ⊥ is constructible (Avi-
gad and Feferman 1998, 337). However, whether this generalizes to higher types
depends on whether we consider =̇ in general decidable, and as was noted pre-
viously, Gödel did not think that this should be accepted without proof. IP is
likewise suspicious because of the nature of the intuitionistic implication. Intui-
tionistically, the antecedent of IP is read, “given a proof ofA, one can construct
a witness a such that B(a),” whereas the consequent has the dependence the
other way around: “one can construct an a such that given a proof ofA . . .”.

In the case of the soundness proof, the crucial part is the proof of A →
(A&A). It has been noted (Troelstra 1990, 227) that the proof of this needs
to assume the existence of characteristic functions for formulas. I.e., when one
chooses the proper substitution in (see p. 90 of the lectures)

M [a, f,%(a)(f x y)] ⊃M [a, σ1(a)(f), x] ·M [a, σ2(a)(f), y]

for%(a)(f x y) one needs a characteristic function cM forM [a, f, x], where cM =
0 and %(a)(f x y) = y or cM 6= 0 and %(a)(f x y) = x.

As Urquhart (2016, 508) notes, it was indeed the classical form of this axi-
om, (A ∨A) ⊃ A, which caused the most trouble for Russell when he proved
the validity of the propositional axioms for predicate logic in the Principia. In
terms of sequent calculus, it is the corresponding rule of contraction that com-
plicates any proof of consistency for arithmetic. Contraction-free arithmetic has
a proof-theoretic ordinal of only ωω (see Petersen 2003). The analogy seems to
be that in the presence of contraction, one needs to consider the length of a de-
rivation of a formula as a parameter in cut elimination exactly because we have
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to choose which of the originally contracted formulas the cut was applied to.
Gödel writes to Bernays as late as in July 1970 that he does not understand how
characteristic functions are needed for the axiom A → (A&A) (Gödel 2003a,
282). However, he does go through the full proof for this axiom using characte-
ristic functions in the Princeton Lectures.

Does any of this a�ect the credibility of Gödel’s interpretation? One could
answer that Σ has the properties of a constructive system, and it in itself vali-
dates AC, MP′ and IP′, whether or not the proof explanation – which Gödel
considered in certain ways defective – can make sense of them. But as Troel-
stra notes in his introduction to the Dialectica article, this can also be seen as
a reason to be suspicious of whether Σ is indeed more constructive than HA.
He remarks that “Markov’s schema is false for some perfectly coherent intuitio-
nistic theories such as the theory of lawless sequences [...] while Gödel himself
[...] regards choice sequences as coming close to being �nitistic” (Troelstra 1990,
232). Moreover, there are equally constructive interpretations of intuitionistic
logic which do not validate MP. One example is Kreisel’s modi�ed realizability
interpretation (Kreisel 1959), based on Kleene’s work on numerical realizability
(Kleene 1945).

It is highly unlikely that, as opposed to the problem of computability in
higher types, Gödel was aware of any of these issues in 1941, or even in 1958.
We cannot, then, but speculate how he would have answered the challenges.
What is certain is that none of this diminishes the formal and pragmatic advan-
tages of the functional interpretation in extracting constructive content from
apparently non-constructive proofs, which is in itself a very useful property. It
is thus only from the philosophical point of view that these issues could be seen
as obstacles; and even then, there is no obvious way of drawing the conclusion
that Σ is not a more constructive way of interpreting intuitionistic logic than
the proof explanation.

Applications of theΣ-translation

In the Yale lecture, Gödel brie�y mentions several applications of his interpre-
tation (Gödel 1941, 199–120). First of all, it can be used to show that despite
∼(A∨∼A) being unprovable for anyA,∼(x)(ϕ(x)∨∼ϕ(x)) is consistent in
HA. Moreover, the functional translation gives a relative consistency proof for
HA, and via the negative translation theorem, one for PA, as well. Gödel menti-
ons that the functional interpretation also demonstrates the existence property
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for HA. These applications are investigated in detail in the last part of the Prin-
ceton lectures.

Gödel’s main goal, stated in the beginning of the lectures, is to show that in-
tuitionistic logic is indeed constructive; in particular, that every existential theo-
rem of HA can be instantiated. This turns out to be not possible to show via
Gödel’s translation. However, he presents the following argument (p. 84):

From the way existential variables were introduced in Σ – essentially, we ha-
ve only an introduction rule for the existential quanti�er – it follows that for any
existential statement (∃x)ϕ, if `HA (∃x)ϕ, then (since Σ validates ((∃x)ϕ)′)
it follows that `Σ ϕ′[α/x], whereα is a constant term. Now, one can extend Σ
by quanti�ers and the (intuitionistic) axioms for them to obtain the system ΣI ,
of which the Heyting Arithmetic is a subsystem. As Σ is a subsystem of ΣI , we
get the same result in ΣI .

Although Gödel states that this argument gives “the desired proof for con-
structivity of intuitionistic logic,” it does not show the existence property for
HA. Namely, the constant termαmight be of some type higher than I and thus
not translate into a HA term, andA′ not necessarily intoA. Gödel does not no-
tice this until at the end of the lecture course (p. 116), where he corrects himself.
The only case where the existence property does hold is when ϕ = A(x) for a
quanti�er-freeA, and in this case, the proof translates to similar property for PA,
as well (p. 117): because (∼(x)∼A(x))′ and ((∃x)A(x))′ are Σ-equivalent, if
∼(x)A(x) is demonstrable in PA (and thus in HA), then∼A(α) is demonstra-
ble in ΣI and this also in ΣK . Gödel does not mention the disjunction property
– at this point, he still made the mistake (as in the Yale lecture) of interpreting
the intuitionistic disjunction like the classical one. The mistake is corrected on
p. 89.1. In any case, also the disjunction property follows in a similar manner.

The main focus of the last lecture, from page 107 to page 117, is to prove that
Σ invalidates the law of the excluded middle. The result is obtained by �rst de�-
ning a modelM for Σ (and Σ) and then constructing an arithmetical statement
ϕ(x) such that∼(x)(ϕ(x) ∨ ∼ϕ(x)) is true inM . The lecture starts with an
introduction to general recursive functions. Strangely, Gödel refers several times
to discussion on these things “last time”. However, since the last topic was the Σ
translation and its soundness (p. 73–106), this cannot be the intended reference.
Oddly enough, there is no gap in the pagination. Perhaps Gödel did not make
extensive notes for the introductory lecture on recursive functions; in any case,
page (107′) appears to be a summary of this lecture.

To interpret the system Σ, Gödel uses what is essentially a model of Heredi-
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tarily E�ective Operations (see Troelstra 1973, section 2.4.11). The domain con-
sists of objects of a given type, so that the objects of the lowest level are simply
integers. Objects of type τ(t1 . . . tk) are represented by the codes n for parti-
al recursive functions fn(x1 . . . xk) that have arguments of appropriate types
and that are extensional for extensionally equal arguments.22 Gödel’sϕ(x) then
codes the statement “the recursive function number x is unde�ned for some ar-
gument,” i.e. “x codes a non-total recursive function.” Now, if ϕ(x) could be
decided for any x, then one could solve the halting problem in HA. From this
it follows that it cannot be the case that (x)(ϕ(x) ∨ ∼ϕ(x)).

After the seventeen-year silence

Gödel chose not to publish any of his 1933–1941 lectures on intuitionism. A gra-
duate student Frederick W. Sawyer wrote to Gödel in 1st February, 1974, asking
about “Kreisel’s remark to the e�ect that you had incorporated the Dialectica in-
terpretation into your lectures at Princeton as early as 1941” (Gödel 2003b, 210).
In an undated draft for a reply, Gödel writes that he had “several reasons why
I did not publish it then. One was that my interest shifted to other problems,
another was that there was not too much interest in Hilbert’s Program at that
time” (Gödel 2003b, 210).

The mention in the IAS Bulletin of October 1941 that Gödel is planning to
study the connections of the functional system and the Continuum Hypothesis
hints at a reason for why he lost his interest. In Arbeitsheft 7 (p. 33, reverse di-
rection), we �nd a list of objectives Gödel wanted to achieve – these lists Gödel
called “Programme” – which includes the following:

3. Extension of the consistency proof to the case where quanti�ers
occur in the recursive de�nition (and thereby rami�ed type theory)
and analysis.

4. Consistency proof forS by means of higher ordinals and deter-
mination of what ordinals are de�nable in Sn.

5. Extension of S to trans�nite types and determination of the or-
dinal numbers de�nable there and a proof of consistency.

...
22 I.e., where xi is extensionally equal to x′i, f(x1, . . . xi, . . . xk) = f(x1, . . . x

′
i, . . . xk).
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7. Extension of functions de�nable in S to Brouwerian types and
calculation of the Brouwerian type for combinations of functions
(also for functions whose existence is proven in a certain way) (to-
gether with the �rst reconstruction of Gentzen’s proof) and con-
sistency of analysis.23

In the eleventh Arbeitsheft (030029) we �nd plenty of formal sketches in the
functional notation, with two longhand titles “Wid. freiheit v. ¬(p)(p ∨ ¬p)”
and “Wid. freiheit Analysis.” What all of this suggests is that whereas Gödel was
genuinely concerned with the question of constructivity of intuitionistic logic,
his ultimate aim seemed to be to prove the consistency of continuum hypothesis
and, eventually, of analysis.

However, none of these investigations seem to have led to concrete results.
There are no signs that Gödel continued developing the functional system af-
ter 1942. Kreisel states that Gödel quit working with his interpretation “after
he learnt of recursive realizability that Kleene found soon afterwards” (Kreisel
1987, 104). Perhaps Gödel himself became doubtful, both of the strength of his
method and its foundational justi�cation; and perhaps this was partly the rea-
son why he turned away from mathematics and towards philosophy soon after
the Princeton lectures.

The functional interpretation became known as late as in July 1957, when
Georg Kreisel gave a talk on the unpublished results of Gödel at Cornell Uni-
versity. The title of the presentation was “Gödel’s interpretation of Heyting’s
Arithmetic,” but a great part of it concerned the extension of the interpretation
to analysis (see Feferman 1998, 220–223). Kreisel lectured in Amsterdam soon af-
ter on the same topic. In the latter paper (Kreisel 1959), the translation of analysis

23 3. Erweiterung des Widerspruchsfreiheitsbeweises auf den Fall, dass in den rekursiven Df
Quantoren auftreten (und dadurch verzweigte Typentheorie) und Analysis

4. Widerspruchsfreiheitsbeweis für S mittels höherer Ordinalzahlen und Feststellung, welche
Ordinalzahlen in Sn de�nierbar

5. Erweiterung von S auf trans�nite Typen und Feststellung, welche Ordinalzahlen dort de�-
nierbar und Widerspruchsfreiheitsbeweis

...

7. Erweiterung der in S de�nierbaren Funktionen in Brouwersche Typen und Berechnung des
Brouwerschen Typus für Kombinationen von Funktionen (auch für Funktionen deren Existenz
in gewisser Weise bewiesen) (und zusammen mit 1. Rekonstruktion der Gentzen Beweis) und
Widerspruchsfreiheitsbeweis Analysis
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is based on arbitrary continuous functionals and recursively continuous func-
tionals. Kreisel’s scheme di�ers from Gödel’s in that whereas Gödel’s interpreta-
tion validates Markov’s Principle, Kreisel’s interpretation, like the intuitionistic
proof explanation, does not.

Gödel’s �rst published work on the topic, titled “Über eine bisher noch
nicht benützte Erweiterung des �niten Standpunktes,” appeared in 1958 in the
journal Dialectica. The viewpoint of 1958 is somewhat di�erent from the Prin-
ceton lectures. As the title suggests, the functional system is introduced in the
context of the extended Hilbert Programme, giving a constructive consistency
proof for arithmetic. Here Gödel has dropped the extensional interpretation of
equality; computability is thus not proven but presupposed. Extension to stron-
ger systems is only mentioned in the very last paragraph: “It is clear that, starting
from the same basic idea, one can also construct systems that are much stronger
than [the functional system] T, for example by admitting trans�nite types or
the sort of inference that Brouwer used in proving ‘the fan theorem’.” (Gödel
1958, 251).

Cli�ord Spector was the one to extend the Dialectica interpretation by bar
recursion, a de�nitional schema corresponding to the principle of bar induc-
tion,24 arriving at the proof for the consistency of analysis which Gödel had
sought in the early 1940s (Spector 1962). The article was published in July 1961,
not long after Spector’s untimely death; it was Kreisel who prepared the article
for print. In the postscript to Spector’s article, Gödel writes that whereas Spec-
tor had stayed at the IAS during the academic year 1960–61, “the discussions
P. Bernays and I had with Spector [...] took place after the main result [...] had
been established already” (Spector 1962, 27). However, Gödel says, Kreisel’s ro-
le in Spector’s work was greater. Apparently, Kreisel and Spector had originally
planned to publish a joint article on the topic. Later developments of Spector’s
method include, among many others (see Avigad and Feferman 1998, section 6),
Howard’s (1968) and Luckhardt’s (1973) works.

Around 1970, several variants of the interpretation emerged. The Diller-
Nahm functional interpretation (Diller and Nahm 1974) avoids the problem
with the axiomA→ (A&A) mentioned above so that characteristic functions

24 The status of bar induction, which is a generalization of Brouwer’s Bar Theorem to higher
types, as intuitionistically acceptable is not entirely clear. As Feferman notes, unlike Gödel’s in-
terpretation, Spector’s proof did not have the aspect of reducing intuitionistic mathematics to a
more constructive system (Feferman 1998, 222-223). Instead, the constructivity of intuitionism is
here assumed without question.



28

for atomic formulas are no longer needed. Shoen�eld’s translation (Shoen�eld
1967) is a direct interpretation of Peano Arithmetic via the negative translation.
Parsons’ 1970 article should also be mentioned as perhaps the earliest application
of the functional interpretation to subsystems of arithmetic (Parsons 1970).

In the 1990s, there was a renewal of interest in the applications of the Dia-
lectica interpretation. Gödel’s original idea was to secure the constructivity of
intuitionistic logic by recovering the existence and the disjunction properties
of intuitionistic logic in his functional interpretation. The idea of relative con-
structivity has been generalized and extended by Ulrich Kohlenbach, who has
applied the interpretation to extract other kinds of computational content from
non-constructive proofs in stronger systems (see Kohlenbach 2008).

Looking at the Dialectica article, and its many added footnotes and correc-
tions in the 1972 version, it appears as though Gödel was never fully satis�ed
with his work.25 Since Gödel �rst developed his system in detail in the Prin-
ceton and Yale lectures in 1941, the focus has shifted from philosophical ques-
tions to formal work and concrete applications, and then again to other sorts
of philosophical questions in the context of the “extended Hilbert Program”
of seeking maximally constructive reductions of non-constructive systems. The
abundance of variations and applications born out of Gödel’s functional inter-
pretation – which can hardly be done justice to in such a restricted space26 –
shows how Gödel’s quest for justi�cation of the constructivity of intuitionistic
logic led to a fruitful �eld of research. From this point of view, Gödel’s functio-
nal interpretation was nothing less than a success which will hopefully lead to
further discoveries in the years to come.

Maria Hämeen-Anttila

25 See also the Gödel-Bernays correspondence in (Gödel 2003a).
26 For a more complete historical picture, see (Feferman 1998) and Troelstra’s comprehensive

introduction to the Dialectica article in Gödel’s Collected Works (Troelstra 1990). (Avigad and
Feferman 1998) is an accessible introduction to the Dialectica interpretation in particular. (Koh-
lenbach 2008) contains plenty of remarks and references to earlier works on applications of the
functional interpretation.
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Princeton Lectures on Intuitionism

Notebook 1

11

Programs2 [[Arbeitsheft]] 7 p. 47 and [[Arbeitsheft]] 7 p̌. 323 (No 4–6)

1. My theorem on the length of proofs.

2. Non-constructibility of existential statements together with Gentzen and
Church’s computable functions.

3. Also my remark on the realization of intuitionistic systems by computa-
ble functions (in [[Excerptenheft]] 3, p. 147).

1. An example of a recursion scheme in number theory for which the recur-
sion axioms are no longer provable (because of Gentzen’s proof).

2. The same for a trans�nite (but intuitionistic) recursion scheme for func-
tions of ordinal numbers and the system of analysis.

3. Can one not prove elegantly the existence of a recursive “enumeration”
of the recursive functions (without a construction)?

1 The entire page has been cancelled.
2 Programme A.H. 7 p. 47 und A.H. 7 p̌. 32 (No 4–6)

1. Mein Satz über die Länge von Beweise.

2. Nicht-Konstruierbarkeit der Existenzaussagen zusammen mit Gentzen und Churchs be-
rechenbaren Funktionen.

3. Ebenso meine Anmerkung über die Realisierung der intuitionistischen Systeme durch
berechenbare Funktionen (in Exc. H. 3 p. 147).

1. Beispiel für ein Rekursionsschema in der Zahlentheorie, für welches nicht mehr die Re-
kursionsaxiome beweisbar (aufgrund von Gentzens Beweis).

2. Dasselbe für ein trans�nites (aber intuitionistisches) Rekurssionsschema für Funktionen
von Ordinalzahlen und das System der Analysis.

3. Kann man nicht die Existenz einer rekursiven “Abzählung” der rekursiven Funktionen
(ohne Konstruktion) elegant beweisen?

Beweis d. Ax. d. int. Logik p. 89.4
3 This refers to page 32 in Arbeitsheft 7, reverse direction.
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Proof of the axioms of intuitionistic logic p. 89.4

Improvements for these lectures4

1. p. 2 To mention that one can consider the non-constructive existence
proofs as senseless but that intuitionistic logic has even independently of
that a sense.

2. [[Improvement of]] the formulas of the syllogistic proof, which simpli�es
the proof of partial transposition. In general, many formulas involving
absurdity become earlier formulas directly when ¬p is replaced by p →
W .

3. The requirement of provability of every classical identity of the functio-
nal calculus:¬¬A→A for atomic formulas (or¬A∨A for atomic for-
mulas, which implies the same for unquanti�ed expressions) and menti-
on that impredicative procedures are excluded.

4 Verbesserungen dieser Vorlesungen

1. p. 2 Erwähnen, dass man die nicht-konstruktiven Existenzbeweise als sinnlos ansehen
kann, aber auch unabhänging davon die intuitionistische Logik einen Sinn hat.

2. Die Formeln des syllogistischen Beweises, was den Beweis der partiellen Transposition
vereinfacht. Überhaupt, viele Formeln betre�s Absurdität werden direkt frühere For-
meln, wenn¬p durch p→W ersetzt wird.

3. Voraussetzung des Satzes über die Beweisbarkeit jeder klassischen Identität des Funktio-
nenkalküls:¬¬A→ A für Atomformeln (oder¬A∨A für Atomformeln, was dasselbe
für unquanti�zierte Ausdrücke zur Folge hat) und Erwähnung, dass imprädikative Ver-
fahren ausgeschlossen sind.

4. Weglassen, dass ein Axiomsystem nur dann intuitionistisch sinnvoll [[ist]], wenn die
Grundbegri�e entscheidbar sind.

5. Bei der Ableitung der vielen Formeln das Ziel vorher erwähnen, dass jede Wahrheitsta-
belle beweisbar ist.

6. Für den Fall, dass mehr Zeit

A. Theorem über¬, ·wobei [¬(p.¬q) ≡ ¬¬(p→ q) und ebenso für∨].

B. Deduc. Th. des Aussagenkalküls.

C. Am Anfang mehr auf die int[[uitive]] Bedeutung der intuitionistischen Axiome
eingehen und auf philosophische Fragen der Konstruktivität.
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4. Leave out that an axiom system is intuitionistically meaningful only if the
basic concepts are decidable.

5. In the derivation of the various formulas, mention �rst the goal that each
truth table is provable.

6. For the case of more time

A. Theorem about ¬ , · in which ¬(p · ¬q) ≡ ¬¬(p → q) and the
same for ∨.

B. Deduction theorem of the propositional calculus.
C. In the beginning, go more into the intuitive meaning of the intui-

tionistic axioms and into philosophical questions about construc-
tivity.

1

1. Have to make use of symbols hence begin by making a list:

2. i.

A. Variables with �xed domain of variation: x, y integers

B. Variables for functions of integers, etc.

ii. Operations of the calculus of propositions.

(∼p),¬p, (p ⊃ q), p→ q, p · q, (p& q), p v q, p ≡ q

Quanti�ers

Existential quanti�er (∃x)A(x)

Universal quanti�er (x)A(x)

Symbol of identity =

3. Rules and axioms for these symbols have been set up in accordance with how
these symbols are used in actual mathematics. A closer examination of these ru-
les leads to the following surprising fact:5

5 This sentence replaces another that reads:



32

2

very often these rules yield a proof for an existential proposition e.g. of the form
(∃x)A(x) but this proof gives no method actually to �nd such an integer a.

4. Let’s take the following example:
Call a number a a Goldbach number if 2a is the sum of two primes, and

de�ne a sequence an as follows:

a0 = 1

an+1 = an + 1 if an is a Goldbach number

an+1 = an if an is not a Goldbach number

Then the sequence 1
an

evidently has a condensation point because contained
in the interval [0, 1] (it is even convergent but that does not interest us now).
You can also prove that it has a rational condensation point, namely either 0 or
one of the numbers 1

n according as to whether the Goldbach theorem is true or
not. So we can prove that there exists a rational number which is a condensation
point but the proof gives no way to �nd it (because in order to �nd it you would
have to solve Goldbach’s problem).

5. Simplifying this example as much as possible we

3

obtain the following. Let P be any at present undetermined proposition and
de�ne a property of integers ϕ(x) as follows:

ϕ(x) ≡ (x = 0 · P ) ∨ (x = 1 · ∼P )

Then we can prove: There exists a number (∃x)ϕ(x), namely if P is true 0 is
such a number, if P is false then 1, but the proof gives no way of �nding it.

6. From such considerations, the problem arises how to axiomatize mathema-
tics in such a manner that such undesirable things as non-constructive existence
proofs can never happen i.e. such that the proof of any existential proposition
yields a way to �nd the thing whose existence is asserted. Let’s call a logic in
which this is the case a constructive logic.

[But a closer examination of these rules gives rise to certain objections against the
way in which these logical symbols are used in mathematics. The most obvious
starting point of these objections is this that]
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7. In this example and also in the foregoing, you see very clearly which axiom
of classical logic is responsible for the non-constructive existence proof. It is the
law of excluded middle for arbitrary propositions, even such as we are not able
to decide since in both cases, in order to prove the existence of this number x,
we have to make a distinction of two cases according to whether a proposition
P , which we cannot decide, is true or false. So the law of excluded middle will
be one of the principles left out in a constructive logic.

4

8. There is another way of arriving at a non-constructive existence proof, na-
mely the following one. Assume I succeed to derive a contradiction from the
assumption (x)∼ϕ(x). Then one will conclude in classical mathematics that
(∃x)ϕ(x), but such a contradiction obtained from (x)∼ϕ(x) need not ne-
cessarily yield a way to construct a number x for which ϕ(x) is true even if the
contradiction from (x)∼ϕ(x)6 is obtained in a perfectly constructive way i.e.
without using the law of excluded middle and similar things. You can see this
from both examples given before. In both cases you can derive the contradicti-
on from the negative proposition perfectly constructively.

9. Now how do we conclude from this contradiction to this existential asserti-
on? First we conclude from the contradiction obtained∼(x)∼ϕ(x), but
(x)∼ϕ(x) means

5

the same thing as ∼(∃x)ϕ(x). Hence we conclude ∼∼(∃x)ϕ(x), but now
from this we conclude (∃x)ϕ(x), and this apparently is the place where the
non-constructive element comes in. So the second principle we shall have to lea-
ve out will be the law of double negation∼∼p→ p.

10. This whole argument is of course only heuristic and it may seem a little ar-
bitrary why we decide to drop just these two logical rules and not others which
were likewise necessary to obtain the non-constructive existence proofs mentio-
ned before. In order to �nd out in a systematic way which rules are to

6 A negation is missing in the original text.



34

6

[[be]] kept & which are to be dropped we have to analyze the meaning of these
primitive terms of logic. In particular, we have to �nd out which existential as-
sertions are concealed in them and then we have to admit only such axioms and
such rules of inference as allow to construct the existential assertions contained
in them. Then we can expect to obtain a constructive logic in the sense de�ned
before.

7

11. The attitude of the intuitionists themselves concerning the meaning of these
logical notions is this, that they take them as primitive and therefore cannot give
any justi�cation for their axioms but evidence. I don’t think that this attitude is
necessary but I think that these notions can be de�ned in terms of much simpler
and clearer ones, at least in their application to de�nite mathematical theories
e.g. number theory or analysis. To give such a de�nition and a consequent proof
of the intuitionistic axioms is the chief purpose of these lectures. Only this de-
�nition, by the way, yields a proof that intuitionistic logic really is constructive
in the sense de�ned before which is by no means trivial. But before I can give
this de�nition of the primitive terms of intuitionistic logic, I must �rst develop
intuitionistic logic to a certain extent in the usual axiomatic way

8

where all these notions are taken as primitive. But even if we choose this cour-
se, I think it is desirable �rst to explain the meaning of the primitive notions in
terms of everyday language in the same manner as Euclid begins his elements
by an explanation of the primitive terms, although he never uses these expla-
nations [[in]] the subsequent proofs. This procedure is necessary in order to see
that the assumption of certain axioms and the rejection of others is not arbitrary
but corresponds to certain intuitions, although these intuitions are perhaps of
a more or less vague nature. What is perfectly clear in this axiomatic treatment
of intuitionistic logic is only that all theorems follow from the axioms and rules
of inference.7

14. By far the most important and interesting of these notions here is p→ q.
Now to explain the meaning of a proposition in a constructive system means to

7 Items 12 and 13 are missing.



35

state under which circumstances one is entitled to assert it. And the answer in
this case is: If one is able to deduce q from the assumption p. But one has to be
careful: the assumption p in

9

a constructive logic means the assumption that a proof for p is given, since truth
in itself without proof makes no sense in a constructive logic. So p→ q means:
Given a proof for p one can construct a proof for q or in other words: One has
a method to continue any given proof of p to a proof of q. It is quite essential
that → is not interpreted as meaning q is deducible from the assumption that
p is true because certain theorems of intuitionistic logic don’t hold for it.

[The following theorem, e.g., is true in intuitionistic logic: p→ (q→ p),
i.e., .8 But it is not true that from the truth of p it follows thatp is deducible
from any assumption q, because p might be true and not demonstrable, hence
not deducible, say, from the assumption 0 = 0. But if a proof for p is given,
then of course I can deduce p from any assumption q, since I can deduce it even
from no assumption.]

10

15. The next notion to be explained is negation and this is the notion which
di�ers most of all in classical and intuitionistic logic. Therefore it is denoted by
another name “absurdity” and by another symbol¬ instead of∼.

Now if one wants to �nd out the circumstances under which one is entitled
to assert ∼p in mathematics quite generally, one can hardly think of anything
else but: if a contradiction can be derived from p.

So let us denote some absurd proposition, e.g. the proposition 0 = 1 by
W ; then¬ is de�ned by

¬p =Df (p→W ).

It will turn out later that it is arbitrary which

11

absurd proposition you take for W because we shall see that any absurd pro-
position is deducible from any other in intuitionistic logic. You see at once that

8 Gödel has left a gap in the text here.
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one cannot expect the law of double negation to hold for this negation because
¬¬p means (p→W ) →W . So it means: one can prove that a contradiction
cannot be derived from p i.e. it means freedom from contradiction of p (to be
more exact, demonstrable freedom from contradiction) or undisprovability of
p, hence something quite di�erent from p itself.

16. The next notion here is “and” and this notion is really so simple that an ex-
planation is hardly possible or necessary.

17. The next is “or” and the constructive meaning

12

of p∨ q will evidently be: one has a procedure of which one knows that it must
lead either to a proof of p or of q. So e.g. p ∨ ¬p cannot at the present time be
asserted about Fermat’s last theorem because that would mean one has a proce-
dure either to prove it or to derive a contradiction from it, but one can assert it
for the statement 2(210) + 1 is a prime number, although one may not be able
actually to decide this question because it would take too long to carry out the
necessary calculations.

18. p ≡ q means by de�nition p→ q · q→ p.

19. The existential quanti�er (∃x)ϕ(x) will evidently mean: I have a method to
�nd a number a and a proof for ϕ(a); and (x)ϕ(x) means I have a method to
prove ϕ(a) for any number awhich is given to me.

20. So this is the intuitive meaning of the logical notions in intuitionistic logic,
and you will perhaps agree

13

with me that these notions are pretty complicated for primitive terms and that
also they don’t have the desirable degree of clearness because they involve the
notion of a procedure and of a proof which are perhaps not so absolutely cle-
ar. (Now my interpretation which I am going to give later does not pretend
to clarify these properly logical notions in quite general sense that would be
an impossible enterprise but only as applied to certain de�nite mathematical
systems, e.g. number theory.)

21. But I don’t want to spend any more time about these questions of meaning
but shall now set up the axioms for these notions and I leave it to you to verify
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that they are evident i.e. that all constructions asserted in them can be carried
out

14

for the meaning of these symbols I have explained.

22. Intuitionistic logic has �rst been axiomatized by Heyting in 1930 in the Hand-
lungen der Preussischen Akademie der Wissenschaften, later in an improved
form by Gentzen (Math. Zs 39).

I shall use here a system of axioms which is di�erent from both but more
closely related to Gentzen’s. I con�ne myself at �rst to the notions in the �rst
line (excluding quanti�ers) i.e. to the calculus of propositions. There we have
the following primitive terms.

1. A certain class P of things called propositions and denoted byA,B, . . .

2. Three binary operations → ∨ ·which applied to propositions

15

yield again propositions.

3. A certain propositionW called the absurdity.

4. A certain subclass of P, the asserted propositions, or rather, the proposi-
tions which can be asserted.
ThatA is assertable is denoted by ` A, but I shall not make much use of
this symbol ` but rather state in words thatA can be asserted.

The axioms are as follows:9

i. Arbitrary propositionsA,B
9 The opposing page is numbered 15.1 and begins with the de�nition of negation and equiva-

lence, cancelled but then repeated and indicated as belonging to the end of page 15, followed by a
cancelled incomplete sentence. This is followed by a shorthand passage:

For negation, one needs instead of 6. the two axioms

1. (A ⊃ B · ¬B) ⊃ ¬A
[ 2. (B · ¬B) ⊃ A]

The second becomes super�uous if one has¬¬A ⊃ A.
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1. A→A

2. A ·B→A

3. A ·B→B

4. A→A ∨B

5. B→A ∨B

6. W →A

About the last axiom I shall speak later.

ii Group (rules of inference)

1.
A
A→B
B

2.
A→B
B→C
A→C

3.
A→B
A→C
A→B · C

Rule of implication Rule of syllogism Rule of conjunction

As you see the second group of axioms di�ers from the �rst in so far that they
state that certain propositions can be asserted if others can. Also the theorems
fall into these two groups.

4.
A→C
B→C
A ∨B→C

5. A ·B→C

A→ (B→C)

6. A→ (B→C)

A ·B→C

Rule of disjunction Export Import

That’s all.
Absurdity is introduced by the de�nition ¬A =Df A→W and Aequiva-

lence byA ≡ B =Df (A→B) · (B→A).

16

This system is very natural and in addition has a certain symmetry with respect
to “or” and “and”. But for my purposes it is better to have a slightly less symme-
tric system. Namely axioms 1 and 2 can be replaced by

1′. A→A ·A 2′. A ·B→B ·A
and these two axioms make rule 3 super�uous. And this will be the system on
which the subsequent deductions are based.

Let’s �rst deduce the old axioms from the new ones.
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1. We have
A→A ·A (1′)
A ·A→A (3)
A→A by syllogism

2. Similarly 2 from 3 and 2′.

3. Rule
A→ (A→B) simpli�cation
A→B

From the assumption

A ·A→B by import
A→A ·A by (1′)
A→B syllogism

17

4.
A→ (B→C) commutation
B→ (A→C)

A ·B→C import
B ·A→C by axiom 2′ and syllogism
B→ (A→C) export

5. FormulaB→ (C→B · C)

B · C→B · C (1)
B→ (C→B · C) export

6. Now �nally Rule 3

A→B
A→C
A→ (C→B · C) syllogism formula (5)
C→ (A→B · C) commutativity
A→ (A→B · C) syllogism
A→B · C
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7. General Leibniz
A→B
C→D
A · C→B ·D

7′.
A→B
A · C→B · C

A · C→A
[[A→B]]
A · C→B syllogism
A · C → C
[[C→D]]
A · C → D syllogism
A · C → B ·D conjunction

18

It is to be noted that the axioms for “or” were not used so far and generally. It can
be proved that we never have to make use of these axioms for “or” for proving
formulas not containing “or” so that the remaining axioms form a closed system
in themselves which is exactly what is usually called positive logic, provided you
leave out theW and the axioms concerning it.

I shall not carry through the proofs of all theorems which I need but only
list them and give some indication of the proof.

8. Addition of premisses

A→B
A · C→B syllogism, axiom 2

9. · is commutative and associative, or more generally: If you have any two ex-
pressions A,B composed of only letters A1, . . . An and the symbol · (where
the same letter may occur in di�erent places) and if only every letter inB occurs
also inA thenA→B can be asserted.

Proof by induction on the number of letters occurring inB. For one letter
inB it follows by iterated application of 8. IfB contains more than one

19

letterB = B1 ·B2 whereBi [[have]] fewer [[symbols thanB]]

A→B1,A→B2 holds by induction hence
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A→B1 ·B2

This theorem together with rule of syllogism allows you to interchange dif-
ferent terms in a premiss A1 · A2 . . . An → B and to strike out terms which
appear doubly (which is one of the axioms in Gentzen’s system).

20.10

A→ [(A→B) →B]
[A · (A→B)] →B export
(A→B) → (A→B) commutativity

20′.

A→B
A→ (B→C)
A→C

B→ (A→C)
A→ (A→C)
A→C

21.

A→ (B→A)
A ·B→A export

21′. Corresponding rule of inference

22. Multiplying an implication withC→
→C

A→B
1. (C→A) → (C→B)
2. (B→C) → (A→C)

(C→A) · C→A
(C→A) · C→B syllogism
(C→A) → (C→B) export

B→ [(B→C) →C]
A→ [(B→C) →C] syllogism
(B→C) → (A→C) commutativity

10 There are no items 10 to 19.
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19·1

Derivation of the formulas from their corresponding rules

1.
P ⊃ (A ⊃ B)
P ⊃ (B ⊃ C)
A · P ⊃ B
A · P ⊃ B · P
B · P ⊃ C
A · P ⊃ C
P ⊃ (A ⊃ C)

so for P = (A ⊃ B) · (B ⊃ C)
((A ⊃ B) · (B ⊃ C)) ⊃ (A ⊃ C)

2.
B ·A ⊃ B
B ⊃ (A ⊃ B)

3.
P ⊃ (A ⊃ B)
P ·A ⊃ B
P ·A ·X ⊃ B ·X
P ⊃ (A ·X ⊃ B ·X) P = A ⊃ B
(A ⊃ B) ⊃ (A ·X ⊃ B ·X)

19·2

4. Proof [[for]]export

P ⊃ (A ·B ⊃ C)
P ·A ·B ⊃ C
P ·A ⊃ (B ⊃ C)
P ⊃ (A ⊃ (B ⊃ C)) P = A ·B ⊃ C

5. Import

P ⊃ (A ⊃ (B ⊃ C))
P ·A ⊃ (B ⊃ C)
P ·A ·B ⊃ C
P ⊃ (A ·B ⊃ C) P = A ⊃ (B ⊃ C)
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6.
P ⊃ (A ⊃ C)
P ⊃ (A ⊃ B)
P ·A ⊃ B · C
P ⊃ (A ⊃ B · C) P = A ⊃ C ·A ⊃ B

19·3

7.

P ⊃ (A ⊃ C)
P ⊃ (B ⊃ C)
A ⊃ (P ⊃ C)
B ⊃ (P ⊃ C)
A ∨B ⊃ (P ⊃ C)
P ⊃ (A ∨B ⊃ C) P = (A ⊃ C) · (B ⊃ C)

8.
P ⊃ (x)[A ⊃ F (x)] P [[and]]A are x-free
P ⊃ (A ⊃ F (x))
P ·A ⊃ F (x)
P ·A ⊃ (x)F (x)
P ⊃ (A ⊃ (x)F (x)) P = (x)[A ⊃ F (x)]

9.

P ⊃ (A ⊃ (x)F (x))
P ·A ⊃ (x)F (x)
P ·A ⊃ F (x)
P ⊃ (A ⊃ F (x))
P ⊃ (x)[A ⊃ (x)F (x)]

19·4

10.
P ⊃ (x)[A(x) ⊃ B]
A(x) ⊃ (P ⊃ B)
(∃x)A(x) ⊃ (P ⊃ B)
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11.
P ⊃ ((∃x)A(x) ⊃ B)
(∃x)A(x) ⊃ (P ⊃ B)
A(x) ⊃ (P ⊃ B)
P ⊃ (A(x) ⊃ B)
P ⊃ ((x)A(x) ⊃ B)

19·5

Last time I set up a system of axioms for the intuitionistic calculus of proposi-
tion with the primitive terms → · ∨ W and the following axioms

A→A ·A
A→A ∨B

A→A ·B
B→A ∨B

A ·B→B ·A
W →A

and the following rules of inference

A
A→B
B

A→B
B→C
A→C

A ·B→C
A→ (B→C)

A→C
B→C
A ∨B→C

Implication Syllogism
xyExport

Import Disjunction

IfA is an expression composed of the primitive terms → · ∨ W and of letters
A,B, . . . denoting arbitrary propositions and if it can be proved from these
axioms that A can be asserted for any propositionsA,B, . . . then A is called an
identity of the calculus of propositions; e.g. I proved last time
A→ ((A→B) →B) is an identity. But most of the theorems I proved last
time were of a di�erent nature, namely similar to the second group of axioms
i.e. derived rules of inference. Moreover, the main

19·6

interest lies in the identities and the rules of inference are only means of obtai-
ning them. Now the identities have the int[[eresting]] property that they form
themselves a model for the axioms. To be more exact, if you interpret the primi-
tive terms in the following way
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1. Proposition means expression composed of letters and these symbols → ·
∨.

2. To apply the operation of → to two expressions A,B means to form
the expressionA→B and similarly for the other operations.

3. The class of assertable propositions are the identities.

Then it is easily seen that all axioms of both groups are satis�ed and it is this
particular model which one usually has in view if one speaks of the calculus of
propositions. This also leads to a more direct de�nition of identities, namely:
= anything obtained from expressions of these six forms whereA,B now deno-
te arbitrary expressions by a �nite number of their rules of [[inference]].

Now let us continue the deduction from the axioms. So far I have only pro-
ved theorems about → . Now let’s begin with absurdity.

20

Theorem about∨: commutativity, associativity11

23.

A→B
C→D
A ∨ C→B ∨D

A ·B→C
A′ ·B→C by export and import
(A ∨A′) ·B→C

23.1
¬A ∨B→ (A→B) but not vice versa
¬A→ (A→B) proved before
B→ (A→C)

23.1

(¬A ∨A) → (¬¬A→A) same proof

23.2

A ∨B→¬(¬A · ¬B)

24. Next come the theorems about¬.
11 Item 23, two items both labelled 23.1, and item 23.2 have been cancelled.
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Axiom 6 cannot be proved but almost:

W →¬A sinceW → (A→W )

Therefore this axiom is used pretty rarely in the subsequent development. I shall
always state it explicitly if a theorem depends on it. The essential results I have in
view are independent of this axiom 6 and also the axioms about or. But nevert-
heless I think this axiom is perfectly justi�ed in intuitionistic logic. It holds for
the interpretation I am going to give but also for the meaning of the symbols
which I explained in the preceding lecture, since W → A means [[that]] one
has a procedure to construct a proof of A if a proof for W is given. But every
procedure will do this because it can never happen that a proof forW is given.

24.

¬A→ (A→B) this depends on axiom 6
(A→W ) → (A→B)
W →B multiplication withA→

2112

25.

A→B
¬B→¬A

means

(B→W ) → (A→W ) multiplication →W

26.
A→¬B
B→¬A transposition 2. kind i.e. →¬ commutativity

12 Facing right page contains the following derivation:

[ (A→B) → (¬B→¬A) formula of syllogism ]
(A→B) · (B→C) ·A→B
( ′′ ′′ B→C
( ′′ ′′ A→C

→ (A→C)Application
¬A→¬(A ·B)
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A ·B→W
¬(A ·B) equivalent to both by export and import

Hypothesis: becauseA→ (B→W ) consequenceB→ (A→W ).

27.

C→¬¬C
¬C→¬C from (26)

C→ [(C→W ) →W ]

28.

¬¬¬C→¬C transposition

29. Partial transposition

C ·A→B
C · ¬B→¬A

C ·A→¬B
C ·B→¬A

For a proof:

(C ·B→W ) ·A→W

B→ [(B→W ) →W ]
C ·A→ [(B→W ) →W ] syllogism
C · ¬B→ ¬A import

C ·A ·B→W

C ·B ·A→W import
C ·B→¬A export

22

30.

A→B
A→¬B
¬A
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A→B
A→ (B→W )
A→W

30*

A · ¬A→B
A · (A→W ) →W
W →B syllogism

31.

A · ¬B→¬(A→B)

A · (A→B) →B
A · ¬B → ¬(A→ B) partial transposition

32.

¬¬(A→B) → (¬¬A→¬¬B) distrib. for¬¬

¬¬(A→B) · ¬B→¬A partial transposition 31
¬¬A→ ¬¬B ′′ ′′

¬¬(A→B) → (¬¬A→¬¬B) export

Inverse
¬A→ (A→B)
¬(A→B) → ¬¬A
(¬¬A→¬¬B) · ¬(A→B) →¬¬(A · (¬¬A→¬¬B))
(¬¬A→¬¬B) · ¬(A→B) →¬¬B
¬¬B→¬¬(A→B)
(¬¬A→¬¬B) · ¬(A→B) → contradiction

33.

¬¬(A ·B) →¬¬A · ¬¬B
A ·B→A
¬¬A ·B→¬¬A etc.

Inverse
A→ (B→A ·B)
¬¬A→ ¬¬(B→A ·B)
¬¬(B→A ·B) → (¬¬B→¬¬(A ·B))
¬¬A→ (¬¬B → ¬¬(A ·B)) syllogism
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23

34. Finally we need the following formula for “or”

¬A · ¬B→¬(A ∨B)

but that is

(A→W ) · (B→W ) → [(A ∨B) →W ]

that is, one of our rules of inference but expressed as a formula. Now it can be
shown quite generally that for any demonstrated rule of inference also the cor-
responding formula can be demonstrated but I shall not prove this case [[which
is]] quite simple.

Su�cient [[to show that]]

A ∨B→ [(A→W )(B→W ) →W ] by commutativity

butA → [ ′′ ′′ ′′ ] can be ass[[erted]]

since [A · (A→W )] →W can, hence A · (A→B) · (B→W ) →W by
addition of premiss, hence the theorem [[follows]] by export. But in the same
wayB→ [ ] can be proved henceA ∨B by the rule of disjunction.

1.* (¬A ∨A) → (¬¬A→A)

1.

A→ (¬¬A→A)
¬¬¬A→ (¬¬A→A)
¬A→¬¬¬A
¬A→ (¬¬A→A)
(¬A ∨A) → (¬¬A→A) depends on axiom 6

2. A ∨B→¬(¬A · ¬B)

¬A · ¬B→¬A
¬¬A→¬(¬A · ¬B) butA→¬¬A
A ∨B→¬(¬A · ¬B)
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3.

A→C
¬A→C
¬¬C

namely
¬C→¬A
¬C→¬¬A
¬¬C

35. Now what is the relationship of this calculus of propositions to the classical?
There we have the following results:

1. ¬¬A→A is not an identity, proved by Heyting. This was shown in the
paper of Heyting I quoted last time.

2. If we add the axiom¬¬A→A then we obtain the classical calculus, and

3. If A is an identity of the classical calculus ¬¬A is an identity of the in-
tuitionistic calculus.

24

I shall give a brief indication of a proof for the second of these theorems. In
classical logic the meaning of the logical operations can be explained by the truth
tables e.g.

A ·B A
B T F

T T F
F F F

A→ B A
B T F

T T F
F T T

etc., and a formula is true in the classical calculus if it gives the truth value T
whatever truth values you may assign for the letters contained in it. Now the
truth tables can in a sense themselves be expressed by formulas, e.g. the second
by the following four formulas:

A ·B→ (A→B)

A · ¬B→¬(A→B)

¬A ·B→ (A→B)

¬A · ¬B→ (A→B)

and now we have the remarkable fact that all formulas corresponding to the
truth tables of any
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25

of the logical operations ¬, → , ·,∨, are identities also in intuitionistic logic.
E.g. we hadB→ (A→B), hence by addition of premissA ·B→ (A→B).
In order to see that you can prove all of these formulas and the analogous ones
for the other notions. You have only to work up the formulas which we have
proved already and sometimes add a premiss. But from this fact it follows by
complete induction that also for a composite expressionA which contains any
number of letters, say A1, . . . , An, you can prove its truth table or rather the
formulas corresponding to its truth table in intuitionistic logic. I.e. letU be any
conjunction of these letters or negations of these letters. Let’s call such a con-
junction a primitive conjunction (here you have all the primitive conjunctions
of two lettersA1, A2). Forn letters there are exactly 2n primitive conjunctions.
Then I say ifU is any primitive conjunction of the lettersA1, . . . , An contained
in the expressionA then eitherU →A orU →¬A is an identity

26

in intuitionistic logic (according as to whether this or that is true in classical
logic). The theorem is of course true ifU is a primitive conjunction of perhaps
more letters than those contained inA and in this form we prove it by induction
on the number of letters of whichA is composed. IfA is a single letter it is trivial.
If it contains more than one letter it must be of the formB ◦C where ◦ is some
of the logical operations (∨ ·→ ) and whereB,C contain fewer letters. Hence
for B,C we have already U →B or U → ¬B and U → C or U → ¬C
is an identity, hence [[there are]] four cases. Assume e.g. the underlined, then

U →B · ¬C but
B · ¬C→B ◦ C

→¬(B ◦ C)

Hence by the rule of syllogism U →B ◦ C or U → ¬(B ◦ C) is an identity
which was to be proved and similarly in the other three cases are dealt with.
From this argument it follows that if A is an identity of the classical calculus,
thenU→A is an intuitionistic identity for any primitive conjunctionU of the
letters contained inA
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27

and we have now to deduce from this that then A itself is an identity and this
is done by diminishing successively the number of letters contained in U . Let’s
denote an arbitrary primitive conjunction13 of the letters A2, . . . , An by U ′.
ThenA1 · U ′ and ¬A1 · U ′ is a primitive conjunction ofA1, . . . , An hence

A1 · U ′→A, ¬A1 · U ′→A

demonstrable by export;

A1 → (U ′→A);¬A1 → (U ′→A)

and we wantU ′→A.14

So the rule of inference we need is this:
P →Q
¬P →Q
Q

From the intuitionistic axioms alone it follows only that¬¬Q. Therefore here is
the place (and the only [[place]]) where we apply the additional axiom of double
negation. So we can cancel successively the letters Ai from U until we �nally
obtain the formula A and this concludes the proof that the additional axiom
¬¬A→ A gives the whole classical logic. It is to be noted that this remains
true if you leave outW →A because this is a consequence of¬¬A→A since
W → ¬A we proved before, hence W → ¬¬A for any A hence W →A by
syllogism.

28′15

36. With this I am concluding this treatment of the calculus of propositions and
am beginning with the theory of the quanti�ers which is usually termed calcu-
lus of predicates. In this theory the primitive objects are no longer propositions

13 Gödel has mistakenly written “primitive disjunction” instead of “primitive conjunction”
twice in this paragraph.

14 Gödel has forgotten to add the index 1 to theA in the antecedent several times.
15 The �ve successive pages 28′, 29′, 30′, 31′, and 32′ have been ripped o� the notebook. It

appears that Gödel wrote them anew, pages 28–30 below, and inserted the old versions next to
the new ones.
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because it makes no sense to apply a quanti�er to a proposition. In order that it
make sense to apply (x) is something this16

29′

something must depend on the variablexhence be a propositional function rat-
her than a proposition [and the result of applying the quanti�ers to anyA will
then in general again be a propositional function because it may contain several
variables. Propositions are a special case of propositional functions, namely tho-
se with 0 variables.] That we have to do with propositional functions instead of
propositions gives the notion of assertion a di�erent meaning. That a proposi-
tional function is asserted means that all propositions obtained by substitution
for the variable arbitrary objects of their respective domains are asserted.

So the primitive notions of the new system will be

1. Class of propositional functions – but [[these are]] not the only primitive
objects

2. Variables

3. Terms[[, that is,]] a certain superclass of the variables in the applications
(i.e. the models of this system)

These primitive objects are symbols and combinations of symbols. In particular
the variables are usually single letters and the terms are single letters or composite
expressions which

30′

denote objects of the theory under consideration, e.g. 2, but also 2+3 [[are]]terms
and also x+ y. Terms may contain variables.

The primitive operations are

1. → ,∨, · yielding propositional functions if applied to propositional
functions.

16 This page ends with a cancelled passage with items numbered from 1 to 3, almost identical
with the list on p. 28 below.



54

2. The two operations of quanti�cation (x)A, (∃x)A which applied to a
propositional function and a variable give a propositional function.

3. Substitution denoted byA(xt ), an operation which applied to a proposi-
tional function A, a variable x and a term t yields a propositional func-
tion A. It means: The result of substituting t for the variable x [for the
free variables not those bound by quanti�ers].

Next we have the notion that a propositional function is independent of
the variable x, de�ned byA(xt ) = A for any t [which means in the application
thatA does not contain the variable x].

31′

Now as to the axioms we have at �rst certain axioms concerning substitution
namely

1. A(xx) = A for any variable x 1.′W (xt ) = W 17

2. Substitution is distributive with respect to∨ → ·

(A→B)(xt ) = A(xt ) →B(xt )

3. With respect to quanti�ers it behaves like this

[(x)A](xt ) = (x)A

[(x)A](yt ) = (x)[A(yt )] for y 6= x similarly for ∃

From this it follows by de�nition of independence that (x)A and (∃x)A is in-
dependent of x.

Now let us call atomic propositional function any such propositional func-
tion which [[is]] neither a disjunction nor a conjunction nor an implication nor
a quanti�cation of any other proposition. Then it is reasonable to assume as an
axiom that any propositional function is obtained by a �nite number of appli-
cations of the logical operations from atomic ones. Sometimes [[we also have]]
uniqueness.

17 Here Gödel has mistakenly writtenA(xx) = x andW (xt ) =.
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28

36. With this I am concluding the treatment of the calculus of propositions and
beginning with the theory of quanti�cation (calculus of functions). That could
be done in the same abstract way as for the calculus of propositions introdu-
cing quanti�cation as a new operator (or rather two operators), where however
the primitive objects would now have to be called propositional functions in-
stead of propositions because in order to apply a quanti�er the expressions to
which you apply it must contain a variable x. But it [[is]] better for my purpo-
ses to con�ne attention to a partial model of this abstract system. In this model
the propositions are combinations of symbols, more particular combinations of
symbols of the following kinds.

1. First letters x, y, z, . . . (called variables for individuals).

2. Another kind of letters α, β denoting constant individuals.

3. A third kind of letters K,R, S denoting relations between individuals,
monadic K(x), dyadic R(x, y), etc. (where to each letter is assigned a
certain de�nite number of arguments).

4. A fourth kind of letters f, g, h denoting functions whose values and ar-
guments are individuals again, f(x), g(x, y), etc., again with any num-
ber of arguments.

29

37. Expressions containing only the �rst, second, and fourth kind of symbols are
called terms. To be more exact, i.e.x, y, . . . α, β, . . . are terms and if t1, . . . , tn
are terms andf is a function letter variable withn arguments thenf(t1, . . . , tn)
is again a term.

38. Now if t1, . . . , tn are terms andR is a relation letter withn arguments, then
R(t1, . . . , tn) is called an atomic propositional function or atomic formula.

39. A propositional function or formula in general is de�ned thus:

1. Every atomic propositional function is a propositional function and W
is one.
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2. IfA,B are propositional functions thenA ∨B,A→B,A ·B, (x)A,
(∃x)B is again one, where (x) is any arbitrary individual variable (which
may or may not occur inA and which may or may not be bound inA).

It is to be noted that the letters and formulas written on the blackboard
are never themselves the formulas about which we speak but they denote these
formulas. E.g. the variable x is not a de�nite variable of the formalism under
consideration but a variable running over all variables of the form under con-
sideration, and → is not the symbol of implication of the formalism but it
denotes the operation of writing two formulas beside each other with a symbol
of implication in between them. Particularly interesting from this standpoint is
this operation of application. It denotes itself in a sense.

30

40. A variable in an expression to which a quanti�er refers is called bound, other-
wise [[it is called]] free. A variable may be bound in one place and free in another
in the same propositional function e.g.K(x) ∨ (x)R(x, y).

41. If t is a term andA a propositional function then byA(xt ) is meant the result
of substitutingx by t in all places where it is free. [Each quanti�er occurring in a
formula has a certain scope e.g. here and the binary logical operations have two
scopes: Domination, inside]

42. Next we have the notion of assertion, i.e. the asserted propositional functi-
ons form a certain subclass of the propositional functions characterized by the
axioms. The meaning of assertion is now slightly di�erent because now the as-
serted expressions are propositional functions, i.e. contain free variables.

30·118

Last time I de�ned what I understand by a propositional function and what
[[I understand by]] terms, namely certain combinations of symbols, to be more

18 Pages 30·1, 30·2, 30′, and 31′, as well as pages 33, 33·2, and 34·3 are ripped o� pages inserted
between the pages 30–31, 31–33·1, and 34–35. It is not entirely clear in which order the pages should
be arranged. The summary pages 30·1 and 30·2 seem to follow the page 30. There seem to be two
alternative continuations to p. 31: Page 34 is the original page 32 with the new page number heavily
written over the old one; the page numbers 35 and 36 are also later additions drawn over previous
page numbering. We give the original version, pages 34–36, �rst, followed by the new version on
pages 32–33 and the addition pages 33·1, 33·2, and 34·3.
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exact of four kinds of symbols: variables for individuals, constant individuals,
relations, functions. I shall use the word expression for we also de�ned certain
operations on expressions, namely A · B,A ∨ B,A→ B. These three ope-
rations produce a new propositional function out of two given ones, namely
the one obtained by (x)A [[and]](∃x)A = binary operations producing a pro-
positional function out of a variable and a propositional function where this
operation is performed by writing.

[ [[I]] wish to remark that it is more conv[[enient]] to de�ne this operation in
a little di�erent manner, namely: changing �rst the variablexwhenever it occurs
in A into another symbol, say by underlining it, and then write the quanti�er
in front. That comes to this: that we use another kind of symbols for bound
variables (namely underlined letters). Now if we con�ne the word term only to
expressions containing no underlined variables

30·2

one can drop the cumbersome restriction in the �rst two axioms of quanti�-
cation we had last time. Let us adopt this not for the sequel.]

We further had a ternary operation substitutionA(xt ) producing a proposi-
tional function out of a propositional function, a variable and a term and we had
the notion “An expression A does not depend on x” which meant: x does not
occur free inA or in other words thatA(xt ) = A for any t. I also need the ope-
ration of simultaneous substitution for several variablesA(xt1

y
t2

) = A(xt1)(yt2) if
y occurs in t1.

A proposition is to be considered as a special kind of propositional function
namely as one without free variables. These �ve operations and also¬ →← I call
the logical operations. Next I de�ne the class of asserted propositional functions
or identities of the intuitionistic calculus by the following axioms.

31

Assertability of a propositional function means that the proposition can be as-
serted for arbitrary constants put in place of the free variables. Of course this
remark is concerned only with the int[[ended]] meaning of the formula and its
application.

43. Now as axioms we have
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1. All axioms and rules of the calculus of propositions formulated for the
propositional functions, e.g. for any propositional functionA,A→A ·
A can be asserted or ifA,B,C are any propositional functions and [[if]]A→B,
B→C can be asserted then [[so can]]A→C .

2. The following axioms for the quanti�ers

i group

1. For anyA and any variable x and any term t: [(x)A] →A(xt )

2. A(xt ) → (∃x)A

which I call formal axioms as opposed to rules of inference to be more ex[[act]].

ii group

3. A→B A independent of x
A→ (x)B

4. A→B B independent of x
(∃x)A→B

These are the axioms of intuitionistic logic as usually stated. There are however
others usually not stated explicitly but satis�ed in every application and which
therefore should be added.

34

42. Now let us deduce some theorems. Since we have assumed all axioms and
rules of the calculus of propositions we can prove all theorems proved before
replacing the term proposition by propositional function.

43. Theorem

(x)A→A
A→ (∃x)A

can be asserted for anyA putting x = t in axioms 1, 2.
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44.
A→B
(x)A→ (x)B

(x)A→A axiom
(x)A→B syllogism
(x)A→ (x)B since x not free inA

45.
A→B
(∃x)A→ (∃x)B

Proof [[is]] the same [[as in 44.]]

46.

(∃x)A→¬(x)¬A

But not inverse [[as in]] in classical logic[[’s]] de�nition [[of the quanti�ers]].

(x)¬A→¬A
A→¬(x)¬A transposition 1
(∃x)A→¬(x)¬A rule ∃

46.1

(x)¬A→¬(∃x)A

Also inverse but not nec [[essarily]]

Transp[[ose]] to 46

46.1
¬¬(x)A→ (x)¬¬A commutativity of (x) with¬¬,

inverse [[does]] not [[hold]]

(x)A→A
¬¬(x)A→ ¬¬A transposition applied [[twice]]
¬¬(x)A→ (x)¬¬A

35

47. As I remarked before if we add¬¬A→A for every propositional function
Awe obtain the ordinary calculus exactly as it was the case with the calculus of
propositions.
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48. But the second theorem about the intuitionistic calculus of propositions,
namely the theorem by Glivenko that ifA is an identity of the ordinary calculus
then¬¬A is one of the intuitionistic, becomes false now.

E.g. classically for every propositional functionA, (x)(A∨¬A) is an iden-
tity but intuitionistically not even¬¬(x)(A∨¬A) is an identity for every pro-
positional function[[e.g.]]A = (y)R(y, x) (I shall prove that later), i.e. we can
add without contradiction the axiom¬(x)(A∨¬A) for certain propositional
functions. We cannot add ¬(A ∨ ¬A) for any propositional function or pro-
position because by Glivenko’s theorem¬¬(A∨¬A) can be asserted for every
propositional function. I.e. in intuitionistic logic, the law of excluded middle
cannot be negated without contradiction for any

36

single proposition but its simultaneous assertion for a set of propositions can be
negated without contradiction. Brouwer claims even more, namely that this is
a theorem of intuit[[ionism]] for certain propositional functions.

49. Other classic theorems of this type (where not even ¬¬ is intuitionistically
demonstrable):

(x)[¬¬A→A]

(x)¬¬A→ ¬¬(x)A

i.e. it might happen [[that both]] (x)¬¬A,¬(x)A. ¬¬(x)A→ (x)¬¬A can
be proved, hence¬¬(x)A [[is]] stronger.

50. But instead of this Glivenko theorem we have here two other theorems connec-
ting classical and intuitionistic logic, namely19

51. The purpose of the calculus of functions is of course to be applied to mathemat-
ical theories e.g. number theory

[[Let]] k [[be]] a class of natural numbers20

(k)[

ϕ(k)︷ ︸︸ ︷
(x)k(x) ∨ (∃x)∼k(x)]

19 This passage continues on page 37.
20 This shorthand passage at the bottom of p. 36 does not seem to belong anywhere in parti-

cular.
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(k)[ϕ(k) ∨ ¬ϕ(k)]

But [[there exists]] already a relationR such that

¬(k)[ϕ(k) ∨ ¬ϕ(k)]

where

ϕ(k) = (x)R(k, x)

32

An application of this logic consists in this: that the letters K,R for relations
and f, g for functions now denote certain de�nite constant functions or re-
lations. The primitive functions or relations of this theory e.g. x = y, x >
y, x + y, x · y and the letters α, β for constant individuals denote certain de-
�nite objects of the theory e.g. π. Furthermore we have certain axioms speci�c
for the theory under consideration (e.g. x + y = y + x) and perhaps rules of
inference speci�c for the theory e.g. complete induction

F (0) , F (x) → F (x+ 1)
F (x)

and a proposition can be asserted in this theory if it follows from these speci�c
axioms and rules of the theory together with the logical axioms and rules.

52. And now if this theory is at all intuitionistically meaningful we have to assu-
me that these primitive

33

relations R and functions f are constructive, i.e. one must have a procedure
which allows to decide for any given individuals a1, . . . , an whether the relati-
onR(a1, . . . , an) subsists and a procedure which allows to calculate the value
of any primitive functions f(a1, . . . , an) for given arguments. And this has the
consequence that for atomic expressions the whole classical calculus of propo-
sitions will hold. To be more exact, let us call our expression unquanti�ed if it
contains no quanti�ers i.e. is built up of atomic propositions by means of the
operations of calculus of propositions alone. Then of course also for all unquan-
ti�ed expressions you can decide their truth or falsehood for any argument i.e.
¬A ∨A assertable for unquanti�ed expressions. But this implies¬¬A→A.

53. Therefore if we think only of this application, we can add to the intuitionistic
calculus of functions the following axiom:
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¬¬A→A can be asserted for any unquanti�ed expressionA.

By our previous theorem this has the consequence that

33·1

every identity of the classical calculus can be asserted for unquanti�ed expres-
sions. Therefore the �nal de�nition of identity of the intuitionistic calculus of
functions is this: The identities are the smallest class of propositional functions
which can be taken as the class of assertable propositions in accordance with
these axioms (including this one) which means the same thing as: An identity
is a propositional function obtained from formal axioms by a �nite number of
applications of the rules of inference. And the identities of the ordinary classical
calculus are de�ned in an analogous way assuming this axiom for all propositio-
nal functionsA (not only atomic ones).

In the application it happens very often that we have several kinds (or types
of individuals) [e.g. points and straight lines in geometry] and correspondingly
several kinds of individual variables running over these di�erent types. Practi-
cally nothing is changed by that.

33·2

The only things that are changed are the following:

1. The de�nition of term f(a1, . . . , an) is now a term only if a1, . . . , an
a[[re]] terms of certain speci�ed types (determined by f ) and this whole
expression is then a term of a de�nite type determined by f .

2. In the formal axioms of quanti�cation we have now the restriction that t
must be a term of the same type as x.

Everything else including all theorems I am going to prove remain literally the
same.

If we want to build up the calculus of functions abstractly we would ha-
ve the following primitive terms: propositional function, term, var[[iable]] (⊆
[[term]]), ass[[ertable]] propositional function, W , the �ve logical operations,
the operation of substitutionA(xt ) and we would have to assume in addition to
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these axioms several axioms about substitution, namely distributivity resp. com-
mutativity with respect to logical operations (A→ B)(xt ) = A(xt ) → B(xt )
and [(x)A](xt ) = (x)Awhich expresses the fact that21

34·3

An atomic expression would be de�ned as one which is neither and for certain
propositions we would need the axiom that any propositional function can be
obtained . . .

It is easily seen that all these axioms are satis�ed in the model described if
identities are taken as assertable propositional functions.

37

54.Theorem. If you con�ne yourself to such expressions as contain only the logi-
cal operations → , · , (x) (hence also¬) (but do not contain∨, ∃) then classical
and intuitionistic logic become identical, i.e. every classical identity not contai-
ning ∨ and ∃ is an intuitionistic identity. Now these notions in classical logic
are su�cient to de�ne the others, since

(∃) ≡ ¬(x)¬ p ∨ q ≡ ¬(¬p · ¬q)

55. Proof [[is]] very easy: we prove that¬¬A→A can be asserted for any formula
A not containing∨,∃. Proof by induction on the number of logical symbols in
A:

1. If = 0 then either A is atomic or = W . In the �rst case theorem is true by
the axioms, in the second: ¬¬W →W or ((W →W ) →W ) →W since
W →W is assertable and generally, if A [[is]] assertable and B [[is]] arbitrary
then (A→B) →B because

A→ [(A→B) →B] proved
Theorem syllogism

2. If> 0,Amust have either one of the following forms:

1. A = B→C

2. A = B · C
21 The backside of page 33·2 is numbered 34·3; there are no pages 34·1 and 34·2. This is probably

Gödel’s mistake and the following page should have been numbered 33·3.
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3. A = (x)B for some variable x

whereB,C contain fewer logical symbols [[thanA]]

38

and by induction we know ¬¬B→ B,¬¬C → C can be asserted. I have to
show that the following expressions also be assertable:

¬¬(B→C) → (B→C)
¬¬(B · C) →B · C
¬¬(x)B→ (x)B

But before we proved the following distributivities for¬¬:

1. ¬¬(B→C) → (¬¬B→¬¬C)
B→ ¬¬B double negation
(¬¬B→¬¬C) → (B→¬¬C) multiplication →¬¬C
¬¬(B→C) → (B→ ¬¬C)
¬¬C→C inductive assumption
(B→¬¬C) → (B→C) multiplicationB→
¬¬(B → C)→ (B → C) syllogism

2. ¬¬(B · C) → (¬¬B · ¬¬C)
¬¬B · ¬¬C→B · C Leibniz
¬¬(B · C) →B · C syllogism

3. [ (1)¬¬B→B assumption]
(x)B→B
(2)¬¬(x)B→¬¬B transposition 2. kind
¬¬(x)B→B syllogism (1)(2)
¬¬(x)B→ (x)B rule of universal quanti�cation

These distributivities [[are]] not true for∨:¬¬(A∨B)→¬¬A∨¬¬B [[does
not hold]].

So if we understand by “propositional function” only a propositional func-
tion not containing∨ ∃ then [[we]] can assert 1.) of course all former axioms (ex-
cluding those containing∨ ∃), 2.)¬¬A→A22 for every propositional functi-
on. But this is exactly a system of axioms for the classic system of the calculus of
functions (for expressions not containing∨,∃).

22 Gödel has mistakenly writtenA→¬¬A.
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This theorem is very surprising and it becomes still more so if we consider what
axioms were really used in its proof. 1.) We have not used axioms for∨ and ∃; 2.)
we have not usedW →A (as you can easily check). I.e. we have used

1. Positive logic:

A→A ·A
A ·B→A

A ·B→B ·A
The rules of export and import, syllogism & implication.

2. The axiom and rule for the universal quanti�er.

So these few and apparently constructive axioms su�ce to deduce [[in a]] sense
the whole classical non-constructive logic.

39.123

Last time I proved a theorem about the relationship between ordinary and in-
tuitionistic calculus of functions under the assumption that the atomic expres-
sions are decidable for any given argument. And this theorem was the following:
Every identity of the classical calculus not containing∨ or ∃ is an identity of the
intuitionistic calculus. And furthermore we had the following corollary: If you
have two theories, one intuitionistic and one classical, with the same speci�c
axioms and if furthermore

1. The primitive relations of the theories are decidable and the primitive
functions calculable;

2. For every axiom containing ∃x, p ∨ q also the corresponding theorem
with¬(x)¬, ¬(¬p · ¬q) holds in the intuitionistic theory. Then

Every theorem of the classical theory which doesn’t contain ∃ [[or]]∨ holds also
in the intuitionistic theory. If the theorem under consideration contains de�ned
terms then of course the requirement is that in their de�nitions no ∨ and ∃
occurs.

Examples of theories which satisfy the hypothesis are e.g. number theory or al-
gebra

23 The pages 39.1-39.3 were apparently ripped o� from the �rst notebook and stacked between
pages 63iv and 64 of the second one. They appear to be an alternative continuation for p. 38.
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39.2

(in the sense of the theory of algebraic equations) or also metamathematics.
Theories which do not satisfy the hypothesis are analysis or set theory. They
don’t satisfy the hypothesis because the speci�c axioms are not the same in clas-
sical and intuitionistic analysis [[or set theory]]. Classical analysis and set theory
admit impredicative de�nitions which means that [[they]] assume certain exis-
tential axioms about real numbers and sets, which are rejected by the intuitio-
nists.

But the interesting fact is that the di�erence between classical and intuitio-
nistic analysis doesn’t arise from the rejection of the law of excluded middle and
non-constructive existential assertions, but from the impredicative de�nitions
which were rejected already by the half-intuitionists (e.g. Poincaré and Borel).
[So it turns out that the restrictions which Brouwer puts on classical methods
of proof don’t go beyond those of the half-intuitionists as far as the formalism
is concerned.]

39.3

As to the question whether the intuitionistic [[theories]] actually always satisfy
this requirement that the primitive functions must be calculable and the primi-
tive relations decidable, I am afraid the answer must be no since Heyting uses
the set-theoretical ε-relation as a primitive and a set in the intuitionistic sense
(which is called species) may contain an arbitrary series of quanti�ers in its de�-
nition. But this does not disprove my statement that you always can analyse so
far as to obtain decidable relations, because if you have a de�nite species then
it is de�ned by some propositional functions, and I think it turns out that the
atomic expressions in this proposition are decidable if you analyse far enough.
And this makes it possible to de�ne the non-decidable ε-relation in terms of the
decidable one (so that you have to take only the latter as primitive).

By the way, from my theorem it would follow that if you con�ne yourself
to species in whose de�nition no∨ [[or]] ∃ occurs, you can assert¬¬(x ε y)→
(x ε y).

39

56. This then has the consequence that also for certain theories containing spe-
ci�c axioms it is true that if a theorem doesn’t contain the existential quanti�er
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and ∨, then it holds intuitionistically whenever it can be proved in the corre-
sponding classical theory where by “corresponding” I mean a theory with the sa-
me speci�c axioms. This evidently holds under the following assumptions about
the theory conc[[erned]]: If the speci�c axioms contain ∨ and ∃ then propositi-
on obtained by replacing p∨ q by¬(¬p ·¬q) [[and]] (∃x) by¬(x)¬must hold
in the intuitionistic theory and this [[is]] practically always satis�ed. Counter-
example:24 an axiom¬(x)(∃y)R(x, y), ¬(x)¬(y)¬R(x, y) doesn’t follow,
(∃x)(y)¬R(x, y) doesn’t follow either.

57. This gives then of course an intuitionistic proof for the freedom from con-
tradiction for the classical theory under consideration, e.g. number theory.

But such a consistency proof is of no great value as long as no satisf[[ying]]
i.e. really constructive meaning for the primitive symbols of intuitionistic logic
is given.

58. Now I wish to mention a second theorem connecting classical and intuitio-
nistic logics which holds under the same assumptions. In order to formulate it
I have to de�ne a stronger (i.e. more constructive) kind of negation than absur-
dity. Take a proposition of the form (x)A. Then

4025

the statement (∃x)¬A evidently is also a kind of negation of A but stronger
than¬(x)A because

(∃x)¬A→ ¬(x)A

can be asserted but not vice versa [¬¬of the inverse means (x)¬¬A→ ¬¬(x)A].

59. Now take a more complicated statement (x)(∃y)A. How negation to be
de�ned here:

(∃x)(y)¬A and this is 6= ¬(x)(∃y)A

and in general you see the constr[[uction]] is to be de�ned by shifting the sign
of absurdity as far inside as possible. By classical logic you can always shift a
negation over quanti�ers:

24 This addition at the bottom of the page is written in shorthand.
25 The �rst page numbered 40 is cancelled. On the bottom of the cancelled page there is a

shorthand addition: is the positive form really the strongest? [[Ist die positive Form wirklich die
stärkste?]] An uncancelled page 40 and a shorthand list of “maxims” begin the second notebook.
They’re followed by a fully cancelled page 41 and then a new page 41. We give the cancelled pages
40–41 �rst.
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¬(x) : (∃x)¬ ¬(∃x) : (x)¬

But in classical logic you can shift the negation also over the other logical sym-
bols¬ ∨ · , namely:

¬(p ∨ q) ≡ (¬p) · (¬q)

¬(p · q) ≡ ¬p ∨ ¬q

¬(p→ q) ≡ p · ¬q

41

But iterated application of this procedure you can always accomplish that sym-
bols of negation apply only to atomic formulas.

The uniquely determined formula obtained from a formulaA in this man-
ner I denote by A. Then A ≡ A in classical logic and in intuitionistic logic
we have A → A can be asserted (but not vice versa). So A is the intuitionisti-
cally strongest formula which is classically equivalent toA under these rules of
shifting the negation. I don’t prove this.

60. Now constructive negation of course de�ned by ∼A = ¬A and now the
second theorem connects classical and intuitionistic logic reads like this: ifA is
classically provable then ¬∼A is intuitionistically demonstrable. So not ¬¬A
but ¬∼A.
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Notebook 2

[40′]

Maxims Lectures26

0. Don’t write down every word but only the framework (do not get distrac-
ted by the upcoming ideas).

1. Before writing further, read through what was done the day before and
check the program for what needs to be done, then write 5 more pages
(perhaps after planning roughly beforehand).

2. Control all hours and breaks.

40

Let us call an expression positive if no symbol of → or ¬ occurs outside of a
quanti�er or to be more exact: An expression is called positive if it is obtained
from unquanti�ed expressions by sole application of the operations (x), (∃x),∨, ·.
In particular any normal form is a positive formula. In classical logic there exists
for every expression a uniquely determined positive expression which is equiva-
lent to it. It is obtained by �rst replacing p→ q by ¬p ∨ q and the shifting the
negation as far to the inside as possible using

41

De Morgan form and the formulas:

¬(x) ≡ (∃x)¬ ¬(∃x) ≡ (x)¬
Let’s denote the positive expressions obtained in this way fromA byA. E.g.

26

Max. Vorl.

0. Nicht jedes Wort schreiben, sondern nur das Gerüst (nicht durch das Eintragen von
Einfällen abhalten lassen).

1. Vor Beginn des Weiterschreibens das durchlesen, was am Tag vorher gemacht und Nach-
sehen des Programms, was nun zu machen ist und dann 5 Seiten weiterarbeiten
(eventuell nachdem vorher ungefähr überlegt).

2. Alle Stunde kontrollieren und Ruhepause.
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A = (x)(∃y)R(x, y) →¬(x)K(x)

A = (∃x)(y)¬R(x, y) ∨ (∃x)¬K(x)

Then A ≡ A [[holds]] classically but not intuitionistically. A is in a sense the
most constructive statement equivalent with A under these rules (of shifting
the negation) i.e. A→ A can be asserted intuitionistically for any propositio-
nal function. And now I de�ne constructive negation of A by∼A = ¬A e.g.
∼(x)K(x) would be (∃x)¬K(x) 6≡ ¬(x)K(x). (Applied to positive expres-
sions constructive negation has a simple meaning, namely dualising i.e. replacing
(x) by (∃x) and vice versa, and · by∨ and

42

negating the unquanti�ed expressions. Hence it is clear that [[the constructive]]
negation of a positive expression is again positive.)

And now one can prove this: IfA is classically demonstrable then¬∼A can
be asserted in intuitionistic logic (you see [[that]] ¬∼A is a weakening of ¬¬A
since∼A is stronger than¬A.)

Proof: Auxiliary theorem. Let A be a positive expression and let us denote
by A′ the expression obtained from A by replacing (∃x) by ¬(x)¬ and p ∨ q
by ¬(¬p · ¬q) and leaving it unchanged otherwise. ThenA→A′,A′ de�ned
by

A′ = A [[forA atomic]]
((∃x)A)′ = ¬(x)¬(A′)
((x)A)′ = (x)A′

(A ·B)′ = A′ ·B′
(A ∨B)′ = ¬(¬A′ · ¬B′)

[42′]27

Let28 Ap be the positive expression that belongs toA. ThenAp→A holds. Let
Np be the positive expression that belongs to¬A. So thenNp→¬A holds.

27 This passage on the bottom of the page right to p. 41 is written in shorthand German.
28 SeiAp der zuA gehöriger positiver Ausdruck, so giltAp → A.
SeiNp zu¬A gehöriger positiver Ausdruck, alsoNp → ¬A.
Dann gilt: von den beiden Ausdrücken ¬Ap ¬Np ist mindestens einer wahr (in der später

gegebenen Realisierung).
A bedeutet: jede reelle Zahl ist konstruierbar, also gilt¬Ap. Könnte man beweisen, dass nicht
¬Np gilt, so wäre gezeigt, dassA falsch ist Np → ¬Ap Ap → ¬Np.
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Then it holds: At least one of the expressions¬Ap,¬Np is true (in the rea-
lization given later).

Ameans: each real number is constructible so¬Ap holds. If one could pro-
ve that¬Np does not hold, then it would be shown thatA is false:

Np→¬Ap Ap→ ¬Np

43

But now the theorem to be proved follows also im[[mediately]] by recursion on
the number of logical symbols occurring inA.

1.A→A′ [[is]] assertable for matrices.

2. AssumeA→A′ [[is]] true. [[Then this is]] true also for (∃x)A.

[[Therefore]] (∃x)A→ [(∃x)A]′ [[and we get]] from [[the inductive]] assumpti-
on (∃x)A→ (∃x)A′. Hence (∃x)A→¬(x)¬A′ because (∃x) → ¬(x)¬.

But [(∃x)A]′ = ¬(x)¬A′. Hence the theorem [[follows]] and in the same
way [[this can be]] proved for other three cases using certain formulas we proved
earlier.

44

But now from this lemma the theorem to be proved follows immediately.

AssumeA is classically demonstrable. Then also ¬(¬A)′ is classically demons-
trable because and ′ are a both operations which give equivalent expressions
in classical logic. But now this expression contains no∨ and∃ because they have
been eliminated according to the de�nition of ′. Hence¬(¬A)′ is also intuitio-
nistically demonstrable by the previous theorem.

But¬(¬A)′→¬(¬A) since¬A→ (¬A)′ by lemma since (¬A)′ is a po-
sitive expression and we have only to apply transposition. But¬(¬A)′ is exactly
¬(∼A) by the de�nition of∼.

This theorem also holds for any theory with

45

any additional speci�c axioms (under the same assumption we had before). We
need this assumption because we applied the former theorem and all the other
steps of the proof go through without any assumption about the the theory.
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45.1

With this I am concluding the axiomatic treatment of intuitionistic logic. The
results obtained have been pretty much surprising in so far as they show that in a
sense the whole classical logic is contained in the intuitionistic logic. Of course it
is contained only formally i.e. the same formulas can be proved but the meaning
of these formulas is completely di�erent (e.g.¬(x)ϕ(x) [[and]]∼(x)ϕ(x)). But
this di�erence of meaning makes the result still more surprising since this means
that the non-constructive classical logic has a constructive interpretation. And
this makes one doubtful whether intuitionistic logic really is constructive or if
not perhaps some non-constructive elements are hidden in the axioms, which
is quite possible regarding the great complicatedness in the primitive terms. I
hope the interpretation which I am going to give will help to decide this ques-
tion in favor of intuitionistic logic at least in the case when this logic is applied
in theories with decidable primitive notions as e.g. number theory or algebra.
Namely, it turns out that in this case the primitive terms of intuitionistic logic
can be de�ned in terms of a system which is constructive in a more precise and
stronger sense; namely this system it will satisfy the following requirements:

1. The operations of the calculus of propositions are applied only to decida-
ble statements in which case there is no question as to their meaning and
in which case classical logic doubtlessly holds. So in particular, ¬, → ,
etc. is never applied to propositions containing quanti�ers because the
quanti�ers destroy the decidability, but only tounquantified expressions.

46

2. No existential quanti�ers at all occur i.e. mere existential propositions
cannot at all be pronounced but only the underlying constructions can
be pronounced.

3. Of course the primitive functions will be calculable and the primitive re-
lations decidable.

So every proposition in such a system looks like this: It is an unquanti�ed ex-
pressionM(x, y, . . . a, b, . . .) containing certain variablesx, y, . . . and certain
constants a, b, . . . and its assertion means this: If any objects x, y falling under
the range of the respective variables are given and if I calculate the function ap-
plied to them in this expression and then decide the truth or falsehood of the
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atomic propositions in this expression, thenM(x, y, . . . a, b, . . .) turns out to
be true. Recursive number theory, e.g., is such a system.

47

Existential quanti�cation can be introduced as mere abbreviation, if one wishes
to, by the following rules: If t is any constant term (i.e., one which contains no
variables but only constant functions and individuals) and if some expression
A(t) (containing t) can be asserted, then (∃x)A(x) can be asserted, and this
will be the only rule for existential quanti�cation which we allow. In particular,
existential assumptions never occur as premisses in any inference (nothing can
be concluded from them).

Hence such a system is trivially constructive in the sense de�ned in my �rst
lecture: If (∃x)A(x) can be proved then it can only have been obtained by an
application of the rule just stated and hence the last but one formula of the proof
A(x) gives the construction of such an x. So existential quanti�cation is a mere
abbreviation in such a system.

48

And now in a system Σ of this kind I explain the meaning of the logical operati-
ons as applied to a proposition of this same system Σ, and the result will again be
a proposition of Σ, and since [[Σ]] comprises the whole recursive number theo-
ry this gives, in particular, a de�nition of the logical terms as applied in number
theory.

The individuals of this system Σ are divided into an in�nite number of dif-
ferent types and I have �rst to make some preliminary cons[[iderations]] about
these types.

The lowest type consists of the non-negative integers. I denote this type by
I . The other types are de�ned by the following recursive stipulation.

If t1, t2 are any types de�ned already then t1τt2 is the type of functions whose
argument is of type t2 and whose value is of type t1 e.g.

IτI = type of functions of integers whose values are again integers.

(IτI)τ(IτI) = type of functions whose arguments are functions of in-
tegers and whose values are likewise functions of integers.
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I don’t introduce types for functions with several arguments but am treating
functions with several arguments in Church’s way i.e. f(x, y) is replaced by a
function with one argument g by (g(x))(y) = f(y).

The types are divided into levels in the following way:

1. I εL0 and only I εL0.

2. t1τt2 εLk+1 then and only then if both t1, t2 εL0 + · · · + Lk and at
least one of the two types t1, t2 belong toLk.

The levels are mutually exclusive, Lk · Ls = 0 [[when]] k 6= s and every
level except the zero’th and the �rst comprise more than one type.

To each type t (except I) belongs a certain value type V (t)29 namely

V (t) = t1

if t = t1τt2 and a certain argument type

Arg(t) = t2.

50

Evidently the value type and argument type always belong to a lower level than
T itself.

Now the unde�ned symbols of the system Σ are as follows:

1. For each type we have an in�nity of variables belonging to this type (de-
noted by Latin letters x, y, . . . a, b, . . . F,G, . . .) and

2. An in�nity of constants denoted by Greek letters (ϕ, χ,Φ, etc.).

We assume that the letters belonging to di�erent types be distinguished in
some way e.g. by superscripts marking the type. In addition to Greek letters the
symbol 0 denotes a constant of type I .

The symbols introduced so far are nothing else but what I called formerly
the individual variables and individual constants. [[Addition: ν (= successor)]]

29 Here Gödel has writtenW (T ) but thereafter uses V (t) instead.
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3. One primitive binary relation = (identity).

4. One primitive function “application,” namely application of a function
to its argument. No speci�c symbol for it

51

is introduced but application [[is]] denoted in the usual way by brackets
[[where]]F (a) means “the result of applying the functionF to the object
a.”

5. We have the symbols of the calculus of propositions∼, ·,∨,⊃, ≡which
are the classical notions since they are applied only to decidable propositi-
ons, namely unquanti�ed expressions. Therefore I denote them by other
symbols. The corresponding intuitionistic [[symbols]] I shall denote by
¬,&, v,→,�. They don’t occur in the system Σ.

It is clear how the expressions of this system are to be built up.

1. I de�ne what a term of type t is.

i. Every constant or variable of type t is a term of type t.

ii. If a is a term of type t2 and b is a term of type t1, b(a) is a term of type
t1τt2.

I wish to remark without proof that this way of writing, i.e., putting on-
ly the argument in brackets and not the function, also if the function is itself
a composite expression, is su�cient to avoid ambiguities (no further brackets
necessary).

A term is called “constant” if it contains no variables, i.e., only Greek letters.

52

2. If A,B30 are any terms of type I , then A = B is an atomic expression or
prime formula. It is quite essential that identity is only applied to terms of type
I , i.e., integers, because in order to satisfy the requirement of constructivity I

30 Here the termsA,B have originally been written in lower case, then corrected in formulas to
upper case. In a few places, Gödel has not written over the lowercase letters, but as the distinction
does not appear to carry any meaning, we have changed them all to upper case.
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enumerated [[last]] time, we must have decidable primitive relations. But f = g
is not in general decidable. E.g. for functions of integers f, g because this means
(x)(f(x) = g(x)), and even if f and g are calculable for any argument, you
may not be able to decide whether or not for all integers f(x) = g(x).

It is to be noted that the symbol of equality as used here is a metamathema-
tical operation which produces expressions out of other expressions (similarly as
⊃,∨, etc). If used in this sense I put a dot above it. SoA .

= Bmeans: the expres-
sion obtained from the expressions A,B by joining them by a sign of equality.
So this dotted equality is an operation (performed on expressions) whereas un-
dotted = is a relation between expressions (namely the identity relation). E.g. we
can state A(xt ) = A if x [[is]] not contained in A. So this was the de�nition of
an atomic expression.

3. A propositional function or expression in the system Σ is anything obtainable
from prime formulas by the operations of the calculus of propositions only.

52′

Last time I described a certain system of types where the lowest type I is formed
by the integers and every other type consists of the function with one argument
whose argument and value are of certain given other types. Then I began to
describe a formal system that I called Σ. The primitive symbols of this system
were the following:

1. For each type an in�nity of variables belonging to this type (denoted by
Latin letters x, y, F, . . .).

2. For each type an in�nity of constants belonging to this type (denoted by
Greek letters, one constant [[denoted]] by the symbol 0).

3. The symbol of = (which plays the role of the only primitive relation of
this system).

4. Brackets denoting the operation of application a which is the only pri-
mitive function of this system.

5. The operations of the calculus of propositions ∼, ·,∨,⊃,≡. They are
applied only to unquanti�ed expressions where they coincide with the
classical notions. Therefore I denote them in a di�erent manner.



77

52′′

These are all the primitive symbols of the system Σ (so in particular we have no
quanti�ers).

I have de�ned already what a term of the system Σ is or rather what a term
of a given type is; namely

1. Variables and constants of type t are terms of type t.

2. IfB is a term of type t2 andA a term of type t1τt2, thenA(B) is a term
of type t1.

The next thing to do is to de�ne what an expression or propositional function
of Σ is.

53

If A is a term of a type 6= I and B1 a term whose type is the argument type
of A, then A(B1) is again a term, whose type however belongs to a lower level
thanA because it is the value type ofA. If it is not yet the type I , one can iterate
this procedure and form A(B1)(B2), where B2 is an (appropriate) argument
for A(B1). After a �nite number of steps the expression must become of type
I because the level decreases with every step. So for every term A there exists a
series of termsB1, . . . , Bn such that if I write this series in brackets behindA I
obtain a term of type I . I call such a series (which is uniquely determined as to
the type of its members) a complete argument series forA. IfA,B are two terms
of the same type but 6= I , then A .

= B has no meaning so far, but I de�ne it
now to denote the expression:

A(x)
.
= B(x)

where x is a complete argument series consisting of variables di�erent from each
other and those inA,B.

54

Now to the axioms and rules of Σ. There are three groups:

i. Logical axioms. Every expression obtained by taking an identity of the clas-
sical calculus of propositions and substituting arbitrary expressions in place of
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the propositional variables is a formal axiom. The expressions substituted may
of course contain variables since assertion of a propositional function means
assertion of every proposition obtained.

ii.Mathematical axioms. They concern the constants which we denote by Greek
letters.

1. I choose the letter ν to denote the successor function for integers (a func-
tion of type IτI) and we have the axioms{

ν(x)
.
= ν(y) ⊃ x .

= y
∼(ν(x)

.
= 0)

}
Peano

Thus ν gives a unique notation for the integers 0, ν(0), ν(ν(0)), . . . .
The terms of this sequence I call numerals.

2. The other Greek letters will denote functions which can be de�ned in
terms of ν either explicitly or by recursion.

a. We admit the following schemes of explicit de�nition: Ifϕ is the function
to be de�ned, then the de�nition looks like this:

ϕ(x)
.
= A

where x is a complete
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argument series forϕ consisting of variables all di�erent from each other
and where A is an arbitrary term of type I which contains no variables
except at most those of the series x and in addition to those variables con-
tains only previously de�ned constants.

b. Now a recursive de�nition of a functionϕ: Here we have to suppose that
the argument type ofϕ is I , the value type is arbitrary, and the de�nition
looks like this

ϕ(0)(x)
.
= A x

ϕ(ν(x))(x)
.
= B x, x

where x is a complete argument series forϕ(0) consisting of variables dif-
ferent from each other and from x, and A,B are terms containing no
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other variables but the �rst x, the second x, x, and A contains only pre-
viously de�ned constants, and B in addition to previously de�ned con-
stants the letter ϕ but only in the combination ϕ(x) (by x, x).

56

I wish to remark that it is not necessary to assume this scheme of de�nition in all
its generality, but you can con�ne yourself to introducing by recursion the func-
tion P (n, f) which means fn in the usual [[sense]] (raising to the nth power)
and then all functions de�nable recursively by this scheme can be de�ned expli-
citly in terms of these constantsP . Also in the scheme of explicit de�nition one
could con�ne oneself to certain special cases. But I don’t need this reduction at
present.

If I say that these explicit and these recursive de�nitions are the axioms, I
mean more exactly the following:

I enumerate in some way all constant functions de�nable by these schemes,
where functions de�ned in a di�erent way are to be considered as di�erent func-
tions (even if they are extensionally the same function), and then you can asso-
ciate with each such constant a de�nite symbol (say a Greek letter

[[57]]

with a certain superscript). Then all these in�nitely many de�ning equalities
[written in the corresponding Greek letters with subscripts] are to be axioms of
the system.

So the following metamathematical theorem will be true given any termA
containing no other variables besides those of the series x. Then you can deter-
mine a constantϕ such thatϕ(x)

.
= A can be proved in Σ. This holds also ifA

is not of the type zero owing to the de�nition of .=, so this case (namely it means
ϕ(x)(y)

.
= A(y) for a certain sequence of variables y, but this falls under the

scheme assumed). Same remark applies to recursive de�nition. Of course the
same function, e.g. +, may have in�nitely many letters denoting it.

iii. Last group of axioms concerns equality:

1. x .
= x for some variable x

2. x .
= y ⊃ (A(zx) ≡ A(zy)) for any expressionA

implies⊃ T (zx)
.
= T (zy)
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This is a formal axiom for any expressionA and any variables x, y, z.

Rules of inference

i. Logical A A ⊃ B / B

Substitution A / A(xT )

[[where]] T [[is]] any term of same type as x containing perhaps variables.

Together with the �rst group of axioms, this implies that all rules of inference
of the classical calculus of propositions can be derived, because always A ⊃ B
is an identity [[whenB = A(xT )]].

ii.Mathematical IfA is any expression and x any variable, then

A(x0) A ⊃ A(xν(x)) / A

There is a stronger principle of induction which however can be derived from
this which reads like this: If x1, . . . , xn are any variables 6= x and T1, . . . , Tn
any terms of the same types, respectively, then from

A(x0) A(x1,...,xnT1,...,Tn
) ⊃ A(xν(x))

you can concludeA. The terms [[are]] quite arbitrary.
I am not interested now in this derivation but shall assume this stronger

rule as an axiom and wish only to give the intuitionistic reason for the cor-
rectness of this inference. Let’s writeA in the formB(x, x1, . . . , xn) marking
the variables occurring in it. Then the second premiss means by transposition
∼B(ν(x), x1, . . . , xn) ⊃ ∼B(x, T1, . . . , Tn) i.e. a counterexample for the
proposition B to be proved allows you to derive another one with a smaller x,
so after a �nite number of steps, you obtain one with x = 0 which is excluded
by the �rst premiss. It is clear that this inference is intuitionistically correct since
the terms TI are calculable.

58

iii. The next rule no 3 concerns identity.
Let S, T [[be]] any terms of equal type and x a complete argument series

consisting of variables di�erent from each other and the variables in S, T and
letE be any expression containing a certain variable z of the same type asS and
T . Then from

S(x)
.
= T (x)
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you conclude

E(zS) ≡ E(zT )

You see this is a certain principle of extensionality. If two functions S, T are ex-
tensionally the same then anything assertable about one also holds for the other.
I need this principle in a little stronger form: Namely letP be any expression not
containing any variable of x but perhaps variables of S and T . Then [[addition:
necessary because the de�nition by cases, see p. 91]]

P ⊃ S(x)
.
= T (x)

P ⊃ E(zS) ≡ E(zT )

This implies

1. The above by P = 0
.
= 0

2. P ⊃ x(zS) = x(zT ) x a term of type I

3. E(zS) ≡ E(zT )

We cannot express this rule of inference by a formula in Σ because the premiss
would have to contain bound variables (it says that for every German [[letter]] x
this holds but in Σ we cannot apply⊃ to formulas involving quanti�ers).

59′

First I have to show that our scheme of de�nition includes de�nition by cases.
The theorem which expresses this fact concerns the system Σ alone. All expres-
sions and terms are supposed to be expressions respectively terms of Σ. It is the
following:

LetT, S be two terms of type I containing no variables except those of the �nite
sequence x and A a propositional function containing no other variables than
x. Then you can �nd a constant % for which the following two propositions are
demonstrable in Σ:

A ⊃ %(x)
.
= T

∼A ⊃ %(x)
.
= S

Proof: Namely at �rst you can �nd for any expressionA a constant α such that

(α(x)
.
= 1) ≡ A
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(α(x)
.
= 0) ≡ ∼A

is demonstrable in Σ.

Proof. 1. De�ne a constant function ι(xy) = 0
1 ≡

∼(x=y)
x=y and functions repre-

senting the truth tables with 1 or T and 0 or F, e.g. a functionβ(0) = 1, β(1) =
0, β′, β etc., and now putting ι instead of = and these β, β′ instead of the logi-
cal operations, you obtain a term T for which the above is demonstrable, hence
[[you obtain]] also a constant.

But by means of this α, % can be de�ned as follows:

%(x) = α(x) · T + β(α(x)) · S
where + · are ordinary addition and multiplication which can be de�ned recur-
sively.

59

Now let us ask whether this system satis�es the requirements of strong construc-
tivity laid down in the last but one lecture. The �rst two, namely that the ope-
rations of the calculus of propositions are applied only to expressions without
quanti�ers and that we have no existential quanti�er are satis�ed.31 Now to the
third proposition which says that the primitive relations are decidable and the
primitive functions calculable. Now the only primitive relation = is evidently
decidable for any two primitive objects to which it is applied since for any two
numbers, you can decide whether they are of equal length or not. Hence it re-
mains to be shown that all functions denoted by Greek letters are calculable.
Now it is clear what it means that a function ϕ of
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the �rst level is calculable. It means that for any number k, you can can �nd a
number l such thatϕ(k) = l is demonstrable. But what does it mean for functi-
ons of higher levels to be calculable? The natural de�nition which suggests itself
is the following one:

A function F of any level is said to be calculable if for any complete argu-
ment series a consisting of given calculable functions (and perhaps numerals),
you can �nd a number k for which F (a) = k is demonstrable. This de�nition

31 There is an incomplete sentence written above this passage which seems to read “no quantif.
and gen. ass. expr.”.
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of calculability is not circular because it presupposes the notion of calculability
only for the argument types of F , i.e., for functions of a lower level. So it is an
inductive de�nition of calculability (the induction going by numerical levels)
[[which]] applies to system Σ. This de�nition means that we call a Greek letter
calculable if for any complete series of arguments consisting of calculable Greek
letters there exists a numeral, etc.

Now the function ν evidently is calculable in this sense and furthermore it
can be proved

61

that in the two schemes of de�nition, we have only calculable functions in the
de�niens. The function de�ned will likewise be calculable and therefore all con-
stant functions of the system Σ denoted by Greek letters are calculable. I don’t
want to give this proof in more detail because it is of no great value for our pur-
pose for the following reason. If you analyze this proof it turns out that it makes
use of the logical axioms also for expressions containing quanti�ers and since it
is exactly these axioms which we want to deduce from the system Σ.

So our attitude must be this that the axioms of Σ (in part[[icular]] the schemes
of de�nition) must be admitted as constructive without proof and it is shown
that

62

the axioms of intuitionistic logics can be deduced from them with suitable def-
initions. This so it seems to me is a program32

63i

Last time I set up the axioms and rules of inference of a certain formal system
Σ in terms of which I want to interpret intuitionistic logic. Three groups of
axioms:

1. All axioms of the classical calculus of propositions (because there are no
quanti�ers)

32 Page 63 has been ripped o� the notebook and inserted between pages 62 and 63i; however,
the pages 63i to 63iv seem to rather belong here, as the text on p. 63 continues on p. 64 and not
page 63i. Page 62 contains, a few lines below the cancelled passage, two new paragraphs which we
have moved below p. 63iv .
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2. Two of Peano’s axioms for the successor function ν and the de�ning
axioms for all other constant functions.

3. The two axioms of the equality sign.

Three groups of rules of inference:

1. Rule of implication and rule of substitution.

2. Rule of complete induction and

3. Rule of extensionality which I formulated in the following manner: LetS
andT be any terms of the same type and x a complete argument sequence
for S and T consisting of variables [[of appropriate types]] and let A be
an expression not containing any variables of x but perhaps variables of
S and T .

Then from

A ⊃ S(x)
.
= T (x)

we can infer

A ⊃ E(zS) = E(zT )

whereE is any expression.

The intuitionistic meaning of adding this hypothesis A is the following. Let
x1, . . . , xn be all the variables contained inA. Then these variables may occur
also in S and T

63ii

but not in x. The conclusion means that this holds for any constant a1, . . . , an
put in place of the x1, . . . , xn but this is clear because if ai are such that they
make A(a1, . . . , an) false this implication holds. But if the ai make A true,
then substitute ai in the premiss. Then Sa(x) = Ta(x) for every x, hence the
conclusion by the ordinary principle of extensionality.

The following two rules are immediate consequences

A ⊃ P (zS) = P (zT )

Furthermore by takingA = (0
.
= 0) we get the rules of extensionality in their

usual form and furthermore also the following rule
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S(x) = T (x), ϕ(zS)

ϕ(zT )

63iii

Now to the question whether this system satis�es the requirements of construc-
tivity laid down in the last but one lecture it comes to this: We have to show that
every atomic expression containing no variable is decidable i.e. T1

.
= T2 (where

T1, T2 are of type I is decidable). For this purpose it is su�cient to show that
for any constant terms of type I , there exists a numeral n such that T .

= n is
demonstrable. Now it is not di�cult to prove that making use of intuitionistic
logic, but this proof is of no particular value for us, because we want to redu-
ce intuitionistic logic to the system Σ. However, it seems to be possible to give
another proof which makes use of trans�nite induction up to certain ordinal
(probably up to the �rst ε-number would be su�cient).

63iv

Of course if you choose this course then the question arises in which manner
to justify the inductive inference up to a certain ordinal number and one may
perhaps be of the opinion that the axioms of Σ are simpler as a basis than this
trans�nite induction by which we want to justify them. Whatever the opinion
to this question may be, in any case, it can be shown that intuitionistic logic,
if applied in number theory (and also if applied in this whole system Σ) can
be reduced to this system Σ. In order to accomplish this reduction, I must �rst
introduce existential quanti�ers in the manner described in the last but one lec-
ture.

There33 exists however another proof. Namely it is possible, instead of making
use of the logical operators applied to quanti�ed expressions, to use the calculus
of the ordinal numbers (to be more exact of the ordinal numbers< ε0) + [[and]]
· .

I shall speak about this proof later on. The idea is the following: In order to
show that every function is calculable it is su�cient to show that every constant
term of type I can be transformed into a numeral by replacing in it

33 This passage has been written on p. 62 below the cancelled incomplete passage.
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successively all de�ned symbols by their de�niens, and in order to show that
this process of replacing comes to an end after a �nite number of steps, you can
associate an ordinal < ε0 with each term and then show that this ordinal is
diminished by every replacement.

I am �rst introducing two new kinds of variables:

existential denoted by x, y,

universal denoted by x, y.

I assume that to each of the former variables x corresponds exactly one existen-
tial x and x (hence in�nitely many to each type).

The formal system obtained by the introduction of these variables I call Σ
i.e. a term of Σ is de�ned by:

1. Every x, x, x and every Greek letter α is a term.

2. If T, S are terms, then T (S) [[is a term]] if S, T have

64

the appropriate types.

Propositional functions are obtained of the terms in exactly the same way as
before.

I call expressions actually containing the new variables of second kind, and
expressions not containing the new variables, i.e. belonging to Σ, of �rst kind.
Expressions of the second kind are to be considered as propositional functions
depending only on the free variables.

The possibility of denoting quanti�cation in this manner (namely by two
kinds of new variables x, x without any speci�c symbols like ∃) is of course
due to the fact that we want to admit only propositions of this special kind
(∃x1 . . . xm)(y1 . . . yn) where all existential quanti�ers precede all universal
ones. So a propositional functionA(x, y, z, u, v) containing besides free varia-
bles x also the new variables y, z and u, v means in ordinary notation this:

(∃ y z)(u v)A(x, y, z, u, v)
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and that thisA is asserted means in usual notation

(x)(∃ y z)(u v)A(x, y, z, u, v)

So far I have de�ned what meaningful expressions of Σ are; now what are the
axioms:

Axioms

1. All former axioms and rules are assumed but only for propositional func-
tions of the �rst kind (hence the same wording).

2. We have the rule of the existential quanti�cation. It will be little more
complicated than I explained in the informal exp[[osition]] because the
existential variable may be dominated by a universal variable x. In order
to infer such a statement, the proposition from which we infer must ha-
ve the following form: A(x, t1(x), t2(x), u, v) i.e., the terms which are
replaced by existential variables may contain the variable x but not the
variables u, v, so that we obtain the following rule:
LetA be an expression of the �rst kind containing the termsT1, . . . , Tm
and let x1, . . . , xn be any variables ofA not occurring in these terms Ti.
Then we can infer from

65

the expression obtained from A by replacing the terms T1, . . . , Tm by
existential variablesf1, . . . , fm of the same types asTi and di�erent from
each other, and by replacing xi by xi. Then if A can be asserted so can
B.
This rule is a little more complicated than the one I mentioned in the
informal expl[[anation]] in so far as the terms Ti which are replaced by
existential variables Fi need not be constant terms but may contain
variables in accordance with the fact that in the assertion the existential
variables are in general dominated by universal variables. But in order to
infer this proposition, the terms t1, t2 which you replace by existential
variables must not depend on these variables u, v. Therefore the restric-
tion that only such variables as do not occur in the terms t1, t2 may be
turned into underlined variables.

This is the system Σ. It is immediate that Σ is constructive34 since rule 2 is
34 Gödel has written “that Σ is constructive” where he certainly means Σ.
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the only one involving propositions of the second kind and it involves such pro-
positions only in the conclusion. It is evident that a proposition of the second
kindA(x1, . . . , xn, f1, . . . , fm, y1

, . . . , y
r
) can be proved in Σ then and only

then
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if, for some terms T1, . . . , Tm not contained in the variables y1, . . . , yr, the
expression A(x1, . . . , xn, T1, . . . , Tm, y1, . . . , yr) can be proved in Σ. And
this condition again is equivalent with the following: if

A(x1, . . . , xn, α1(x1, . . . , xn), . . . , αm(x1, . . . , xn), y1, . . . , yr)

is demonstrable in Σ for some constants α1, . . . , αm because there exist con-
stants in Σ satisfying the de�ning equalities

α1(x1, . . . , xn)
.
= T1

...

αm(x1, . . . , xn)
.
= Tm

To be more exact, ifTi should contain some variable di�erent fromx1, . . . , xn,
we form �rst terms T ′i by replacing these super�uous variables by arbitrary con-
stants and then these are correct de�nitions with T ′i instead of Ti.

Forn = 0 we obtain the following special case:A(a1, . . . , am, y1, . . . , yr)

is demonstrable in Σ if and only if there are constants α1, . . . , αn such that
A(α1, . . . , αm, y1, . . . , yr) is demonstrable in Σ.

Propositional functions di�ering only in the letters used
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for the universal and existential variables I call congruent. Evidently congruent
expressions are equivalent as to demonstrability (if one is demonstrable in Σ the
other one is so too).

Furthermore, also expressions di�ering only: 1.) in the letters used for the
existential variables and 2.) of the arguments of some existential variables are
equivalent as to demonstrability. I mean that the arguments are exactly the same
terms in both expressions but their arrangement is di�erent in both expressions,
which of course may imply that the type of these existential variables is di�erent
in these expressions (I don’t give the proof)
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The operations of the calculus of propositions∼,∨, ·,⊃ can of course be
applied also to expressions of the second kind in the sense of writing them beside
each other, but the meaning is completely di�erent from the usual one, e.g. it is
possible thatA ⊃ B andA can be proved butB is false. But still some analogies
subsist, e.g. if A,B then A · B (if all bound variables are di�erent in A,B) or
ifA ⊃W can be asserted, then∼A and vice versa.

In the sequel, I shall have to consider very often not single expressions but
sets of expressions (more exactly finite ordered sets or sequences of expressions). I
shall denote them by German letters A,B, in particular sequences of variables
by small
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letters a, f, x, y, x, y, x, y and sequences of constants by Greek letters α, β. The
case of a sequence with one member and with 0 members ∧ [[is]]not excluded
(one member = expression). I have to make use of several operations on these
sequences.

1. By xy or x, y I denote the sequence obtained by writing the sequence y
behind the sequence x (∧x = x∧ = x).

2. By x; y I denote the sequence obtained by writing y behind x but leaving
out members which already occur in y.

3. If T is a sequence of anyn terms T = (t1, . . . , tn) and S likewise of any
m terms S = (s1, . . . , sm), I denote by T(S) the following sequence
with nmembers:

First member t1(s1)(s2) . . . (sm)
...

tn(s1)(s2) . . . (sm)

under the assumption that the types of the ti and the si
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are such that these expressions here are again meaningful terms.
In particular, by this de�nition,∧(S) = ∧,T(∧) = T.
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3′. Evidently we have T(S1S2) = T(S1)(S2). Sometimes [[it is]] more
perspicuous to write S as an index TS = T(S).

I am also introducing types for these series of expressions. The type of the
series a1, . . . , an is to be the series of t1, . . . , tn of the types of a1, . . . , an. So
new types = series of old types. And if tτs are two of the new types, I mean by
tτs the type of the series T of terms such that T(S) is of type t whenever S is
of type s or if s = {s1, . . . , sn}35 t = {t1, . . . , tn} then

tτs = (t1τs1)τs2 . . . τsn
...

(tnτs1)τs2 . . . τsn

4. T and S are sequences of terms of the same type (i.e. ith member of S
same type as ith member of T).

I denote by:

T
.
= S

the following system of equalities

t1
.
= s1, . . . , tn

.
= sn e.g.∧ ≡ ∧ = ∧

and I say that T .
= S is demonstrable in Σ if all single equalities are demonst-

rable.

Now let A be an expression containing a certain variable x (perhaps in several
places). The remainder of the expressionA obtained by striking out this variable
x wherever it occurs I call matrix. I shall use the letters M,N,K [[to denote
matrices]]. So by this de�nition, a matrix would be a sequence of symbols with
vacant spaces, which becomes a propositional function if the vacant spaces are
�lled by a term of an appropriate type.
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However, it is more convenient to �ll the vacant space by a new kind of sym-
bol ξ (di�erent from all symbols introduced so far) and call the expression thus
obtained a matrix. In an analogous manner an expression obtained by striking
outndi�erent variablesx1, . . . , xn of arbitrary types and replacing them by the
symbols ξ1, . . . , ξn is called a matrix withn arguments. It is to be noted that the

35Gödel has originally written here s = {s1, . . . , sk} but de�nes s as s1, . . . sn thereafter.



91

symbols ξ1, . . . , ξn are not speci�ed as to type. They are just tokens to identify
the vacant spaces.

IfM is a matrix withn arguments andT a sequence ofn terms t1, . . . , tn of
appropriate types, I denote by M [T] the expression obtained by putting these
n terms in place of the empty spaces of

71

this matrix (i.e., in place of the ξi), i.e.,M [t1, . . . , tn] = M
[
ξ1,...,ξn
t1,...,tn

]
.

Now let A be any expression and let a be the sequence of all free variables
occurring in A arranged say in the order of their occurrence and in the same
manner f and x underlined the sequences of all existential respectively universal
variables in A. Then you can �nd a uniquely determined matrix M such that
A = M [a, f, x].

This is the standard representation of expressions which I shall use. The
aforementioned necessary and su�cient condition that A can be asserted in Σ
can now be stated as follows: If for a series % of constants of appropriate type,
M [a, %(a), x] can be asserted in Σ.

The advantage of this notation involving series of variables is that many
things can be
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formulated literally in the same way as if a, f, x were single variables:
E.g. the rule of equality: If T and S are series of terms of the same types as

a and if T .
= S can be asserted in Σ then M [T, f, x] ≡ M [S, f, x] [[can be]]

asserted in Σ, etc.

Also the metatheorems corresponding to the rules of definition can be pronounced
for finite sequences of terms: e.g.

1. If x is a series of variables in Σ and T a series of n terms containing no
other variables besides those of x, then you can �nd a series % of constants
such that %(x)

.
= T is demonstrable in Σ where %(x) need not be of type

I .

73
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Now I can begin to de�ne the meaning of the logical operations ·,∨, → , ( ), (∃)
as applied to expressions of Σ in such a manner that ifA,B εΣ thenA→B is
again εΣ and likewise for the others. The expressions A→B etc. are de�ned
only up to congruences and these operations → etc. will be inv[[ariant]] with
respect to congruences i.e. the notation of the

74

bound variables plays no role. Therefore I can assume that the bound variables
in A are all di�erent from the bound variables in B and that also all bound
variables are di�erent from all free variables. So let be

A = M [a, f, x]

B = N [b, g, y]

where the variables f, x are di�erent from g, y and a, b di�erent from f, x, g, y,
but of course a, b may have common variables or even completely coincide.
Of course some or all of these series of variables may be empty. The free va-
riables a, b are to be considered as parameters, i.e. if we de�ne A→ B we de-
�ne the meaning of the following expression (using the customary notation)
(∃f)(x)M [a, f, x] → (∃g)(y)N [b, g, y] which is a propositional function de-
pending on the variables a, b. So we have to do with two expressions with a pre-
�x of this particular form [where all existential quanti�ers precede all universal
ones and the problem is to express this again by a propositional function of the
same particular form, but that is very easy].
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First

A&B simply = A ·B
A vB ′′ = A ∨B

Let us see that this corresponds to the intuitionistic meaning:
A&B thus de�ned is M [a, f, x] · N [b, g, y] and written with the usual

symbolism that means

(∃f)(∃g)(x)(y)(M [a, f, x] ·N [b, g, y])

and actually this last expression is equivalent to the conjunction of the two �rst
by the rules of shifting the quanti�ers. The same holds for v.
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Last time I extended the formal system Σ to another system Σ by introducing
existential variables x and universal variables y which I shall call variables of the
second kind as opposed to the former ones, and we introduced one rule of infe-
rence concerning propositions containing these variables. The problem which
we want to solve now is this: we want to de�ne these binary operations A v B,
A&B,A→B which applied to expressionsA,B of Σ give again expressions
of Σ, and two binary operations (x)A, (∃x)A which applied to an expression
of Σ and a variable of the �rst kind (a free variable) yield expressions of Σ, and
then we want to prove that the axioms and rules of inference are satis�ed for
this interpretation. [Where by an asserted proposition we have to understand
of course one asserted owing to the axioms and rules of Σ.]

Last time I de�ned already conjunction and disjunction by the stipulation

75ii

A&B = A ·B
A vB = A ∨B

where these two operations on the right side mean writing the two expressions
beside each other and joining them by a symbol of conjunction, resp. disjuncti-
on.

Next36 I have to de�ne implication: So letA = M [a, f, x], B = N [b, g, y].
We have to de�ne A→B. Let us consider �rst the special case where x, y, f, g
consist each of only one variable i.e. in the usual notation,A = (∃f)(x)Φ(f, x),
B = (∃g)(y)Ψ(g, y),37 and the problem [[is]] to transform this implication

(∃f)(x)Φ(f, x) → (∃g)(y)Ψ(g, y)

into an expression of the same form i.e. where all existential quanti�ers precede
all universal ones.
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That is not possible by simply shifting the quanti�ers. But we can use the follo-
wing heuristic argument. This expression means: If there exists an f satisfying

36 This passage appears on p. 75 separated by a thick line. It seems to �t best below p. 75ii.
37 Gödel has here written onlyA = , B =
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a certain condition then there exists a g satisfying another condition. In a con-
structive logic that will mean: We have a procedure pwhich allows us to obtain
such a g if such an f is given i.e. this implication means:

(∃p)(f)[(x)Φ(f, x) → (y)Ψ(p(f), y)]

and now here the operation of implication is applied to an expression of a simp-
ler type (since no longer existential quanti�ers occur). But what can it mean in
a constructive logic that if for all x something is true then for all y something
else is true? The simplest meaning which suggests itself is this: Given
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a counterexample for the second assertion, one can construct a counterexample
for the �rst, i.e. the expression in square brackets will be equivalent to

(∃r)(y)[∼Ψ(p(f), y) →∼Φ(f, r(y))]

hence the whole expression to

(∃p)(f)(∃r)(y)[Φ(f, r(y)) → Ψ(p(f), y)]

Now here implication is applied only to expressions containing no quanti�ers.
Therefore we can replace it by⊃. But here we have too many changes between∃
and ( ), but (f)(∃r) simply means that there exists a function qwhich associates
such a function r with each a. I.e. this expression is equivalent to:

(∃p)(∃q)(f g)[Φ(f, q(f)(y)) ⊃ Ψ(p(f), y)]

and this is again an expression of Σ. So this is the de�nition of implication for
expressions with only one existential and one universal variable.

This de�nition could also be arrived at as follows. Let’s bring this implica-
tion to a normal form. That can be done in di�erent manners since the order
of quanti�ers is not uniquely determined. Let’s do it in this manner that as far
as possible the existential quanti�ers come after the universal ones. (This is in
a sense the weakest normal form because (∃x)(y) . . . ⊃ (y)(∃x) . . . but not
vice versa.) We obtain

(f)(∃g)(y)(∃x)[Φ(f, x) ⊃ Ψ(g, y)]
≡ (∃ p q)(f g){Φ[(f, q(f, y)] ⊃ Ψ[p(f), y]}

You see we have here two new variables p, q
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
p of type gτf
q ′′ (xτf)τy

or xτ(f, y)

I am using the type symbol τ also for arguments which are not themselves type
symbols but terms of types under consideration.

In the case where we have instead of single variables f, g, x, y, series of such
variables, we shall have functions p, q of several variables and several functions
instead of two. To be more exact:

78

IfA,B are two expressions written down here then38

A = M [a, f, x]
B = N [b, g, y]

Let p be a series of variables of type yτ f

pi(f) is meaningful and of the same type as gi, i.e., pi is of type yiτ f

and let q be a series of variables of type xτ(f, y)

qi(f, y) is meaningful and of the same type as xi, i.e.,

qi is of type xiτ(f, y)

and assume in addition that these variables p, q are di�erent from each other
and from the variables occurring already inA,B. Then

A→B =Df M [a, f, q(f, y)] ⊃ N [b, p(f), y]

In case of f, g, x, y consisting each of one variable, this is exactly the former ex-
pression. In the general case or39 if you preferA→B =A(ff

x

q(f y)) ⊃ B(gp(f))

where f, g, x, y are the series of all existential respectively universal variables oc-
curring inA respectively inB [[and]] any q, p new variables of appropriate type.

This de�nition of A → B comprises of course also the case where A or
B or both contain no existential variables or no universal variables. In this case

38 The sequence of variables denoted here by p seems to originally have been a Sütterlin �h later
corrected into a letter that does not match any Sütterlin letter. Because in the proof of soundness
of the intuitionistic axiom, both this letter and the letter h occur in the same formulas, we have
interpreted the nondescript letter as p.

39 The rest of the sentence has later been cancelled.
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one or several of the series f, g, x, y will be empty. E.g., this will happen for the
predicate of absurdity de�ned by ¬A = A→ (0 = 1). Here B contains no
variables, hence g, y are empty, hence f, y = f and we obtain

¬A = M [a, f, q(f)] ⊃ (0 = 1)

which is equipollent in Σ to

∼M [a, f, q(f)]

I call two expressions equipollent if the proof of one allows you to construct the
proof of the other and vice versa.

78′

In order to obtainA→B out of two given expressionsA,B of Σ what we have
to do is this:

1. Form this implicationA ⊃ B.

2. We replace the existential variables of A by the corresponding universal
variables.

3. We associate with each universal variablexi ofA a new existential variable
qi of this type and with each existential variable gi ofB a new existential
variable pi of this type.

4. We replace each universal variable xi ofA by a term whose �rst symbol is
the corresponding existential variable qi and whose argument series con-
sists of all variables f, y, and �nally

5. We replace each existential variable of B by a term whose �rst symbol is
the corresponding existential variable qi and whose argument series con-
sists of the variables of f.

In order that this expressionA→B be uniquely determined up to the not[[a-
tion]] of bound variables it is necessary that we have a de�nite arrangement of
the variables f, y. Owing to the de�nition ofM ,
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the proof that these two expressions are equipollent follows immediately from
the criterion which reduces demonstrability in Σ to demonstrability in Σ since
in Σ, we have A ⊃ 0 = 1 equipollent to ∼A because we have the whole cal-
culus of propositions. So in usual notation and in case of f, x consisting of one
variable,

¬(∃f)(x)ϕ(f, x)

means

(∃p)(f)∼ϕ(f, p(f))

If in particular A has only universal variables (no existential) i.e. if also f = ∧,
then we have no arguments here. But this means in essence not (∃q)∼M [a, q],
i.e. e.g. ¬(x)ϕ(x), where ϕ(x) is an unquanti�ed expression, is by this de�ni-
tion = (∃x)∼ϕ(x), i.e., the same as constructive negation. This has the con-
sequence that intuitionistic logic is constructive in even a stronger sense that
de�ned in my �rst lecture. But this equivalence holds of course only for un-
quanti�ed expressions.

IfA,B are expressions of the �rst kind i.e. if f = x = y = g = ∧40 then of
course also p, q = ∧, henceA→B = A ⊃ B.

The same is true already if only A is of the �rst kind because f = ∧ and
p(f) = p, but then the type of p = type of g. HenceB and this second member
here di�er only in the notation of the bound variable which is irrelevant, and
the �rst member does not di�er at all fromA.

Now I have to de�ne the meaning of quanti�cation:

1. LetA be an expression of Σ. Then

(∃x)A =Df A(xx)

or if x contained already = A(xy) (up to congruences), hence if A does not
contain x, (∃x)A = A.
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2. (x)A is de�ned as follows: LetA be:

A = M [x, a, f, z]

40 Gödel has mistakenly written f = x = y = g = ∧.



98

assuming x actually occurs as a free variable inA, x∼ε a.

(x)A = M [x, a, g(x), z]

where g is a series of variables of type fτx.

So in order to obtain (x)A fromAwhat we have to do is this:

1. Underlining the variable xwherever it occurs.

2. Associate with each existential variable f i of A an existential variable gi
of type fiτx.

3. Replace each existential variable ofA by a term whose �rst symbol is the
corresponding existential variable gi and whose argument series consists
of only one member, namely x.

In the case where x does not occur inA we don’t have (x)A = A because
x appears here also in this case, but [[the expressions are]] of course equipollent.

As an exempli�cation of this de�nition, let us consider the case where f and
z consist of exactly one variable, A = (∃f)(z)ϕ(x, f, z). Then (x)A41 will
mean in a constructive logic that one has a function g which allows to compute
for any given x an f satisfying the condition i.e. (∃g)(x z)ϕ(x, g(x), z). But
this is exactly the above expression written in the usual notation.

It is easily seen that always: A and (x)A are equipollent in Σ. For: A de-
monstrable in Σ means for some constant %:

M [x, a, %(x, a), z] in Σ

(x)A in Σ means

M [x, a, σ(a)(x), z] in Σ

but this is almost the same (except for the order
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of arguments of the constants % and σ), hence in terms of such a σ you can
de�ne such a % and vice versa.

The di�culty arises that the operations of (x)A, (∃x)A were de�ned al-
ready in general considerations about intuitionistic logic. Namely, they meant

41Here Gödel has originally written (x)(∃f)(z)A.
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simply putting the symbol of quanti�cation in front, and now we have an enti-
rely di�erent and much more complicated operation of quanti�cation, namely
going over from this expression to that and from this to that. Therefore I shall
write Π,Σ for this quanti�cation. So Π,Σ are related to ( ), ∃ in the same man-
ner as → to⊃.

The next thing I have to do is to show that the axioms of intuitionistic logic
are satis�ed i.e. the following interpretation is a model of the abstract system of
intuitionistic logic.

1. Propositional function = propositional function of Σ.

2. Variable = variable of Σ (variable of the �rst kind).

3. Terms = terms of Σ (containing only variables of the �rst kind).

4. Asserted propositional function = propositional function asserted in Σ
(owing to axioms of Σ).

5. The logical operations have the meaning just de�ned.

6. SubstitutionA(xt ) means replacement of x by t.

But in this model, not only the intuitionistic axioms are satis�ed, but also of
course the same axioms of Σ and furthermore also the following principle of
complete induction: IfAεΣ, then ifA(x0) andA ⊃ A(xν(x)) [[can be]] asserted
in Σ, thenA [[can]] also [[be asserted]] in Σ.

So one can prove that the logical operations (as I de�ned them) yield a model
for intuitionistic logic including the principle of complete induction.

You can look at this state of a�airs also from another viewpoint. Namely, let
us denote by ΣI the formal system obtained from Σ by introducing quanti�ers
and the logical operations in the usual way and assuming the usual axioms of
intuitionistic logic, including the rule of complete induction for arbitrary ex-
pressions (involving
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as many quanti�ers as you like).
So ΣI is what I called before an application of intuitionistic logic where the

speci�c axioms are
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1. The axioms of Σ and

2. The rule of complete induction for arbitrary expressions.

Then it is possible to associate with each expression A of ΣI an expression A′
of Σ by the following inductive de�nition:

1. A′ = A for atomic formulas.

2. (A ⊂ B)′ = A′→B′

(A ∨B)′ = A′ vB′ etc.

Similarly for all-operation

[(x)A]′ = Πx(A′).

By this recursive de�nition, evidently to each expression of ΣI
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[[corresponds]] exactly one of Σ. But owing to the fact that the axioms of intui-
tionistic logic are satis�ed for this interpretation and also the rule of complete
induction, it follows that if A [[is]] demonstrable in ΣI then [[so is]] A′ in Σ.
And also the inverse is true: if A′ is demonstrable in Σ then A is demonstrable
in ΣI , trivial because every correct proof of Σ is itself a correct proof in ΣI .
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Now this mapping of ΣI on Σ owing to the operation A′ yields the desired
proof of constructivity of intuitionistic logic. For assume (∃x)(A) [[is]] demons-
trable in ΣI (where this expression is supposed to contain no more free varia-
bles). Then (Σx)(A′) [[is]] demonstrable in Σ. Hence by the de�nition of Σ,
A′(xx) [[is]] demonstrable in Σ, but then A′(xα) [[is]] demonstrable in Σ for so-
me constant term α. But thenA′(xα) [[is]] demonstrable also in ΣI .

So you have: If (∃x)A is demonstrable in ΣI then there exists a constant
term α such thatA(xα) is demonstrable in ΣI .
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Owing to the fact that ifA(x) is an atomic expression

¬(Πx)A(x) = (Σx)∼A(x),

we conclude that even the proof of the absurdity of (x)A(x) in ΣI gives a means
to �nd the counterexample if only the propositional functionA under conside-
ration is atomic (the same thing could be proved for unquanti�ed, i.e., decidable
[[formulas]]). But now this expression involves no ∃,∨. Therefore if it is classi-
cally demonstrable, it is also intuitionistically demonstrable. So if we denote by
ΣK the system obtained from Σ by adding the rules of classical logic, then we
have that even a proof in ΣK of∼(x)A(x) gives you a means to construct the
counterexample. This is a result obtained also by Gentzen at the occasion of his
consistency proof for number theory.
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Classical number theory is a portion of ΣK (and intuitionistic number theory
a portion of ΣI ), namely it is in a sense of the lowest level of ΣK (resp. ΣI ).
Therefore owing to the mapping A′, also every number-theoretic theorem A
will have a corresponding propositionA′ in Σ which is demonstrable in Σ. But
it is to be noted that A′ will in general by no means be number-theoretic if A
is number-theoretic. Because by the applications of the logical operations (in
particular → ), a heightening of the level takes place. Namely A→ B con-
tains variables whose arguments and values are variables of A,B, hence these
variables are of a higher level. So if you have su�ciently many → signs in a
number-theoretic proposition A, the corresponding proposition A′ may have
an arbitrarily high level. It can be shown that this heightening of the levels is
necessary in this sense that is is impossible to interpret number theory in the
subsystem, say Σn of Σ, which contains only the propositions and axioms of Σ
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up to the level n (i.e. involving variables only up to the level n). Namely, this
is impossible because each system Σn can be proved consistent within number
theory.

Finally, I wish to remark that this whole scheme of de�ning the logical notions
has a certain relation to what Russell intended in the §9 of thePrincipiaMathe-
matica. Namely, it is chie�y the question of de�ning the meaning of the logical
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operations for expressions involving quanti�ers provided that this meaning for
unquanti�ed expressions is given. Russell tried to accomplish this by means of
the rules of shifting the quanti�ers, e.g.
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p ∨ (x)ϕ(x) =Df (x)[p ∨ ϕ(x)]. It is easily seen that this scheme cannot go
through if you wish to admit in your proofs only intuitionistic logic. For the
following reason: This scheme of de�nition can give as the meaning of a propo-
sitionA involving quanti�ers only a normal form ofA. But there are identities
of intuitionistic logic no normal form of which is an identity of intuitionistic
logic.

Trivial:

¬(x)(∃y)[F (x) · ¬F (y)]
but (∃x)(y)[¬(F (x) · ¬F (y))]
¬F (x) ∨ F (y)
(y)[¬(F (a) ∨ F (y))]

More complicated:

(u z)[F (u) ∨ ¬F (z) ⊃ R(u, z)] ⊃ ¬(x)(∃y)¬R(u, z)

88′

The structure of this expressionA′ is in general pretty intricate. There is howe-
ver one case where A′ is a well-known expression whose equivalence with A is
very often used in formal logic, namely ifA is a positive expression (i.e., no⊃ or
¬ occurs outside of any quanti�er).

In this caseA′ is obtained as follows (let’s assume all di�erent bound varia-
bles of A are denoted by di�erent expressions) and let us call a bound variable
dominated by another if the corresponding quanti�er dominates. Now in this
caseA′ is obtained fromA by

1. Dropping all quanti�ers.

2. Underlining all universal variables.

3. Replacing each existential variablex by term of the form f(u1) . . . (um)
where u1, . . . , um are all universal variable dominating x and where the
letters f are di�erent for di�erent existential variables x.
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This transformation is used e.g. for proving Skolem-Lowenheim’s theorem. Her-
brand called the functions f ”fonctions d’indice.”

[[88′′]]

The proof that this expression constructed by means of the fonction d’index
(call itA′′) really is the same asA′ is immediate by induction on the number of
logical symbols inA.

1. If zero thenA′ = A [[and]]A′′ = A, otherwise

A = B · C ,B ∨ C , (x)B, (∃x)B

and by inductionB′ = B′′, C ′ = C ′′. But also e.g.

A′ = (B · C)′ = B′&C ′ = B′ · C ′ = B′′ · C ′′ = (B · C)′′ = A′′

and [[this is]] as simple in the case of “or”.

((∃x)A)′ = A′(xx)

((∃x)A)′′ = A′′(xx)

((x)A)′ = (Πx)A′ = (Πx)A′′

But now (Πx)A′′ is obtained fromA′′ by turning x into x and replacing each
existential variable f (i.e. each index function) by a term h(x) where h is a new
existential variable. But in exactly the same manner [(x)A]′′ is obtained from
A′′.

89·1

Introduction i

In the twopreceding lectures I de�ned the logical operations v, &, → , Σ, Π
in such a manner that applied to expressions of the formal system Σ, they yield
again expressions of Σ. I am sorry I made a mistake in one of the de�nitions,
namely of “or”. I de�nedA vB = A∨B provided that the bound variables in
A andB are di�erent from each other. Now this is a very natural and simple no-
tion of disjunction and it is intuitionistically admissible, but it is not the notion
in Brouwer’s and Heyting’s logic for the following reason. Brouwer’s disjuncti-
on has this property that ifA∨B is demonstrable then always eitherA orB is
demonstrable but that is not the case with this notion.

E.g.A = (∃y)(x)ϕ(y, x) B = (∃z)(u)ψ(z, u)
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A vB = (∃ y z)(x u)[ϕ(y, x) ∨ ψ(z, u)]

Now if you have two objects y, z for which you can prove (xu)[ϕ(y, x) ∨
ψ(z, u)], then you know by classical logic that either (x)ϕ(y, x) is true or
(u)ψ(z, u) is true, but it may very well happen that you are unable to decide
which of the two

89·2

Introduction ii

possibilities is realized although you can prove this formula. And this has also
the consequence that not all axioms of intuitionistic logic can be proved for this
notion of “or”, namely the following rule of inference cannot:

[[From]]A→C B→C [[conclude]]A vB→C .

For this reason, we have to choose a more complicated de�nition of “or”. Na-
mely, let u be an existential variable not occurring inA andB. Then

A vB def = (A · u = 0) ∨ (B · u = 1)

(provided that bound variables [[are di�erent inA andB]]).
It is easily seen that now it is true that if you can proveA vB, you can prove

either A or B, because a proof for A v B in Σ allows you to �nd a number u
satisfying this condition. This number can only be either 0 or 1 and accordingly
as to whether u = 0 or = 1 you can proveA or you can proveB. And for this
notion all intuitionistic axioms can be proved, but it would perhaps be worth
while to investigate what axioms this other simpler notion of “or” satis�es.

89·3

Introduction iii

Before going on I wish to remind you shortly of the de�nition ofA→B:

Let f be the series of all universal variables ofA in the order of their occurrence
[[and]] likewise x the series of all existential variables of A in the order of their
occurrence. [[Let]] g, y [[denote]] the same thing for the expressionB. Then we
associated with each universal variable of A an existential variable (of a certain
type) and we called the series of all associated variables q and in the same manner
to each existential variable of the second expression, we associated a new existen-
tial variable of a certain type (let’s call its series p) and then
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A→B = A ⊃ B
(

f x y

f p(f,y) q(f)

)
The types of these series of variables p and q are of course determined by the
condition that this expression be meaningful. In addition, all variables [[should
be]] di�erent from each other and [[text ends]]

89·4

Next let us see thatW →B, cnf. [[p. 93]] bottom.42

Now let us prove axiom A→ A&A. For this purpose, I have to make some
preparations, cnf p. 59.43

The assumption that T, S be of type I is evidently super�uous, since if they are
of a higher type, %(x)

.
= T is by de�nition the same formula as %(x)(y)

.
= T (y)

for an appropriate series y of variables, where now T (y) is of type I . Therefore
we can apply the former theorem to

{
T (y)
S(y) . Furthermore the theorem can be

generalized for sets of equalities instead of one expression. I.e. we must only de-
�neA ⊃M where M is a �nite sequence of expressions, sayM1,M2, . . . ,Mk

and A an expression. In this case A ⊃ M is by de�nition the sequence A ⊃
M1, . . . , A ⊃ Mk. Then we have the following theorem: If S,T are two se-
quences

89·5

of terms of the same type containing no other variables but those of the series x
and ifA is an expression containing no other variables but those of x, then there
exists a sequence of constants % such that

A ⊃ %(x)
.
= S

∼A ⊃ %(x)
.
= T

}
is demonstrable in Σ

Of course also the rules of extensionality can be generalized for the case where
the premiss is of this form (i.e. consists of a set of implications) simply by app-
lying the former rule of extensionality k times if we have k equalities here. I.e.
fromA ⊃ S

.
= T (whereST are sequences of termsS1, . . . , Sk, T1, . . . , Tk)

42 The loose pages 89–106 were originally numbered 1–17; Gödel has later erased the old page
numbers and written new numbers on top. The references on these pages still use the old pagi-
nation; below, we have replaced them by the new page numbers.

43 Page 59 of the lecture notes does not relate to this in any way.
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you can inferA
(x
S

)
≡ B

(x
T

)
where x is a sequence of variables of the same type

as S and T.
And now I can give the proof of this axiom here, cnf. [[addition to p. 89]]

under the line.44

[[89·6]]

1. Mention45 somewhere that a system can have di�erent types of basic objects.

2. As constants [[use]] Greek letters with indices and special mathematical sym-
bols.

3. Consider · ∼.

4. numerals?

5. Super�uous.

44This refers to the section i′ at the bottom of “Addition to 89”.
45

1. Irgendwo erwähnen, dass ein System verschiedene Arten von Grunddingen haben kann.

2. Als Konstanten griechische Buchstaben mit Index und spezielle mathematische Zeichen.

3. · ∼ betrachten

4. numerals?

5. Überschüssig
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Proof of the soundness of the intuitionistic axioms

[[89·7]]46

Note!47 .= denotes logical identity (and it will only be used [[to mean]]

f = f ′ · y = y′ ⊃ f(y) = f ′(y′))

What this means for a procedure in a certain sense is that the de�nition of the
procedure must be the same (not just the extension).

In the proof practically nothing else is used except for the rule of de�nition
f(x1, . . . , xk) = A(x1, . . . , xk) for arbitrary meaningful expressions A and
the rulesf(x1, . . . , xk) = A(x1, . . . , xk) andf(x1, . . . , xl)(xl+1, . . . , xk) =
A(x1, . . . , xk) [that such an f exists must be shown (uniqueness unnecessa-
ry)]. The corresponding more complicated rules are logically provable from the-
se by iteration.

In the induction axiom (p. 101) a countable iteration of these rules occurs.
In principle, one needs functions of several variable only to prove the rule of de-
�nition (in Church’s interpretation). However, one needs them for this purpose,
and also for the inductive de�nition.

89

But now let us begin with the proof of the intuitionistic axioms. Let us con�ne
our attention �rst to those axioms and rules which don’t contain ∨,∃ (which
are su�cient). They are the following:

46 This note, written in shorthand on two slips of paper, can be found inside the envelope that
contains the missing pages 89–106. The �rst slip of paper also contains Gödel’s instructions for
arranging the missing pages.

47 Zu beachten! .= bedeutet logische Identität (und es wird nur verwendet f = f ′ · y =
y′ ⊃ f(y) = f ′(y′)), was bei Verfahren in gewissem Sinne bedeutet, dass die Defini-
tion des Verfahrens dieselbe sein muss (nicht bloss die Extension). In den Beweis wird prak-
tisch nichts verwendet als die De�nitionsregel f(x1, . . . , xk) = A(x1, . . . , xk) für beliebi-
ge sinnvolle Ausdrücke A, und die Regel f(x1, . . . , xk) = A(x1, . . . , xk) und die Regel
f(x1, . . . , xl)(xl+1, . . . , xk) = A(x1, . . . , xk) [dass es ein solches f gibt, muss gezeigt wer-
den (Eindeutigkeit über�üssig)]. Die entsprechenden komplizierten Regeln sind durch Iteration
aus dieser logisch beweisbar.

Beim Induktionsaxiom (p. 101) �ndet eine abzählbare Iteration dieser Regeln statt. Man
braucht im Prinzip Funktionen mehrerer Variablen nur, um die De�nitionsregel (in Church-
scher Interpretation) zu beweisen. Aber man braucht sie für diesen Zweck. Ebenso braucht man
sie für induktive De�nition.



108

Axioms

A→A&A p. 89 bottom

A&B→B 89’

A&B→B&A 92 bottom

W →B 93 bottom

(x)A→A(xt ) 100

(The last one can be simpli�ed, see p.
100)

Rules
A
A→B
B 95

A→B
B→C
A→C 96

(A&B) →C
A→ (B→C) l 97

A→B
A→ (x)B 98 bottom

Complete Induction 101 bottom

[[The axioms]] 1, 2, 3 [[are]] substitutable48 by the rule of inference

A→B
A→C
A→B&C

and

A&B→A,A&B→B.

Important! Moreover, commutativity is in any case superfluous when both [[for-
mulas]] of the previous lines hold.

The proofs are all quite simple in principle. They are straightforward con-
sequences of the de�nitions but mostly the necessary formal apparatus is pretty
heavy. Therefore I think it will be su�cient to carry through the proofs in some
instances which will su�ce to make the method clear.

Let’s take as an example for an axiomA&B→B and for a rule

48 1, 2, 3 ersetzbar durch die Schlussregel

A→B
A→C
A→B&C

undA&B→A,A&B→B.
Wichtig! Ferner ist Com. auf jeden Fall überflüssig, wenn die beiden der vorhergehenden Zeilen

[[gelten]].
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(A&B) →C
A→ (B→C)

So let us begin with this axiom:A&B → B. Addition at the end of these notes
(next page).

So what we have to prove is this:

1. If A is an arbitrary formula of Σ then A→ (A&A) which is a formula
of Σ can be proved in Σ. Similarly for the other axioms of group I.

2. IfA,B are formulas of Σ and ifA,A→B are demonstrable in Σ, then
B can also be proved in Σ.

Addition to p. 89

So let

A = M [a, f, x]

B = N [b, g, y]

henceA&B = M [a, f, x] ·N [b, g, y],

henceA&B→B = (first associate series of variables)

M [a, f, q(f, g, y)] ·N [b, g,q′(f, g, y)] ⊃ N [b, p(f, g), y)]

That this can be proved in Σ means that for some constants %, %′, σ this can be
proved in Σ:

M [a, f, %a;b(f, g, y)] ·N [b, g, %′a;b(f, g, y)] ⊃ N [b, σa;b(f, g), y]

But there are constants %, %′, σ for which{
%′(a; b)(f, g, y)

.
= y

σ(a; b)(f, g)
.
= g

can be proved in Σ.

But now the expression obtained from this by substitution can be proved

M [a, f, %(a; b)(f, g, y)] ·N [b, g, y] ⊃ N [b, g, y]

i.′ Next comes the axiomA→A&A. So assumeA = M [a, f, x]. ThenA&A
will be
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90

by de�nition of & the expressionM [a, f, x] ·M [a, g, y] where g, y are variables
all di�erent from f, x but of the same types.

Now in order to obtainA→ (A&A) I have to write �rst formally

M [a, f, x] ⊃M [a, f, x] ·M [a, g, y]

Now I have to replace in the �rst member the existential variable by universal
ones:

M [a, f, q(f, x, y)] ⊃

{
M [a, p1(f), x]

M [a, p2(f), y]

Next I have to associate with each existential variable of the second term a
new variable (of appropriate type). Existential variables of the second member
are f, g associated withp1, p2. Then associate with each universal variable of �rst
member a new existential variable, call it series q and then I have to replace [[the
�rst sequence x with q]] etc.
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Now in order to show that this can be proved in Σ we have (by the previously
proved criterion) to construct series of constants %, σ1, σ2 (corresponding to
the existential variables q, p1, p2) such that

(Φ) M [a, f, %(a)(f, x, y)] ⊃M [a, σ1(a)(f), x] ·M [a, σ2(a)(f), y]

can be proved in Σ.
But the constants satisfying the following de�ned equalities will do that:

σ1(a)(f)
.
= f

σ2(a)(f)
.
= f

%(a)(f, x, y)
.
= x if∼M [a, f, x]

%(a)(f, x, y)
.
= y ifM [a, f, x]

The constants, or rather series of constants, for which this �rst series of equali-
ties can be asserted
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in Σ exist by a previous lemma49 since you can easily verify the variable conditi-
ons (the variables occurring as arguments are di�erent from each other and on
the right side there are no other variables) andA contains no other variables but
at most those occurring [[in a, f, x]].

2. For these constants the implication to be proved can be demonstrated in Σ.
Namely

1.) if∼M [a, f, x] then by the rules of extensionality the �rst member beco-
mes equivalent toM [a, f, x] hence false, hence the implication is true.

2.) If however M [a, f, x] then the implication becomes equivalent to
M [a, f, y] ⊃M [a, f, x] ·M [a, f, y].

ButM [a, f, x] implies this owing to the formulaA ⊃ (B ⊃ A ·B).

∼M [a, f, x] ⊃ (Φ ≡ [M [a, f, x] ⊃ . . .]) demonstrable, hence
∼M [a, f, x] ⊃ Φ demonstrable (in Σ) because
∼M [a, f, x] ⊃ (M [a, f, x] ⊃ . . .) demonstrable (in Σ)
M [a, f, x] ⊃ (Φ ≡ {M [a, f, y] ⊃M [a, f, x] ·M [a, f, y]}) hence
M [a, f, x] ⊃ Φ demonstrable (in Σ) because
M [a, f, x] ⊃ {M [a, f, y] ⊃M [a, f, x] ·M [a, f, y]}

ii. The next axiom I want to prove is

A&B→B&A

So letA = M [a, f, x] [[and]]B = N [b, g, y].

93

A&B→B&A becomes the following expression50

M [a, f,q1(f, g, y, x)]·N [b, g, q2(f, g, y, x)] ⊃ N [b, p1(f, g), y]·M [a, p2(f, g), x]

Now if you put %i(a; b) for qi and σi(a; b) for pi and de�ne σ1, σ2, %1, %2 by

49 See p. 66 of the lecture notes.
50 Here Gödel has erroneously written the consequent of the implication asN [a, p1(f, g), y] ·

M [b, p2(f, g), x].
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
σ1(a; b)(f, g)

.
= g

σ2(a; b)(f, g)
.
= f

%1(a; b)(f, g, y, x)
.
= x

%2(a; b)(f, g, y, x)
.
= y

Then this implication takes on the form R · S ⊃ S · R (since A&B =
M [a, f, x].N [b, g, y] [[and]]B&A = N [b, g, y] ·M [a, f, x]).

iii.W →B. So letB = N [b, g, y]. But here the implication is of the �rst kind
thereforeW →B = W ⊃ B (as rem[[arked]] before).
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HenceW →A is the expression 0 = 1 ⊃ N [a, g, y].
That can be asserted in Σ if and only if 0 = 1 ⊃ N [a, σ(a), y]51 can be

asserted in Σ for appropriate constants σ [[addition: completely arbitrary]]. But
0 = 1 ⊃ A for any expression A; hence [[the proof is]] �nished.

These are all axioms concerning the notions → & only.

Now let us check the rules of inference concerning [[implication]]. [[Addition:
rule of export and import p. [[97]] bottom.]] These are

A
A→B
B

A→B
B→C
A→C

A&B→C
A→ (B→C)

and vice versa

Let’s assume in all these cases that A = M [a, f, x], B = N [b, g, y] [[and]]
C = K[c, h, z], where a, f, x etc. are all the existential and universal variables

95

occurring in the expressions respectively.
Then

A→B = M [a, f, q(f, y)] ⊃ N [b, p(f), y]

B→C = N [b, g, q′(g, z)] ⊃ K[c, p′(g), z]

A→C = M [a, f, q′′(f, z)] ⊃ K[c, p′′(f), z]

51 Gödel has originally writtenM [a, σ(a), y].
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That these formulas can be asserted in Σ means that

(1) M [a, f, σa;b(f, y)] ⊃ N [b, πa;b(f), y]

(2) N [b, g, σ′b;c(g, z)] ⊃ K[c, π′b;c(g), z]

can be asserted in Σ for certain constants [[π, π′, σ, σ′]].

iv. Now assume A [[is]] assertable in Σ52 [[and]] A→ B [[is]] assertable in Σ.
[[Thus]]M [a, %a, x] [[is]] assertable in Σ andM [a, f, σa;b(f, y)] ⊃ N [b, πa;b(f), y]
[[is]] assertable in Σ for some constants %, σ, π.

Then by rule of substitution:
{%a
f

σa;b(f,y)
x

(1) : M [a, %a, σa;b(f, y)] in Σ

(2) : M [a, %a, σa;b(f, y)] ⊃ N [b, πa;b(%a), y
=Df%′(b)

] in Σ

[[are]] assertable in Σ,
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hence also N(b, f, y) [[is assertable]] by rule of existential quanti�er [since the
variable y doesn’t occur in the terms to be replaced by existential variable they
can be changed into universal variables].

v.Now assumeA→B,B→C [[are]] assertable in Σ i.e. these [[are assertable]]
in Σ for certain constants π, π′, σ, σ′.

Now substitute
{
σ′b;c(g,z)
y in (1) and then

{
πa;b(f)
g in (2).53 Then the middle

term N becomes identical in the �rst and second premiss hence by the rule of
syllogism

M [a, f, σa;b(f, σ
′
b;c(πa;b(f), z))] ⊃ K[c, π′b;c(πa;b(f)), z]

Now, we can �nd constants µ, ξ satisfying

97

the equalities µa;b;c(f)=̇π
′
b;c(πa;b(f)) and ξa;b;c(f, z)=̇σa;b(f, σ

′
b;c(πa,b(f), z)).

52 Gödel has here written, “assertable in Σ”, but this is clearly a mistake.
53 Gödel has written “in (1) [[and]] (2)” for the second substitution, although the substitution

only applies to (2).
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Hence by rule of existential quanti�cation, putting q
ξa;b;c

p
µa;b;c and chan-

ging z (which doesn’t occur) in z and f in f, we obtain exactly the formula to be
proved.

Actually, the a, b, c should not be attached to q, q′ . . . etc., but �rst the
q, q′ etc. need to be replaced by constants.54

vi. Now as to rule of export and import all you have to do is to write down the
corresponding expressions in Σ and then you will �nd that they are, up to trivial
transformation of the calculus of propositions, exactly the same expressions for
the premiss and conclusion, so you have both the rule of export and of import
at once without any calculation.
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AssumeA = M [a, f, x], B = N [b, g, y], C = K[c, h, z]

A&B = M [a, f, x].N [b, g, y]

C = K[c, h, z]

(i) (A&B)→C = {M [a, f, qa(f, g, z)].N [b, g, q′b(f, g, z)]} ⊃ K[c, pc(f, g), z]

B→C = N [b, g, q′′(g, z)] ⊃ K[c, p′(g), z]

(ii)A→ (B→C) =

M [a, f, q′′′a (f, g, z)] ⊃ {N [b, g,p′′b(f)(g, z)] ⊃ K[c, p′′′c (f)(g), z]}
Now de�ne

p′′b(f)(g, z) =Df q
′
b(f, g, z);

p′′′c (f)(g) =Df pc((f, g))

vii. Rule of universal quanti�er
A→B

A→ (Πx)B

I am reminding you of the de�nition of (Πx)A. Let f be the series of all existen-
tial variables ofA in the order of their occurrence. Associate with each another
existential variable of appropriate type. Let their series be p. Then

(Πx)A = A(xx
f
p(x)).

54 Diea, b, c sollten eigentlichnicht an q, q′ . . . etc. angehängt werden, sondern erst die q, q′

etc. durch Konstanten ersetzt werden.
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A = M [a, f, x]

We can assumeB contains x as a free variable, henceB = N [x, b, g, y], where
x∼ε (a; b). Then

(1) A→B = M [a, f, q(f, y)] ⊃ N [x, b, p(f), y]

(Πx)B = N [x, b, h(x), y]

(2) A→ (Πx)B = M [a, f, q′(f, y, x)] ⊃ N [x, b,p′(f)(x), y]

Hence the corresponding formulas in Σ which are equipollent are

M [a, f, %a;b;x(f, y)] ⊃ N [x, b, σa;b;x(f), y]

M [a, f, %′a;b(f, y,x)] ⊃ N [x, b, σ′a;b(f)(x), y]

But the two expressions are the same except that the argument of% andσ appear
in another order in
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the second than in the �rst and therefore it is easily seen that if the �rst can be
proved in Σ for some constants %, σ, the second can also be proved for some
other constants %′, σ′ de�ned in terms of these.

viii. (x)A→ A(xt) for any term t [[addition: can be proved more easily from
the simple substitution rule and invertibility of vii]].

IfA doesn’t contain x, trivial. So let be:

A = M [x, a, f, x]

t = T [b] (t contains no other free variables)

Then

(x)A = M [x a,G(x), x]

A(xt ) = M [T [b], a, f, x]

(x)A→A(xt ) =

M [Q(G, x)
%a;b

, a, G(Q(G, x))
%a;b

, Q
′
(G, x)
%′a;b

] ⊃M [T [b], a,P(G), x
σa;b

]
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%a;b(G, x)
.
= T [b]

σa;b(G)
.
= G(T [b])

%′a;b(G, x)
.
= x

ix. Finally: Rule of Induction

A(x0)

A→A(xν(x))

A

[[where]]A = M [x, a, f, x] x∼ε a

A(x0) = M [0, a, f, x]

A(xν(x)) = M [ν(x), a, f, x]

[[is]] assertable in Σ by assumption;

A→A(xν(x)) = M [x, a, f,Q(f, x)] ⊃M [ν(x), a,P(f), x]

[[is]] assertable in Σ by assumption, i.e. for certain constants α, %, σ
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(1) M [0, a, α(a), x] [[is assertable]] in Σ

(2) M [x, a, f,%x,a(f, x)] ⊃M [ν(x), a, σx,a(f), x] [[is assertable in Σ]]

One can �nd a series of constants γ for which{
γ(0)(a)

.
= α(a)

γ(ν(x))(a)
.
= σx,a(γ(x)(a))

can be proved in Σ.
By induction [[the following are]] demonstrable:

in (1):
(

α(a)
γ(0)(a)

)
in (2):

(
f

γ(x)(a)

)
in (2):

(
σx,a(γ(x)(a))
γ(ν(x))(a)

)
M [0, a, γ(0)(a), x]

M [x, a, γ(x)(a), %x,a(γ(x)(a), x)] ⊃
M [ν(x), a, γ(ν(x))(a), x]
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But the second member of the implication is obtained fromM [x, a, γ(x)(a), x]
exactly by replacing x by ν(x) and the �rst by replacing some of the other varia-
bles, namely the term x, by some terms (it makes no di�erence which ones).

102′55

[[Assume that]] it has been proven56 that in Σ: M [x, a, γ(x)(a), x]. For an ex-
pressionA in the variablesa, x, x,A(x, a, x) is given, namely:M(x, a, γ(x)(a), x).
For a proof we have:

1. A(0, a, x)

2. For certain functions Fx,a(x) = %x,a(γ(x)(a), x) it is proven [[that]]

M(x, a, γ(x)(a), Fx,a(x)) ⊃M(ν(x), a, γ(ν(x))(a), x),

that is,

A(x, a, Fx;a(x)) ⊃ A(ν(x), a, x)

55 This page has been written in shorthand German.
56 In Σ:M [x, a, γ(x)(a), x] bewiesen. Dann:
Denn es ist ein Ausdruck A in den Variablen a, x, x gegeben: A(x, a, x), nämlich

M [x, a, γ(x)a, x].

Für den Beweis ist

1. A(0, a, x)

2. Für gewisse Funktionen Fx,a(x) = %x,a(γ(x)(a), x) ist bewiesen
M [x, a, γ(x)(a), Fx,a(x)] ⊃ M [ν(x), a, γ(ν(x))(a), x)] i.e. A(x, a, Fx;a(x) ⊃
A(ν(x), a, x).

Also folgtA(x, a, x) d.h.M [x, a, γ(x)(a), x]. q.e.d.

Bemerkung: Statt γ(x)(a) sollte überall stehen γ(x, a). Dann ist das Rekursionsschema

γ(0, a) = α(a)
γ(x+ 1, a) = β[γ(x, a), x, a]

genau erfüllt für β(g, x, a) = σx,a(g). Aber wenn das Rekursionsschema ohne Parameter a
verwendet werden soll, dann müsste man de�nieren

γ(0) = α
H(x, g)(a) = σx,a(g(a))
γ(x+ 1) = H(x, γ(x))

denn daraus folgt

γ(x+ 1)(a) = σx,a(γ(x)(a))
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Thus it follows thatA(x, a, x) i.e.M [x, a, γ(x)(a), x]. q.e.d.

Note: Instead of γ(x)(a) we should have everywhere γ(x, a). Then the recursi-
on scheme

γ(0, a) = α(a)

γ(x+ 1, a) = β[γ(x, a), x, a]

is precisely satis�ed for β(g, x, a) = σx,a(g). However, if one applies the re-
cursion scheme without the parameter a, then one must de�ne

γ(0) = α

H(x, g)(a) = σx,a(g(a))

γ(x+ 1) = H(x, γ(x))

As it follows from there that:

γ(x+ 1)(a) = σx,a(γ(x)(a))

103

Axioms

1.A→A ∨B (103)

3.A(xt ) → (∃x)A (105) becomes
super�uous by the inverse of 4

(A→B ∨A)

Rules of inference

2.57

A→C
B→C
A ∨B→C 104

4.
A→B
(∃x)A→B 106

A = M [a, f, x]

B = N [b, g, y]

C = K[c, h, z]

1.

M [a, f, x] →N [b, g, y] · 0 = u ∨M [a, h, z] · 1 = u

57 [[Added:]] Instead of this also: axiom (A ∨ A) ⊃ A (does not hold for the simple v!!) and
axiom (A ∨B) ⊃ (B ∨A). Rule:A ⊃ B [[apparently meant to signify Modus Ponens]].
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M [a, f, q(f, y, z)] ⊃ N [b, p1(f), y] · 0 = p(f) ∨ M [a, p2(f), z] · 1 = p(f)

M [a, f, %a;b(f, y, z)] ⊃ N [b, σ
(1)
a;b (f), y]·0 = σ(f)∨M [a, σ

(2)
a;b (f), z]·1 = σ(f)

σ(f) = 1 σ
(1)
a;b(f) arbitrary

σ(2)(a; b)(f)
.
= f

%(a; b)(f, y, z)
.
= z

104

2.

M [a, f, q(1)(f, z)] ⊃ K[c, p(1)(f), z]

N [b, g, q(2)(g, z)] ⊃ K[c, p(2)(g), z]

i.e.,

M [a, f, %
(1)
a;c (f, z)] ⊃ K[c, σ

(1)
a;c (f), z]

N [b, g, %
(2)
b;c (g, z)] ⊃ K[c, σ

(2)
a;c (g), z]

M [a, f, x] · 0 = u ∨N [b, g, y] · 1 = u→K[c, h, z]

M [a, f, q(1)(f, u, g, z)] · 0 = u ∨ N [b, g, q(2)(f, u, g, z)] · 1 = u →
K[c, p(f, u, g), z]

M [a, f, α
(1)
a;b;c(f, u, g, z)] · 0 = u ∨ N [b, g, α

(2)
a;b;c(f, u, g, z)] · 1 = u ⊃

K[c, βa;b;c(f, u, g), z]

βa;b;c(f, u, g)
.
= σ

(1)
u;c (f) if u = 0

βa;b;c(f, u, g)
.
= σ

(2)
u;c (f) if u 6= 0

β = the second because u 6=0
1 i.e. u = 1 ⊃ . . .

α
(1)
a;b;c(f, u, g, z)

.
= %

(1)
u;c(f, z)

α
(2)
a;b;c(f, u, g, z)

.
= %

(2)
u;c(g, z)

u = 0 → (Φ ≡ [[line ends here]]
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105

3.

A(xt ) → (Σx)A = Φ A = M [x, a, f, x]

t = T [b]

A(xt ) = M [T [b], a, f, x]

(Σx)A = M [x, a, f, x]

Φ = M [T [b], a, f, q(f, x)] ⊃M [h(f), a,p(f), x]

M [T [b], a, f, σ(a; b)(f)(x)] ⊃M [πa;b(f), a, %(a; b)(f), x]

π(a; b)(f)
.
= T [b]

%(a; b)(f)
.
= f

σ(a; b)(f, x)
.
= x

106

4.

A→B

(Σx)A→B

(Σx)A = M [x, a, f, x]

A = M [x, a, f, x]

B = N [b, g, y]

A→B = M [x, a, f, q(f, y)
%(a;b,x)

] ⊃ N [b, p(f), y
σ(a;b,x)

]

(Σx)A→B = M [x, a, f, q′(f
1
, x, f

2
, y)

%′(a;b)

] ⊃ N [b, p′(f
1
, x, f2), y
σ′(a;b)

]
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Notes on recursive functions58

107′59

A shorter outline of the following:

1. General recursive functions (not everywhere de�ned).

2. Numbers associated with a general recursive function (not unique) but

3. With each type t associated a class of integers ϕ(t).

De�nition by recursion.

1. ϕ(I) = all integers.

2. Denote by τ(t1, . . . , tk) the type whose complete argument series is of
type t1, . . . , tk.

Then τ(t1, . . . , tk) is the class of numbers of recursive functions f withk argu-
ments f(x1, . . . , xk) such that f [[is]] de�ned whenever xi εϕ(ti) and f [[is]]
extensional i.e. [[if]] xi ∼ x′i, then f(. . . xi . . . ) = f(. . . x′i . . . ) where ∼ is
also de�ned by induction on the levels, i.e.,

xi ∼
τ(t1...tk)

x′i ≡ (y1, . . . , yk)(fxi(y1, . . . , yk) = fx′i(y1, . . . , yk))

I call x εϕ(t) a number of type t.

4. Interpretation of Σ:

1. Function of type t = number εϕ(t).

2. Application n(m) is a certain recursive function whose de�nition60

3. Constants (Greek letters) = certain numbers satisfying the de�nitional
postulates (whose existence demonstrable).

58 The third part of the Princeton lectures consists of 13 loose pages �led with the two �rst
notebooks.

59 This page follows the page 107 in the notes. However, it seems to be a summary of the in-
troduction to recursive functions that Gödel refers to as what was done “last time” on p. 107.

60 Text ends here; Gödel returns to the de�nition of application on p. 110 of the lecture notes.
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5. Then demonstrable:

1. If A is an axiom of intuitionistic number theory then A′ true for this
modelM .

107

1.Last time I mentioned the notion of a partially recursive function of integers.
This is a function f(x) with one variable de�nable by a system of equalities
which allow to calculate f(x) for the argument den[[oted by]] x which belong
to a certain classK called the domain of de�nition of f .

2. All partially recursive functions can be numbered by integers. Call the nth
functionfn and calln the associated number off . To each integer [[corresponds]]
exactly one function, but many numbers to one integer.

3. [[Added: Kleene]] Perhaps good if I make a list of the facts about recursive
functions which I need.

0. Introduce once for all an operation of pairing 〈uv〉.

Primitive recursion of two integers enumerating all pairs and triples 〈x, y, z〉 =
〈x, 〈y, z〉〉.n-tuples, partially recursive functions ofn variables [[are]] de�ned in
this manner. Then

1. There is a partially recursive functionW such thatW 〈n, x〉 = fn(x).

2. [[If]]f, g [[are]] partially recursive then f(g(x)) [[is]] partially recursive
[[where the]] domain of de�nition [[is appropriate]].

3. Term composed of partially recursive functions of special integers and of
variables de�nes a partially recursive function.

108

4. In particular f〈n, x〉 is partially recursive if f is and you can �nd a pri-
mitive recursive function p(k, n) such that if k is an associated number
of f then p(k, n) is an associated number of f〈n, x̂〉.

5. If f is a partially recursive function such that for eachx εK there exists a
y [[such that]] f〈y, x〉 = 0, then there exists a partially recursive function
g(x) such that f〈g(x), x〉 = 0 for x εK .
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If for each x εK there [[exists]] 〈y, x〉 εD(f) for every y, then there exists even
a partially recursive function g(x) which picks out for every x εK the smallest
y for which this is true.

109

4. And now by means of these partially recursive functions I de�ned last time a
function ϕ(t) which associates with each type a class of integers called integers
of this type and at the same time a relation or rather a set of relations (one for
each type t)∼

t
[[such that]] x ∼

t
y [[is]] de�ned for x, y εϕ(t).

5. The de�nition went by induction on the level and implies this, that for
x εϕ(τ(t1, . . . , tn)) and yi εϕ(ti),

fx(〈y1, . . . , yn〉〉) is de�ned and
= fx(〈y′1, . . . , y′n〉〉) if yi ∼

ti
y′i.

Call a function extensional if it satis�es [[this condition]].
Instead of fx, 〈y1, . . . , yn〉, we can writeW 〈x, 〈y1, . . . , yn〉〉. I call an in-

teger εϕ(t) an integer of the type t.

6. And now I want to de�ne a model for the system Σ (and also for Σ) such that

1. The objects of type τ will be the integers εϕ(t).

110

2. The operation of application As,t(m,n) to be de�ned for n εϕ(t),
mε ϕ(sτt) must now be de�ned in such a manner thatAs,t(m,n) εϕ(s)
and that all axioms of Σ will be satis�ed.

3. Now this operation will be de�ned as follows:

If s = I As,t(m,n) = W 〈m,n〉
If s 6= I As,t(m,n) = one of the associated numbers of the follow-

ing recursive functionW 〈m, 〈n, x̂〉〉.

Now owing to one of the lemmas I quoted this function is recursive and in addi-
tion its associated number depends primitive recursively on n,m, i.e.,
As,t(m,n) = V 〈m,n〉 for s 6= I .
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This is the operation of application in the model. Let’s call this model M .
HenceW 〈m, 〈n, x〉〉 = W 〈V 〈m,n〉, x〉whenever the left side [[is]] meaning-
ful [[with respect to the]] right side and vice versa.

This equality can be generalized like this:

111

W 〈m, 〈x1, x2, x3〉〉 = W 〈V 〈V 〈m,x1〉, x2〉, x3〉
because [[〈x1, x2, x3〉]]= 〈x1, 〈x2, x3〉〉

W 〈V 〈m,x1〉, 〈x2, x3〉〉 = W 〈V 61

and for any number of variables but this allows to prove the axioms of expli-
cit de�nition of Σ for this model in this sense: If we have a term T compo-
sed of these operations As,t, of variables x1, . . . , xn of any types and of inte-
gers n1, . . . , nk, where in the arguments of these As,t only integers, not va-
riables, of an appropriate type must occur, then there exists a number of type
τ(x1, . . . , xn) such thata(x1)(x2) . . . (xn) = T for any numbersx1, . . . , xn
of appropriate type, where application a(x1) is to be taken in the sense ofAs,t.
The proof is immediate. At �rst there exists a number a such that

112

1. W 〈a〈x1, . . . , xn〉〉 = T because T as a term composed of recursive
functions de�nes a recursive function of n variables.

2. The left side can be replaced by this expression, but this is exactly what
we want owing to this de�nition of the operation of application.

That also the axiom of recursive de�nition holds in the same sense can be proved
by a similar device. So with each Greek letter we can associate a certain number
such that all recursive axioms of Σ will be satis�ed for these numbers,and the
other axioms and rules of Σ are likewise easily proved for this model M . Of
course, universal quanti�cation, expressed in Σ by free variables, is to be inter-
preted in the model as meaning to be true for all numbers of the appropriate
types. This convention about the meaning of universal quanti�cation de�nes
under what circumstances an expression of Σ holds in the modelM and in this
sense all all axiom and rules are satis�ed.

61 Incomplete formula that should probably read as above,W 〈V 〈V 〈m,x1〉, x2〉, x3〉.
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113

Now as to the expressions of Σ, say N [a, f , x]: We shall say that this is true for
the modelM if there are numbers%of appropriate types such thatN [a, %(a), x]
is true in M (where this is now an expression of Σ) for which truth in M has
been de�ned already.

Then the following things are demonstrable:

1. If A is a formal axiom of intuitionistic number theory or of ΣI , A′ [[is]]
true forM .

2. IfC is the result of applying a rule of inference of ΣI toA,B andA′, B′
[[are]] true inM , thenC ′ [[is]] true inM .

These two theorems are exactly the same as those I stated last time, only “de-
monstrable in Σ” is replaced by “true for M ,” and the proofs are literally the
same because the axioms of Σ are true in this model.

But 3.) we have now the following theorem:

114

3. There is a number-theoretic propositional function ϕ(x) such that

(∼ (x)[ϕ(x) ∨ ∼ϕ(x)]︸ ︷︷ ︸
U

)′

true inM , namelyϕ(x) ≡ x is not the number of an everywhere de�ned
recursive function, i.e.

ϕ(x) ≡ (∃u)(v)[∼v B x, u].

v B x, u (primitive recursive) is by de�nition: v is the number of a proof
from a system of equations numberx for a proposition of the formf(u) =
k or shortly, is a number of a computation for f(u) where

U ′ = (∃euf)(v z x)[e(x) = 0 ·∼v B x, u(x)∨e(x) = 1 · f(x)(z)B x, z]︸ ︷︷ ︸
Ψ(euf,xvz)=0

e, u [[are]] of type IτI [[and]]f of type (IτI)τI .

(∼U)′ = ¬(U ′) ≡ (∃V Z X)
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associating v, z, xwith every triple of functions e, u, f such that

Ψ(euf, xvz) 6= 0

114′

Let us denote (x)[ϕ(x) ∨ ∼ϕ(x)]62 by U and calculate U ′. For this purpose,
replace

ϕ′(x) = (∃u)(v)[∼v B x, u]

¬ϕ′(x) = (∃f)(z)[f(z)B x, z]

ϕ′(x) v¬ϕ′(x) = (∃euf)(vz)

e = 0 · ∼v B x, u

∨ e = 1 · f(z)B x, z

U ′ = (Πx)[ϕ′(x) ∨ ¬ϕ′(x)]

= (∃ e u f)(v z x)

e(x) = 0 · ∼v B x, u(x)

∨ e(x) = 1 · f(x)(z)B x, z︸ ︷︷ ︸
Ψ(euf,xvz)=0

115

That this holds for M means: There are three partial recursive and extensional
functions V,Z,X which, applied to any recursive e, u, f of these types, give
numbers x, v, z for which this is true. We prove

1. For any e, u, f of these types, there exist [[such]] numbers x, v, z. [[The proof
is]] indirect because if for some e, u, f such numbers did not exist, then this
would be true for any numbers v, z, x and ewould be a recursive procedure to
decide whether x is a number of an everywhere de�ned recursive function or
not (but that doesn’t exist).

2. But now Ψ is itself a recursive relation and we had the theorem that if
(x)(∃x)R(x, y),x εM , then there is a recursive functionf [[with the domain]]

62 Top of page has an indication for an addition that is missing. The bottom of the page reads:

¬A(y, x) = ∼A(y, f(y))
¬(∃x)(x)A = (∃f)(y)∼A(y, f(y))
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D(f) ⊃M [[such that]]R(x, f(x)). So there exist recursive functionsX,V, Z
of the variables e, u, f associating these x, v, z for each e, u, f . q.e.d.

And [[there are]] even such as associate the smallest numbersx, v, z (〈x, v, z〉
is smallest). But these functions V,Z,X will be extensional.

116

I want to make an addition to what I said last time. We had: IfA is demonstrable
in ΣI , thenA′ is demonstrable in Σ. If in particularA is an existential proposi-
tion (∃x)B(x) then this will allow to construct an example (because the system
Σ is trivially constructive). The example will have the form of a constant termα
of Σ. But from this argument it does not follow yet thatB(α) is demonstrable
in ΣI , only thatB′(α) is demonstrable in Σ. The transformation from a proof
for B′(α) in Σ to a proof of B(α) in ΣI is not quite so easy; only in one case,
namely whereB(α) contains no quanti�ers because thenB′(α) ≡ B(α) and
Σ ⊆ ΣI . But for unquanti�ed expressionsB even more is true.

117

Namely, even if ∼(x)B(x) is demonstrable in ΣI , then ∼B(α) is demonst-
rable in ΣI for some constant because (∼(x)B(x))′ = ((∃x)∼B(x))′ as I
remarked. But now this expression contains no ∨,∃, therefore it is demonstra-
ble in ΣI if it is demonstrable in the corresponding classical system ΣK . So you
have [[the]] theorem.



128

References

Ackermann, W. (1940). Zur Widerspruchsfreiheit der Zahlentheorie. Mathe-
matische Annalen 117, 162–194.
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Gödel, K. (1933b). Zur intuitionistischen Arithmetik und Zahlentheorie. Er-
gebnisse eines mathematischen Kolloquiums 4, 34–38. Page numbering refers
to the English translation in Gödel 1986, 286–295.
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