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Enhancement in Figure:

In the original publication [1], the figures were not sharp enough. The enhanced
Figure 1, Figure 3, Figure 4, Figure 5, and Figure 7 appear below. The authors state that the
scientific conclusions are unaffected. This correction was approved by the Academic Editor.
The original publication has also been updated.
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Figure 1. Schematic representation of mechanism of gene silencing by miRNAs and siRNAs. 

Adapted and modified from [12] under the Creative Commons license. 
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Figure 1. Schematic representation of mechanism of gene silencing by miRNAs and siRNAs. Adapted
and modified from [12] under the Creative Commons license.

Pharmaceutics 2023, 15, 279. https://doi.org/10.3390/pharmaceutics15010279 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15010279
https://doi.org/10.3390/pharmaceutics15010279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-6167-6141
https://orcid.org/0000-0003-4991-6899
https://orcid.org/0000-0002-0173-7106
https://orcid.org/0000-0001-8479-8686
https://orcid.org/0000-0002-1191-3353
https://doi.org/10.3390/pharmaceutics15010279
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15010279?type=check_update&version=1


Pharmaceutics 2023, 15, 279 2 of 3

Pharmaceutics 2023, 15, x FOR PEER REVIEW 2 of 3 
 

 

 

Figure 3. Exosomal ncRNA-related mechanisms implicated in CRC drug resistance. CAFs: cancer-

associated fibroblasts; ncRNAs: noncoding RNAs; miRNA: microRNA; circRNA: circular RNA; 

lncRNA: long noncoding RNA. Adapted and modified from [75] under the Creative Commons li-

cense. 

  

Figure 4. Liposome-based carriers are sphere-shaped vesicles made of synthetic or natural phos-

pholipids. Surface-modifier and -targeting groups can be conjugated to the outer surface. Phospho-

lipids naturally form a bilayer upon aqueous dispersion, with the non-polar tails facing one other 

and the polar heads facing towards the aqueous phase. Hydrophilic molecules and RNAs are incor-

porated into the resulting inner core, while hydrophobic molecules are encapsulated in the lipid 

bilayer. Adapted and modified from [81] under the Creative Commons license. 

Figure 3. Exosomal ncRNA-related mechanisms implicated in CRC drug resistance. CAFs: cancer-
associated fibroblasts; ncRNAs: noncoding RNAs; miRNA: microRNA; circRNA: circular RNA;
lncRNA: long noncoding RNA. Adapted and modified from [75] under the Creative Commons
license.
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Figure 4. Liposome-based carriers are sphere-shaped vesicles made of synthetic or natural phospho-
lipids. Surface-modifier and -targeting groups can be conjugated to the outer surface. Phospholipids
naturally form a bilayer upon aqueous dispersion, with the non-polar tails facing one other and the
polar heads facing towards the aqueous phase. Hydrophilic molecules and RNAs are incorporated
into the resulting inner core, while hydrophobic molecules are encapsulated in the lipid bilayer.
Adapted and modified from [81] under the Creative Commons license.
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Figure 5. Illustration of dendritic molecular structures with a central core, repeating branches, and 

terminal reactive functional groups. They can be classified as polymers and hyperbranched poly-

mers with convergent and divergent architectures, depending on their molecular nature weight. 

Their nanostructure provides dendrimer–drug conjugation via different interactions such as elec-

trostatic and hydrophobic/hydrogen bonds or the capacity for drug encapsulation within the central 

cavity and/or between the dendrons (branches). Adapted and modified from [87] under the Creative 

Commons license. 

 

Figure 7. Illustration of a bilayer lipid-based nanocarrier with encapsulated drugs in the core; the 

self-assembled supramolecular architecture is shown. The solid lipid matrix encapsulates bioactive 

components, particularly lipophilic molecules, and releases them gradually over time. Lipid poly-

mer nanoparticles typically have spherical particles and sizes in the range of 10 to 1000 nm. There 

are several forms of lipid-based nanocarriers (liposomes and niosomes) reported in reference [81] 

for drug delivery. 
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Figure 5. Illustration of dendritic molecular structures with a central core, repeating branches, and
terminal reactive functional groups. They can be classified as polymers and hyperbranched polymers
with convergent and divergent architectures, depending on their molecular nature weight. Their
nanostructure provides dendrimer–drug conjugation via different interactions such as electrostatic
and hydrophobic/hydrogen bonds or the capacity for drug encapsulation within the central cavity
and/or between the dendrons (branches). Adapted and modified from [87] under the Creative
Commons license.
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Figure 7. Illustration of a bilayer lipid-based nanocarrier with encapsulated drugs in the core; the
self-assembled supramolecular architecture is shown. The solid lipid matrix encapsulates bioactive
components, particularly lipophilic molecules, and releases them gradually over time. Lipid polymer
nanoparticles typically have spherical particles and sizes in the range of 10 to 1000 nm. There are
several forms of lipid-based nanocarriers (liposomes and niosomes) reported in reference [81] for
drug delivery.
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