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Abstract: Fallen tree mapping provides valuable information regarding the ecological value of
boreal forests. Airborne laser scanning (ALS) enables mapping fallen trees on a large scale. We
compared the performance of line-detection-based individual fallen tree detection when using
moderate point density ALS data (15 points/m2) and high-point-density unmanned aerial vehicle-
based laser scanning (ULS) data (285 points/m2). Furthermore, we inspected the dataset and
detection methodology-related factors impacting performance in each case. The results of this study
showed that increasing the point density of the laser scanning dataset enables the detection of a
larger proportion of fallen trees. However, based on our experiment, a line-detection-based fallen
tree detection approach is sensitive to noise, thus generating a large number of false detections,
especially with high-point-density data. Different types of filters, such as a simple height-based filter
and machine-learning-based filters, can be used for reducing noise. However, using such filters is
always a compromise, as in addition to reducing noise and thus false detections, they also reduce the
number of true detections. Hence, a less noise-sensitive fallen tree detection method utilizing the
finer details visible in high-density point clouds could be more suitable for high-point-density laser
scanning data.

Keywords: airborne laser scanning; unmanned aerial vehicle; light detection and ranging; deadwood;
fallen trees; biodiversity

1. Introduction

Deadwood provides a habitat for a wide variety of species and is thus an essential
structural and functional element supporting biodiversity in boreal forests [1]. The amount
of deadwood is among the most important indicators used for monitoring biodiversity in
boreal forests together with the number of large living trees and the share of old growth
forests and deciduous forests [2]. In Finnish forests, which are mainly boreal, fallen
trees constitute approximately two-thirds of the deadwood [3]. As relatively large and
distinguishable objects, standing and fallen dead trees serve as a measurable ecological
indicator widely used in forest inventories. The ecological value of dead trees increases
with tree size, as the number of species dependent on a decaying tree increases as the
tree size increases [4,5]. Thus, from a biodiversity perspective, large trees are of the
most interest.

In forest inventories, the amount of deadwood is typically measured only from ground
plots covering a rather small area in geographical space. Then, the estimate over the whole
area of interest is derived based on the ground sample [6–8]. If deadwood volume and
quality maps are needed, those are typically created by generalizing the ground sample
over the area of interest using remote sensing [9]. The former approach is widely used for
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monitoring the amount and quality of deadwood in forest management areas, regions, and
countries. However, the approach is dependent on the amount and quality of the ground
sample and has rather limited capabilities for capturing the spatial arrangement and local
deadwood hotspots. The weakness of the latter approach has been that the predicted
amount of deadwood on each map location is dependent on the remote sensing features
describing only the characteristics of the standing trees. Thus, the core assumption in this
approach is that certain standing forest structures always include a certain number of dead
trees. To be valid, this inference requires similar silvicultural practices over the whole area
of interest, which is often an unrealistic assumption. Thus, to map and monitor deadwood,
and especially to characterize its spatial arrangement and hotspots, a universal, spatially
detailed, and automated method for mapping fallen trees from remote sensing data would
provide an efficient way for monitoring this key biodiversity indicator on a large scale.

Airborne laser scanning (ALS) is an active remote sensing method that can be used
for characterizing forest structures. ALS enables measuring canopy-related characteristics,
such as canopy height, height variation, and density, but also properties of the subcanopy
vegetation and topography [10,11]. Conventionally, ALS has been used for generalizing
ground sample measurements for wider areas. This has proven to work well for forest
characteristics that are correlated with canopy height, height variation, and density [12].
However, due to the limitations of the sampling-based approach, the most useful ap-
proach for mapping deadwood would be to detect and measure it directly from ALS
data. This direct approach has become increasingly feasible with the advances in laser
scanning technology.

Laser scanning is based on transmitting laser pulses to a target and determining the
distance to the target from the time difference (pulse-based scanners) or phase difference
(continuous wave scanners) between the transmitted and returning pulse [13]. The re-
turning pulses or partial pulses are called echoes. When monitoring forests, the upper
canopy layer generates the first echoes. Some pulses continue deeper into the canopy and
ultimately reflect from the terrain [14,15]. Thus, these latter echoes describe the topography
and near-ground objects. These echoes are of most interest in direct fallen tree detection.
When a sufficient number of laser pulses have reflected from fallen trees, they stand out as
line- or cylinder-like objects in the laser scanning point cloud. Presumably, increasing the
point densities of laser scanning datasets increases the probability of detecting such objects.

Several earlier studies have addressed direct fallen tree mapping using either ALS
data alone or a combination of ALS data and aerial imagery. Blanchard et al. [16] seg-
mented individual fallen trees from a combination of raster layers generated from ALS
data. Similarly, Mücke, et al. [17] segmented fallen trees from an ALS-based rasterized
height model, and Nyström, et al. [18] performed line-template matching on a rasterized
surface created from single and last ALS returns. In contrast to the aforementioned studies,
which all operated on rasterized ALS data, Lindberg, et al. [19] and Polewski, et al. [20,21]
operated directly on the point cloud. Lindberg, et al. [19] used a template matching method
similar to Nyström, et al. [18] at the point cloud level, whereas Polewski, et al. [20,21]
used 3D shape contexts [22] and machine learning to select representative fallen tree seg-
ments from a set of fallen tree candidates generated from ALS point pairs. Most recently,
Heinaro, et al. [23] detected individual fallen trees using an iterative line-fitting method
based on the Hough transform.

Unmanned-aerial-vehicle-based laser scanning (ULS) is a type of ALS where the
scanner is mounted on a drone. It is still a rather new concept that has not yet seen
many applications in forestry. Among the first to utilize ULS in forestry applications
were Jaakkola, et al. [24], who tested its suitability for individual tree mapping. Later
studies [25–28] applied ULS for a living tree inventory. However, thus far, studies ad-
dressing the feasibility of ULS for fallen tree mapping are non-existent. ULS opens new
possibilities for fallen tree mapping. Firstly, the point densities of ULS datasets exceed those
of ALS datasets. This potentially allows the detection of fallen trees with higher accuracy,
as well as estimating their dimensions more precisely. Secondly, ULS is a more agile and



Remote Sens. 2023, 15, 382 3 of 20

cost-efficient approach for small-scale mapping compared to ALS. ULS datasets can be
collected at rather short notice, and it is easy to focus dataset collection on a specific area of
interest. These advantages are useful, for example, when identifying biodiversity hotspots,
planning forest conservation and restoration practices, or when multi-temporal data are
required. Due to its agility, ULS-based fallen tree mapping is also suitable for mapping
wind damage.

The aim of this study was to evaluate the general suitability of a line-detection-based
approach for direct fallen tree mapping. Furthermore, the aim was to gain insight into
what types of dataset-specific properties and filtering-related decisions affect the accuracy
of fallen tree detection. This insight would hopefully provide information on the factors
to consider when developing new, more sophisticated fallen tree detection methods. The
study aimed to answer the following research questions:

• How do differences between laser scanning datasets affect the accuracy of fallen
tree detection?

• How does algorithm parameter selection affect the detection of different types of
fallen trees?

• What is the impact of machine-learning-based filters applied at different stages of the
detection process?

To answer these questions, we performed a sensitivity analysis on the parameters
of the line-detection-based method introduced by Heinaro, et al. [23] using both an ALS
dataset (point density of approximately 15 points/m2) and a ULS dataset (285 points/m2).
As the number of parameters of this method is rather large, we selected the parameters
that are common to a variety of automatic shape detection methods, which were most
relevant to the research questions, and which, based on observations made during method
development and testing, had the largest impact on the performance of the method. The
parameters and reasoning behind why each parameter was chosen are presented in the
methods section. The impact of the selected parameters was inspected in general as well as
for different types of trees, as tree type-specific sensitivity was of interest due to the varying
ecological value of different types of trees.

2. Materials and Methods
2.1. Study Site

The study site (Figure 1) covered approximately 16 km2 and was located in the Region
of Kainuu, Finland. The western part of the site was within Hiidenportti National Park,
whereas the eastern part was a state-owned managed forest. The state-owned managed for-
est had ecological relevance, as it connected two conservation areas: Hiidenportti National
Park and Teeri-Lososuo mire conservation area. Accurate information on deadwood is of
high importance in such areas, as it allows planning of ecological corridors between the
conservation areas.

The part of the site within Hiidenportti National Park mainly consisted of old-growth
forests while the forest maturity in the eastern part was more varied. The forest of the study
site as a whole can be described as a boreal forest mainly consisting of Norway spruces
(Picea abies L. Karst), Scots pines (Pinus sylvestris L.), silver birches (Betula pendula, Roth),
and downy birches (Betula pubescens, Ehrh). Some aspens (Populus tremula, L.) could also
be found around the area. The topography varied from flat to steep with elevations ranging
between 190 and 250 m above sea level.

2.2. Datasets
2.2.1. Airborne Laser Scanning Data

The airborne laser scanning dataset used in this study covered a 16 km2 area (Figure 1)
around the study site. The dataset was collected in May 2019 with a Riegl VQ1560i laser
scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria). The scanner has
two channels, both of which collect data using straight parallel scan lines that are tilted
28 degrees against each other. The resulting point cloud is rather uniform with occasional
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linear patterns caused by straight scan lines. The timing of the data acquisition was
specifically selected so that the snow in the study site had already melted but the trees had
not yet come into leaf. The dataset was collected with five parallel flight lines with 30%
overlap and a perpendicular flight line that tied all lines together. The point density of
the ALS dataset was approximately 15 points/m2, although the point density varied at
different parts of the study site depending on flight line coverage.
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Figure 1. Map of the study site. The blue rectangle shows the boundaries of the airborne laser
scanning (ALS) data, whereas the black polygons show the boundaries of the laser scanning data
collected using an unmanned aerial vehicle (ULS). The red circles are sample plot locations. The
western black and green dotted line depicts the east boundary of Hiidenportti National Park, whereas
the eastern black and green dotted line is the west boundary of Teeri-Lososuo mire conservation area.
The study area between these two natural parks is state-owned managed forest. Background maps:
National Land Survey of Finland.

2.2.2. ULS Data

The ULS dataset was collected at the beginning of June 2020 in similar snow-free
and leaf-off conditions as the ALS dataset. It was collected using a Riegl miniVUX-1DL
laser scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria) coupled with
a NovAtel CPT7 dual-antenna GNSS-IMU device. The scanner, specifically designed for
UAV use, collects data using a virtually circular scan pattern on the ground. In total, the
dataset covered an area of approximately 2.4 km2, which consisted of five distinct but
partially overlapping subsites (Figure 1). Each subsite was covered with six to nine parallel
flight lines, depending on the shape and size of the subsite. The flight line overlap was 30%.
The point density was approximately 285 points/m2, although the point density varied
depending on flight line coverage.
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2.2.3. Reference Data

The reference dataset contained information on 197 fallen trees measured at 37 circular
sample plots (radius 9 m). The inventory on 14 of these sample plots was taken between
July and September 2019. These sample plots were part of a systematic sample plot grid
that was aimed to capture the full variety of forest characteristics within the area covered
by the ALS data (For more details, see Heinaro, et al. [23]). The remaining 23 sample plots
were placed within the subsites covered by the ULS dataset and scrutinized in November
2020. These sample plots were placed at locations with a known abundance of fallen trees
to ensure that the dataset would contain objects of interest. Table 1 presents a summary of
the trees measured for reference.

Table 1. Summary statistics of the reference trees, including the minimum (min), mean, maxi-
mum (max), and standard deviation for length and diameter, and the proportion of trees in each
decay class.

Total Scots Pine Norway Spruce Silver and Downy Birch Aspen

Number of trees 197 22 148 20 7

Length (m)
Min 1.6 2.1 1.6 3.1 5.9

Mean 11.9 9.3 12.4 10.2 13.1
Max 28.8 22.2 28.8 22.1 18.0

Standard deviation 5.1 4.7 5.0 5.4 4.6

Diameter (mm)
Min 100.0 100.0 100.0 110.0 233.0

Mean 193.0 159.5 188.2 203.0 372.1
Max 450.0 296.0 404.0 418.0 450.0

Standard deviation 72.9 49.9 61.5 80.5 82.5

Decay class
Proportion of class 1 52% 77% 47% 60% 57%
Proportion of class 2 16% 14% 18% 10% 0%
Proportion of class 3 13% 9% 12% 15% 29%
Proportion of class 4 14% 0% 17% 15% 0%
Proportion of class 5 6% 0% 7% 0% 14%

All fallen trees located partially or fully within the sample plots were considered part
of the reference dataset. The information on each such tree included the location measured
at the top and bottom ends of the tree and the diameter, state of decay, and tree species.
The exact locations of the top and bottom ends of the fallen trees were measured using
a Trimble R2 (Trimble Inc., Sunnyvale, CA, USA) real-time kinematic global navigation
satellite system (GNSS) in FIX mode. The diameter of each tree was measured at a 1.3-m
distance from the bottom end (i.e., diameter at breast height, DBH) using steel calipers.
The bottom-end diameter was measured if the breast height could not be determined. The
state of decay was determined based on the guidelines applied in the Finnish national
forest inventory [29] and measured on a scale of one to five with one representing the
least decayed trees and five representing the most decayed trees. Trees in decay class
1 were hardwood where the decay process had not yet begun, whereas the trees in de-
cay class 5 were soft by the rot throughout the diameter. Please refer to Appendix A in
Heinaro, et al. [23] for a more specific description of the different decay classes. In addition
to the fallen tree characteristics, the dataset contained information on the forest characteris-
tics at each sample plot, including the species-independent and species-specific mean DBH,
mean height, basal area, and total volume of living trees, as well as the number of trees per
hectare and the amount and size of undergrowth. These characteristics were obtained by
recording the DBH and species of each living tree within the sample plot and measuring the
height of a comprehensive sample that aimed to capture the variety of living trees within
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the sample plot. A detailed description of the methodology used in collecting the reference
dataset is presented in Heinaro, et al. [23].

2.3. Methods
2.3.1. Pre-Processing the Laser Scanning Data

Both laser-scanning datasets were first normalized. In other words, topography was
removed from the point clouds to access objects of interest near the ground surface. The nor-
malization process started by extracting the ground points from the point clouds. Ground
points were extracted using the method of Zhang, et al. [30], which was available in R’s lidR
package [31,32]. Note that the lidR implementation of this algorithm applies morphological
operations directly on the point cloud as opposed to the original implementation that
instead used a raster generated from the point cloud. After ground point extraction, a
digital terrain model (DTM) was generated from the ground points and the corresponding
DTM height was subtracted from each point in the point cloud.

2.3.2. Fallen Tree Detection

Fallen trees were detected using the method introduced by Heinaro, et al. [23]. The
steps of this method are shown in Figure 2. Below, we present a summary of the method.
Refer to the original article for a more comprehensive description of the method.

The method can be divided into three main parts:

1. Filtering.
2. Line detection.
3. Segment delineation and classification.

The filtering step consisted of two parts: Height range (HR)-based filtering and
connected component classification (CCC). HR-based filtering restricted the analysis to
point cloud points located close to the ground (detected in an earlier step), as most fallen
trees lie close to the forest floor. CCC grouped neighboring points and removed point
groups with roundish non-elongated shapes that are not typical for fallen trees. The
grouping and classification were performed on a binary grid (cell size 0.2 m) in which
values of 1 represented grid cells with points inside them and values of 0 represented
empty cells. The 8-neighborhood was used for connecting non-empty grid cells together.
A shallow neural network was used for classifying point groups as either belonging or
not belonging to fallen trees. The neural network was trained on manually labeled point
groups that were extracted from outside the sample plots. The purpose of CCC was to
detect and then remove points originating from other near-ground objects such as rocks
and stumps.

Table 2. A summary of the tested parameters: Height range (HR), connected component classifier
(CCC), minimum number of points (MNP), and false tree detection (FTR) of the fallen tree detection
method. Refer to Heinaro, et al. [23] for a detailed description of the method.

Parameter Description Range

HR The height range to which fallen tree detection is applied. Fallen trees are
detected from point cloud points falling within the given height range.

Lower height range limit: 0.1, 0.2 and 0.3 m
Upper height range limit: 1 m

3 different height ranges in total.

CCC

A binary parameter that determines whether the connected component classifier
is used. The connected component classifier is a shallow neural network that

classifies point groups as either belonging or not belonging to fallen trees.
Essentially, CCC removes roundish non-elongated point groups from the point

cloud before line detection, as these point groups are not likely to belong to
fallen trees.

0—the classifier is not used.
1—the classifier is used.

MNP The number of point cloud points that must fall on the same line for a line
segment to be detected.

3, 6, 9, . . . , 30 points. 10 different values in
total.

FTR
A binary parameter that determines whether the false tree remover is used. The
false tree remover is a convolutional neural network that inspects each detected
fallen tree segment and removes the segments that do not resemble fallen trees.

0—the classifier is not used.
1—the classifier is used.
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Figure 2. The steps of fallen tree detection. Refer to Table 2 for a detailed description of the
parameters mentioned.

The line detection step was the core of the detection method and was based on the
Hough transformation [33,34]. The points not removed in the filtering step were first
projected on the xy-plane. Then, linear shapes were detected in the projected point cloud
using iterative Hough transformation. Iterative Hough transformation detected a line
segment in the point cloud and removed the points within 0.5 m from the line segment
to ensure that the same line segment would not be detected again. The most notable
parameter of this step was the minimum number of points (MNP) that must fall on the
same line for a line segment to be detected.

The detected line segments represented fallen tree candidates. The segment delineation
and classification step generated point cloud representations of these fallen tree candidates
using a region-growing algorithm. The algorithm started from the longest line segment
and assigned the points within 0.5 m from the segment to this segment. Then, points
within 0.2 m from the assigned points were added to the segment iteratively until no more
neighboring points were found. The same iterative process was repeated for all of the line
segments. Then all of the generated point cloud representations of the detected fallen tree
candidates were classified as fallen trees or false detections using a trained convolutional
neural network denoted as the false tree remover (FTR) further in the text.

We ran the fallen tree detection for both the ALS and ULS datasets using 120 different
parameter combinations to reveal the impact of each varied parameter (Table 2). The varied
parameters were:

1. The HR used in height-based filtering. We kept the upper limit fixed at 1 m but varied
the lower limit between 0.1, 0.2, and 0.3 m. Errors in ground extraction resulted in
some ground points being classified as above-ground points. Furthermore, ground
vegetation was often dense close to the forest floor. For these reasons, setting the
lower height limit to exactly zero results in a dense point cloud and a large number
of false fallen tree detections. Setting the lower height limit to a value slightly larger
than zero mitigates this issue but prevents the detection of fallen trees located very
close to or laying entirely on the forest floor.

2. Whether to use CCC or not for filtering the point cloud. The CCC step was originally
created to remove point groups originating from objects other than fallen trees and in-
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accuracies in ground classification, as these point groups resulted in many false fallen
tree detections. However, using CCC also removes some point groups originating
from fallen trees, resulting in a smaller number of true fallen tree detections.

3. The MNP that must fall on the same line for a line segment to be detected. The value
of MNP varied between 3 and 30 points with 3-point increments. Smaller values of
MNP should make the line detection process more sensitive, resulting in more true
detections, but also more false detections, and vice versa. The optimal value of this
parameter should depend on the point density, and thus the optimal value should be
different for the ALS and ULS datasets.

4. Whether to use the FTR or not. The CCC step cannot remove all point groups
not originating from fallen trees and thus iterative Hough transformation detects
numerous false fallen trees. The segment delineation and classification steps were
introduced to reduce these false observations. Similar to CCC, false fallen tree removal
reduces false observations, but also true observations.

2.3.3. Validation

Due to varying combinations of the used parameters, in total, 120 different fallen
tree detections were obtained. All of these were validated using the reference data col-
lected from the sample plots. The automatic validation process (Figure 3) consisted of the
following steps:

1. Line segment matches were searched for each reference fallen tree using distance-
and angle-based criteria. All line segments whose distance to the reference was
≤1 m and whose angle differed ≤10 degrees from the reference tree were determined
as matches.

2. If no such line segments were found, the number of false negatives (FN) was incre-
mented by one. If one or more such line segments were found, the number of true
positives (TP) was incremented by one and the matched line segments were removed
from the data so that they would not be matched with another reference tree.

3. Once all reference trees had been inspected, the number of remaining line segments
was set as the number of false positives (FP).

4. The precision (Equation (1)), recall (Equation (2)), and F1-score (Equation (3)) were
calculated and used as measures of fallen tree detection performance. Precision
represents the proportion of true detections of all detections (i.e., user’s accuracy),
recall represents the proportion of reference trees that were detected (i.e., producer’s
accuracy), and F1-score combines both precision and recall into a single metric, aiming
to present the performance of the method as a single value.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 =
2 ∗ (precision ∗ recall)

precision + recall
(3)

Overall precision, recall, and F1-score were calculated using all reference trees. In
addition, the fallen tree detection performance was assessed by deadwood dimensions
and state of decay. The reference trees were divided into five different classes based on
their length, diameter, and state of decay, and class-specific recalls were calculated for each
of these classes. Class-specific precision could not be calculated, as it would have been
impossible to determine the true length/diameter/decay class of false positives.
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line segments detected by the fallen tree detection method on a single sample plot. Note that detec-
tion was performed on a buffered point cloud extending beyond the sample plot boundaries. This 
ensured that reference trees falling partially outside the sample plot could be detected. Using a buff-
ered point cloud resulted in detections that could not be matched with a reference tree and that were 
located fully outside the sample plot boundaries. These detections (yellow lines in the figure) were 
discarded. Green lines depict detections that could be matched with a reference tree (true positives). 

Figure 3. Validation on a single sample plot. The figure shows an example of reference trees and line
segments detected by the fallen tree detection method on a single sample plot. Note that detection
was performed on a buffered point cloud extending beyond the sample plot boundaries. This ensured
that reference trees falling partially outside the sample plot could be detected. Using a buffered point
cloud resulted in detections that could not be matched with a reference tree and that were located
fully outside the sample plot boundaries. These detections (yellow lines in the figure) were discarded.
Green lines depict detections that could be matched with a reference tree (true positives). In contrast,
red lines depict detections that could not be matched with a reference tree and that were at least
partially located within the sample plot (false positives).

2.3.4. Sensitivity Analysis

A sensitivity analysis was performed to reveal the impact of each varied parameter on
the performance of the fallen tree detection method. Sobol’s method [35,36] was used to
examine how large a proportion of the total variance in the performance was accounted for
by each of the parameters. Sobol’s method is based on the observation that the variance in
the output of a function can be expressed as the sum of the contributions to the variance by
individual inputs and interactions between inputs (i.e., the variance can be decomposed
into parts accounted for by individual inputs and their interactions). For example, in
the case of four input variables, the variance in the output can be decomposed in the
following way:

Vy = ∑ Vi + ∑ Vij + ∑ Vijk + ∑ Vijkh, (4)

where Vy is the total variance in the output variable, Vi represents the contribution of input
variable i to the total variance, Vij represents the contribution of the interaction between
input variables i and j to the total variance, and so on. The contributions of individual
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input variables and the interactions between two input variables can be calculated using
(Equations (5) and (6)):

Vi = V[Ex∼i[y|xi]] (5)

Vij = V
[
Ex∼ij

[
y
∣∣xi, xj

]]
−Vi −Vj. (6)

In Equations (5) and (6), xi and xj represent individual input variables, E denotes
the expected value, and x~i represents that the value of xi is fixed while the values of
other variables vary. In practice, the values of one or more input variables were fixed
while the other input variables were left to range within predetermined bounds, and the
expected value of the output variable was then determined accordingly. The values of
the fixed variables were changed between iterations to repeat the process for all possible
combinations of the values of the fixed variables. The variance of the expected values was
then computed. For variances including more than one fixed input variable, the smaller-
order variances involving any combination of the fixed variables were subtracted to acquire
the true interaction variance of the fixed variables.

The output of Sobol’s method is a set of indices that represent the impact each input
variable and each interaction of input variables has on the total variance (Equation (7)).
These indices measure the proportional contribution of input variable i to the total variance
in the output variable.

Si =
Vi
Vy

(7)

The sensitivity analysis was carried out separately for the ALS and ULS-based methods.
Furthermore, in addition to examining how different parameters impacted fallen tree
detection performance in general, Sobol’s method was used for examining whether the
impact of different parameters varied between fallen trees of different lengths, diameters,
and decay states.

3. Results
3.1. Differences in Performance between the ALS and ULS Datasets

According to the sensitivity analyses carried out in this study, the highest performance
(F1-score 0.39) of the ALS-based method for fallen tree detection was obtained using the
following parameter combination: HR = 0.1 − 1.0 m, MNP = 3, CCC = Yes, FTR = Yes.
Using this parameter combination, a recall of 0.33 denoted that 33% of the field-measured
fallen trees could be detected, while a precision of 0.49 denoted that 49% of ALS-derived
fallen trees were true observations. In contrast, the highest performance (F1-score 0.21) of
the ULS-based method for fallen tree detection was obtained using the following parameter
combination: HR = 0.2 − 1.0 m, MNP = 12, CCC = Yes, FTR = Yes. Applying this parameter
combination resulted in a recall of 0.18 and a precision of 0.27 in fallen tree detection.

Figure 4 presents the precision and recall of the ALS and ULS datasets at different
height ranges when CCC and FTR were not applied (left) and when both of these classifiers
were applied (right). The figure shows that when the classifiers were not applied, the recall
in fallen tree detection using the ULS dataset was higher than the recall using the ALS
dataset, regardless of the values of MNP and HR. In contrast, precision was always higher
for the ALS dataset. When both classifiers were applied (Figure 4, right), precision was
still always higher for the ALS dataset, but with small values of MNP, the ALS dataset
outperformed the ULS dataset also when recall was used as the measure of performance.

Figure 5 shows the fraction of variance in precision, recall, and the F1-score explained
by different parameters and parameter combinations of the fallen tree detection method
run on ALS data and ULS data. For the ALS dataset, MNP explained most of the variance
in all accuracy metrics, but HR and the interaction between HR and MNP also had a
notable impact on the accuracy of fallen tree detection. For the ULS dataset, the proportion
of variance explained was divided more evenly among the parameters. HR was the
most impactful parameter on precision and F1-score, but its impact on recall was smaller,
although still notable. MNP still had a significant impact on recall and F1-score, but
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the impact on precision was smaller. In contrast to the results on the ALS dataset, CCC
explained a significant proportion of the variance in precision and recall, but the impact on
the F1-score was negligible. This indicates that the impact on precision and recall evened
out and thus the F1-score remained relatively constant regardless of whether CCC was
used. FTR and the interaction of HR and CCC also had some impact on the performance.
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points parameter.
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Figure 5. Sobol’s first-order indices for varied parameters and parameter combinations in ALS and
ULS data. MNP denotes the minimum number of points that must fall on the same line for a line
to be detected, HR denotes the height range from which fallen trees are searched, CCC denotes the
connected component classifier, and FTR denotes false tree removal. For example, the row labeled
ccc/mnp/ftr represents the fraction of variance in the output variable explained by the interaction
between the CCC, MNP, and FTR parameters.

Figure 6 presents how the two machine-learning-based filters, CCC and FTR, impacted
the results for ALS and ULS data. In the figure, each boxplot presents the distribution of the
proportional difference in precision or recall between the case when no filters were used
and the case when one or both of the filters were used. Figure 6 (orange) shows that, for
ALS data, the median increase in precision was 18% when using CCC, 9% when using FTR,
and 20% when using both filters. In contrast, the impact on recall was slightly smaller, with
CCC, FTR, and the combination of both filters causing a median decrease of 10%, 0%, and
12%, respectively. Note that with several values of MNP, recall was zero when no filters
were used, and thus using the filters did not change recall. As a result, the negative impact
on recall caused by using the filters is somewhat underestimated. Based on Figure 6 (blue),
the impact of the filters was larger on ULS data compared to the impact on ALS data. The
median increases in precision caused by using CCC, FTR, and the combination of both
filters were 93%, 54%, and 161%, whereas the median decreases in recall were 54%, 28%
and 56%, respectively.
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Figure 6. Boxplots of the proportional differences in precision and recall for the ALS and ULS
datasets between the base case (no filters used) and cases when filters were used. CCC denotes that
the connected component classifier was used, FTR denotes that the false tree remover was used and
CCC+FTR denotes that both of the filters were used. For example, the leftmost boxplot on the left
subplot shows that, on average, using the connected component classifier improved precisions of
ALS data by approximately 18% compared to the case when no filters were used.

3.2. The Impact of Parameters on the Detection of Different Types of Fallen Trees

Figure 7 presents the fraction of variance in recall of different types of fallen trees
explained by the parameters of the fallen tree detection method (i.e., Sobol’s indices). The
tree-type-specific Sobol indices largely reflected the general results (Figure 5), but there
were some differences in how much changes in the parameters of the fallen tree detection
method impacted trees belonging to different lengths, diameters, and decay classes. For
ALS data (Figure 7, orange), the detection of large trees (length and diameter-wise) was
more impacted by the MNP parameter than the detection of small trees. In contrast, the
detection of small trees seemed to be more sensitive to HR and the interaction between HR
and MNP. Heavily decayed trees were less sensitive to changes in the MNP parameter and
more sensitive to the interaction between HR and MNP compared to trees in earlier stages
of decay. For ULS data (Figure 7, blue), the trends between different types of fallen trees
were more subtle compared to ALS data. The impact of CCC seemed to increase with tree
length, indicating that long trees are more sensitive to this parameter than short trees. Long
trees were more sensitive to MNP compared to short trees, whereas tree diameter had an
opposite trend with this parameter. In contrast, long trees were less sensitive to the impact
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of the interaction between HR and CCC compared to short trees, with tree diameter, again,
showing an opposite trend. The impact of HR was larger for trees with small diameters
compared to large-diameter trees. There seemed to be no clear trends with decay class
apart from the impact of HR being larger for heavily decayed trees.
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Figure 7. Sobol’s indices by reference tree type for ALS data and ULS data. MNP denotes the
minimum number of points that must fall on the same line for a line to be detected, HR denotes the
height range from which fallen trees are searched, CCC denotes the connected component classifier,
and FTR denotes false tree removal. For example, the row labeled hr/ccc/mnp in the top-left plot
represents the fraction of variance in recall of trees in length class 0–5 m explained by the interaction
between the HR, CCC, and MNP parameters.

4. Discussion

This study inspected how the performance of fallen tree detection varies between two
types of laser scanning data: ALS data with a moderate point density and ULS data with a
high point density. The inspection was based on a sensitivity analysis of the most important
parameters of a line-detection-based fallen tree detection method. Based on the results, the
fallen tree detection methodology should be adjusted based on the type of laser scanning
dataset available.

The results of this study showed that, generally, the performance of fallen tree detection
was actually better for the sparser ALS dataset than the denser ULS dataset. The best F1-
score for ALS data was 0.39 (precision 0.49, recall 0.33) and 0.21 (precision 0.27, recall 0.18)
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for ULS data. However, the results showed that the methodology used in this study favored
the ALS dataset. The simplistic line-detection-based approach tested was rather sensitive
to signs of linearity in the point cloud, allowing the detection of fallen trees even when they
were represented by only a small linear group of points in the point cloud. As a tradeoff,
the method was sensitive to noise (points originating from other sources than fallen trees,
e.g., undergrowth) and generated a large number of false detections when the amount of
noise was significant. For the ALS dataset, the method seemed to be rather suited, as it
was sensitive enough to detect the linearities in the point cloud originating from fallen
trees, but due to the moderate point density, the amount of noise was small. For the ULS
dataset, the amount of noise was significantly higher resulting in a large number of false
detections. The sensitivity of line detection was adjusted by varying the MNP parameter,
but this mainly affected the ALS dataset, possibly due to the range of tested values of MNP
not being wide enough.

One way to reduce noise in the near-ground point cloud is to use a lower HR threshold
slightly above zero. The purpose of this threshold is to filter out falsely classified ground
points that would otherwise generate false fallen tree detections. The tradeoff when using
such a threshold is that trees left below this threshold cannot be detected and thus the
optimal threshold value should filter out as many points not belonging to fallen trees as
possible while retaining a majority of the fallen tree points. As expected, increasing the
lower HR threshold decreased both the number of true and false detections in most cases
(Figure 4). Based on the results, large trees were slightly less sensitive to the increase in
the lower HR threshold (Figure 7), especially when coupled with an increase in the MNP
parameter. This is logical, as large trees are more likely to occur higher from the ground
than small trees. A similar result was reported by Mücke, et al. [17], who noticed that using
a lower height threshold to exclude falsely classified ground points prevented the detection
of small fallen trees. The ULS dataset was more sensitive to the HR threshold compared
to the ALS dataset (Figure 5), as noise was a larger issue due to the higher point density.
The inaccuracies in ground extraction are a result of small-scale variations in topography
and ground vegetation that make distinguishing ground points from above-ground points
a challenging task. The ground extraction method used in this study was based on only
the geometric properties of points and their neighborhoods. Including point type and
reflectance-related information in ground extraction could have perhaps increased the
accuracy of ground extraction and thus decreased the number of false detections.

In addition to height-based filtering, this study utilized machine-learning-based fil-
ters/classifiers for reducing noise (CCC) and identifying false detections (FTR). CCC was
applied after height-based filtering to remove point groups not originating from fallen
trees, whereas FTR was used for filtering out false detections after detecting fallen tree
candidates. Similar filters have been used before. Nyström, et al. [18] used linear discrimi-
nant analysis to remove false detections after detecting fallen trees. Polewski, et al. [20,21]
used machine learning at three stages of the detection process. Firstly, they used a classifier
for identifying point cloud points belonging to stems. Secondly, they used a classifier for
classifying detected partially fallen tree segments as either true or false detections. Thirdly,
they used machine learning to learn optimal parameter values when merging the partially
fallen tree segments. However, neither of these studies inspected the individual effects
of these machine-learning-based phases of the detection process, but rather inspected the
performance of the detection method as a whole. Our goal was to inspect how machine-
learning-based filters affect fallen tree detection at different stages of the detection process
and in general. Both filters were, in fact, able to reduce the number of false detections,
but as a tradeoff, they also reduced the number of true detections (Figures 4 and 6). CCC
was more aggressive in reducing detections in general compared to FTR (Figure 6). Note,
however, that it is easy to tune the sensitivity of machine-learning-based filters by simply
changing the classification threshold. For example, a detection was classified as a true
detection if FTR output a value above 0.5. Setting this threshold to a lower value would
have resulted in fewer false detections being removed, but also fewer true detections being
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removed. More interestingly, the best performance was achieved when using FTR after
using CCC. In this case, precision improved, but recall remained almost constant. This
effect was clearer with ULS data where using both filters resulted in an improvement in
precision that was larger than the combined effect of the individual filters while recall
decreased only slightly compared to the case when only CCC was used. This implies that
reducing noise before detection somehow improved the performance of FTR. Perhaps CCC
was able to remove certain types of point groups (e.g., small point groups) that would have
generated a false detection, which FTR would have had a hard time detecting.

Both machine-learning-based filters used in this study were originally trained on the
ALS dataset (see [23]). This shows in the results, as the performance of the filters on the ULS
dataset was significantly more varied compared to the performance on the ALS dataset.
Moreover, with ULS data, using CCC had a larger negative impact on the detection of
large trees compared to small trees (Figure 7). This is possibly due to large trees forming
large and dense groups of points in ULS data that look like non-tree point groups for the
classifier that was trained on sparser ALS data. Both observations raise an important point:
Machine-learning-based filters/classifiers do not directly generalize to different types of
data and should thus be trained separately for each dataset. If this is not possible, another
option is to only extract features that should be consistent between different datasets and
build the filter using these features.

The results showed that machine-learning-based filters can improve the performance
of fallen tree detection, but if such filters are to be used, they should be trained with
examples extracted from the same or at least a very similar dataset to the dataset used for
fallen tree detection. Furthermore, the performance of such filters was suboptimal even
with the original ALS data on which they were trained. Perhaps machine-learning-based
filters would perform better with higher point density datasets in which the smaller details
of objects become visible. Machine-learning-based object detection (e.g., [37,38]) could be
an interesting option that would reduce the need for the numerous human-made decisions
related to the line-detection-based approach. In addition, the filters used in this study only
used features related to the geometric properties of the point cloud. Including intensity-
or echo-width-related features (see [17]) could perhaps be useful for distinguishing fallen
trees from other near-ground objects.

When comparing the results when neither of the machine-learning-based filters was
used (Figure 4, left), we see that the recalls for ULS data were higher than the corresponding
recalls for ALS data. This is in line with what could be expected, as by keeping the
values of other parameters fixed, an increase in point density would always result in more
(or as many) detections, some of which are likely to be true detections. The downside is
that a higher point density also results in a higher number of false positives, which, in
turn, decreases precision. This was especially evident in this study, where the precision
for ULS data was very low. Precision could be improved by filtering out false detections,
but the machine-learning-based filters used in this study performed suboptimally on ULS
data due to the filters being trained using the sparser ALS dataset. To summarize, using a
higher-point-density dataset can potentially increase the proportion of detected trees, but
the increasing false detection problem must be addressed for a better solution.

In addition to point density, the ALS and ULS datasets differed from each other in
their scan pattern. The scan pattern of the ALS dataset was rather uniform, whereas the
ULS dataset had a circular pattern. Visual inspection revealed a phenomenon with the
ULS data that generated a significant number of false detections. In the areas where the
diameter of the circular scan pattern was rather large, the pattern formed almost linear
point groups, which were falsely detected as fallen trees by the line detection method.
This induced a loss in precision, which, coupled with the negative impact of point density
on precision, amplified the difference in precision between the ALS and ULS datasets.
This might warrant an a priori filtering/harmonization of the UAV point cloud. Another
approach could be to consider the scan parameter settings carefully to acquire a more
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uniformly distributed point cloud in the first place based on the flight line placement and
flight parameters (speed and altitude).

The sensitivity analysis performed in this study was not fully comprehensive. To limit
the amount of computation and ensure interpretability, we used knowledge gained during
method development and testing for restricting the sensitivity analysis in several ways.
Firstly, we selected only a subset of the parameters for sensitivity analysis and fixed the
other parameters of the line detection method to values found suitable during method
development. Including all method parameters would have yielded a rather complicated
analysis that would have been challenging to interpret altogether. Thus, we only included
parameters that we, based on prior knowledge and experience, believed to have the largest
impact on the performance of the method. Secondly, we used experimental knowledge to
select the bounds of the parameter values used in the sensitivity analysis. For the binary
parameters (whether to use either of the machine learning filters), the bounds were self-
evident, but for the other parameters (MNP and HR), the parameter bounds could have
been different. Especially with the MNP parameter, increasing the upper bound could have
yielded interesting results for the ULS dataset. Now the performance on this dataset was
not very sensitive to changes in the MNP parameter as opposed to the ALS dataset, where
MNP was the most influential parameter.

A critical step in the fallen tree detection process is ground extraction, as inaccuracies
in this hamper the detection of fallen trees and generate false detections. Several ground
extraction methods were tested, and their parameters were varied to find the method and
parameters that yielded virtually the best results. The best method–parameter combination
was selected based on visual inspection. A more comprehensive search for the best method-
parameter combination could have improved the results, but this would have been a
tedious process, which possibly advocates for further investigations for operative purposes.

In the validation phase, reference trees were automatically matched with detected
fallen tree segments. The automatic matching process was rather simplistic, as it was only
based on the angle and distance between reference trees and detected segments. Thus,
the matching procedure might have generated false matches in some cases. Furthermore,
the matching procedure did not consider the length of the matched segment, and thus a
reference tree was determined as found even if the matched segment covered only a small
portion of it. A manual matching process would have likely been more accurate. However,
this would have been a highly tedious task, as there were 120 different sets of segments
to be matched with the reference trees (one for each parameter combination used for the
fallen tree detection). With 197 reference trees, this would have meant manually inspecting
120 × 197 = 23,640 trees.

The ALS dataset was acquired in 2019, whereas the ULS dataset was acquired in
2020. Furthermore, some of the sample plots were scrutinized in 2019 while others were
scrutinized in 2020. Between these two years, some new trees might have fallen on the
sample plots. These trees would not be visible in the ALS dataset nor be included in
the sample plots measured in 2019, which would distort the results. However, to our
knowledge, there were no forestry operations or major storms in the study site during this
time period, and thus the conditions in the forest likely remained rather stable.

From an ecological perspective, the results of this study provide some guidelines
on how the sensitivity of direct fallen tree detection methodology should be adjusted to
acquire the most reliable information regarding biodiversity hotspots possible. Direct fallen
tree detection is a challenging task and reaching high detection accuracies for all types
of fallen trees is virtually impossible, at least with the current laser scanning systems. A
detection method aiming to detect fallen trees of all sizes will generate a large number
of false detections, as the sensitivity of the method needs to be adjusted for the smallest
trees. As a consequence, the reliability of the biodiversity-related information gained from
mapping fallen trees is poor. To maximize reliability, direct fallen tree detection methods
should be optimized for detecting large trees, which can be detected from laser scanning
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data with relatively high accuracy [23]. This also makes sense from an ecological viewpoint,
as large trees have the most ecological value.

5. Conclusions

This study investigated factors affecting the performance of a line-detection-based
fallen tree detection approach with different types of ALS data. Investigated factors
included point cloud characteristics, such as the point density and scan pattern, and
methodological considerations related to parameter selection in a machine-learning-based
line detection algorithm.

The results of this study imply that using a higher-point-density dataset potentially
increases the proportion of fallen trees that can be detected. However, at least with the
method used in this study, this comes with a significant loss of precision (i.e., the proportion
of true detections of all detections is decreased significantly), as the line detection approach
was sensitive to noise and data-acquisition-related patterns in the dense point cloud.
Furthermore, the simplistic line detection approach was not able to take advantage of the
finer details made visible by the higher point density. Thus, instead of a line detection
approach, a more advanced method based perhaps on more complex shapes or patterns
and laser scattering properties (reflectance, deviation, and echo type) in the point cloud
could improve the results significantly when using high-density point clouds. One such
method could be machine-learning-based object detection.
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