
https://helda.helsinki.fi

A parameterized view on the complexity of dependence and

independence logic

Kontinen, Juha

2022-12

Kontinen , J , Meier , A & Mahmood , Y 2022 , ' A parameterized view on the complexity of

dependence and independence logic ' , Journal of Logic and Computation , vol. 33 , no. 8 ,

þÿ�e�x�a�c�0�7�0� �,� �p�p�.� �1�6�2�4 ��1�6�4�4� �.� �h�t�t�p�s�:�/�/�d�o�i�.�o�r�g�/�1�0�.�1�0�9�3�/�l�o�g�c�o�m�/�e�x�a�c�0�7�0

http://hdl.handle.net/10138/353242

https://doi.org/10.1093/logcom/exac070

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

A Parameterized View on the Complexity of1

Dependence and Independence Logic2

Juha Kontinen @ ORCID3

University of Helsinki, Department of Mathematics and Statistics, Helsinki, Finland4

Arne Meier @ ORCID5

Leibniz Universität Hannover, Institut für Theoretische Informatik, Hannover, Germany6

Yasir Mahmood @ ORCID7

Leibniz Universität Hannover, Institut für Theoretische Informatik, Hannover, Germany8

Abstract9

In this paper, we investigate the parameterized complexity of model checking for Dependence and10

Independence logic which are well studied logics in the area of Team Semantics. We start with a11

list of nine immediate parameterizations for this problem, namely: the number of disjunctions (i.e.,12

splits)/(free) variables/universal quantifiers, formula-size, the tree-width of the Gaifman graph of13

the input structure, the size of the universe/team, and the arity of dependence atoms. We present14

a comprehensive picture of the parameterized complexity of model checking and obtain a division15

of the problem into tractable and various intractable degrees. Furthermore, we also consider the16

complexity of the most important variants (data and expression complexity) of the model checking17

problem by fixing parts of the input.18

2012 ACM Subject Classification Theory of computation → Higher order logic; Theory of compu-19

tation → Problems, reductions and completeness20

Keywords and phrases Team Semantics, Dependence Logic, Independence Logic, Parameterized21

Complexity, Model Checking22

Funding Juha Kontinen: Funded by grants 308712 and 338259 of the Academy of Finland23

Arne Meier : Funded by the German Research Foundation (DFG), project ME4279/1-224

Yasir Mahmood: Funded by the German Research Foundation (DFG), project ME4279/1-225

1 Introduction26

In this article, we explore the parameterized complexity of model checking for dependence27

FO(dep) and independence logic FO(⊥). We give a concise classification of this problem28

and its standard variants (expression and data complexity) with respect to several syntactic29

and structural parameters. Our results lay down a solid foundation for a systematic study of30

the parameterized complexity of team-based logics.31

The introduction of dependence logic [?] in 2007 marks also the birth of the general32

semantic framework of team semantics that has enabled a systematic study of various33

notions of dependence and independence during the past decade. Team semantics differs34

from Tarski’s semantics by interpreting formulas by sets of assignments instead of a single35

assignment as in first-order logic. Syntactically, dependence logic is an extension of first-36

order logic by new dependence atoms dep(x; y) expressing that the values of variables x37

functionally determine values of the variables y (in the team under consideration). Similarly,38

independence logic is an extension of first-order logic by independence atoms x⊥zy expressing39

that the values of variables x are independent of values of variables y for any given values40

of variables z. Dependence and independence also manifest themselves in the context of41

database theory where one considers functional and multivalued dependencies [?].There are42

also other interesting team-based logics and atoms such as inclusion and exclusion atoms43

that are intimately connected to the corresponding inclusion and exclusion dependencies44

mailto:email
https://orcid.org/0000-0003-0115-5154
mailto:meier@thi.uni-hannover.de
https://orcid.org/0000-0002-8061-5376
mailto:mahmood@thi.uni-hannover.de
https://orcid.org/0000-0002-5651-5391

2 A Parameterized View on the Complexity of Dependence and Independence Logic

studied in database theory [?]. Furthermore, team semantics has been also extended, e.g., to45

propositional, modal and probabilistic variants (see [?, ?, ?] and the references therein).46

For the applications, it is important to understand the complexity theoretic aspects47

of dependence logic and its variants. In fact, during the past few years, these aspects48

have been addressed in several studies. For example, on the level of sentences dependence49

logic and independence logic are equivalent to existential second-order logic while inclusion50

logic corresponds to positive greatest fixed point logic and thereby captures P over finite51

(ordered) structures [?]. Furthermore, there are (non-parameterized) studies that restrict the52

syntax and try to pin the intractability of a problem to a particular (set of) connective(s).53

For instance, Durand and Kontinen [?] characterize the data complexity of fragments of54

dependence logic with bounded arity of dependence atoms/number of universal quantifiers.55

For independence and inclusion logic, the similar characterization has been achieved by56

Kontinen et al. [?, ?]. Grädel [?] considered the combined and the expression complexity of57

the model checking problem of dependence and independence logic. These studies will be of58

great help in developing our parameterized approach.59

A formalism to enhance the understanding of the inherent intractability of computational60

problems is brought by the framework of parameterized complexity [?]. Initiated by the61

founding fathers Downey and Fellows, in this area within computational complexity theory62

one strives for more structure within the darkness of intractability. Essentially, one tries63

to identify so-called parameters of a considered problem Π to find algorithms solving Π64

with runtimes of the form f(k) · |x|O(1) for inputs x, corresponding parameter values k,65

and a computable function f . These kind of runtimes are called FPT-runtimes (from66

fixed-parameter tractable; short FPT) and tame the combinatoric explosion of the solution67

space to a function f in the parameter. As a very basic example in this vein, we can consider68

the propositional satisfiability problem SAT. An immediate parameter that pulls the problem69

into the class FPT is the number of variables, as one can solve SAT in time 2k · |ϕ| if k70

is the number of variables of a given propositional formula ϕ. Yet, this parameter is not71

very satisfactory as it neither is seen fixed nor slowly growing in its practical instances.72

However, there are several interesting other parameters under which SAT becomes fixed-73

parameter tractable, e.g., the so-called treewidth of the underlying graph representations of74

the considered formula [?]. This term was coined by Robertson and Seymour in 1984 [?] and75

established a profound position (currently DBLP lists 812 papers with treewidth in its title)76

also in the area of parameterized complexity in the last years [?, ?].77

Coming back to fpt-runtimes, a runtime of a very different quality (yet still polynomial78

for fixed parameters) than FPT is summarized by the complexity class XP: |x|f(k) for79

inputs x, corresponding parameter values k, and a computable function f . Furthermore,80

analogously as XP but on nondeterministic machines, the class XNP will be of interest in81

this paper. Further up in the hierarchy, classes of the form paraC for a classical complexity82

class C ∈ {NP,PSPACE,NEXP} play a role in this paper. Such classes intuitively capture83

all problems that are in the complexity class C after fpt-time preprocessing. In Fig. 1 an84

overview of these classes and their relations are depicted (for further details see, e.g., the85

work of Elberfeld et al. [?]).86

Recently, the propositional variant of dependence logic (PDL) has been investigated87

regarding its parameterized complexity [?, ?]. Moreover, propositional independence and88

inclusion logic have also been studied from the perspective of parameterized complexity [?].89

In this paper, we further pursue the parameterized journey through the world of team logics90

and will visit the problems of first-order dependence FO(dep) and independence logic FO(⊥).91

As this paper is the first one that investigates these logics from the parameterized point of92

J. Kontinen, A. Meier, and Y. Mahmood 3

paraNEXP

paraPSPACE XNP

W[P]
paraNP XP

FPT DTM: f(k) · poly(|x|) time
NTM: f(k) · poly(|x|) time
DTM: poly(|x|)f(k) time

DTM: f(k) · poly(|x|) space
NTM: poly(|x|)f(k) time

NTM: f(k) · 2poly(|x|) time

Figure 1 Landscape showing relations of relevant parameterized complexity classes with machine
definitions.

Flight Destination Gate Date Time

FIN-70 HEL – FI C1 04.10.2021 09:55
SAS-475 OSL – NO A1 04.10.2021 12:25
SAS-476 HAJ – DE A5 04.10.2021 12:25
FIN-80 HEL – FI C1 04.10.2021 19:55

KLM-615 ATL – USA A5 05.10.2021 11:55
THY-159 IST – TR A1 05.10.2021 15:55
FIN-80 HEL – FI C1 05.10.2021 19:55

Table 1 An example flight departure screen at an airport

view, we need to gather the existing literature and revisit many results particularly from93

this perspective. As a result, this paper can be seen as a systematic study with some of the94

result following in a straightforward manner from the known non-parameterized results and95

some shedding light also on the non-parameterized view of model checking.96

We give an example below to illustrate how the concept of (in)dependence arises as a97

natural phenomenon in the physical world.98

I Example 1. The database in Table 1 presents a screen at an airport for showing details99

about departing flights. Alternatively, it can be seen as a team T over attributes in the100

top row as variables. Clearly, T |= dep(Flight,Date,Time; Destination,Gate), as well as101

T |= dep(Gate,Date,Time; Destination, Flight).102

Whereas, T 6|= dep(Destination,Gate; Time) as witnessed by the pair (FIN-70, HEL103

– FI, C1, 04.10.2021, 09:55) and (FIN-80, HEL – FI, C1, 04.10.2021, 19:55). Moreover,104

T |= Gate⊥∅Date, that is, the variable Gate is independent of Date when conditioned on105

empty set. Finally, T 6|= Flight⊥DateTime as witnessed by the pair (FIN-70, HEL – FI, C1,106

04.10.2021, 09:55) and (SAS-475, OSL – NO, A1, 04.10.2021, 12:25).107

Contribution. Our classification is two-dimensional:108

1. We consider the model checking problem of FO(dep) and FO(⊥) under various param-109

eterizations: number of split-junctions in a formula #splits, the length of the formula110

|Φ|, number of free variables #free-variables, the treewidth of the structure tw(A), the111

size of the structure |A|, the size of the team |T |, the number of universal quantifiers in112

the formula #∀, the arity of the dependence atoms arity, as well as the total number of113

variables #variables.114

2. We distinguish between expression complexity ec (the input structure is fixed), data115

complexity dc (the formula is fixed), and combined complexity cc.116

4 A Parameterized View on the Complexity of Dependence and Independence Logic

The results are summarized in Table 2. For instance, the parameters #∀, arity, and #variables117

impact in lowering the complexity for ec (and not for cc or dc), while the parameter |A|118

impacts for dc but not for cc or ec.119

Besides, we proved a general result on independence logic formulas that is independent of120

a parameterised analysis (Lemmas 11 and 14) and can be useful in other contexts.121

Related work. The parameterized complexity analyses in the propositional setting [?, ?, ?]122

have considered the combined complexity of model checking and satisfiability as problems123

of interest. On the cc-level, the picture there is somewhat different, e.g., team size as a124

parameter for propositional dependence logic enabled a FPT algorithm while in our setting125

it has no effect on the complexity (paraNEXP). Grädel [?] studied the expression and the126

combined complexity for FO(dep) and FO(⊥) in the classical setting, whereas the data127

complexity was considered by Kontinen [?].128

Prior work. This paper appeared in a preliminary version at the Logical Foundations of129

Computer Science (LFCS) 2022 Proceedings. In this version, we extend our complexity130

analysis to incorporate the strict and lax variant of independence logic. Lemmas 11 and 14131

are new results.132

Organization of the paper. In Section 2, we introduce the foundational concepts of depen-133

dence logic as well as parameterized complexity. In Section 3 our results are presented while134

Section 4 concludes the article.135

2 Preliminaries136

We require standard notions from classical complexity theory [?]. We encounter the classical137

complexity classes P,NP,PSPACE,NEXP and their respective completeness notions,138

employing polynomial time many-one reductions (≤P
m).139

Parameterized Complexity Theory. A parameterized problem (PP) P ⊆ Σ∗×N is a subset140

of the crossproduct of an alphabet and the natural numbers. For an instance (x, k) ∈ Σ∗×N,141

k is called the (value of the) parameter. A parameterization is a polynomial-time computable142

function that maps a value from x ∈ Σ∗ to its corresponding k ∈ N. The problem P is said143

to be fixed-parameter tractable (or in the class FPT) if there exists a deterministic algorithm144

A and a computable function f such that for all (x, k) ∈ Σ∗ × N, algorithm A correctly145

decides the membership of (x, k) ∈ P and runs in time f(k) · |x|O(1). The problem P belongs146

to the class XP if A runs in time |x|f(k) on a deterministic machine, whereas XNP is the147

non-deterministic counterpart of XP. Abusing a little bit of notation, we write C-machine148

for the type of machines that decide languages in the class C, and we will say a function f149

is “C-computable” if it can be computed by a machine on which the resource bounds of the150

class C are imposed.151

Also, we work with classes that can be defined via a precomputation on the parameter.152

I Definition 2. Let C be any complexity class. Then paraC is the class of all PPs P ⊆153

Σ∗ × N such that there exists a computable function π : N→ ∆∗ and a language L ∈ C with154

L ⊆ Σ∗ ×∆∗ such that for all (x, k) ∈ Σ∗ × N we have that (x, k) ∈ P ⇔ (x, π(k)) ∈ L.155

Notice that paraP = FPT. The complexity classes C ∈ {NP,PSPACE,NEXP} are used156

in the paraC context by us.157

J. Kontinen, A. Meier, and Y. Mahmood 5

A problem P is in the complexity class W[P], if it can be decided by a NTM running158

in time f(k) · |x|O(1) steps, with at most g(k)-many non-deterministic steps, where f, g are159

computable functions. Moreover, W[P] is contained in the intersection of paraNP and XP160

(for details see the textbook of Flum and Grohe [?]).161

Let c ∈ N and P ⊆ Σ∗ × N be a PP, then the c-slice of P , written as Pc is defined as162

Pc := { (x, k) ∈ Σ∗ × N | k = c }. Notice that Pc is a classical problem then. Observe that,163

regarding our studied complexity classes, showing membership of a PP P in the complexity164

class paraC, it suffices to show that for each slice Pc ∈ C is true.165

I Definition 3. Let P ⊆ Σ∗ × N, Q ⊆ Γ ∗ be two PPs. One says that P is fpt-reducible to166

Q, P ≤FPT Q, if there exists an FPT-computable function f : Σ∗ × N→ Γ ∗ × N such that167

for all (x, k) ∈ Σ∗ × N we have that (x, k) ∈ P ⇔ f(x, k) ∈ Q,168

there exists a computable function g : N → N such that for all (x, k) ∈ Σ∗ × N and169

f(x, k) = (x′, k′) we have that k′ ≤ g(k).170

Finally, in order to show that a problem P is paraC-hard (for some complexity class C) it is171

enough to prove that for some c ∈ N, the slice Pc is C-hard in the classical setting.172

Dependence and Independence Logic. We assume basic familiarity with predicate logic [?].173

We consider first-order vocabularies τ that are sets of function symbols and relation symbols174

with an equality symbol =. Let VAR be a countably infinite set of first-order variables.175

Terms over τ are defined in the usual way, and the set of well-formed formulas of first order176

logic (FO) is defined by the following BNF:177

ψ ::= t1 = t2 | R(t1, . . . , tk) | ¬R(t1, . . . , tk) | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ,178

where ti are terms 1 ≤ i ≤ k, R is a k-ary relation symbol from σ, k ∈ N, and x ∈ VAR.179

If ψ is a formula, then we use VAR(ψ) for its set of variables, and Fr(ψ) for its set of free180

variables. We evaluate FO-formulas in τ -structures, which are pairs of the form A = (A, τA),181

where A is the domain of A (when clear from the context, we write A instead of dom(A)),182

and τA interprets the function and relational symbols in the usual way (e.g., tA〈s〉 = s(x)183

if t = x ∈ VAR). If t = (t1, . . . , tn) is a tuple of terms for n ∈ N, then we write tA〈s〉 for184

(tA1 〈s〉, . . . , tAn 〈s〉).185

Dependence logic (FO(dep)) extends FO by dependence atoms of the form dep(t; u)186

where t and u are tuples of terms. Independence logic (FO(⊥)) in obtained by adding187

to FO the independence atoms of the form t⊥vu for tuples t,u and v of terms. We call188

expressions of the kind t1 = t2, R(t), dep(t; u), and t⊥vu atomic formulas.189

The semantics is defined through the concept of a team. Let A be a structure and190

X ⊆ VAR, then an assignment s is a mapping s : X → A.191

I Definition 4. Let X ⊆ VAR. A team T in A with domain X is a set of assignments192

s : X → A.193

For a team T with domain X ⊇ Y define its restriction to Y as T � Y := { s � Y | s ∈ T }.194

If s : X → A is an assignment and x ∈ VAR is a variable, then sxa : X ∪ {x} → A is the195

assignment that maps x to a and y ∈ X \ {x} to s(y). Let T be a team in A with domain196

X. Then any function f : T → P(A) \ {∅} can be used as a supplementing function of T to197

extend or modify T to the supplemented team T xf := { sxa | s ∈ T, a ∈ f(s) }. For the case198

f(s) = A is the constant function we simply write T xA for T xf . The semantics of formulas is199

defined as follows.200

6 A Parameterized View on the Complexity of Dependence and Independence Logic

I Definition 5. Let τ be a vocabulary, A be a τ -structure and T be a team over A with201

domain X ⊆ VAR. Then,202

(A, T) |= t1 = t2 iff ∀s ∈ T : tA1 〈s〉 = tA2 〈s〉203

(A, T) |= R(t1, . . . , tn) iff ∀s ∈ T : (tA1 〈s〉, . . . , tAn 〈s〉) ∈ RA204

(A, T) |= ¬R(t1, . . . , tn) iff ∀s ∈ T : (tA1 〈s〉, . . . , tAn 〈s〉) 6∈ RA205

(A, T) |= dep(t; u) iff ∀s1, s2 ∈ T : tA〈s1〉 = tA〈s2〉 =⇒ uA〈s1〉 = uA〈s2〉206

(A, T) |= t⊥vu iff ∀s1, s2 ∈ T : vA〈s1〉 = vA〈s2〉 then ∃s3 ∈ T :207

vtA〈s3〉 = vtA〈s1〉 and uA〈s3〉 = uA〈s2〉208

(A, T) |= φ0 ∧ φ1 iff (A, T) |= φ0 and (A, T) |= φ1209

(A, T) |= φ0 ∨ φ1 iff ∃T0∃T1 : T0 ∪ T1 = T and (A, Ti) |= φi for i = 0, 1210

(A, T) |= ∃xφ iff (A, T xf) |= φ for some f : T → P(A) \ {∅}211

(A, T) |= ∀xφ iff (A, T xA) |= φ212
213

Notice that we only consider formulas in negation normal form (NNF). In the team214

semantics setting, disjunction and existential quantifier are given two different meanings. The215

above defined semantics is the so-called lax-semantics, whereas an alternative is the strict-216

semantics. In strict-semantics, the split of teams have to be disjoint and the supplementing217

function is replaced by a function f : T → A. That is, the function f assigns a single element218

a ∈ A to each s ∈ T . For dependence logic, the two semantics coincide due to the downwards219

closure property. That is, for any FO(dep)-formula φ, if (A, T) |= φ then (A, P) |= φ for220

every P ⊆ T . For this reason we only consider lax semantics for FO(dep). Further note221

that (A, T) |= φ for all φ when T = ∅ (this is also called the empty team property). Finally,222

FO(dep)-formulas are local, that is, for a team T in A over domain X and a FO(dep)-formula223

φ, we have that (A, T) |= φ if and only if (A, T � Fr(φ)) |= φ. FO(⊥)-formulas are also local224

under lax-semantics but not under strict-semantics [?, Prop. 4.7]. Notice that strict-semantics225

is relatively stricter (as the name suggest) than the lax-semantics [?]. That is, for every226

FO(⊥)-formula φ, if (A, T) |=s φ then (A, T) |=` φ, where the subscript s and ` indicates227

the choice of the semantics. As a consequence, our hardness results for lax-semantics also228

apply to the case of strict-semantics. However, for membership we need to consider them229

separately for each case.230

I Definition 6 (Gaifman graph). Given a vocabulary τ and a τ -structure A, the Gaifman231

graph GA = (A,E) of A is defined as232

E :=
{
{u, v}

∣∣ if there is an Rn ∈ τ and a ∈ An with RA(a) and u, v ∈ a
}
.233

234

That is, there is a relation R ∈ τ of arity n such that u and v appear together in RA.235

Intuitively, the Gaifman graph of a structure A is an undirected graph with the universe236

of A as vertices and connects two vertices when they share a tuple in a relation (see also237

Fig. 2).238

I Definition 7 (Treewidth). The tree decomposition of a given graph G = (V,E) is a tree239

T = (B,ET), where the vertex set B ⊆ P(V) is the collection of bags and ET is the edge240

relation such that the following is true.241 ⋃
b∈B b = V ,242

for every {u, v} ∈ E there is a bag b ∈ B with u, v ∈ b, and243

for all v ∈ V the restriction of T to v (the subset with all bags containing v) is connected.244

J. Kontinen, A. Meier, and Y. Mahmood 7

Flight Gate Time

FIN-70 C1 09:55
SAS-475 C3 12:25
SAS-476 C2 12:25
FIN-80 C1 19:55

F7
C1

09

F8 19
S6 C2

12
S5 C3

F7,F8,C1

F7,C1,9 F8,C1,19

S5,S6,12

S6,12,C2 S5,12,C3

Figure 2 An FO-structure A = (A,SA, RA) (Left) with the Gaifman graph GA (Middle) and a
possible treedecomposition of GA (Right) of Example 8. For brevity, universe elements are written
in short forms.

The width of a given tree decomposition T = (B,ET) is the size of the largest bag minus one:245

maxb∈B |b| − 1. The treewidth of a given graph G is the minimum over all widths of tree246

decompositions of G.247

Observe that if G is a tree then the treewidth of G is one. Intuitively, one can say that248

treewidth accordingly is a measure of tree-likeness of a given graph.249

I Example 8. Consider the database form our previous example. Recall that the universe A250

consists of entries in each row. Let τ = {S2,R3} include a binary relation S (S(x, y) : flights251

x and y are owed by the same company) and a ternary relation R (R(x, y, z) : the gate x is252

reserved by the flight y at time z). For simplicity, we only consider first four rows with the253

corresponding three columns from Table 4, see Figure 2 for an explanation. Since the largest254

bag size in our decomposition is 3, the treewidth of this decomposition is 2. Furthermore,255

the presence of cycles of length 3 suggests that there is no better decomposition. As a256

consequence the given structure has treewidth 2.257

The decision problem to determine whether the treewidth of a given graph G = (V,E) is258

at most k, is NP-complete [?]. See Bodlaender’s Guide [?] for an overview of algorithms259

that compute tree decompositions. When considering the parameter treewidth, one usually260

assumes it as a given value and does not need to compute it.261

In the following problem definitions let C ∈ {FO(dep),FO(⊥)}. We consider only the262

model checking problem (MC) and two variants in this paper. First, let us define the most263

general version.264

Problem: cc(C) (combined complexity of model checking)

Input: a structure A, team T and a C-formula Φ.
Question: (A, T) |= Φ?

265

We further consider the following two variants of the model checking problem.266

Problem: dc(C) (data complexity of model checking, C-formula Φ is fixed)

Input: a structure A, team T .
Question: (A, T) |= Φ?

267

Problem: ec(C) (expression complexity of model checking, A, T are fixed)

Input: a C-formula Φ.
Question: (A, T) |= Φ?

268

8 A Parameterized View on the Complexity of Dependence and Independence Logic

Parameter cc dc ec

#splits paraPSPACE-hardL25 paraNPL20 paraPSPACE-hardL25

|Φ| paraNPL26 paraNPR21 FPT27

#free-variables paraNEXPL24 paraNPL20 paraNEXPL24

tw(A) paraNEXPL24 paraNPP 19 paraNEXPL24

|A| paraNEXPL24 FPTL22 paraNEXPL24

|T | paraNEXPL24 paraNPL23 paraNEXPL24

#∀ paraNP-hardL30 paraNPL20 paraNPL28

arity paraPSPACE-hardL33 paraNPL20 paraPSPACEL31

#variables paraNPL35 paraNPL20 FPTL36

Table 2 Complexity classification overview for both logics. The numbers in the exponent point
to the corresponding result (Lx means Lemma x, Px means Proposition x, Rx means Remark x).
Fig. 3 on page 18 is a graphical presentation of this table with a different angle.

List of Parameterizations. Now let us turn to the parameters that are under investigation269

in this paper. We study the model checking problem of C under nine various parameters270

that naturally occur in an MC-instance. Let 〈A, T, Φ〉 be an instance of MC, where Φ is271

a C-formula, A is a structure and T is a team over A. The parameter #splits denotes the272

number of occurrences of the split operator (∨), #∀ is the number of universal quantifiers in273

Φ. Moreover, #variables (resp., #free-variables) denotes the total number of (free) variables274

in Φ. The parameter |Φ| is the size of the input formula Φ, and similarly the two other size275

parameters are |A| and |T |. The treewidth of the structure A (see Def. 7) is defined as the276

treewidth of GA and denoted by tw(A). Note that for formulas using the dependence atom277

dep(x; y), one can translate to a formula using only dependence atoms where |y| = 1 (via278

conjunctions). That is why the arity of a dependence atom dep(x; y) is defined as |x|. The279

arity of an independence atom x⊥zy is defined as |x ∪ y ∪ z|. Finally, arity is the maximum280

arity of any dependence (independence) atom in Φ. Let k be any parameterization and281

P ∈ {dc, ec, cc}, then by k-P we denote the problem P when parameterized by k. If more282

than one parameterization is considered, then we use ‘+’ as a separator and write these283

parameters in brackets, e.g., (|Φ|+#free-variables)-dc as the problem dc with parameterization284

|Φ|+ #free-variables. Finally, notice that since the formula Φ is fixed for dc this implies that285

|Φ|-dc is nothing but dc. That is, bounding the parameter does not make sense for dc as the286

problem dc remains NP-complete.287

3 Complexity results288

We begin by proving several relationships between various parameterizations. These results289

are true for both FO(dep) and FO(⊥).290

I Lemma 9. Let Φ be a C-formula, A be a structure and T a team over A. Then the291

following relations among parameters hold.292

1. |Φ| ≥ k for any k ∈ {#splits,#∀, arity,#free-variables,#variables },293

2. |A| ≥ tw(A). Moreover, for dc, |A|O(1) ≥ |T |,294

3. For ec, #free-variables is constant.295

Proof. 1. Clearly, the size of the formula limits all parts of it including the parameters296

mentioned in the list.297

J. Kontinen, A. Meier, and Y. Mahmood 9

x y z t u

s0 0 0 0 1 1
s1 0 1 1 0 1
s2 1 1 0 1 0
s3 1 0 0 1 1
s4 0 1 0 1 0
s5 0 1 0 0 1
s6 0 0 1 1 1

Table 3 An example team that satisfies the formula in Example 10 in lax-semantics, but not in
strict-semantics.

2. Notice that for data complexity, the formula Φ and consequently the number of free298

variables in Φ is fixed. Moreover, due to locality principle it holds that T ⊆ Ar, where r299

is the number of free variables in Φ. That is, the team T can be considered only over the300

free variables of Φ. This implies that teamsize is polynomially bounded by the universe301

size, as |T | ≤ |A|r. Notice that FO(⊥) with strict-semantics does not satisfy locality.302

Consequently, the aforementioned proof works for FO(dep)-formulas, but only for lax303

semantics in the context of FO(⊥)-formulas.304

Finally, the result for tw(A) follows due to Definition 7. This is due to the reason that305

in the worst case all universe elements belong to one bag in the decomposition and306

tw(A) = |A| − 1.307

3. Notice that the team T is fixed in ec. This implies that the domain of T (which contains308

the set of free variables in the formula Φ) is also fixed and as a result, #free-variables is309

constant. J310

As discussed before, FO(dep)-formulas are local in the sense that: given a team T and311

a formula Φ then T |= Φ iff T �VAR(Φ)|= Φ. Moreover, FO(⊥)-formulas are also local but312

only under lax-semantics. The locality fails for strict semantics due to the reason that there313

might exist two assignments s, t ∈ T such that s 6= t and s(v) = t(v) for each v ∈ VAR(Φ). If314

we restrict T to VAR(Φ) then s and t collapse into just one assignment restricting the ways315

in which a team can be split into two disjoint parts.316

I Example 10. Consider the formula φ = (x⊥y ∧ z 6= t) ∨ (y⊥z ∧ x 6= u) and the team T317

as depicted in Table 3. Clearly, {s0, s1, s2, s3, s4} |= x⊥y ∧ z 6= t and {s0, s1, s2, s5, s6} |=318

y⊥z ∧ x 6= u, thereby T |=` φ. Whereas, s3, s4 must be in the left split and s5, s6 must be in319

the right split. Moreover, we can add s2 to the left split and s1 to the right. Now, s1 must320

be in both splits in order for the independence atoms to be true but this is not allowed in321

strict semantics.322

As Example 10 depicts, the question whether T |= Φ cannot be reduced to the question323

whether T �VAR(Φ) in the strict-semantics. As a consequence, for FO(⊥)-formulas under324

strict semantics when T is part of the input the size of T cannot be directly bounded by other325

parameters. However, when |A| = k is the parameter and |Φ| is fixed (for data complexity),326

the following lemma applies.327

I Lemma 11. Let Φ be an FO(⊥)-formula with VAR(Φ) = V , A be a structure and T be a328

team in A over variables X. Then it is possible to construct in time polynomial in the size329

of Φ, A and T a formula Φ′, a structure A′ and a team T ′ over V ∪ {z}, where z 6∈ V , such330

that (A, T) |=s Φ iff (A′, T ′) |=s Φ
′.331

10 A Parameterized View on the Complexity of Dependence and Independence Logic

Proof. The idea is to simulate the multiplicity of assignments in s ∈ T �V by an additional332

variable z. Let ` be the the largest multiplicity of any assignment s ∈ T �V . That is, let333

`s = #{t | t ∈ T and t �V = s} and ` = max{`s | s ∈ T}. In order to count up assignments in334

T ′ we add ` additional elements to A′. This can be problematic for quantifiers in Φ as those335

now range over elements in A′ rather than elements of A. We avoid this by adding a unary336

relation symbol P such that PA′ is true only for these new elements. Let {a1, . . . , a`} be a337

collection of fresh elements and consider the structure A′ = (A ∪ {a1, . . . , a`}, PA
′) where P338

is a unary relation as described above. First we construct the team T ′ from T by considering339

each collection si1 . . . , siri
∈ T of assignments that agree over V and extending it in such a340

way that sij(z) = aj . Clearly, j ≤ ` by construction. Notice that ` ≤ |T | and therefore, the341

construction can be achieved in polynomial time. Moreover, |T | = |T ′|. Now we construct342

the formula Φ′ from Φ. It suffices to replace only the quantifiers. That is, ∀xψ is replaced by343

∀x(P (x)∨ (¬P (x)∧ψ′)) and ∃xψ is replaced by ∃x(¬P (x)∧ψ′). The intuition for universal344

quantifier is that once each assignment in T ′ have been supplemented by A′, we ignore those345

assignments which map x to {a1, . . . , a`} because the quantified variable x in Φ ranges over346

elements of A alone. Similarly, for the case of existential quantifiers we assure that the347

supplementing function takes values only over A and not over A′.348

Now we prove the correctness by an induction on Φ for all T and T ′ as above. The case349

when Φ is a literal is easy because atomic formulas and their negations satisfy locality in both350

semantics. When Φ = ψ0 ∧ ψ1, then the claim follows due to the induction hypothesis. Now351

we prove the claim for Φ = ψ0 ∨ ψ1. Clearly, (A, T) |=s Φ iff ∃T0T1 such that T0] T1 = T352

(that is, T0 ∪ T1 = T, T0 ∩ T1 = ∅) and (A, Ti) |=s ψi for i = 0, 1. But we can use subteams353

Ti to construct subteams T ′i of T ′ such that T ′0 ∪ T ′1 = T ′, T ′0 ∩ T ′1 = ∅ and (A′, T ′i) |=s ψ
′
i354

by induction hypothesis. This is due to the reason that |T | = |T ′| and there is a 1-1-355

correspondence (g : T → T ′) between T and T ′. Consequently, the claim follows. Now, let356

Φ = ∃xφ. Then there is a function f : T → A such that (A, T xf) |=s φ. But then consider357

the function f ′ : T ′ → A′ such that for each s ∈ T ′, f ′(s) = f(g−1(s)). Clearly, f ′(s) ∈ A358

and (A′, T ′xf ′) |=s ∃x(¬P (x) ∧ φ′) and consequently (A′, T ′) |=s Φ
′. The reverse direction359

follows a similar argument since (A′, T ′) |=s ∃x(¬P (x) ∧ φ′) implies that the supplementing360

function f ′ : T ′ → A′ is allowed to take only elements in A because of the subformula ¬P (x).361

This together with the bijection g gives a supplementing function f such that (A, T xf) |=s φ.362

Finally, the case when Φ = ∀xφ is similar. J363

We extract the following definition from the proof of Lemma 11.364

I Definition 12. Let T be a team, V be a set of variables, and s ∈ T be an assignment.365

Then define `s = |{ t | t ∈ T and t �V = s }| as the multiplicity of s.366

It is important to notice that the number ` of repeating assignments is neither bounded367

by A nor by |Φ| but by the multiplicity of assignments in T . It turns out that we can not368

directly bound the teamsize by the structure size and the size of the formula alone. However,369

with the following observation we can still achieve an upper bound. The idea is to determine370

the maximum multiplicity of each assignment required to evaluate a subformula in Φ, where371

we count the multiplicity with respect to Fr(Φ) rather than only with respect to the variables372

in subformulas φ ∈ SF(Φ). That is, we do not restrict the multiplicity of assignments with373

respect to VAR(φ) because Fr(Φ) suffices for our purpose. Intuitively, for an atomic φ ∈ SF(Φ)374

it is enough to consider each assignment over Fr(Φ) only once. The case of conjunction375

is simple because the team is the same for both conjuncts and therefore it is enough to376

take the maximum multiplicity for assignments in any conjunct. The interesting cases are377

split junction and the existential quantifier. If a subformula φi requires the multiplicity of378

J. Kontinen, A. Meier, and Y. Mahmood 11

an assignment s to be ri for i = 0, 1, then clearly φ0 ∨ φ1 requires the multiplicity of s to379

be r0 + r1. This is due to the reason that the considered subteam P for φ0 ∨ φ1 can then380

split (according to the strict semantics) into subteams P1 and P2 with their corresponding381

multiplicities. Moreover, for ∃xφ the analysis takes into consideration the worst case scenario.382

That is, where the supplementing function for a strict existential quantifier takes only one383

value for x. In the worst case, there may be so many assignments that x can take each384

element a of the universe. As a consequence, the multiplicity of assignments increases by |A|385

(in principle, this can increase to min{`, |A|} but we want to relate it with |A|). Finally, the386

case of ∀xφ is simple because the supplementing function will map x to each element of the387

universe under each assignment.388

I Definition 13. Let Φ be an FO(⊥)-formula with VAR(Φ) = V , A be a structure and T be389

a team with domain X ⊇ V . Define the function f# : SF(Φ)→ N such that390

1. f#(φ) = 1 for each atomic φ,391

2. f#(φ ∧ ψ) = max{f#(φ), f#(ψ)},392

3. f#(φ ∨ ψ) = f#(φ) + f#(ψ),393

4. f#(∃xφ) = f#(φ) + |A|,394

5. f#(∀φ) = f#(φ).395

The value f#(φ) assigns the maximum multiplicity of any assignment in a team T that396

might be required to evaluate T |= φ.397

I Example 14. Consider a team T and the formula Φ := ∃x∀y[φ2(x, y, z) ∧ (φ0(x, y, z) ∨398

φ1(x, y))] where φi is atomic for each i ≤ 2. This implies each φ1 is local and therefore399

f#(φi) = 1. Moreover, f#(φ0∨φ1) = 2, f#(φ1∧ (φ0∨φ1)) = 2 and f#(∀yφ1∧ (φ0∨φ1)) = 2.400

Finally, f#(Φ) = 2 + s where s = min{`, |A|} and ` is the maximum multiplicity of any401

assignment s ∈ T �V .402

The following lemma is essential in bounding the teamsize for data complexity of FO(⊥)403

under strict-semantics in terms of |A|.404

I Lemma 15. Let Φ be an FO(⊥)-formula with VAR(Φ) = V , #splits(Φ) = r, #∃(Φ) = q,405

A be a structure and T be a team in A over X. Then the following two claims are true:406

1. f#(Φ) ≤ (r + 1) + q · |A|.407

2. Let T ′ ⊆ T be a team such that in T ′ each assignment s ∈ T �V has a multiplicity of at408

most f#(Φ). Then, we have that (A, T) |=s Φ iff (A, T ′) |=s Φ. Furthermore, such a team409

T ′ can be computed in polynomial time in |T |.410

Proof. The claim that f#(Φ) ≤ (r + 1) + q · |A| is easy to observe since f#(φ) only changes411

when φ = ψ0 ∨ ψ1 or φ = ∃xψ. In the first case, we take the sum for each split and in the412

second case, we add a factor of |A| for each existential quantifier.413

To prove the second claim, notice first that if each assignment s ∈ T �V has already a
multiplicity of at most f#(Φ) then there is nothing to prove and we take T ′ = T . Now, we
show using induction on Φ that for all T ′, T satisfying for each assignment s ∈ T �V that
either s has the same multiplicity, or a multiplicity of at least f#(Φ) in both of them, this
implies that

(A, T) |= Φ⇔ (A, T ′) |= Φ.

If Φ is an atomic or negated atomic formula then the claim follows from the fact that414

T �V = T ′ �V . Assume then that Φ = ψ1 ∨ ψ2 and T and T ′ satisfy the assumption on the415

number of extensions of assignments for f#(Φ) = n. Then, (A, T) |=s Φ iff ∃T0,∃T1, such416

that T0] T1 = T and (A, Ti) |=s ψi for i = 0, 1. It is now straightforward to check that417

12 A Parameterized View on the Complexity of Dependence and Independence Logic

we can define a partition of T ′ into T ′1 and T ′2 such that for all s ∈ Ti �V either s has the418

same multiplicities in Ti and T ′i , or multiplicities of at least f#(ψi) in both of them. By419

the induction assumption it follows that (A, T ′i) |= ψi. The converse implication is proved420

symmetrically. The other connectives can be treated in the same way. J421

Lemma 14 results in bounding the size of an input team T by a constant factor of a polynomial422

in |A|. The following corollary essentially provides the counterpart of second item in Lemma 9423

for strict semantics of FO(⊥).424

I Corollary 16. Let Φ be an FO(⊥)-formula with VAR(Φ) = V , #splits(Φ) = r, #∃(Φ) = q,425

A be a structure and T be a team in A over variables X. Then there is a team T ′ with426

|T ′| ≤ (r + 1 + q · |A|) · |T �V | such that T |=s Φ iff T ′ |=s Φ.427

Proof. For each assignment s ∈ T �V , it is enough to consider at most f#(Φ) extensions of428

s. This yields the desired bound on the size of T ′. J429

I Remark 17. If the number of free variables (#free-variables) in a formula Φ is bounded430

then the total number of variables (#variables) is not necessarily bounded, on the other hand,431

bounding #variables also bounds #free-variables.432

Now we explore the relationship between FO(dep) and FO(⊥) which is essential in proving433

hardness results for FO(⊥).434

I Observation 18. The equivalence dep(x; y) ≡ y⊥xy between dependence and independence435

atoms implies FO(dep) can be viewed as a sublogic of FO(⊥). As a consequence, (in the436

classical setting) the hardness results for FO(dep) immediately translate to those for FO(⊥).437

Nevertheless, in the parameterized setting, one has to further check whether this translation438

‘respects’ the parameter value of the two instances. In our analysis, this concerns parameters439

arity and |Φ| because these are the only two parameters that change when we replace a440

dependence atom with an equivalent independence atom. Recall that a dependence atom441

dep(x; y) has arity |x|, whereas, the equivalent independence atom y⊥xy has arity |x ∪ y|.442

In general one assumes that only dependence atoms of the form dep(x; y) can appear in443

a FO(dep)-formula which increases the arity by one. However, we do not restrict ourself444

to these atoms and prove that the reductions presented for the hardness of FO(dep) when445

parameterised by arity and |Φ| can be easily adapted to the case of FO(⊥). For arity, in the446

given reductions we will argue that replacing every dependence atom by independence atoms447

increases the arity only by a constant factor. For |Φ|, we use the following observation.448

I Remark 19. Let Φ be a FO(dep)-formula and Φ′ be the FO(⊥)-formula obtained after449

replacing every dependence atom by an independence atom. Then, for any reasonable450

encoding of formulas we have that |Φ′| ≤ #atoms · |Φ|2, where #atoms denotes the number451

of dependence atoms in Φ and #atoms(Φ) ≤ |Φ|.452

That is, replacing a dependence atom dep(x; y) by an independence atom y⊥xy in Φ increases453

the size by |y| ≤ |Φ|. Consequently, we have |Φ′| ≤ |Φ|3, and the hardness results for FO(⊥)454

when parameterized by |Φ| follow from the corresponding cases for FO(dep).455

3.1 Data complexity (dc)456

Classically, the data complexity of model checking for a fixed C-formula Φ is NP-complete [?,457

?].458

J. Kontinen, A. Meier, and Y. Mahmood 13

x = ‘variable’ y = ‘parity’ u = ‘clause’ v = ‘position’

p1 1 1 0
p2 0 1 1
p3 0 1 2

Table 4 An example team for (p1 ∨ ¬p2 ∨ ¬p3)

I Proposition 20. For a fixed C-formula, the problem whether an input structure A and a459

team T satisfies the formula is NP-complete. That is, the data complexity of dependence460

and independence logic is NP-complete.461

In this section we prove that none of the considered parameter lowers this complexity,462

except |A|. The proof relies on the fact that the complexity of model checking for already a463

very simple formula (see below) is NP-complete.464

I Lemma 21. Let k ∈ {#splits,#free-variables,#variables,#∀, arity, tw(A)}. Then the prob-465

lem k-dc(C), is paraNP-c.466

Proof. The upper bound follows from Proposition 19. Kontinen [?, Theorem 4.9] proves that467

the data complexity for a fixed FO(dep)-formula of the form dep(x; y)∨dep(u; v)∨dep(u; v) is468

already NP-complete. For clearity, we briefly sketch the reduction presented by Kontinen [?].469

Let φ =
∧
i≤m

(`i,1 ∨ `i,2 ∨ `i,3) be an instance of 3-SAT. Consider the structure A over the470

empty vocabulary, that is, τ = ∅. Let A = Var(φ)∪{0, 1, . . . ,m}. The team T is constructed471

over variables {x, y, u, v} that take values from A. As an example, the clause (p1∨¬p2∨¬p3)472

gives rise to assignments in Table 4. Notice that, a truth assignment θ for φ is constructed473

using the division of T according to each split. That is, T |= dep(x; y) ∨ dep(u; v) ∨ dep(u; v)474

if and only if ∃P0, P1, P2 such that ∪iPi = T for i ≤ 2 and each Pi satisfies ith dependence475

atom. Let P0 be such that P0 |= dep(x; y), then we let θ(pj) = 1 ⇐⇒ ∃s ∈ P, s.t. s(x) = pj476

and s(y) = 1. That is, one literal in each clause must be chosen in such a way that satisfies477

this clause, whereas, the remaining two literals per each clause are allowed to take values478

that does not satisfy it. As a consequence, each clause is satisfied by the variables chosen in479

this way, which proves correctness.480

This implies that the 2-slice (for #splits-dc), 4-slice (for #free-variables-dc as well as481

#variables-dc), 0-slice (for #∀-dc), and 1-slice (for arity-dc) are NP-complete. Moreover,482

replacing each dependence atom in dep(x; y) ∨ dep(u; v) ∨ dep(u; v) by the equivalent in-483

dependence atom increases the arity of independence atoms by at most 1. Consequently,484

the paraNP-hardness of these cases follow. Finally, the case for tw(A) also follows due to485

the reason that the vocabulary of the reduced structure is empty. As a consequence, our486

definition 7 yields a tree decomposition of width 1 trivially as no elements of the universe487

are related. This completes the proof to our lemma. J488

I Remark 22. Recall that |Φ| as a parameter for dc(C) does not make sense as the input489

consists of 〈A, T 〉. That is, the formula Φ is already fixed which is stronger than fixing the490

size of Φ.491

We now prove the only tractable case for the data complexity.492

I Lemma 23. |A|-dc(C) ∈ FPT.493

Proof. Notice first that restricting the universe size |A| polynomially bounds the teamsize494

|T |, due to Lemma 9 (for FO(dep)) and Corollary 15 (for FO(⊥)). This implies that the size495

14 A Parameterized View on the Complexity of Dependence and Independence Logic

of whole input is (polynomially) bounded by the parameter |A|. The result follows trivially496

because any PP P is FPT when the input size is bounded by the parameter [?]. J497

I Lemma 24. |T |-dc is paraNP-complete.498

Proof. For a fixed sentence Φ ∈ FO(dep) (that is, with no free variables) and for all models499

A and team T we have that (A, T) |= Φ ⇐⇒ (A, {∅}) |= Φ. As a result, the problem ≤FPT-500

reduces to the model checking problem with |T | = 1. Consequently, 1-slice of |T |-dc(FO(dep))501

is NP-complete because model checking for a fixed FO(dep)-sentence is also NP-complete502

[?]. This gives paraNP-hardness for FO(dep). The hardness for FO(⊥) uses Observation 17503

additionally.504

For the membership, note that given a structure A and a team T then for a fixed C-formula505

Φ the question whether (A, T) |= Φ is in NP. Consequently, giving paraNP-membership. J506

A comparison with the propositional dependence (PDL) and independence logic (PIND)507

at this point might be interesting. If the formula size is a parameter then the model checking508

for PDL and PIND can be solved in FPT-time [?, ?]. However, this is not the case for509

FO(dep) and FO(⊥) even if the formula is fixed in advance.510

3.2 Expression and Combined Complexity (ec, cc)511

Now we turn towards the expression and combined complexity of model checking for C.512

Here again, in most cases the problem is still intractable for the combined complexity.513

However, expression complexity when parameterized by the formula size (|Φ|) and the total514

number of variables (#variables) yields membership in FPT. Similar to the previous section,515

we first present results that directly translate from the known reductions for proving the516

NEXP-completeness for C.517

I Lemma 25. Let k ∈ { |A|, tw(A), |T |,#free-variables }. Then both k-cc(C) and k-ec(C) are518

paraNEXP-complete.519

Proof. In the classical setting, NEXP-completeness of the expression and the combined520

complexity for C was shown by Grädel [?, Theorems 5.1 & 5.2]. This immediately gives521

membership in paraNEXP. Interestingly, for hardness the universe in the reduction consists522

of {0, 1} with empty vocabulary and the formula obtained is a FO(dep)-sentence. This523

implies that 2-slice (for |A|), 1-slice (for tw(A)), 1-slice (for |T |), and 0-slice (for the number524

of free variables) are NEXP-complete. As a consequence, paraNEXP-hardness for the525

mentioned cases follows for FO(dep). The corresponding cases for FO(⊥) also follow due to526

Observation 17 and this completes the proof. J527

For the number of splits as a parameterization, we only know that this is also highly528

intractable, with the precise complexity open for now.529

I Lemma 26. #splits-ec(C) and #splits-cc(C) are both paraPSPACE-hard.530

Proof. Consider the equivalence of {∃,∀,∧}-FO-MC to quantified constraint satisfaction531

problem (QCSP) [?, p. 418]. That is, the fragment of FO with only operations in {∃,∀,∧}532

allowed. Then QCSP asks, whether the conjunction of quantified constraints (FO-relations)533

is true in a fixed FO-structure A. This implies that already in the absence of a split operator534

(even when there are no dependence atoms), the model checking problem is PSPACE-hard.535

Consequently, the mentioned results follow. J536

J. Kontinen, A. Meier, and Y. Mahmood 15

The formula size as a parameter presents varying behaviour depending upon if we consider537

the expression or the combined complexity. However, the complexity remains same for both538

logics we considered.539

I Lemma 27. |Φ|-cc(C) is paraNP-complete.540

Proof. Notice that, due to Lemma 9, the size k of a formula Φ also bounds the maximum541

number of free variables in any subformula of Φ. This gives the membership in conjunction542

with [?, Theorem 5.1]. That is, the combined complexity of C is NP-complete if maximum543

number of free variables in any subformuala of Φ is fixed. The lower bound follows because544

of the construction by Kontinen [?] (see also Lemma 20) since for a fixed formula (of fixed545

size), the problem is already NP-complete. J546

I Lemma 28. |Φ|-ec(C) is in FPT.547

Proof. Recall that in expression complexity, the team T and the structure A are fixed.548

Whereas, the size of the input formula Φ is a parameter. The result follows trivially because549

any PP P is FPT when the input size is bounded by the parameter. J550

The expression complexity of C regarding the number of universal quantifiers as a param-551

eter drops down to paraNP-completeness, which is still intractable but much lower than552

paraNEXP-completeness. However, regarding the combined complexity we can only prove553

the membership in XNP, with paraNP-lower bound.554

I Lemma 29. #∀-ec(C) is paraNP-complete.555

Proof. We first prove the lower bound for #∀-ec(FO(dep)) through a reduction form the556

satisfiability problem for propositional dependence logic (PDL). That is, given a PDL-557

formula φ, whether there is a team T such that T |= φ? Let φ be a PDL-formula over558

propositional variables p1, . . . , pn. For i ≤ n, let xi denote a variable corresponding to559

the proposition pi. Let A = {0, 1} be the structure over empty vocabulary. Clearly φ is560

satisfiable iff ∃p1 . . . ∃pnφ is satisfiable iff (A, {∅}) |= ∃x1 . . . ∃xnφ′, where φ′ is a FO(dep)-561

formula obtained from φ by simply replacing each proposition pi by the variable xi. Notice562

that the reduced formula does not have any universal quantifier, that is #∀(φ′) = 0. This gives563

paraNP-hardness of #∀-ec(FO(dep)) since the satisfiability for PDL is NP-complete [?].564

Moreover, the hardness of #∀-ec(FO(⊥)) also follows due to Observation 17.565

For membership, notice first that a FO(dep)-sentence Φ with k universal quantifiers can566

be reduced in P-time to an ESO-sentence Ψ of the form ∃f1 . . . ∃fr∀x1 . . . ∀xkψ [?, Cor. 3.9],567

where ψ is a quantifier free FO-formula, r ∈ N, and each function symbol fi is at most568

k-ary for 1 ≤ i ≤ r. Finally, (A, {∅}) |= Φ ⇐⇒ A |=
∨
f1

. . .
∨
fr

∀x1 . . . ∀xkψ′. Where the569

latter question can be solved by guessing an interpretation for each function symbol fi and570

i ≤ r. This requires r · |A|k guessing steps, and can be achieved in paraNP-time for a571

fixed structure A (as we consider expression complexity). Similarly, an FO(⊥)sentence Φ572

with k universal quantifiers can be reduced in P-time to an ESO-sentence Ψ of the form573

∃f1 . . . ∃fr∀x1 . . . ∀xk∀xk+1ψ [?, Proposition 20]. The only difference being an additional574

universal quantifier in the case of FO(⊥)-sentences. It is worth mentioning that the proof575

by Kontinen and Hannula [?, Proposition 20] does not state explicitly that the function576

symbols can be assumed to have arity at most k. However, this can be assumed using a577

result by Durand et al. [?, Theorem 5.11]. Consequently, the membership in paraNP follows578

for #∀-ec(C).579

16 A Parameterized View on the Complexity of Dependence and Independence Logic

Notice that the arity of function symbols in the paraNP-membership above is bounded580

by k if Φ is a C-sentence. However, if Φ is a C-formulas with m free variables then the arity581

of function symbols as well as the number of universal quantifiers in the reduction, both582

are bounded by k +m where k = #∀(Φ) and m = #free-variables(Φ). Nevertheless, recall583

that for ec, the team is also fixed. Moreover, due to Lemma 9 the collection of free variables584

in Φ has constant size. This implies that the reduction above provides an ESO-sentence585

with k +m universal quantifiers as well as function symbols of arity k +m at most. Finally,586

guessing the interpretation for functions still takes paraNP-steps (because m is constant)587

and consequently, we get paraNP-membership for open C-formulas as well. J588

The following corollary immediately follows from the proof above.589

I Corollary 30. (#∀+ #free-variables)-ec(C) is paraNP-complete.590

I Lemma 31. #∀-cc(C) is paraNP-hard. Moreover, #∀-cc(C) is in XNP for C-sentences.591

Proof. The paraNP-lower bound follows due to the fact that the expression complexity of592

C is already paraNP-complete when parameterized by #∀ (Lemma 28).593

For sentences, similar to the proof in Lemma 28, a C-sentence Φ can be translated to an594

equivalent ESO-sentence Ψ in polynomial time. However, if the structure is not fixed as for595

expression complexity, then the computation of interpretations for functions can no longer be596

done in paraNP-time, but requires non-deterministic |A|k-time for each guessed function,597

where k = #∀. Consequently, we reach only membership in XNP for sentences. J598

For open formulas, we do not know if #∀-cc(C) is also in XNP. Our proof technique does599

not immediately settle this case as the team is not fixed for cc.600

Similar to the case of universal quantifiers, the arity as a parameter also reduces the601

complexity for both logics, but not as much as the universal quantifiers. Moreover, the602

precise combined complexity when parameterized by the arity is also open.603

I Lemma 32. arity-ec(C) is paraPSPACE-complete.604

Proof. For hardness, notice that the expression complexity of FO is PSPACE-complete.605

This implies that already in the absence of any (in)dependence atoms, the complexity remains606

PSPACE-hard, as a consequence, the 0-slice of arity-ec(C) is PSPACE-hard.607

For membership, notice that a FO(dep)-sentence Φ with k-ary dependence atoms can608

be reduced in P-time to an ESO-sentence Ψ of the form ∃f1 . . . ∃frψ [?, Thm. 3.3], where609

ψ is an FO-formula and each function symbol fi is at most k-ary for 1 ≤ i ≤ r. Finally,610

A |= Φ ⇐⇒ A |=
∨
f1

. . .
∨
fr

ψ′. That is, one needs to guess the interpretation for each611

function symbol fi, which can be done in paraNP-time. Finally, evaluating an FO-formula612

ψ′ for a fixed structure A can be done in PSPACE-time. This yields membership in613

paraPSPACE. Moreover, if Φ is an open FO(dep)-formula then the result follows due to a614

similar discussion as in the proof of Lemma 28. Finally, for FO(⊥) the result follows because615

FO(⊥)(k-ind) = FO(dep)(k-dep) [?, Theorem 35] . That is, the fragment of independence616

logic obtained by allowing only k-ary independence atoms is equivalent to the fragment of617

dependence logic obtained by allowing only k-ary dependence atoms. This proves the desired618

result. J619

The combination (arity + #free-variables) also does not lower the expression complexity620

as discussed before in the case of #∀.621

I Corollary 33. (arity + #free-variables)-ec(C) is paraPSPACE-complete.622

J. Kontinen, A. Meier, and Y. Mahmood 17

I Lemma 34. arity-cc(C) is paraPSPACE-hard.623

Proof. Consider the fragment of FO(dep) with only dependence atoms of the form dep(;x),624

the so-called constancy logic. The combined complexity of constancy logic is PSPACE-625

complete [?, Theorem 5.3]. This implies that the 0-slice of arity-cc(FO(dep)) is PSPACE-626

hard, proving the result. The hardness for FO(⊥) follows because of the equivalence627

dep(;x) ≡ x⊥∅x. J628

The combined complexity of model checking for constancy logic is PSPACE [?, Thm. 5.3].629

Aiming for an paraPSPACE-upper bound via squeezing the fixed arity of dependence atoms630

(in some way) into constancy atoms is unlikely to happen as FO(dep) (as well as FO(⊥))631

captures ESO whereas constancy logic for sentences (and also open formulas) collapses to632

FO [?].633

Notice that a similar reduction as in the proof of Lemma 28 holds from PL, in which both634

parameters (#∀ and arity) are bounded. This implies that there is no hope for tractability635

even when both parameters are considered together. That is, the expression complexity636

remains paraNP-complete when parameterized by the combination of parameters (#∀,637

arity).638

I Corollary 35. (#∀+ arity)-ec(C) is also paraNP-complete.639

Finally, for the parameter total number of variables, the expression complexity drops640

to FPT whereas, the combined complexity drops to paraNP-completeness. The case of641

expression complexity is particularly interesting. This is due to the reason that it was posed642

as an open question by Virtema [?] whether the expression complexity of the fixed variable643

fragment of dependence logic (FO(dep)k) is NP-complete similar to the case of the combined644

complexity therein. We answer this negatively by stating FPT-membership for #variables-ec,645

which as a corollary proves that the expression complexity of FO(dep)k is in P for each646

k ≥ 1.647

I Lemma 36. #variables-cc(C) is paraNP-complete.648

Proof. Notice that if the total number of variables in a C-formula Φ is fixed, then the number649

of free variables in any subformula ψ of Φ is also fixed. This implies the membership in650

paraNP due to [?, Theorem 5.1]. On the other hand, by [?, Theorem 3.9.6] we know that651

the combined complexity of Dk is NP-complete. This implies that for each k, the k-slice of652

the problem is NP-hard. The desired hardness for FO(⊥)k follows due to Observation 17.653

This gives the lower bounds for both logics. J654

The following lemma once again utilizes the fact that a C-formula can be reduced to an655

equivalent ESO-formula. However, an important observation here is that this reduction also656

preserves the number of variables in the formula657

I Lemma 37. #variables-ec(C) is FPT.658

Proof. Given a formula Φ of dependence logic with k variables, we can construct an equivalent659

formula Ψ of ESOk+1 in polynomial time [?, Theorem 3.3.17]. Moreover, since the structure660

A is fixed, there exists a reduction of Ψ to an FO-formula ψ with k + 1 variables (big661

disjunction on the universe elements for each second order existential quantifier). Finally, the662

model checking for FO-formulas with k variables is solvable in time O(|ψ| · |A|k) [?, Prop 6.6].663

This implies the membership in FPT. If Φ is an FO(⊥)-formula, then the (worst case)664

reduction of Φ into an ESO-sentence uses 3k variables [?, Prop. 14]. The above discussion665

gives a similar FPT-algorithm for FO(⊥) running in time O(|ψ| · |A|k). J666

18 A Parameterized View on the Complexity of Dependence and Independence Logic

da
taparaNP

FPT

co
m

bi
ne

d paraNEXP

paraPSPACE

paraNP

ex
pr

es
sio

n

paraNEXP

paraPSPACE

paraNP

FPT

FPTstructural
tw(A)arity

quantitative

#free-variables#splits

#∀ #variables

size

|T |

|A|

|Φ|

Figure 3 Complexity classification overview for model checking problem of (in)dependence logic,
that takes grouping of parameters (quantitative, size, structural) and complexity classes into account.

I Corollary 38. The expression complexity of FO(dep)k is in P for every k ≥ 1.667

Proof. Since both, the number of variables and the universe size is fixed. The runtime of668

the form O(|ψ| · |A|k) in Lemma 36 implies membership in P. J669

4 Conclusion670

In this paper, we analyzed the parameterized complexity classification of model checking671

for dependence (FO(dep)) and independence logic (FO(⊥)) with respect to nine different672

parameters (see Table 2 for an overview of the results). In Fig. 3 we depict a different kind of673

presentation of our results that also takes the grouping of parameters into quantitative, size674

related, and structural into account. Interestingly, the complexity for both considered logics675

remains same under each parameterization. Moreover, the complexity of FO(⊥) also remains676

same under both (strict and lax) semantics . The data complexity of C shows a dichotomy677

(FPT vs. paraNP-complete), where surprisingly there is only one case (|A|) where one can678

reach FPT. This is even more surprising in the light of the fact that the expression (ec679

and the combined (cc) complexities under the same parameter are still highly intractable.680

Furthermore, there are parameters when cc and ec vary in the complexity (#variables). The681

combined complexity of C stays intractable under any of the investigated parameterizations.682

It might be interesting to study combination of parameters and see their joint effect on the683

complexity (yet, Corollaries 29, 32, 34 tackle already some cases).684

We want to close this presentation with some further questions:685

What other parameters could be meaningful (e.g., number of conjunction, number of686

existential quantifiers, treewidth of the formula)?687

What is the exact complexity of #∀-cc(C),#splits-ec(C)/-cc(C), arity-cc(C)?688

What new insights brings the parameterized complexity analysis for inclusion logic?689

