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Abstract

We propose a new frequentist approach to sign restrictions in structural
vector autoregressive models. By making efficient use of non-Gaussianity in
the data, point identification is achieved which facilitates standard asymptotic
inference and, hence, the assessment of theoretically implied signs and labeling
of the statistically identified structural shocks. We illustrate the benefits of our
approach in an empirical application to the U.S. labor market.
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1 Introduction

The approach of identifying structural vector autoregressive (SVAR) models by sign re-

strictions, pioneered by Faust (1988), Canova and De Nicoló (2002), and Uhlig (2005), has

become very popular in empirical macroeconomic research. Compared to most other ap-

proaches to identifying SVAR models, sign restrictions, only constraining the signs of the

effects of the shocks based on economic theory or institutional knowledge, are less strin-

gent, but still manage to convey economic intuition. Therefore, they have a great appeal

in empirical research.

The key feature of sign-identified SVAR models is that the impulse response functions

are only set identified, while other commonly employed approaches, such as short-run

identification restrictions, achieve point identification. In other words, only bounds for the

parameters of the impact multiplier matrix governing the impulse responses are obtained.

Bayesian inference dominates the literature on sign-identified SVAR models, and it is not

necessarily a problem from the Bayesian perspective that parameters are only set identified,

since if a proper prior on all the parameters of the SVAR model is used, the resulting

posterior distribution of the impulse response functions is well defined (see Poirier (1998)).

Nevertheless, the lack of point identification is not a virtue, as it hampers learning from

the data. It may also impede reporting the results of impulse response analysis, especially

as the identified set may be very large, as discussed by Fry and Pagan (2011).

Besides set identification, another shortcoming of the traditional Bayesian approaches

to sign restrictions, recently pointed out by Baumeister and Hamilton (2015), is that con-

ventional (implicit) priors may be inadvertently informative about structural impulse re-

sponses. As a solution, Baumeister and Hamilton recommended that researchers impose

explicit priors for the elements of the impact multiplier matrix, and identify their role

in influencing posterior conclusions. However, the methodology outlined by Baumeister

and Hamilton has recently been criticized on several grounds (see Kilian and Lütkepohl

(2017, Chapter 13.7), Herrera and Rangaraju (2018), and Kilian and Zhou (2019)). For

instance, it has been argued that it is inapplicable to many sign-identified SVAR models

in the literature, and the priors in some applications have been ad hoc and inconsistent

with extraneous evidence. In particular, it is unclear how exactly extraneous information,
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such as estimates of the parameters of interest reported in the previous literature should

be translated into a prior density.

In this paper, we propose an alternative approach as a solution to the problems of the

traditional procedure of identification by sign restrictions discussed above, where theoret-

ically implied signs of the effects of shocks are used for economic identification (labeling)

in a statistically identified SVAR model. In line with the recent advances in the statistical

identification literature, our idea is to make use of non-Gaussianity of the structural errors

of the SVAR model (see Kilian and Lütkepohl (2017, Chapter 14) for a textbook treat-

ment of the relevant literature). In order to avoid making distributional assumptions, we

estimate the SVAR model by the generalized method of moments (GMM) with moment

conditions implied by non-Gaussianity, as in Lanne and Luoto (2021). Once the model has

been estimated, we can check by inspection and by computing confidence intervals whether

the elements in the columns of the impact matrix satisfy the theoretically implied signs.

Subsequently, the shocks corresponding to the columns that do, can be labeled the shocks

of interest.

This approach has two main benefits. First, it facilitates point identification, i.e, it

produces a unique SVAR model with unique impulse response functions. Second, because

of unique identification, any restrictions on the parameters can be tested in a straightfor-

ward manner using conventional asymptotic testing procedures. Moreover, as no signs are

imposed, it is possible to assess the plausibility of the theoretically implied signs of the

effects of the shocks, which is typically infeasible (see, e.g., the discussion in Kilian and

Lütkepohl (2017, Chapter 13.5)). In particular, if none of the columns of the estimated

impact matrix satisfies the sign constraints, we can conclude that identification by signs is

not viable. Our approach is akin to the procedure of Canova and Paustian (2011), where

some moments, including the robust sign restrictions, are employed for identification to

facilitate the assessment of the remaining theoretically implied signs.

Our procedure is frequentist, but it avoids the non-uniqueness problem that frequen-

tist approaches to sign restrictions share with the traditional Bayesian approaches (see

Granziera et al. (2018), and Gafarov et al. (2015, 2018)). It is closely related to the

similar procedure in the Bayesian framework by Lanne and Luoto (2020). However, in that
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case, the SVAR model is statistically identified by assuming a specific non-Gaussian dis-

tribution for the structural errors, whereas the procedure considered in this paper is more

robust in that no distributional assumptions are made. Another difference is that while

the plausibility of the theoretically implied signs can be formally checked in the Bayesian

setup, our frequentist procedure can only be seen as an informal approach to estimating a

sign-identified SVAR model.

We illustrate our procedure by means of Hamilton and Baumeister’s (2015) empirical

application to the U.S. labor market. Clear deviations from Gaussianity of the structural

shocks are detected, which facilitates statistical identification. Hence, we can quite accu-

rately estimate the labor-supply and labor-demand elasticities of interest by the GMM, and

compute point-identified responses of the real wage and employment to the labor-supply

and labor-demand shocks. While the estimated responses of the real wage to both shocks

are similar to those of Baumeister and Hamilton, we obtain responses of employment that

are quite different from theirs. In particular, we find the effect of the labor-demand shock

on employment much stronger than they did. This may partly be related to the fact that

the long-run restriction underlying their prior is rejected at conventional significance levels.

The outline of the rest of the paper is as follows. In Section 2, we introduce the SVAR

model and discuss its statistical identification and labeling the statistically identified shocks.

Section 3 contains the empirical application to the U.S. labor market; in Subsection 3.1, we

introduce Hamilton and Baumeister’s (2015) model and discuss its estimation by the GMM

under the assumption of non-Gaussian errors, while Subsection 3.2 contains the empirical

results. Finally, Section 4 concludes.

2 Model

We consider the n-variate structural VAR(p) model

yt = a+ A1yt−1 + · · ·+ Apyt−p +But, (1)

where yt is a vector of time series of interest, a is an intercept term, A1, . . . , Ap are n ×

n coefficient matrices, and the matrix B summarizing the contemporaneous structural

relations of the errors is assumed nonsingular. In the literature, model (1) is often referred
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to as the B-model (see, e.g., Lütkepohl 2005, Chapter 9). An alternative SVAR formulation

is obtained by left-multiplying (1) by the inverse of B:

Ayt = a∗ + A∗

1
yt−1 + · · ·+ A∗

pyt−p + ut, (2)

where A = B−1, a∗ = B−1a, and A∗

j = B−1Aj (j = 1, . . . , p), and it is this A-model

formulation that we will consider in our empirical application.

In order to facilitate identification of matrix B (or its inverse A), two further assump-

tions have typically been made in the previous literature. First, ut has been assumed to

be a sequence of stationary random vectors with each component uit, i = 1, · · · , n, being

independent in time and having zero mean and finite positive variance. Second, it has

been assumed that the components uit are mutually independent, and at most one of them

has a Gaussian marginal distribution. Under these assumptions, matrix B (and hence its

inverse A) is unique apart from permutation and multiplication by −1 of its columns (see

Proposition 1 and its proof in Lanne et al. (2017)). Uniqueness up to permutation and

multiplication by −1 of the columns of B means that the model remains the same after

changing the order of the columns of B or multiplying any of them by −1 as long as the

shocks uit are reordered and scaled accordingly.

Lanne et al. (2017), and Lanne and Luoto (2020), inter alia, have assumed specific para-

metric error distributions, while Lanne and Luoto (2021), Keweloh (in press), and Lanne

et al. (2021) have considered GMM estimation of the SVAR model based on co-kurtosis

conditions. In this setup, the mutual independence and non-Gaussianity assumptions can

be relaxed to some extent. In particular, Lanne et al. show that, with a suitable selection

of moment conditions (see Section 3.1 for the condition needed in the case of the bivariate

SVAR model), global and local identification in GMM estimation is achieved if the compo-

nents of ut are orthogonal, exhibit no excess co-kurtosis and at most one of them has zero

excess kurtosis.

The structural shocks and their impulse responses are uniquely identified, but despite

this statistical identification, the shocks cannot be labeled or given any economic interpreta-

tion without additional restrictions. Recently, Lanne et al. (2017) showed how conventional

short-run and long-run identifying restrictions can be tested in this framework, and if not

rejected, used for economic identification. Lanne and Luoto (2020), in turn, considered
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labeling the shocks by the theoretically implied signs of their effects on the variables in-

cluded in the model. Their procedure is Bayesian, and the idea is to label the statistically

identified shocks based on the posterior probabilities of the effects of the shocks satisfying

the signs implied by economic theory.

In this paper, we propose a frequentist counterpart of the procedure of Lanne and Luoto

(2020). However, compared to the latter, our frequentist procedure is quite informal. It

is based on the idea that because the SVAR model is identified by non-Gaussianity, it is

possible to assess the signs of the effects of the structural shocks by simple test procedures.

For example, by computing confidence intervals for the elements of the impact matrix and

checking whether positive or negative values are included in them, we can assess the the

accordance of the theoretically implied signs with the data. This is facilitated by the fact

that identification is indeed only statistical, and no signs are used to identify the structural

shocks. If the shocks satisfy the sign constraints, they can be labeled accordingly.

3 Application to the U.S. labor market

3.1 GMM estimation

We demonstrate our approach to identification by signs in Baumeister and Hamilton’s

(2015) model of labor supply and labor demand:

∆nt = kd + βd∆wt + bd
11
∆wt−1 + bd

12
∆nt−1 + bd

21
∆wt−2

+bd
22
∆nt−2 + · · ·+ bd

81
∆wt−8 + bd

82
∆nt−8 + ud

t ,

∆nt = ks + αs∆wt + bs
11
∆wt−1 + bs

12
∆nt−1 + bs

21
∆wt−2

+bs
22
∆nt−2 + · · ·+ bs

81
∆wt−8 + bs

82
∆nt−8 + us

t , (3)

where ∆nt is the growth rate of employment, ∆wt is the growth rate of real compensa-

tion per hour, βd is the short-run wage elasticity of demand, and αs is the short-run wage

elasticity of supply. Baumeister and Hamilton identified the model by imposing sign re-

strictions, so they were able to label the first equation the demand equation and the second

equation the supply equation, while we just estimate a bivariate SVAR(8) model and label

the equations based on the estimated signs of the impact coefficients. The system can be
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written as

Ayt = Bxt−1 + ut, (4)

where yt = (∆wt,∆nt)
′, xt−1 is a ((2m+ 1) × 1) vector containing the m lags of yt and a

constant, B is a (2×(2m+1)) matrix collecting the coefficients of xt−1, and the components

of the vector of structural disturbances ut = (ud
t , u

s
t)

′ are orthogonal and exhibit no excess

co-kurtosis. The (2× 2) matrix

A =





−βd 1

−αs 1





summarizes the simultaneous effects of ∆wt and ∆nt. The impact matrix of the structural

shocks is obtained by inverting A:

A−1 =
1

−βd + αs





1 −1

αs
−βd



 ,

and the labor-supply and labor-demand shocks can be labeled by the estimated signs of

βd and αs. In particular, if the estimate of αs is positive, ud
t can indeed be labeled the

labor-demand shock, as it would then have impact effects of the same sign on both the

real wage and employment. Likewise, if the estimate of βd is negative, us
t is labeled the

labor-supply shock with impact effects of opposite sign on the real wage and employment.

We estimate the SVAR model by the efficient GMM based on the following moment

conditions:

E (ut ⊗ xt−1) = 02k×1 (5a)

E
(

ud
t

)2

− d11 = 0 (5b)

E (us
t)

2
− d22 = 0 (5c)

E(ud
tu

s
t) = 0 (5d)

where ⊗ denotes the Kronecker product, and dii (i = 1, 2) are the diagonal elements of

D = E(utu
′

t). Conditions (5a), implicitly assume that the lag length 8 is sufficient to make

the components of the error term ut serially uncorrelated, while conditions (5b) and (5c)

concern the variances of the elements of ut, and condition (5d) makes the errors orthogonal.
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In addition, we impose either of the following asymmetric co-kurtosis conditions:

E(
(

ud
t

)3

us
t ) = 0 (6a)

E((us
t )

3
ud
t ) = 0 (6b)

as well as the symmetric co-kurtosis condition of the form

E(
(

ud
t

)2

(us
t)

2)− d11d22 = 0. (7)

As shown by Lanne et al. (2021), when standard GMM regularity conditions hold, moment

conditions (5a)–(5d), either (6a) or (6b), and (7) guarantee local and global point identi-

fication in the bivariate SVAR model, as long as at most one of the structural shocks has

zero excess kurtosis. Conditions (6a) and (6b) are particularly informative in the presence

of skewness, while they are redundant under Gaussianity, and the selection between them

can be made by minimizing the relevant moment selection criterion (RMSC) suggested by

Hall et al. (2007). Finally, we use Hansen’s (1982) J -test of over-identifying restrictions to

confirm that the selected set of moment conditions is in accordance with the data.

As Lanne et al. (2021) show, the SVAR model is identified only up to permutation

and multiplication by −1 of the columns of A, and therefore, additional restrictions are,

in general, needed to facilitate statistical inference. However, because in this particular

application the elements on the first row are fixed, so is the ordering of the columns as

well as their signs. Hence, the GMM estimator is consistent and asymptotically normally

distributed, which facilitates standard asymptotic inference.

3.2 Empirical results

In this section, we report the estimation results based on Baumeister and Hamilton’s (2015)

quarterly data set spanning the period 1970:Q1–2014:Q2.1 We start out by estimating a

reduced-form eighth-order vector autoregressive (VAR(8)) model for (∆nt,∆wt)
′ by ordi-

nary least squares. The residuals exhibit clear non-normality, indicating that at least one

of the structural errors must be non-Gaussian, which guarantees point identification.2

1The data were kindly provided by Christiane Baumeister on her website at

https://sites.google.com/site/cjsbaumeister/research.
2The values of the Jarque-Bera test statistic for non-normality of the residuals are 11.192 and 11.852,

with asymptotic p values 0.015 and 0.011, respectively, indicating non-Gaussianity at the 5% significance
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Table 1: GMM estimates of βd and αs.

Parameter Estimate Standard Error 95% Confidence Interval

βd –0.317 0.151 [–0.021, –0.613]

αs 0.514 0.283 [–0.041, 1.069]
The entries are the GMM estimates of the short-run demand and supply elas-

ticities, and their asymptotic standard errors and 95% confidence intervals.

To avoid the problems caused by potential misspecification of the SVAR model we do

not entertain any specific non-Gaussian distributions for the structural errors, but follow

Lanne et al. (2021) and estimate the SVAR model by the efficient GMM based on moment

conditions (5a)–(5d) and (7). In addition, condition (6b) is included because it (coupled

with the rest of the conditions) yields a smaller value of the RMSC than condition (6a).3

With 39 moment conditions and 38 parameters, Hansen’s (1982) J -test of over-identification

restrictions can be used as a general specification test. The p-value of the J -test equals

0.998, indicating the validity of the moment conditions.

GMM estimation yields estimates of the coefficients of two equations for ∆nt with the

same explanatory variables, so additional information is needed to label the equations in

model (3) (or, equivalently, the shocks). To that end, we use the theoretically implied signs

of the short-run labor-supply and labor-demand elasticities, and label the equation with a

positive (negative) coefficient estimate of ∆wt the supply (demand) equation. The resulting

estimates of the labor-supply elasticity αs and labor-demand elasticity βd along with their

asymptotic standard errors are reported in Table 1. According to asymptotic t-tests, both

parameters are significantly different from zero at the 10% significance level, but only the

parameter βd at the 5% level. In particular, only negative values are included in the 95%

asymptotic confidence interval of βd. The point estimate of βd is in accordance with the

range based on microeconometric studies (from –0.75 to –0.15) referred to by Baumeister

level. Following, Kilian and Demiroglu (2000), we reconfirmed this conclusion by bootstrap. The corre-

sponding bootstrapped (based on 10,000 replications) 5% (1%) critical values equal equal 8.880 and 5.941

(18.626 and 13.028), respectively, likewise indicating rejection of normality at the 5%, but not at the 1%

significance level.
3The values of the RMSC equal –240.9 and –241.6, respectively, when conditions (6a) and (6b) are

included.
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and Hamilton (2015), but not with their empirical result (their posterior estimate of βd

(mode) lies close to unity in absolute value). Also, while our 95% confidence interval for

αs has a lot of overlap with the estimates reported in microeconometric and macroecono-

metric studies referred to by Baumeister and Hamilton, the most of the probability mass

of their posterior distribution of αs lies even below the minimum of the estimates in the

microeconometric literature (0.15).

The estimated impact matrix is

Â−1 =
1

0.831





1 −1

0.514 0.317



 ,

and hence, we can indeed label the first shock ud
t , whose effect on both employment and

wages is of the same sign, the labor-demand shock and the second shock us
t with effects

of opposite sign on employment and wages, the labor-supply shock. This interpretation is

reinforced by the finding that the 95% confidence interval of the impact effect of the labor-

demand shock consists of only positive values. While the lower bound of the corresponding

confidence interval ([–0.073, 0.772]) for the labor-supply shock is slightly below zero, the

68% confidence interval only contains positive values.4

The impulse responses of the labor-demand and labor-supply shocks along with their

95% and 68% confidence bands up to 20 quarters are depicted in Figure 1. The shocks

are normalized such that the labor-demand shock causes a 1% increase in the real wage

on impact, while the impact effect of the labor-supply shock on the real wage is a 1%

decrease. The responses of the real wage are in accordance to Baumeister and Hamilton’s

(2015) posterior results, albeit our impulse responses to the labor-supply shock remain

significantly negative at the 5% significance level. In contrast, the impulse responses of

employment depicted in the lower panel of Figure 1 differ markedly from the results of

Baumeister and Hamilton. Specifically, we find the effect of the labor-demand shock much

stronger than Baumeister and Hamilton, while the effect of the labor-supply shock turns out

insignificant at the 5% level at all horizons. The former finding is not surprising, however,

4The confidence bands for the impulse response functions are computed by the delta-method. The

covariance matrix of the GMM estimator is estimated using the Newey-West HAC estimator with an

automatic bandwidth selection procedure of Newey and West (1994).

9



0 5 10 15 20

0.
5

1.
0

1.
5

2.
0

Demand Shock for Real Wage

0 5 10 15 20

−1
.8

−1
.4

−1
.0

Supply Shock for Real Wage

0 5 10 15 20

0
1

2
3

4

Demand Shock for Employment

0 5 10 15 20

−1
0

1
2

Supply Shock for Employment

Figure 1: Impulse responses of the labor-supply and labor-demand shocks in the SVAR

model. Each row contains the impulse responses of one shock on both variables. The

lighter and darker shaded areas are, respectively, the 95% and 68% confidence bands.

as Baumeister and Hamilton’s results were strongly driven by a relatively tight prior on

the restriction on the long-run labor-demand elasticity, as pointed out in the Introduction.

One advantage of our approach is that any restrictions on the parameters can be tested

in a straightforward manner, and it turns out that Baumeister and Hamilton’s long-run

restriction does not seem to accord with the data, as it is rejected at the 5% significance

level (the p-value of the Wald test is 0.029).

4 Conclusion

The traditional Bayesian and frequentist approaches to sign-identified SVAR models only

achieve set identification. Moreover, as pointed out by Baumeister and Hamilton (2015),

inter alia, the Bayesian impulse responses based on sign restrictions inadvertently depend

on (implicit) informative priors. In this paper, we propose a frequentist solution to these

shortcomings. In particular, we recommend making efficient use of the statistical prop-
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erties of the data, specifically non-Gaussianity, to facilitate point identification, which, in

turn, makes it possible to conduct standard inference. Subsequently, standard confidence

intervals of the impulse responses can be used to provide the statistically identified shocks

with an economic interpretation (label).

Our approach can be seen an informal frequentist alternative to Lanne and Luoto’s

(2020) Bayesian procedure, where the statistically identified shocks are labeled formally by

assessing their posterior probabilities of satisfying theoretically implied sign constraints. In

addition, in this paper, we estimate the SVAR model by the generalized method of mo-

ments, while Lanne and Luoto (2020) specified probability distributions for the structural

shocks.

We illustrate our approach in Baumeister and Hamilton’s (2015) model of U.S. labor

supply and labor demand. While they estimated the model with priors of labor-demand and

labor-supply elasticities based on ranges of estimates obtained in the previous literature

as well as a tight prior on a restriction on the the long-run labor-demand elasticity, we

estimate a statistically identified SVAR model by the GMM. To some extent, our empirical

results differ from those of Baumeister and Hamilton. In particular, the estimates of the

labor-demand and labor-supply elasticities accord with the ranges of estimates obtained

in the previous literature (unlike those of Baumeister and Hamilton). Moreover, we found

a much stronger effect of the labor-demand shock on employment, presumably because,

according to our results, Baumeister and Hamilton’s long-run restriction on the labor-

demand elasticity does not accord with the data.
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