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Abstract
In variable environments, phenotypic plasticity can increase fitness by providing tight 
environment-phenotype matching. However, adaptive plasticity is expected to evolve 
only when the future selective environment can be predicted based on the prevail-
ing conditions. That is, the juvenile environment should be predictive of the adult 
environment (within-generation plasticity) or the parental environment should be pre-
dictive of the offspring environment (transgenerational plasticity). Moreover, the en-
vironmental predictability can also shape transient responses such as stress response 
in an adaptive direction. Here, we test links between environmental predictability and 
the evolution of adaptive plasticity by combining time series analyses and a common 
garden experiment using temperature as a stressor in a temperate butterfly (Melitaea 
cinxia). Time series analyses revealed that across season fluctuations in temperature 
over 48 years are overall predictable. However, within the growing season, tempera-
ture fluctuations showed high heterogeneity across years with low autocorrelations 
and the timing of temperature peaks were asynchronous. Most life-history traits 
showed strong within-generation plasticity for temperature and traits such as body 
size and growth rate broke the temperature-size rule. Evidence for transgenerational 
plasticity, however, was weak and detected for only two traits each in an adaptive and 
non-adaptive direction. We suggest that the low predictability of temperature fluctu-
ations within the growing season likely disfavors the evolution of adaptive transgen-
erational plasticity but instead favors strong within-generation plasticity.
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1  |  INTRODUC TION

Phenotypic variation in the wild can be shaped by genetics or by 
the environment, but often it is an interaction (G × E) of both of 
these factors. Traditionally, evolutionary biologists have had a 
strong gene-centric view in adaptive evolution (Bonduriansky, 2021; 
Pigliucci, 2005) but the field has witnessed a renaissance in recent 
years with respect to the contribution of non-genetic factors at 
both micro-  and macroevolutionary scales (Bonduriansky,  2012; 
Jablonka, 2017; Levis & Pfennig, 2016; Pfennig et al., 2010). One 
such important non-genetic phenomenon is transgenerational 
plasticity (henceforth TGP), where conditions experienced by par-
ents can shape offspring fitness in both adaptive and non-adaptive 
manner (Bonduriansky, 2021; Mousseau & Fox, 1998; Uller, 2008). 
The occurrence of TGP has been widely documented across plants 
and animals including humans (Uller et al., 2013; Yin et al.,  2019), 
although its adaptive potential has been convincingly demonstrated 
in relatively few studies (see Agrawal et al., 1999; Fox et al., 1997; 
Galloway & Etterson, 2007). Detecting adaptive TGP can be difficult 
and is hindered by factors such as lack of information on species 
ecology, not using ecologically relevant stressors in the experiments, 
and meager information on how stressor(s) of interest affects fitness 
in the wild.

Most organisms live in temporally fluctuating environments, 
although the degree of fluctuations can differ dramatically across 
habitats, geographic locations, and so on. When such temporal 
fluctuations are cyclical, for example, alternating wet-dry seasons 
in the tropics or summer-winters in temperate regions, organisms 
can make use of the environmental cues (e.g., temperature or pho-
toperiod) to predict the forthcoming selective environment (Chevin 
& Lande, 2015; Reed et al.,  2010). In such predictably fluctuating 
environments, phenotypic plasticity or within-generation can be 
adaptive by providing a tight environment-phenotype matching 
using reliable environmental cues (Beldade et al., 2011; Bonamour 
et al.,  2019; Moran,  1992). Seasonal polyphenism in butterflies 
is a classic example of such adaptive within-generation plasticity 
(Shapiro, 1976). Apart from such clear-cut examples, plasticity can 
also comprise rapid behavioral and physiological adjustments, for 
example, as a response to stressful conditions. Even for such tran-
sient responses, theory suggests that selection can fine-tune stress 
responses when stress-inducing episodes are predictable (Taborsky 
et al., 2021).

As the predictability of temporal fluctuations is a pre-requisite 
for the evolution of adaptive within-generation plasticity, similarly, 
adaptive TGP is expected to evolve when conditions experienced 
by parents are predictive of the environment experienced by their 
offspring (Bonduriansky, 2021; Burgess & Marshall, 2014; Leimar & 
McNamara, 2015; Uller, 2008). In this way, adaptive TGP can provide 
a jump-start in enhancing offspring's fitness by shaping their pheno-
type much earlier during the development (Bell & Hellmann, 2019). 
Such type of TGP is also called as anticipatory plasticity (Burgess & 
Marshall, 2014). For example, in Caenorhabditis elegans, the evolu-
tion of adaptive maternal effects (maternal glycogen provisioning to 

embryos in anoxic conditions) only occurred when normal and oxy-
gen deprivation conditions fluctuated predictably (Dey et al., 2016, 
also see Lind et al., 2020). Moreover, when conditions experienced 
by parents are not predictive of the offspring's environment, TGP 
can be even maladaptive, and selection is instead expected to favor 
within-generation plasticity which may allow a more immediate re-
sponse to prevailing environmental conditions (Bonduriansky, 2021, 
Leimar & McNamara,  2015). Despite environmental predictabil-
ity being a core pre-requisite in the evolution of both adaptive 
within-generation plasticity and TGP (Leimar & McNamara, 2015; 
Moran, 1992; Reed et al., 2010), thorough analysis of predictability 
of a relevant stressor(s) using long-term data remains scant (but see 
Colicchio & Herman, 2020; Halali et al., 2021). It is even suggested 
that failure in quantifying the extent of predictability between 
parent–offspring environments has hindered our understanding 
of the evolution of adaptive TGP (Burgess & Marshall, 2014; Uller 
et al., 2013).

Here, by using a combination of environmental time series anal-
yses and a common garden experiment, we investigate how the 
predictability of the temperature (a stressor in our study) drives 
within-generation plasticity and TGP using the Glanville Fritillary 
butterfly (Melitaea cinxia) from the Åland archipelago (south-west 
Finland) as a model system. Temperature is an ecologically important 
stressor and a selective factor that can strongly affect life-history 
traits (Atkinson, 1994; Kingsolver & Huey, 2008). It is also a highly 
relevant and most explored environmental factor in the current 
scenario of global change (e.g., Ma et al., 2021). Moreover, micro-
climatic variation in temperature has been shown to have strong 
effects on key life-history traits in M. cinxia in both field and lab-
oratory settings (Rytteri et al., 2021; Verspagen et al., 2020). Here, 
we use 48 years (1972–2020) of data on daily temperatures to mea-
sure the predictability of temperature fluctuations across and within 
growing seasons spanning parent and offspring growth periods. We 
then carry out a common garden experiment to investigate the ex-
tent of within-generation plasticity and the prevalence of adaptive 
TGP. We expect that treatments with matching parent–offspring 
temperatures would have higher performance (e.g., higher growth 
rates) compared to treatments with unmatching temperatures under 
the evolution of adaptive TGP (for similar findings see Salinas and 
Munch (2012) and Zizzari and Ellers (2014)). Overall, linking environ-
mental predictability to the results from the experiment allows us to 
rigorously test the core prediction from the life-history theory that 
adaptive TGP is expected to evolve when parental conditions can 
predict environmental conditions experienced by offspring.

2  |  METHODOLOGY

2.1  |  Study species

Melitaea cinxia in the Åland islands inhabits a large network of frag-
mented dry meadows (called patches) and is one of the classic model 
systems for metapopulation research (reviewed in Ovaskainen & 
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    |  3 of 14HALALI and SAASTAMOINEN

Saastamoinen, 2018). Finnish M. cinxia is univoltine and the life cycle 
is as follows. Adults emerge in June and females lay eggs in batches 
on two commonly used hostplants Plantago lanceolata and Veronica 
spicata (Wahlberg, 2000). Pre-diapause larvae (1st to 4/5th instar) 
hatch in late June/early July and feed gregariously. In late August, 
larvae spin a communal web (or winter nest) usually comprising of 
full-sibs in which they diapause until spring. Post-diapause larvae 
(4/5th to 7th instar) recommence their development in early April 
and move to nearby hostplants. Final instar larvae and pupae in the 
field are typically found in May (Rytteri et al., 2021).

2.2  |  Quantifying the predictability of temperature 
fluctuations

The predictability of temperature fluctuations across seasons (i.e., 
rise and fall of temperature across seasons) and within a growing 
season was quantified using three different approaches—temporal 
autocorrelations, wavelet analysis, and Symbolic Aggregation 
Approximation algorithm. Mean daily air temperature (the average 
temperature based usually on 4–8 observations per day) available 
from January 1972 to December 2020 was downloaded from the 
meteorological station (location: Åland islands, Jomalaby, coordi-
nates: 60.17824, 19.98686; https://en.ilmat​ietee​nlait​os.fi/downl​
oad-obser​vatio​ns#!/). Temperature values were missing for 22 days 
across the time series and these gaps were filled with approximated 
values using ‘na.approx’ function from the Zoo ver 1.8.9 R package 
(Zeileis & Grothendieck, 2005). All analyses were performed in R ver 
4.1.1 (R Core Team, 2021). R packages tidyverse ver 1.3.1 (Wickham 
et al., 2019) and ggplot2 ver 3.3.5 (Wickham, 2016) were used for 
general data handling and producing figures, respectively.

2.2.1  | Wavelet analysis

Wavelet analysis or multi-resolution analysis is a powerful ap-
proach that allows quantifying any seasonal phenomenon (Cazelles 
et al.,  2008; Rösch & Schmidbauer,  2018a; Tonkin et al.,  2017). 
Wavelet analysis offers an elegant way to capture both low-  and 
(transient) high-frequency signals in the time series by simultane-
ously dilating, contracting, and adjusting the height of the mother 
wavelet (Cazelles et al.,  2008, 2014). The dilated wavelet better 
captures lower frequencies, while the contracted wavelet (simul-
taneously adjusting its height) better captures high-frequency sig-
nals. Wavelet analysis, therefore, is well suited for detecting abrupt 
changes in the frequencies such as sharp rise or fall of temperature 
in the time series (Burgess & Marshall, 2014; Cazelles et al., 2008; 
Tonkin et al., 2017).

Wavelet analysis was carried out using the WaveletComp ver 1.1 
(Rösch & Schmidbauer, 2018b) for daily mean temperature time se-
ries from 1972 to 2020. The periodicity of the temperature fluctua-
tion across years was visualized using a wavelet spectrum (function: 
wt.image) and the significant periods (p < .05 which were determined 

based on 100 simulations) are indicated by white ridges. Warm col-
ors within the white ridges indicate the regions of the highest power, 
which represents the magnitude of variance at a given wavelet scale 
or simply the regions where dominant frequencies oscillate (Rösch & 
Schmidbauer, 2018a). Moreover, average wavelet power (function: 
wt.avg) was plotted to determine which period of the time series 
showed the highest power. In addition to the temperature, wavelet 
analysis was performed on the photoperiod, a perfectly predictable 
cue, for the above specified years. This allows comparing the extent 
of predictability in both variables. Time series data for photoperiod 
for the same location were obtained using the maptools package ver 
1.1.2 (Bivand & Lewin-Koh, 2021).

2.2.2  |  Temporal autocorrelations and symbolic 
aggregation approximation algorithm

The predictability of temperature within the growing period (April–
August) was measured by quantifying temporal autocorrelations 
and using the Symbolic Aggregation Approximation (SAX) algorithm. 
Post-diapause larvae usually start growing from April onwards and 
the final instar larvae develop during May (Rytteri et al., 2021). Since 
parental post-diapause larvae were exposed to temperature treat-
ments in their 6th instar (see next section), temperatures from May 
to August were used to quantify the degree of predictability sepa-
rately for all 48 years.

In a time series, temporal autocorrelations measure correlations 
between the lagged version of itself, which allows identifying until 
how many days/months the variable (e.g., temperature) is predict-
able from the starting point. Thus, significant correlations (positive 
or negative) until the farthest lags will indicate that the environment 
is highly autocorrelated. Temporal autocorrelations were measured 
by creating 122 lags (123 total days from May to August) using ‘tk_
acf_diagnostics’ function from the timetk ver 2.6.1 package (Dancho 
& Vaughan, 2021). It is recommended that the time series should ex-
hibit stationarity while calculating autocorrelations and the raw tem-
perature data did not exhibit stationarity. Thus, residuals obtained 
by regressing temperature values with the day number separately 
for each year (e.g., Shama, 2015) were instead used for calculating 
temporal autocorrelations. Residuals had improved normality (mea-
sured using the Shapiro–Wilk test) than the raw values (Figure S1).

Finally, the SAX algorithm was used to determine the predictabil-
ity of temperature. SAX is an extension of the Piecewise Aggregation 
Approximation (PAA) algorithm (Lin et al.,  2007). PAA algorithm 
reduces the dimensionality of z-normalized time series while pre-
serving important information and patterns (Keogh et al.,  2001). 
For example, a time series of length n is reduced to any arbitrary 
length M where M ≤ n but is usually M << n (Keogh et al., 2001; Lin 
et al., 2007; see Figure 4a,b). This reduction (n to M) is carried out 
by dividing the original time series into M frames and then the mean 
is calculated for each frame. SAX then discretizes PAA data into 
strings, usually alphabets (Lin et al., 2007, see Figure  4a–c). Thus, 
by converting continuous time series into strings of alphabets, one 
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could investigate the similarity or repeatability of values in time se-
ries across years. First, the original time series (n = 120, see below) 
was reduced to 24 frames (M), thus one frame equals 5 days, using 
the “paa” function from the jmotif ver 1.1.1 package (Senin, 2020). 
PAA data were then discretized into seven alphabets from a–g (i.e., 
SAX conversion) using “series_to_chars” function from jmotif pack-
age. It is recommended to have an even number of observations in a 
time series while employing the SAX algorithm (see Lin et al., 2007). 
Thus, the 31st day of May, July, and August were removed to get 
an even number of days resulting in n = 120 instead of 123 days for 
each year.

2.3  |  The experiment

Diapausing larvae that were sampled in the autumn of 2020 from 
the Åland islands were used for the experiment. Larvae were trans-
ported to the laboratory and were kept in diapause chambers indi-
vidually in Eppendorf tubes at 5°C until the start of the experiment 
in March 2021. Larvae were chosen from five different communes 
(Finstrom, Hammarland, Jomala, Saltvik, and Sund) having the high-
est larval abundance (>200) to increase the genetic diversity of in-
dividuals in the experiment. When possible, larvae were chosen in 
such a way as to maximize patch-level diversity. Larval development 
was recommenced (n = 948) by keeping them at room temperature 
(~25°C) and spraying them with water. From this point, larvae were 
monitored for 48 hours and those who failed to show any signs of 
movement were considered dead. The remaining surviving larvae 
(n = 601) were reared individually in small plastic cups and were fed 
daily ad libitum on fresh leaves of P. lanceolata.

On the day of the 5th molt (i.e., mainly 6th instar), the larvae were 
individually weighed and randomly assigned to three temperature 
treatments; 28°C, 31°C, and 34°C during the day, and 9°C at night 
with 12L:12D cycle; in climate-controlled growth chambers (Sanyo 
MLR-350 and a Sanyo MLR-351). Common hostplants of M. cinxia 
(P. lanceolata and V. spicata) grow close to the ground and studies 
show that the ground temperature can be ~10 to 20°C higher than 
ambient air temperature (Bennett et al., 2015; Rytteri et al., 2021; 
Singer & Parmesan, 2018). Thus, the temperatures used in our ex-
periment are within the range of temperatures larvae experience 
in the field at the microhabitat level (see Verspagen et al., 2020). 
We also acknowledge that photoperiod changes throughout the 
life cycle of the species (April to August) and thus using constant 
12L:12D cycle does not mimic natural conditions. Our rational for 

omitting manipulation of L:D cycle in the experiment is as follows. 
First, M. cinxia is obligatory univoltine species in Åland, that is, a cer-
tain amount of light is needed to break the diapause but the larvae 
will enter the diapause irrespective of the photoperiod after reach-
ing 4th or 5th instar. This, therefore, indicates that in such obligately 
univoltine species, expression of life-history traits is more tempera-
ture-  than photoperiod-dependent. This argument is further sup-
ported by a preliminary experiment with larvae reared at 22 and 
28°C at 12L:12D and at 20L:4D, that found temperature to explain 
most of the variation in diapause strategy (generalized linear mixed 
model, fixed effect = photoperiod, estimate = −1.021, p = .345; fixed 
effect = temperature, estimate = 4.859, p < .001; fixed effect = pho-
toperiod*temperature, estimate = 1.560, p = .2; Kahilainen et al., un-
published data, personal communication on 3rd July 2022). Second, 
simulating changing photoperiod throughout the experiment mim-
icking natural conditions is logistically challenging, especially for a 
species such as M. cinxia where completing life cycle may take up 
to 4 months in laboratory conditions. In the 6th instar, ~20% of lar-
val mortality occurred due to parasitoid (Cotesia and Hyposoter) and 
some unknown pathogen infestation. Pupae were weighed within 
24 hours and upon eclosion, adults were fed on 5% honey water and 
kept in their respective temperatures before they were assigned for 
mating. Some mortality also occurred due to failed eclosions. Males 
from only 28°C treatment were allowed to pair with females from all 
three temperatures to control for any temperature-specific paternal 
effects. The experimental design allows estimating both maternal 
and paternal effects simultaneously but carrying out an experiment 
of such a scale was logistically not feasible. Moreover, matings were 
designed to avoid pair formation between individuals from the same 
patches (except for one) to reduce the chances of mating between 
siblings. Mated females were provided with potted P. lanceolata 
plants for laying eggs and were kept in the greenhouse at 28°C.

After laying the first clutch, the total number of eggs were 
counted, and the clutch was split across three temperature treat-
ments (28°C, 31°C, and 34°C), which resulted in a full factorial split-
brood design where each maternal treatment is divided into three 
offspring treatments (see Figure 1 for the experimental design). For 
three females where the number of eggs in the first clutch were low, 
the second clutch was also split into the same three temperature 
treatments. Hatched larvae were reared in groups of 15 (larvae of M. 
cinxia are gregarious in the wild) in petri plates lined with the filter 
paper until diapause. Moreover, a replicate at each plate level was in-
cluded to account for any plate-specific effect (Figure 1). During the 
second molt, three larvae were sampled from each plate for potential 

F I G U R E  1 Experimental design 
used for estimating within- and 
transgenerational plasticity in the 
Glanville fritillary butterfly (Melitaea 
cinxia). The dashed arrows and letters (a 
and b) at the bottom of the figure indicate 
replicate at the plate level (see Section 2).

Field collected larvae
4 or 5th instar

28oC 31oC 34oC

28oC 31oC 34oC 28oC 31oC 34oC 28oC 31oC 34oC

a ba b a b a b a b a b a b a b a b

Parental generation
(temp. treatment from 6th instar)

Offspring generation
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genomic analyses in the future. All larvae were fed daily with fresh 
P. lanceolata leaves and sprayed with water to maintain adequate hu-
midity. Some larvae that had extremely long development times and 
did not show any signs of diapause were culled (n = 16).

2.4  |  Measured life-history traits

Parental generation: Post-diapause larval development time (time 
taken from the day when larvae entered 6th instar until pupation); 
pupal weight; growth rate (calculated as: [ln(pupal weight) –  ln(6th 
instar weight)]/larval development time), pupal development time, 
life-time fecundity.

Offspring generation: egg development time (time taken for eggs 
to hatch) and hatching success; pre-diapause larval growth rate (cal-
culated as: ln(larval weight at diapause)/pre-diapause larval develop-
ment time; where larval development time is the number of days from 
hatching until diapause); larval survival (from 1st to 3rd instar & 3rd 
instar until diapause). Larval survival was measured at two time points 
as three larvae were sampled at 2nd molt for potential future genomic 
studies (see above). This approach also allows testing if survival proba-
bility differs during early and later stages of larval development.

2.5  |  Statistical analyses

The effect of parental and offspring rearing temperature and their 
interaction on life-history traits were tested by fitting linear models 
(LM), linear mixed effects models (LMM) in the restricted maximum 
likelihood framework (lme4 ver 1.1.27.1, Bates et al., 2015) and gen-
eralized linear mixed effects models (GLMM) (glmmTMB ver 1.1.2.3, 
Brooks et al., 2017).

Parental generation: LMs were fitted to test the effect of tempera-
ture, sex, and their interaction on post-diapause larval development 
time, pupal weight, growth rate, and pupal development time (all devel-
opment times were natural log-transformed). Commune (i.e., location 
of the larval origin) was not included as a fixed effect as removal of this 
term considerably improved the model fit (assessed based on the AIC 
score) and commune level differences in the traits are not of interest 
in this study. The effect of temperature on fecundity was modeled by 
fitting a GLMM (family =  negative binomial) with clutch order (cen-
tered), temperature, and their interaction as fixed effects. Pupal weight 
(standardized to have a mean of zero and unit standard deviation) was 
included as a covariate and female id or family as a random effect. Four 
females that laid just one clutch were removed from the analysis and 
egg counts up to 11 clutches were included as only a single female 
laid >12 clutches (16 clutches in total). Note that family could not be 
included as a random effect for larval traits in the parental generation 
as these larvae were directly collected from the field, hence, keeping 
track of the families was not possible.

Offspring generation: For egg development time, LMM was fitted 
with parental-  and offspring temperature and their interaction as 
fixed effects, and female id (or family) as a random effect. Similarly, 

egg-hatching success was modeled using GLMM with above men-
tioned fixed effects but specified binomial error structure with a 
logit link. For larval growth rate and larval survival, LMM and GLMM, 
respectively, were fitted with parental- and offspring temperature, 
their interaction and plate replicate as an additional fixed effect, and 
family as a random effect. The number of families across tempera-
tures are as follows: 16 or 17 at 28°C, 14 at 31°C, and 20 at 34°C.

The significance of the fixed effects and their interactions was 
determined based on the estimate value and their 95% confidence 
intervals: the effect was deemed significant if the confidence inter-
val did not include zero. Moreover, the significance was also deter-
mined using “Anova” function from the car ver 3.0.11 package (Fox 
& Weisberg, 2019) and post hoc pairwise contrast between factors 
using emmeans ver 1.7.0 package (Lenth, 2021).

3  |  RESULTS

3.1  |  The predictability of temperature fluctuations 
across and within seasons

When compared with the perfectly predictable photoperiod, wavelet 
spectra for temperature indicated that annual temperature fluctuation 
is overall predictable (Figure 2). That is, the spectrogram and average 
power plot for temperature show that there is a dominant frequency 
recurring at ~365 days intervals (i.e., rise and fall of temperature dur-
ing summers and winters, respectively) indicated by warm colors 
(Figure 2). The spectrogram also shows that sharp fluctuations in tem-
perature (indicated by white ridges) are common throughout the time 
series (Figure 2). Measuring temporal autocorrelations only during the 
growth period (from May to August) suggests that mean correlation 
drops rapidly with the first 10 lags and the mean value thereafter re-
mains around zero without exceeding the confidence limits (Figure 3). 
However, there was high heterogeneity across years with some years 
showing significant negative correlations between around 30 and 70 
lags (Figure 3). Thus, the temperature experienced during May is pre-
dictive of temperature during June and early July only during some 
years (negative correlation indicates higher temperature during June 
and July compared to May). Finally, comparing patterns of tempera-
ture fluctuations across years using the SAX algorithm complements 
the raw data that temperature generally rises during June and July 
(Figures 3a and 4). However, the heatmap indicates that the timing of 
temperature rise is not synchronous across years (Figure 4d). Plotting 
raw values for a few years showing the highest and lowest mean tem-
peratures during May further suggests that warmer temperatures in 
spring do not translate into warmer summers and vice versa (Figure 4e).

3.2  |  Within-generation plasticity: Effect of 
temperature on parental life-history traits

Except for a few traits, rearing temperature during development had 
a strong effect on life-history traits (Table S1). Larval development 
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6 of 14  |     HALALI and SAASTAMOINEN

times decreased while pupal weight increased with increasing tem-
perature (Figure 5). Females developed slower and became heavier 
than males (Figure 5). These translated into the pattern of increasing 
growth rates with temperature with females having lower growth 
rates than males (Figure 5). Pupal development time decreased with 
an increase in temperature without any influence of sex (Figure S2, 

Table S1). The number of eggs in each clutches decreased substan-
tially with increasing number of clutches without any influence of 
developmental temperature (Figure 6). Similarly, average clutch size 
(calculated as the total number of eggs/number of clutches) did not 
differ across three developmental temperatures (One-way ANOVA, 
F = 1.18, df = 2, p = .313, Figure 6). However, there was a trend that 

F I G U R E  2 Raw time series of daily mean temperature (a) and photoperiod (b) for Jomalaby location in Åland islands and their wavelet 
spectra (c and d), respectively, depicting periodicity across the time series. Average power plots (e) for temperature (black curve) and 
photoperiod (blue curve) indicate the strength of periodicity over a particular period time period (~365 days interval) for both variables. Note 
that in figures a and b time series data from only 2000 to 2020 is shown for clear visualization, but wavelet analysis was performed on the 
entire data from 1972 to 2020. In wavelet power spectra plots, the strength of periodicity is indicated by the extent to which warmer colors 
are distributed over a particular time period. The black solid lines and white contour lines in spectral plots show regions of power significant 
at the 5% level based on 100 simulations.
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    |  7 of 14HALALI and SAASTAMOINEN

females who developed at 28°C laid fewer clutches compared to fe-
males who developed at 31°C and 34°C (Figure 6).

3.3  |  Transgenerational plasticity: 
Effect of parental and offspring rearing temperature 
on offspring life-history traits

Under the scenario of adaptive TGP, we expected that treat-
ments with matching parent-offspring temperatures (e.g., off-
spring growing at 28°C from parents reared at 28°C) would 
have higher growth rates than treatments with unmatching 
temperatures. Egg development time decreased with increas-
ing offspring rearing temperature without any interaction with 

parental temperature (Parent:Offspring, χ2 = 6.57, df = 4, p = .15, 
Figure 7a,c, Table S2). Similarly, egg-hatching success seemed to 
decrease with increasing offspring temperature without any in-
teraction with parental temperature (Parent:Offspring, χ2 = 5.79, 
df  =  4, p  = .21, Figure 7b,d). The post hoc analysis further indi-
cated that (offspring) temperature-dependent egg-hatching suc-
cess was statistically unclear (Figure  7a,b). Larval growth rates 
increased with increasing offspring temperature but there was 
also a significant interaction between parent and offspring tem-
perature (Parent:Offspring, χ2 = 33.32, df = 4, p < .001; Figure 8, 
Table S2). However, the trend was in the opposite direction than 
expected. That is, at 31° and 34°C offspring rearing temperature, 
larvae whose parents were reared at 28° had a slightly higher 
growth rate than those from 31° to 34°, but pairwise comparisons 

F I G U R E  4 Demonstration of implementation of piecewise aggregation approximation (PAA) and symbolic aggregation approximation 
(SAX) algorithm on a single year (2010) from May to August (a–c). The raw time series (a, n = 123) is reduced to the length (M) of 24 frames 
after applying the PAA algorithm (b). Figure (c) shows the simultaneous application of PAA and conversion of PAA data into 24-character 
string (i.e., SAX conversion). Obtaining such character strings across several years can then be used to investigate the repeatability or 
predictability of environmental variable(s) across years. The heatmap (d) was obtained after implementing the SAX algorithm for mean daily 
temperatures from May to August from 1972 to 2020 (here, one frame equals 5 days; see Methods for details). Figure (e) shows that, for a 
few years which have relatively warmer (orange) and cooler (blue) temperatures in May (mean temperature indicated by thick black lines), 
does not necessarily translate into warmer or cooler temperatures in June or July.
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8 of 14  |     HALALI and SAASTAMOINEN

were statistically unclear (Figure  8). Finally, larval survival from 
1st to 3rd instar was comparatively lower at 34°C compared to 
28° and 31°C offspring rearing temperature (Offspring, χ2 = 6.78, 
df  =  2, p  = .03; Figure  9), but there was also a weak interaction 
with parental temperature (Parent:Offspring, χ2  = 11.09, df  =  4, 
p = .02; Figure 9). More specifically, larvae growing at 34°C from 
parents reared at 34°C had a slightly higher survival probability 
than parents reared at 28°C, but not as high as those larvae from 
parents reared at 31°C (Figure 9). However, this effect was only 
observed at 34°C offspring temperature with estimates having a 
relatively wide 95% CI and pairwise comparisons further indicated 
that this difference was statistically unclear (Figure  9). Such an 
interaction between parental and offspring temperature was ab-
sent when assessing larval survival from 3rd instar until diapause 
(Parent:Offspring, χ2 = 7.09, df = 4, p = .13, Figure 9, Table S2).

4  |  DISCUSSION

The role phenotypic plasticity, both within- and across generations, 
plays in adaptive evolution has received a renewed interest, even 
considering us to “rethink” heredity (Bonduriansky, 2012, 2021), and 

as one of the mechanisms which may allow organisms to cope with 
climate change (Donelson et al., 2018). Despite its widespread oc-
currence, renewed appreciation in adaptive evolution, and recent 
advancements that have unraveled the proximate basis of transgen-
erational inheritance (e.g., Rechavi et al.,  2014), studies linking 
species ecology and environmental predictability to the evolution 
of adaptive TGP are rare. Here, using M. cinxia as a model system, 
we show that the larvae exhibit strong within-generation plastic-
ity, whereas there is only weak evidence of TGP. Furthermore, the 
evidence of TGP is found for two life-history traits each in an adap-
tive and non-adaptive direction. Our time-series analyses further 
showed that, although across-season temperature fluctuations were 
fairly predictable, within-season fluctuations were weakly unpre-
dictable and showed high heterogeneity in predictability (Figure 3). 
Based on the evidence from both temperature fluctuations and com-
mon garden experiment, we posit that our findings, at least to some 
extent, align with the theoretical prediction that selection will dis-
favor the evolution of strong adaptive TGP when the predictability 
of offspring environment is low. We discuss our results in the con-
text of environmental predictability and its role in the evolution of 
phenotypic plasticity in this butterfly, but it can also be extended to 
other short-lived insects in temperate regions.

F I G U R E  5 Thermal reaction norms with a model predicted mean (±95% CI) for larval development time (a), pupal weight (b), growth rate 
(c), and their estimates (±95% CI) for predictors (d–f), respectively. In figures d–f, abbreviations are as follows: Temp. = temperature and 
sex_Fem = Sex female. In the upper panel, sexes are denoted with different colors (blue = females, black = males) and open circles in the 
background represent the raw data. Significant differences between groups are indicated by different letters. Sample sizes for males and 
females, respectively, are provided at the bottom in Figure (a) and these numbers are the same for figures (b) and (c).
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When parents can predict the offspring conditions based 
on the prevailing environmental information, adaptive TGP 
can enhance offspring fitness (Bonduriansky,  2021; Burgess & 
Marshall, 2014). However, environmental predictability is scarcely 
quantified despite being a core prerequisite for the evolution 
of adaptive TGP, especially in non-model organisms (but see 
Burgess & Marshall, 2011; Diaz et al.,  2021; Halali et al., 2021; 
Shama,  2015). Experimental evolution studies on species with 
short generation times have explicitly shown that adaptive TGP 
readily evolves when selection lines are maintained in a tem-
porally autocorrelated environment (e.g., Dey et al.,  2016; Lind 
et al., 2020; Rescan et al., 2020). Few empirical studies that have 
quantified the predictability between parent–offspring environ-
ments have measured autocorrelations on a shorter time series 
(usually a few months within a year), which precludes accounting 
for climatic heterogeneity across years. Moreover, temporal auto-
correlations suffer from the drawback that sample size decreases 
substantially with increasing lags and correlations for farthest lags 
can be unreliable. Other much informative and powerful meth-
ods such as Fourier and wavelet transform allow quantifying en-
vironmental predictability (e.g., Burgess & Marshall, 2014; Halali 
et al.,  2021; Marshall & Burgess, 2015; Tonkin et al.,  2017) but 
are seldom used. Here, we use wavelet analyses, temporal auto-
correlation, and the SAX algorithm to quantify the predictability 
of temperature fluctuations across and within the growing season 
as the degree of predictability at different scales can have dif-
ferent evolutionary implications for the evolution of phenotypic 
plasticity.

One striking pattern that was observed was that the spe-
cies followed the reverse temperature-size rule. The reverse 
temperature-size rule is the opposite of the more widespread 

pattern observed in ectotherms: the temperature-size rule 
(TSR) where body size decreases with increasing temperature 
(Atkinson, 1994). Although whether TSR or reverse-TSR is adaptive 
remains debated (Atkinson & Sibly, 1997), some studies have shown 
that factors such as temperature (Huey et al., 2000; Kingsolver 
et al., 2007) and food quality (Diamond & Kingsolver, 2010) can 
readily mold the slope of the thermal reaction norm. The length 
of the season available for breeding (or season length) is another 
prominent selective factor which is expected to result in reverse-
TSR (Blanckenhorn & Demont,  2004; Mousseau,  1997). Season 
length decreases considerably with increasing latitude. Thus, 
ectothermic species or populations at higher latitudes are pre-
dicted to achieve larger size at maturity by evolving genetically 
faster growth rates to compensate for seasonal time constraints, 
a hypothesis called as countergradient variation (Blanckenhorn 
& Demont, 2004). While life-history theory posits that juvenile 
development time is positively correlated with body size at matu-
rity (Nylin & Gotthard, 1998), under countergradient hypothesis, 
there is decoupling between these two key life-history traits. It 
should be noted that countergradient variation hypothesis is used 
for explaining clinal variation in body size across populations or 
species (see Blanckenhorn & Demont, 2004). While our study was 
based on single population of M. cinxia at northern latitude (60°N), 
the countergradient variation hypothesis may still allow explain-
ing within-population pattern of reverse-TSR. We speculate that 
since selection can readily decouple association between juvenile 
(larval) development and body size at higher latitudes, this allows 
individuals to achieve larger body size by increasing growth rates 
and reducing development time at higher temperatures. In the 
field where temperature variation within the season is unpredict-
able (Figure 3), such decoupling may allow individuals to achieve 

F I G U R E  6 Fecundity curves across temperatures (a) and estimates (±95% CI) for predictors (b). In figure (a), thick and thin black lines 
show model predicted average egg number and fecundity curves for each female, respectively, and filled circles denote average egg 
numbers (±SE) from the raw data. Numbers beside each circle indicate the number of females that were laying eggs.
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higher growth rates on warm days without compensating for the 
body size. Larger body size is associated with increased fitness, 
for example, by increasing fecundity (Honěk, 1993). Interestingly, 
at higher temperatures where females had larger body size (pupal 
weight as a proxy), we did not find any strong effect on fecun-
dity (Figure 6), but this correlation was apparent in another study 
where fecundity was assessed under semi-natural field conditions 
(see Rosa & Saastamoinen, 2017). Overall, we posit that reverse-
TSR is likely adaptive in high-latitude population of M. cinxia (and 
likely in other high-latitude univoltine species) shaped by complex 
interaction between seasonal time constraints and within-season 
temperature variation.

Fine-scale variation in temperature and its predictability within 
the growing season can have important consequences for the evo-
lution of TGP. Temporal autocorrelations show that average cor-
relations are near zero suggesting temperatures during May do not 
or are extremely weakly predictive of temperatures in succeeding 
months (Figure  3). Moreover, the heatmap derived from the SAX 

algorithm (Figure 4d) suggests that, as expected, June and July are 
relatively warmer, but the timing of temperature peaks is not syn-
chronous across years. Examining raw temperatures further show 
that years having relatively warmer temperatures during May does 
not necessarily translate into a warmer summer (i.e., June and July, 
Figure 4e). This, therefore, indicates that temperatures experienced 
by parents during their growth are not or are only weakly predic-
tive of the temperature that will be experienced by the offspring. 
Overall, we posit that evidence of weak adaptive TGP in our system 
may have been due to lower predictability of temperature within the 
growing season and selection may have instead favored the evolu-
tion of strong within-generation plasticity which provides a more 
rapid response to the prevailing conditions.

Interestingly, there was an interaction between parental and off-
spring temperature for two offspring life-history traits (pre-diapause 
larval growth rate and survival), but both had low effect sizes with 
relatively wide confidence intervals. We found that larvae whose 
mothers were reared at 28°C had slightly higher growth rates at 

F I G U R E  7 Egg development time with a model predicted mean (±95% CI) (a) and egg-hatching probability (±95% CI) (b), and estimates 
of predictors (±95% CI, c and d) for both traits, respectively, across offspring rearing temperatures. In the upper panel, colored filled circles 
denote parental rearing temperatures (black = 28°C, blue = 31°C, yellow = 34°C). In Figure (a), scattered points in the background show 
values from the raw data and NS indicates no statistical significance between pairwise contrast across parental rearing temperatures within 
a single offspring rearing temperature.

28

10

11

12

13

14

15

31 34
Offspring rearing temperature (oC)

)syad(
e

mit
t ne

mpol eved
ggE

28

0

0.2

0.4

0.6

0.8

1

31 34

ytilibabor p
gni hct ah

ggE

Offspring rearing temperature (oC)

Parent Temp. 31

Parent Temp. 34

Offspring Temp. 31

Offspring Temp. 34

Parent Temp. 31 : Offspring Temp. 31

Parent Temp. 34 : Offspring Temp.31

Parent Temp. 31 : Offspring Temp. 34

Parent Temp. 34 : Offspring Temp. 34

-0.2 0 0.2
Estimates

-2 -1 0 1 2
Estimates

(a)

(c) (d)

(b)

NS

NS

NS

NS NS

NS

 20457758, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9662 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [19/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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warmer, 31°C and 34°C, offspring rearing temperatures than lar-
vae from mothers reared at warmer temperatures (Figure  8). This 
pattern is, however, in the opposite direction than we initially ex-
pected (i.e., that offspring's growing in similar temperatures as that 
of their parents would have higher performance). We speculate that 
this trend may still be adaptive, as 28°C is not optimal for achieving 
high growth rates, and thus parents who developed at 28°C may 
prime their offspring to attain higher growth rates in warmer con-
ditions. Furthermore, there was weak evidence for TGP toward the 
expected direction for offspring survival from 1st to 3rd instar. That 
is, at 34°C offspring rearing temperature, offsprings whose parents 
were reared at higher temperature (31° & 34°C) had slightly higher 
survival (Figure 9a). However, this weak effect was only observed at 
34°C offspring rearing temperature and this trend was absent when 

larval survival was measured from the 3rd instar until diapause. 
Moreover, there was an indication that, especially when estimating 
fitness in terms of offspring survival, 34°C appeared to be a stressful 
condition. Theoretically, it is argued that TGP is not always adaptive, 
in fact, in most instances, it is expected to be mal- or non-adaptive 
(Bonduriansky, 2021). TGP may occur from factors other than adap-
tive reasons such as high physiological sensitivity to environmen-
tal fluctuations during reproduction or physiological constraints 
(Bonduriansky, 2021). Significant parent–offspring interactions for 
two life-history traits in this study and evidence from other studies 
in M. cinxia (Saastamoinen, Hirai, & van Nouhuys, 2013; Salgado & 
Saastamoinen, 2019) do suggest that TGP is prevalent in this sys-
tem. However, whether the TGP is actually adaptive will require new 
ways of measuring fitness in both the laboratory and the wild.

F I G U R E  8 Offspring growth rates with a model predicted mean (±95% CI) across temperatures (a) and estimates of predictors (± 95% 
CI) (b). In figure (a), colored circles denote parental rearing temperatures (black = 28°C, blue = 31°C, yellow = 34°C), scattered points in 
the background show values from the raw data with different shapes indicating plate replicates and NS indicates no statistical significance 
between pairwise contrast across parental rearing temperatures within a single offspring rearing temperature.
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F I G U R E  9 Model predicted larval survival probability (±95% CI) from 1st to 3rd instar (a) and 3rd instar until diapause (b) across offspring 
rearing temperatures. Figure (c) shows estimates (±95% CI) for predictors with colored circles representing survival at different time points 
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parental rearing temperatures within a single offspring rearing temperature.
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Commonly used hostplants of M. cinxia, Plantago lanceolata, and 
Veronica spicata, grow close to the ground and studies have shown 
that ground temperature can be ~10–20°C degrees warmer than am-
bient air temperature (Bennett et al., 2015; Singer & Parmesan, 2018). 
First, we acknowledge that using time series data on the ground tem-
perature in microhabitats of M. cinxia would have been ideal, but such 
data are not yet available. However, studies have suggested that there 
is generally a strong correlation between air and ground temperature 
(Tsilingiridis & Papakostas,  2014). Moreover, during exceptionally 
warm years such as in 2018 when summer temperatures were >25° 
in Åland (see van Bergen et al., 2020), ground temperatures may have 
easily exceeded 34°C which was the warmest treatment in our exper-
iment. Future studies using higher stress-inducing temperatures in 
the experiments will be important in investigating the prevalence of 
adaptive TGP. Second, the constant 12L:12D conditions used in our 
experiment do not mimic natural conditions, especially as the pho-
toperiod changes throughout the life cycle of the species from April 
to August. However, as argued before (see Methodology section), 
given the species is obligately univoltine, expression of life-history 
traits is likely to be more temperature-dependent than photope-
riod. Thus, we believe that the findings of our study will hold even 
if different light conditions are used. Moreover, simulating changing 
photoperiod mimicking natural conditions is logistically challenging. 
Finally, we also acknowledge that, since field-caught larvae were di-
rectly used in the experiment, our study is not able to control for the 
conditions that parents may have experienced at the pre-diapause 
stage (i.e., from egg to 5th instar). Given that mortality occurred at 
the parental stage, there is a possibility that parents may have expe-
rienced selection and mortality may have weeded out some genetic 
background capable of expressing adaptive TGP. We, thus, purposely 
chose larvae from diverse localities (or communes) across Åland to 
increase the genetic diversity and included a large number of families 
across temperatures in the experiment. We recognize these caveats 
and one way of controlling this noise would have been to rear at least 
one complete generation in the laboratory before starting the exper-
iment. However, working with univoltine systems such as M. cinxia in 
a laboratory setting poses substantial logistical challenges and larval 
mortality, especially during diapause, is common even in the best 
possible artificial conditions. Despite the shortcomings, we believe 
our study establishes a clear link between seasonal predictability and 
the evolution of adaptive within- and transgenerational plasticity in 
line with the theoretical prediction.

One of the notable effects of climate change, especially at the 
higher latitudes, is that the springs are arriving early, and summers 
are getting longer (Bradshaw & Holzapfel,  2001). Climate change 
is also predicted to increase temporal and spatial autocorrelation 
of temperature in temperate regions (Di Cecco & Gouhier,  2018; 
Kahilainen et al., 2018). Studies in both plants and animals have indi-
cated that TGP might be one of the mechanisms enabling species to 
buffer the effects of climate change (e.g., Groot et al., 2017). Given 
that we find very weak evidence for adaptive TGP, it will be of great 
interest to investigate if the species could evolve such a response on 
a contemporary time scale. Future studies using simulated climate 

change experiments (e.g., Shama et al., 2014) would allow testing 
such a hypothesis. Moreover, performing experiments similar to the 
current study on M. cinxia populations from lower latitudes (e.g., 
from France, Spain, Morocco; similar to Munch et al., 2021), where 
temporal autocorrelations for temperature are expected to be 
higher would allow investigating how climatic predictability drives 
the evolution adaptive TGP.
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