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Abstract
Aims Optimal outcome after cardiogenic shock (CS) depends on a coordinated healing response in which both debris removal 
and extracellular matrix tissue repair play a crucial role. Excessive inflammation can perpetuate a vicious circle, positioning 
leucocytes as central protagonists and potential therapeutic targets. High levels of circulating Triggering Receptor Expressed 
on Myeloid cells-1 (TREM-1), were associated with death in acute myocardial infarction confirming excessive inflammation 
as determinant of bad outcome. The present study aims to describe the association of soluble TREM-1 with 90-day mortality 
and with various organ injuries in patients with CS.
Methods and results This is a post-hoc study of CardShock, a prospective, multicenter study assessing the clinical pres-
entation and management in patients with CS. At the time of this study, 87 patients had available plasma samples at either 
baseline, and/or 48 h and/or 96–120 h for soluble TREM-1 (sTREM-1) measurements. Plasma concentration of sTREM-1 
was higher in 90-day non-survivors than survivors at baseline [median: 1392 IQR: (724–2128) vs. 621 (525–1233) pg/mL, 
p = 0.008), 48 h (p = 0.019) and 96–120 h (p = 0.029). The highest tertile of sTREM-1 at baseline (threshold: 1347 pg/mL) 
was associated with 90-day mortality with an unadjusted HR 3.08 CI 95% (1.48–6.42). sTREM-1 at baseline was not associ-
ated to hemodynamic parameters (heart rate, blood pressure, use of vasopressors or inotropes) but rather with organ injury 
markers: renal (estimated glomerular filtration rate, p = 0.0002), endothelial (bio-adrenomedullin, p = 0.018), myocardial 
(Suppression of Tumourigenicity 2, p = 0.002) or hepatic (bilirubin, p = 0.008).
Conclusion In CS patients TREM-1 pathway is highly activated and gives an early prediction of vital organ injuries and 
outcome.
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Introduction

Cardiogenic shock (CS) reflects a state in which primary 
impairment of myocardial function results in end-organ 
hypoperfusion, and thus hypoxia [1–3]. CS may complicate 
a heterogeneous group of diseases, ranging from acute coro-
nary syndrome to acute decompensation of chronic conges-
tive heart failure. A common feature is the rapid develop-
ment of a profound inflammatory state originating from both 
the disease itself and its management aiming to restore the 
cardiac output. The systemic inflammation is responsible 
for pathologic vasodilation that further aggravates organ 
dysfunctions [2, 4–6]. There is, therefore, an urgent unmet 
need for a way to break this vicious circle.

Among the mediators considered as perpetrators of 
inflammation in severe conditions seen in intensive care 
units, the Triggering Receptor Expressed on Myeloid 
cells-1 (TREM-1) seems to play a central role. TREM-1 is 
an immune receptor, mainly expressed on neutrophils and 
monocytes/macrophages [7]. The engagement of TREM-1 
through the binding of its still unknown ligand amplifies 
the inflammatory response mediated by Toll-like receptor 
activation [8]. The deleterious role of TREM-1 has been 

shown during experimental septic shock [9, 10], but also in 
animal models of myocardial infarction [11, 12]. Moreover, 
the inhibition of the TREM-1 pathway was able to restore 
the inflammatory balance, to reduce myocardial dysfunction, 
and finally to improve survival [11, 12].

A soluble form of TREM-1 is present in the plasma and 
is a marker of the TREM-1 pathway activity [13]. In a large 
nationwide cohort, we recently observed that sTREM-1 
plasma concentration was an independent predictor of the 
2-year death risk in patients suffering from acute myocardial 
infarction [11]. We make the hypothesis that sTREM-1 is 
highly active in CS and may be associated with organ inju-
ries. Accordingly, we aim to evaluate the TREM-1’s pathway 
activation and its association with main organ injuries and 
the outcome in a European cohort of CS patients.

Methods

The Cardshock study: a brief description

The Cardshock study (NCT: NCT01374867) is a prospective 
cohort of 219 patients with CS from nine hospitals in eight 
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European countries performed within the Global REsearch 
on Acute Conditions Team (GREAT) network. The main 
goal was to describe the clinical presentation and manage-
ment in patients with CS. The period of inclusion extended 
from October 2010 to 31 December 2012. The study was 
approved by local ethics committees and conducted in 
accordance with the Declaration of Helsinki. The results of 
the original study have been published [14]. Briefly, con-
secutive adult patients were enrolled within 6 h following the 
diagnosis of CS. Of note, in addition to the underlying car-
diac cause, the following criteria were required: (1) systolic 
blood pressure < 90 mmHg (in the absence of hypovolemia 
or after adequate fluid challenge) for 30 min or adjunction of 
a vasopressor to maintain adequate perfusion pressure, and 
(2) symptoms and/or signs of hypoperfusion (altered mental 
status, cold periphery, oliguria, lactatemia > 2 mmol/L). The 
main exclusion criteria were CS following cardiac or non-
cardiac surgery and ongoing hemodynamically significant 
arrhythmia as the cause of CS.

Endpoints

For this post-hoc study, the primary endpoint was to assess 
the association between sTREM-1 and 90-day mortality. 
Secondary endpoints included the link between sTREM-1 
and markers of organ failure.

Data collection

Demographic data, previous medical history, clinical, bio-
chemical, and hemodynamic parameters on baseline and 
48 h were collected. Serial blood samples were initially 
collected in 178 patients at baseline, 12, 24, 48, 72  h, 
and between 96 and 120 h; plasma was frozen and stored 
at − 80 °C. Arterial blood gas and lactate were analyzed 
locally while creatinine, C-reactive protein (CRP), alanine 
transferase (ALT), bilirubin, high-sensitivity troponin T 
(hsTnT), and N-terminal pro-B-type natriuretic peptide 
(NT-proBNP) were analyzed at baseline (Roche Diagnostics, 
Basel, Switzerland) at a central laboratory (ISLAB, Kuopio, 
Finland). Estimated glomerular filtration rates (eGFR, cal-
culated from creatinine values using the CKD-EPI (Chronic 
Kidney Disease Epidemiology Collaboration) equation, bio-
adrenomodulin (bio-ADM, Sphingotec GmbH, Hennigs-
dorf, Germany), procalcitonin (PCT, Sphingotec GmbH, 
Hennigsdorf, Germany) suppression of tumourigenicity 2 
(ST2, measured at INSERM UMR-S 942, Paris, France) 
were measured at baseline and 48 h from these samples. 
From available samples, sTREM-1 was measured in trip-
licate using ELISA (RnD Systems, MN, USA) at baseline, 
48 h and 96–120 h post-baseline in INOTREM laboratory, 
Nancy, France. CS management was also recorded in detail 
(use and duration): vasopressors/inotropic drugs, mechanical 

assistance, ventilatory support. The endpoint of interest 
was 90-day all-cause mortality which was assessed through 
direct contact with the patient (or next of kin) or through 
hospital records and population registries. Patients with no 
90-day vital status (n = 2) or no follow-up data (n = 1) were 
not included.

Statistical analysis

Analytical data are presented as the median with 25th and 
75th percentiles (median (interquartile range) for continuous 
variables, whereas categorical variables as numbers and per-
centages. Comparisons of baseline characteristics according 
to groups were conducted using Wilcoxon or Kruskal–Wallis 
tests for continuous variables and the Fisher exact test or χ2 
test for categorical variables.

Management of missing values

To assess the impact of missing samples, we first performed 
a comparison of baseline characteristics for patients with 
and without available samples at baseline. Second, multiple 
imputations by chained equations were performed to assess 
the impact of missing values on biomarkers of severity. All 
baseline variables were used, except treatment durations 
and outcome variables (hospital length of stay, in-hospital 
non-survivors, 90-day non-survivors). The pooled statistical 
parameters were calculated (median, first and third quar-
tiles) applying Rubin’s rules. Then, biomarkers were com-
pared between patients with at least one available sTREM-1 
sample during the ICU stay and patients with no available 
sTREM-1 sample.

Survival analysis

Log-rank test or Cox proportional-hazards regression were 
used to analyze the association of sTREM-1 by tertile with 
90-day mortality in univariate analysis. Low sTREM-1 
included the first two tertiles and high sTREM-1 included 
the third tertile of sTREM-1 concentration at baseline. For 
illustration, a survival curve was drawn according to the 
third tertile value (high sTREM-1) using the Kaplan–Meier 
method. Considering that only 60 samples were available 
at baseline with 29 events, multiple Cox regression mod-
els with a combination of four variables maximum were 
generated to assess the impact of high sTREM-1 threshold 
on 90-day mortality. Variables included in these multiple 
models were those with no collinearity for continuous vari-
ables and those with a p-value < 0.1 in univariate Cox model 
analysis. Thus, each model included unique successive 
associations of the significant variables in univariate Cox 
models: sTREM-1 threshold at baseline + variable n + vari-
able n+1 + variable n+2. The 90-day prognostic performance 
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of sTREM-1 was also compared to biomarkers associated 
with the clinical severity. Given the number of patients with 
sTREM-1 available at baseline and the number of events, 
univariate Cox models were performed to assess 90-day 
prognostic performance of sTREM-1. Models includ-
ing each biomarker were compared to a model including 
sTREM-1 using Harrell’s c-index calculation. For these 
models, sTREM-1 and biomarkers were considered as con-
tinuous variables.

Correlations between sTREM‑1 and biomarkers

Correlations between sTREM-1 and biomarkers measured 
at baseline have been assessed. As relationships between 
sTREM-1 and biomarkers were not linear, Spearman’s rank 
correlation coefficients were calculated.

A two-sided p-value ≤ 0.05 was regarded as statistically 
significant. Statistical analyses were performed using R, ver-
sion 3.6.2 (R Foundation for Statistical Computing, Vienna, 
Austria).

Results

Population’s characteristics

From the 219 CS patients enrolled in the CardShock study, 
87 patients had available sTREM-1 samples at either base-
line (n = 60), 48 h (n = 56) and/or 96–120 h (n = 45) (Fig. 
S1).

Characteristics of the population with available base-
line sTREM-1 samples (n = 60) are presented in Table S1. 
Briefly, this population was mainly composed of males 
(70%), aged (median) 68 (interquartile 25–75%) (59–79) 
years with ischemic heart disease as first medical history 
(38%). The primary recorded cause of CS was acute cor-
onary syndrome (78%). Severity criteria at baseline were 
a low systolic blood pressure at 76 (70–82) mmHg, with 
reduced LV ejection fraction at 30 (20–45) %, and major 
signs of congestion [NT-proBNP: 3672 (570–11623) 
ng/L]. Organ dysfunction at baseline was characterized by 
increased lactate at 2.8 (2.0–6.8) mmol/L. Fifty-nine percent 
and 69% were treated with norepinephrine and dobutamine, 
respectively. Invasive ventilation was required in 63% for a 
median duration of 5 (2–11) days. Ninety-day mortality of 
the 60 CS patients included was 48%.

Of note, no major difference was found in baseline 
characteristics between patients with (n = 87) and without 
(n = 132) available samples (Table S2). From the imputed 
analysis, there was also no difference between patients with 
and without available samples for biomarkers measured at 

baseline (Table S3). Thus, only complete case analyses were 
thereafter performed.
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Time course and association with 90‑day mortality 
of sTREM‑1 values in CS patients

Figure  1 shows that sTREM-1 values were higher in 
90-day non-survivors than in survivors at baseline [1392 
(724–2128) vs. 621 (525–1233) pg/mL, p = 0.008], 48 h 
(p = 0.019) and 96–120 h (p = 0.029) (Fig. 1).  

Characteristics of the population according to sTREM-1 at 
baseline by tertile are presented in Table 1. Briefly, patients 
in the third sTREM-1 tertile group compared to patients in 
first and second sTREM-1 tertile groups had no difference for 
demographic data, medical history (except for chronic kidney 
disease), or cause of CS. Figure S2 shows that there is an asso-
ciation between 90-day mortality and only the highest tertile of 
sTREM-1 at baseline (sTREM-1 > 1347 pg/mL defining high 
sTREM-1, unadjusted Hazard ratio (HR): 3.58, Confidence 
Interval 95% (1.38–9.27)). Thus, patients from the first two 
tertiles (low-sTREM-1) were thereafter compared to the third 
sTREM-1 tertile (high sTREM-1).

Univariate cox regression analysis found an association 
between high sTREM-1 and 90-day mortality [HR: 3.08 
(1.48–6.42)] (Fig. 2 and Table S4). Six hundred and eighty 
Cox multivariate models were generated to test the latter 
association. A high sTREM-1 threshold was associated with 
an increased risk of death (HR > 1) at 90 days in all gener-
ated models. Significance (p ≤ 0.05) and trend (p < 0.1) were 
reached in 49% and 70% of the generated models, respectively. 
Moreover, 90-day prognostic performance of sTREM-1 at 
baseline was similar to usual other biomarkers of CS, i.e., lac-
tate, pH, eGFR, bilirubin (Table S5).

Association of sTREM‑1 at baseline and clinical 
patterns

Similarly, there were no differences at baseline for hemody-
namic variables, namely heart rate, systolic blood pressure, 
and catecholamines use between high and low sTREM-1 
patients (Fig. 3). Conversely, high sTREM-1 concentrations 
were associated with features of organ failure. sTREM-1 at 
baseline was strongly correlated with creatinine (rho = 0.654), 
bilirubin (rho = 0.601) and moderately correlated with bio-
adrenomedullin (rho = 0.589) and eGFR (rho = −  0.476) 
(Table S6). Thus, compared to low sTREM-1, high sTREM-1 
was associated with injuries in various organs: renal [eGFR: 
33 (17–48) vs. 65 (35–87) mL/min/1.73   m2, p = 0.0002], 
endothelial [bio-ADM: 90 (46–151) vs. 41 (31–73) pg/mL, 
p = 0.018], cardiac [ST2: 542 (274–899) vs. 180 (125–290) ng/

mL, p = 0.002], and hepatic [bilirubin: 14 (10–28) vs. 9 (5–12) 
µmol/L, p = 0.008] dysfunctions (Fig. 4). In a subgroup of 
patients with no prior kidney disease, eGFR was also reduced 
in the high sTREM-1 group, [41 (25–52) vs. 71 (46–92) mL/
min/1.73  m2, p = 0.0013]. At 48 h, these biomarkers of organ 
injuries showed improvement (Figure S3).

Discussion

In this European multicenter cohort of CS patients, we found 
the TREM-1 pathway highly activated. More specifically, 
high sTREM-1 concentrations were associated with vari-
ous organ injuries (heart, liver, kidney, endothelium) which 
translated to a poor 90-day outcome.

TREM-1 has been widely studied in the context of sep-
tic shock, where the concentrations of its soluble form 
(sTREM-1) has been shown to predict the outcome [15]. 
The median sTREM-1 plasma concentration in septic shock 
setting was around 500 pg/mL. Here, we observed very high 
sTREM-1 concentrations (median 838 pg/mL) reflecting an 
intense activation of the TREM-1 pathway. Moreover, we 
observed a strikingly greater circulating sTREM-1 on admis-
sion among non-survivors of CS. Although this association 
could seem trivial, simply reflecting the severity of shock, 
sTREM-1 was not related to the traditional parameters of 
hemodynamic compromise (heart rate, arterial pressure, use 
of vasopressors or inotropes). Instead, sTREM-1 associated 
with markers of organ injuries: kidney (glomerular filtra-
tion rate), liver (bilirubin), endothelium (adrenomedullin), 
and heart (Suppression of tumorigenicity 2). Findings of 
the present study support a role for TREM-1 in perpetu-
ating the vicious cycle triggered by the initial myocardial 
dysfunction toward other vital organs. Our study suggests 
that TREM-1, by perpetuating hyperinflammation and cell 
injury in the vital organs might be a direct link between heart 
inflammation and injuries of the main organs, independently 
from hemodynamic status. Altogether, our data supports the 
notion that overactivation of the inflammatory response is 
not targeted by the current treatments (including mechanical 
circulatory support) which might explain the consistently 
high global mortality in CS (45–50%) [6].

TREM-1 is a part of the TREM family that comprises 5 
other members (TREM-2, TREML 1–4) clustered on human 
chromosome 6. TREM-1 associates with the DNAX adap-
tor protein 12 (DAP12) for signaling [16, 17]. Its engage-
ment triggers a signaling pathway that finally results in the 
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Table 1  Characteristics at baseline according to sTREM-1 tertiles

Variable Low sTREM-1 (≤ 612 pg/
mL) (n = 20)

Mid sTREM-1 [(612; 1347) 
pg/mL] (n = 20)

High sTREM-1 (> 1347 pg/
mL) (n = 20)

p-value**

n Median (IQR)/n (%) n Median (IQR)/n (%) n Median (IQR)/n (%)

Age (years) 20 72 (56–78) 20 68 (60–78) 20 67 (61–79) 0.98
Male gender (%) 20 11 (55%) 20 15 (75%) 20 16 (80%) 0.29
BMI (kg/m2) 20 25.5 (22.9–28.2) 20 27.7 (25.2–29.8) 19 27.5 (25.7–28.7) 0.28
Medical history
 Ischemic heart disease 20 7 (35%) 20 6 (30%) 20 10 (50%) 0.50
 Chronic heart failure 20 4 (20%) 20 3 (15%) 20 7 (35%) 0.40
 Atrial Fibrillation 20 2 (10%) 20 5 (25%) 20 4 (20%) 0.59
 Chronic respiratory disease 20 1 (5%) 20 2 (10%) 20 3 (15%) 0.86
 Chronic kidney disease 20 0 (0%) 20 5 (25%) 20 7 (35%) 0.012
 Stroke 20 2 (10%) 20 2 (10%) 20 0 (0%) 0.53

Underlying Causes
 Resuscitation prior to baseline 20 6 (30%) 20 4 (20%) 20 8 (40%) 0.44
 Acute coronary syndrome 20 17 (85%) 20 16 (80%) 20 14 (70%) 0.63
 Decompensated chronic heart failure 20 2 (10%) 20 2 (10%) 20 4 (20%) 0.71
 Others* 20 1 (5%) 20 2 (10%) 20 5 (25%) 0.25

Clinical parameters at baseline
 Systolic blood pressure (mmHg) 20 75 (70–80) 20 80 (65–87) 20 76 (72–82) 0.44
 Diastolic blood pressure (mmHg) 20 45 (40–50) 20 50 (40–56) 19 50 (42–54) 0.25
 Mean blood pressure (mmHg) 20 55 (50–57) 20 60 (50–67) 19 58 (53–61) 0.11
 Heart rate (bpm) 19 90 (46–106) 20 110 (86–124) 20 92 (72–108) 0.026
 LV ejection fraction (%) 18 35 (30–45) 19 28 (20–47) 20 20 (18–35) 0.049

Biology at baseline
 Lactate (mmol/L) 18 2.8 (1.8–3.6) 20 2.3 (1.8–4.3) 20 6.0 (2.8–10.9) 0.005
 pH 20 7.31 (7.25–7.39) 20 7.30 (7.20–7.42) 20 7.28 (7.12–7.38) 0.30
 eGFR (mL/min/1.73m2) 20 74 (51–94) 19 45 (34–85) 20 33 (17–48) 0.0003
 Creatinine (µmol/L) 20 74 (64–115) 19 116 (85–168) 20 156 (116–328)  < 0.0001
 Bilirubin (µmol/L) 20 7 (5–12) 20 9 (7–17) 20 14 (10–28) 0.010
 ALT (UI/L) 20 47 (22–67) 20 28 (10–73) 20 47 (26–231) 0.23
 NT-proBNP (ng/L) 20 772 (239–3166) 19 6726 (253–14,961) 20 8168 (3244–32,231) 0.0006
 hs-TNT (ng/L) 20 2597 (235–5092) 19 1336 (335–3677) 20 1587 (161–4131) 0.80
 PaO2/FiO2 (%) 18 257 (150–358) 18 168 (102–240) 18 181 (98–304) 0.24
 PCT (ng/mL) 20 0.12 (0.07–0.44) 20 0.16 (0.10–0.37) 20 1.44 (0.27–4.83) 0.0009
 CRP (mg/L) 20 5 (2–10) 19 40 (6–133) 20 42 (20–68) 0.0003
 bio-adrenomodulin (pg/mL) 20 40 (33–52) 20 61 (31–85) 20 90 (46–151) 0.029
 ST2 (ng/mL) 20 156 (124–341) 19 237 (131–290) 19 542 (274–899) 0.008

Treatments
 Norepinephrine administered 20 11 (55%) 19 9 (47%) 19 14 (74%) 0.27
 Norepinephrine length (days) 20 1 (0–2) 18 0 (0–1) 16 2 (0–3) 0.31
 Epinephrine administered 20 2 (10%) 19 5 (26%) 19 8 (42%) 0.073
 Epinephrine length (days) 20 0 (0–0) 19 0 (0–1) 19 0 (0–2) 0.071
 Dobutamine administered 20 12 (60%) 19 15 (79%) 19 13 (68%) 0.47
 Dobutamine length (days) 17 1 (0–2) 14 1 (0–3) 13 2 (0–2) 0.92
 Dopamine administered 20 4 (20%) 19 4 (21%) 19 5 (26%) 0.93
 Dopamine length (days) 18 0 (0–0) 19 0 (0–0) 16 0 (0–0) 0.61
 Non-invasive ventilation 19 1 (5%) 20 3 (15%) 20 3 (15%) 0.68
 Non-invasive ventilation length (days) 1 2 (2–2) 3 1 (1–1) 2 1 (1–1) 0.082
 Invasive ventilation 20 11 (55%) 20 11 (55%) 20 16 (80%) 0.20
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production of metalloproteases, pro-inflammatory cytokines 
and chemokines, including monocyte chemoattractant pro-
teins 1 and 3 (MCP-1, MCP-3), macrophage inflammatory 
protein 1α (MIP1-α), interleukin 1β (IL-1β), IL-6, IL-8, 
TNFα, along with rapid neutrophil degranulation and oxi-
dative burst, with a parallel downregulation of anti-inflam-
matory IL-10 [18].

Among the TREM family, TREM-1 has been identified 
on both human and murine neutrophils, mature monocytes 
and macrophages. Its expression by these effector cells is 
dramatically increased in skin, biological fluids and tis-
sues infected by bacteria and fungi [18]. The activation 
of TREM-1 by its yet unknown ligand in the presence of 
Toll-like receptor (TLR) ligands amplifies the production 
of proinflammatory cytokines. Besides, activation of these 
TLRs upregulates TREM-1 expression (8). Thus, TREM-1 
and TLRs cooperate in mounting an inflammatory response. 
During CS, the priming of the immune response (TLR acti-
vation) is not achieved by bacterial products, but through the 
release of necrotic cells and damaged extra-cellular matrix of 
endogenous damage-associated molecular patterns (DAMPs 
or Alarmins). The deleterious role of TREM-1 in amplifying 
the inflammatory response has been observed in numerous 
animal models of infections (pneumonia, peritonitis), but 
also chronic inflammatory disorders such as inflammatory 
bowel diseases or atherosclerosis [9, 10, 19, 20]. At bedside, 
during severe infection, TREM-1 level remains unchanged 
on neutrophils, while is up-regulated on monocytes and its 
soluble form has been shown to be elevated in case of sepsis 
both in blood and on the site of infection [21, 22].

We have also observed in a cohort of 1015 myocardial 
infarction patients that sTREM-1 plasma concentration inde-
pendently predicted a 2-year outcome [11]. Our group has 
showed that genetic invalidation of the TREM-1 gene or 
pharmacologic modulation by the use of a synthetic inhibi-
tory peptide (Nangibotide) protected animals (mice, rats, 
and pigs) from hyper-reactivity, myocardial failure, organ 
dysfunction, and death, following myocardial infarction 
[11, 12]. Nangibotide, a first-In-class TREM-1 inhibitor has 
already demonstrated preliminary safety and efficacy results 
in a phase 2a trial in septic shock patients and a phase 2b 
trial (ASTONISH) is underway in this indication [23]. Our 
current findings support that this molecule is worth being 
investigated in CS patients as well.

We acknowledge several limitations in this study. 
First, this is a post-hoc analysis of a multicenter Euro-
pean cohort study carried out at the beginning of 2010. 
Since then, global management of CS improved from 
early revascularization process of STEMI-related CS to 
extended use of mechanical assistance devices in case of 
refractory CS. However, this does not jeopardize the asso-
ciation between sTREM-1 concentration at baseline and 
our main outcomes. Second, due to the small sample size, 
we were unable to perform a fully adjusted survival analy-
sis to confirm that sTREM-1 is independently associated 
with 90-day mortality. To address this limitation, we gen-
erated multivariate Cox models with all possible unique 
combinations of four variables, all associated with 90-day 
mortality in univariate analysis. Accordingly, results of 
the present study will require confirmation in further 

Table 1  (continued)

Variable Low sTREM-1 (≤ 612 pg/
mL) (n = 20)

Mid sTREM-1 [(612; 1347) 
pg/mL] (n = 20)

High sTREM-1 (> 1347 pg/
mL) (n = 20)

p-value**

n Median (IQR)/n (%) n Median (IQR)/n (%) n Median (IQR)/n (%)

 Invasive ventilation length (days) 11 6 (3–7) 10 6 (2–15) 16 4 (2–12) 0.91
 Percutaneous coronary intervention 20 16 (80%) 20 11 (55%) 20 8 (40%) 0.042
 Intra-aortic balloon pump 20 13 (65%) 20 9 (45%) 20 13 (65%) 0.37

Outcomes
 Hospital length of stay (days) 20 12 (8–16) 20 19 (8–38) 20 12 (2–24) 0.39
 In-hospital non-survivors 20 5 (25%) 20 6 (30%) 20 13 (65%) 0.029
 90-day non-survivors 20 6 (30%) 20 8 (40%) 20 15 (75%) 0.013

*Others: Myocarditis n = 2, Valvular disease n = 6
**p-value from Wilcoxon test for continuous variables and Fisher’s exact test for categorical variables
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multi-national studies for each stratum of the ABCDE 
new definition of CS to ensure that sTREM-1 consistently 
predicts organ dysfunctions and poor outcome [1].

In conclusion, the present study suggests that, sTREM-
1, an inflammatory biomarker, when elevated in plasma 
may predict injuries in vital organs in CS patients and a 
poor 90-day outcome.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s0039 2-021-01823 -0.
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