
https://helda.helsinki.fi

Indexable Elastic Founder Graphs of Minimum Height

Rizzo, Nicola

Schloss Dagstuhl - Leibniz-Zentrum für Informatik

2022-06

Rizzo , N & Mäkinen , V 2022 , Indexable Elastic Founder Graphs of Minimum Height . in H

Bannai & J Holub (eds) , 33rd Annual Symposium on Combinatorial Pattern Matching (CPM

2022) . Leibniz International Proceedings in Informatics (LIPIcs) , no. 223 , Schloss Dagstuhl

þÿ�-� �L�e�i�b�n�i�z�-�Z�e�n�t�r�u�m� �f�ü�r� �I�n�f�o�r�m�a�t�i�k� �,� �D�a�g�s�t�u�h�l�,� �G�e�r�m�a�n�y� �,� �p�p�.� �1�9�:�1 ��1�9�:�1�9� �,� �A�n�n�u�a�l� �S�y�m�p�o�s�i�u�m

on Combinatorial Pattern Matching , Prague , Czech Republic , 27/06/2022 . https://doi.org/10.4230/LIPIcs.CPM.2022.19

http://hdl.handle.net/10138/353005

https://doi.org/10.4230/LIPIcs.CPM.2022.19

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Indexable Elastic Founder Graphs of Minimum
Height
Nicola Rizzo #

Department of Computer Science, University of Helsinki, Finland

Veli Mäkinen #

Department of Computer Science, University of Helsinki, Finland

Abstract
Indexable elastic founder graphs have been recently proposed as a data structure for genomics
applications supporting fast pattern matching queries. Consider segmenting a multiple sequence
alignment MSA[1..m, 1..n] into b blocks MSA[1..m, 1..j1], MSA[1..m, j1 + 1..j2], . . . , MSA[1..m, jb−1 +
1..n]. The resulting elastic founder graph (EFG) is obtained by merging in each block the strings
that are equivalent after the removal of gap symbols, taking the strings as the nodes of the block
and the original MSA connections as edges. We call an elastic founder graph indexable if a node
label occurs as a prefix of only those paths that start from a node of the same block. Equi et al.
(ISAAC 2021) showed that such EFGs support fast pattern matching and studied their construction
maximizing the number of blocks and minimizing the maximum length of a block, but left open the
case of minimizing the maximum number of distinct strings in a block that we call graph height. For
the simplified gapless setting, we give an O(mn) time algorithm to find a segmentation of an MSA
minimizing the height of the resulting indexable founder graph, by combining previous results in
segmentation algorithms and founder graphs. For the general setting, the known techniques yield a
linear-time parameterized solution on constant alphabet Σ, taking time O(mn2 log|Σ|) in the worst
case, so we study the refined measure of prefix-aware height, that omits counting strings that are
prefixes of another considered string. The indexable EFG minimizing the maximum prefix-aware
height provides a lower bound for the original height: by exploiting exploiting suffix trees built
from the MSA rows and the data structure answering weighted ancestor queries in constant time of
Belazzougui et al. (CPM 2021), we give an O(mn)-time algorithm for the optimal EFG under this
alternative height.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory
of computation → Pattern matching; Theory of computation → Sorting and searching; Theory of
computation → Dynamic programming; Applied computing → Genomics

Keywords and phrases multiple sequence alignment, pattern matching, data structures, segmentation
algorithms, dynamic programming, suffix tree

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.19

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 956229.

1 Introduction

String matching in a text and its variants are classic problems in computer science, with
a myriad of applications such as biological sequence analysis. The generalization of the
string matching problem concerned with searching strings in a labeled graph has gained
more and more importance in computational biology, and for a good reason: the rapidly
increasing number of sequenced data makes it possible to capture the variation of many
species, populations, and cancer genomes, for example forming the so-called pangenome
of a species [5]. A central challenge of pangenomics is then to provide the computational
tools to swap a single reference genome with a pangenomic representation of hundreds –
if not thousands – of genomes in the established analysis tasks [19, 24, 25, 13, 17, 7, 20].

© Nicola Rizzo and Veli Mäkinen;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.rizzo@helsinki.fi
https://orcid.org/0000-0002-2035-6309
mailto:veli.makinen@helsinki.fi
https://orcid.org/0000-0003-4454-1493
https://doi.org/10.4230/LIPIcs.CPM.2022.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Elastic Founder Graphs of Minimum Height

A G C G A − C T A G A T A C
A G C −− A C T A G T T −−
A G C G A − C T C G T T A C
A G C −− A C T − G T T A C

AGCG ACTA GATAC

AGC ACTC GTT

ACT GTTAC

AGC G ACT
GATAC

GTT

A

C AC

Figure 1 An elastic founder graph (middle) induced from a MSA segmentation (left). This EFG
is semi-repeat-free, meaning that each node label appears only as prefix of paths starting from the
same block. Thus, we say it is indexable since it supports fast pattern matching. On the right, the
modification of the EFG suggested by the prefix-aware height, compacting labels that are prefixes of
others in the same block: we reserve its study as future work.

The most popular representation for a pangenome is a graph whose paths spell the input
genomes, and the basic primitive required on such pangenome graphs is to be able to search
occurrences of query strings (short reads) as subpaths of the graph. On this front, research
efforts have been met with theoretical roadblocks: string matching in labeled graphs cannot
be solved in sub-quadratic time even for simple graph classes, unless the Orthogonal Vectors
Hypothesis (OVH) is false [8]; under OVH, no polynomial-time indexing scheme of a graph
can support sub-quadratic time queries [9]; identifying if a graph belongs to the class of
Wheeler graphs, that are easy to index, is NP-complete [14]. Therefore, practical tools deploy
various heuristics or use other pangenome representations as a basis.

The pangenomic representation at the heart of the elastic founder graph (EFG), proposed
by Mäkinen et al. [18] and Equi et al. [10], is then to assume as input a multiple sequence
alignment, a matrix MSA[1..m, 1..n] composed of m rows that are strings of length n, drawn
from an alphabet Σ plus a special “gap” symbol where each column represents an aligned
position of the characters of the rows. As seen in Figure 1, the EFG is then created by choosing
a segmentation of the MSA, that is, a partition of the columns in consecutive blocks: the
strings in each block become the nodes of the block, and the edges are defined by the original
row connections. If the node labels do not appear as prefix of any other path than those
starting at the same block, then the so-called semi-repeat-free property holds and the graph
supports an index structure for fast pattern matching [18, 10]. Equi et al. [10] also show that
an indexability property like this one is required to have pattern matching in sub-quadratic
time, since the OVH-based lower bound holds even when restricted to EFGs induced by MSA
segmentations. Mäkinen et al. [18] gave an O(mn) time algorithm constructing an indexable
EFG minimizing the maximum block length, given a gapless MSA[1..m, 1..n]. Equi et al. [10]
extended the result to general MSAs, obtaining O(mn log m) time algorithms for the same
optimization and for maximizing the number of blocks, and we recently improved these
two results to O(mn) time [22]. We refer the reader to the aforementioned papers for the
connections of the approach to Elastic Degenerate Strings and Wheeler graphs.

In this paper, we continue the study of indexable EFGs and focus on optimizing the height
of the resulting graph. This measure is defined as the maximum number of distinct strings
(i.e. nodes) in a block, and in the example of Figure 1 (middle) this measure is equal to 3,
as the second and last blocks have 3 nodes. In Section 2, we provide the basic definitions
around EFGs. In Section 3, we introduce the algorithms to find an MSA segmentation
minimizing the height of the resulting indexable EFG: for the gapless case, we show how
the left-to-right segmentation algorithm by Norri et al. exploiting left extensions [21] can be
combined with the computation of the minimal left extensions by Equi et al. [18] to obtain
an O(mn) algorithm in the case where |Σ| ∈ O(m); since left extensions cannot be used in
the general case, we develop an equivalent left-to-right solution exploiting meaningful right
extensions that is also correct in the case with gaps. In the general case, the number of these

N. Rizzo and V. Mäkinen 19:3

extensions is O(mn2) and computing them takes O(mnα log|Σ|) time, where α is the length
of the longest run in the MSA where a row spells a prefix of the string spelled by another
row and, unfortunately, α ∈ Θ(n) in the worst case. Hence, we continue with a different
generalization of the gapless height that we call prefix-aware height, equal to the maximum
number of distinct strings in a block but omitting strings that are prefixes of others in such
block. In the example of Figure 1, this measure is equal to 2. The number of meaningful
right extensions is O(mn) for this refined height, so in Section 4 we obtain an O(mn) time
solution on general MSAs: the segmentation minimizing the maximum prefix-aware height
provides a useful lower bound on the optimal segmentation under the original height. The
linear time is achieved thanks to the computation of the generalized suffix tree built from
the MSA rows, its symmetrical prefix tree counterpart, and the constant-time navigation
between the two offered by the suffix tree data structure of Belazzougui et al. answering
weighted ancestor queries [2]. We leave it for future work to study whether the modified
EFG suggested by our refined height, as seen in Figure 1, supports an adapted version of the
index for fast pattern matching queries.

2 Definitions

We follow the notation of Equi et al. [10].

Strings. We denote integer intervals by [x..y]. Let Σ = [1..σ] be an alphabet of size |Σ| = σ.
A string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn, where Σn denotes the set of
strings of length n over Σ. In this paper, we assume that σ is always smaller or equal to the
length of the strings we are working with. The reverse of T , denoted with T −1, is the string
T read from right to left. A suffix (prefix) of string T [1..n] is T [x..n] (T [1..y]) for 1 ≤ x ≤ n

(1 ≤ y ≤ n). A substring of string T [1..n] is T [x..y] for 1 ≤ x ≤ y ≤ n. The length of a string
T is denoted |T | and the empty string ε is the string of length 0. In particular, substring
T [x..y] where y < x is the empty string. For convenience, we denote with Σ∗ and Σ+ the set
of finite strings and finite nonempty strings over Σ, respectively. We say that a substring
T [x..y] is proper if it is non-empty and different from T . String Q occurs in T if Q = T [x..y];
we say that x is the starting position (occurrence) of Q in T , and y is the ending position
(ending occurrence). The lexicographic order of two strings A and B is naturally defined
by the order of the alphabet: A < B iff A[1..y] = B[1..y] and A[y + 1] < B[y + 1] for some
y ≥ 0. If y + 1 > min(|A|, |B|), then the shorter one is regarded as smaller. However, we
usually avoid this implicit comparison by adding an end marker $ /∈ Σ to the strings and we
consider $ to be the lexicographically smallest character. The concatenation of strings A and
B is denoted A ·B, or just AB.

Elastic founder graphs. MSAs can be compactly represented by elastic founder graphs, the
vertex-labeled graphs that we formalize in this section.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings drawn from
Σ ∪ {−}, each of length n, as its rows. Here, − /∈ Σ is the gap symbol. For a string
X ∈ (Σ ∪ {−})∗, we denote spell(X) the string resulting from removing the gap symbols
from X. If an MSA does not contain gaps then we say it is gapless, otherwise we say that
it is a general MSA. Given I ⊆ [1..m], we denote with MSA[I, 1..n] the MSA obtained by
considering only rows MSA[i, 1..n] with i ∈ I.

Let P be a partitioning of [1..n], that is, a sequence of subintervals P = [x1..y1],
[x2..y2], . . . , [xb..yb] where x1 = 1, yb = n, and xj = yj−1 + 1 for all j > 2. A seg-
mentation S of MSA[1..m, 1..n] based on partitioning P is the sequence of b sets Sk =

CPM 2022

19:4 Elastic Founder Graphs of Minimum Height

{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require for a (proper)
segmentation that spell(MSA[i, xk..yk]) is not an empty string for any i and k. We call set
Sk a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The length of block
Sk is L(Sk) = yk − xk + 1 and its height is H(Sk) = |Sk|. Since each block is derived
from a segment [x..y], we denote segment length and height with L(MSA[1..m, x..y]) and
H(MSA[1..m, x..y]) or just L([x..y]) and H([x..y]), respectively.

Segmentation naturally leads to the definition of a founder graph through the block graph
concept.

▶ Definition 1 (Block Graph). A block graph is a graph G = (V, E, ℓ) where ℓ : V → Σ+ is a
function that assigns a string label to every node and for which the following properties hold:
1. set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is, V = V 1 ∪

V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i ̸= j;
2. if (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and
3. if v, w ∈ V i then |ℓ(v)| = |ℓ(w)|, and if v, w ∈ V i and v ̸= w then ℓ(v) ̸= ℓ(w).
For gapless MSAs, block Sk equals segment MSA[1..m, xk..yk], and in that case the founder
graph is a block graph induced by segmentation S [18]. The idea is to have a graph in which
the nodes represent the strings in S while the edges retain the information of how such
strings can be recombined to spell any sequence in the original MSA.

For general MSAs with gaps, we consider the following extension.

▶ Definition 2 (Elastic block and founder graphs). We call a block graph elastic if its
third condition is relaxed in the sense that each V i can contain non-empty variable-length
strings. An elastic founder graph (EFG) is an elastic block graph G(S) = (V, E, ℓ) induced
by a segmentation S of MSA[1..m, 1..n] as follows: for each 1 ≤ k ≤ b we have Sk =
{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} = {ℓ(v) : v ∈ V k}. It holds that (v, w) ∈ E if and only if
there exist k ∈ [1..b−1], i ∈ [1..m] such that v ∈ V k, w ∈ V k+1, and spell(MSA[i, xk..yk+1]) =
ℓ(v)ℓ(w).

For example, in the general MSA[1..4, 1..13] of Figure 1, the segmentation based on parti-
tioning [1..4], [5..9], [10..14] induces an EFG G(S) = (V 1 ∪ V 2 ∪ V 3, E, ℓ) where the nodes in
V 1, V 2, and V 3 have labels of variable length. As noted by Equi et al. [10], block graphs are
connected to Generalized Degenerate Strings [1] and elastic founder graphs are connected to
Elastic Degenerate Strings [3].

By definition, (elastic) founder and block graphs are acyclic. For convention, we interpret
the direction of the edges as going from left to right. Consider a path P in G(S) between
any two nodes. The label ℓ(P) of P is the concatenation of the labels of the nodes in the
path. Let Q be a query string. We say that Q occurs in G(S) if Q is a substring of ℓ(P) for
any path P of G(S).

▶ Definition 3 ([18]). EFG G(S) is repeat-free if each ℓ(v) for v ∈ V occurs in G(S) only
as a prefix of paths starting with v.

▶ Definition 4 ([18]). EFG G(S) is semi-repeat-free if each ℓ(v) for v ∈ V occurs in G(S)
only as a prefix of paths starting with w ∈ V , where w is from the same block as v.

For example, the EFG of Figure 1 is not repeat-free, since AGC occurs as a prefix of two
distinct labels of nodes in the same block, but it is semi-repeat-free since all node labels
ℓ(v) with v ∈ V k occur in G(S) only starting from block V k, or they do not occur at all
elsewhere in the graph. These definitions also apply to general elastic block graphs and to
elastic degenerate strings as their special case.

N. Rizzo and V. Mäkinen 19:5

Basic tools. A trie or keyword tree [6] of a set of strings is a rooted directed tree with
outgoing edges of each node labeled by distinct symbols such that there is a root-to-leaf
path spelling each string in the set; the shared part of the root-to-leaf paths of two different
leaves spell the common prefix of the corresponding strings. In a compact trie, the maximal
non-branching paths of a trie become edges labeled with the concatenation of labels on the
path. The suffix tree of T ∈ Σ∗ is the compact trie of all suffixes of string T$. Such tree
takes linear space and can be constructed in linear time so that when reading the leaves from
left to right, the suffixes are listed in their lexicographic order [12]. A generalized suffix tree
is one built on a set of m strings [15]. In this case, string T above is the concatenation of
the strings after appending a unique end marker $i to each string1, with 1 ≤ i ≤ m.

Let Q[1..m] be a query string. If Q occurs in T , then the locus or implicit node of Q

in the suffix tree of T is (v, k) such that Q = XY , where X is the string spelled from the
root to the parent of v and Y is the prefix of length k of the edge from the parent of v to
v. The leaves of the subtree rooted at v, or the leaves covered by v, are then all the suffixes
sharing the common prefix Q. Let aX and X be paths spelled from the root of a suffix tree
to nodes v and w, respectively; then, one can store a suffix link from v to w. For suffix
trees, a weighted ancestor query asks for the computation of the implicit or explicit node
corresponding to substring T [x..y] of the text, given x and y.

String B[1..n] from a binary alphabet is called a bitvector. Operation rank(B, i) returns
the number of 1s in B[1..i]. Operation select(B, j) returns the index i containing the j-th 1
in B. Both queries can be answered in constant time using an index constructible in linear
time and requiring o(n) bits of space in addition to the bitvector itself [16].

3 Construction of EFGs of minimum height

Recall that in the absence of gaps the semi-repeat-free and repeat-free notions (Definitions 3
and 4) are equivalent, and the strings in a block induced by a segment cannot have variable
length. In this section, we study the construction of EFGs under the goal of minimizing
the maximum block height. Indeed, after showing that semi-repeat-free EFGs are easy to
index for fast pattern matching, Equi et al. [10] extended the previous results for the gapless
setting showing that semi-repeat-free EFGs are equivalent to specific segmentations of the
MSA: the semi-repeat-free property has to be checked only against the MSA, and not the
final EFG. We recall these arguments in Section 3.1, along with the resulting recurrence to
compute an optimal segmentation under three score functions: i. maximizing the number of
blocks; ii. minimizing the maximum length of a block; and iii. minimizing the maximum
height of a block.

In the gapless repeat-free setting, scores i. and ii. admit the construction of indexable
founder graphs in O(mn) time, thanks to previous research on founder graphs and MSA
segmentations [18, 21, 4]. In Section 3.2 we combine these works to obtain an O(mn) time
solution for score iii. as well: the optimal segmentation is found mainly by computing
the meaningful left extensions, that is, the positions x1 > · · · > xk where the height of
repeat-free segment [xi..y] increases, with y ∈ [1..n]. In the general and semi-repeat-free
setting, extending a segment to the left can violate the semi-repeat-free property and the
height can decrease. Thus, Equi et al. in [10] gave O(n)- and O(n log log n)-time algorithms
for scores i. and ii., respectively, exploiting the semi-repeat-free right extensions after a

1 For our purposes, the suffix tree of the concatenated strings is functionally equivalent to the “trimmed”
generalized suffix tree seen in Figure 3.

CPM 2022

19:6 Elastic Founder Graphs of Minimum Height

common O(mn log m)-time preprocessing of the MSA. We recently improved the second
algorithm to O(n) time and the preprocessing to O(mn), reaching global linear time [22].
In Section 3.3, we develop a similar algorithm for the construction of a semi-repeat-free
segmentation processing the meaningful right extensions. Although the number of these
extensions is O(n2) in total, we manage to provide a parameterized linear-time solution
providing an upper bound based on the length of the longest run where any two rows
spell strings that are one prefix of the other. Instead, an alternative notion of height, the
prefix-aware height, generates O(mn) meaningful prefix-aware right extensions: they can be
processed in the same fashion as the original height to obtain an optimal segmentation, and
we will show how to compute them efficiently in Section 4.

3.1 Optimal EFGs correspond to optimal segmentations

Consider a segmentation S = S1, S2, . . . , Sb inducing a semi-repeat-free EFG G(S) = (V, E, ℓ),
as per Definition 2. It is easy to see that the strings occurring in G(S) are a superset of the
substrings of the MSA rows: for example, string CACTAGA occurs in the EFG of Figure 1 but
it does not occur in any row of the original MSA. These new strings, as it was proven by
Mäkinen et al. [18] and Equi et al. [10], do not affect the semi-repeat-free property. Intuitively,
this is because they involve three or more vertices of G(S).

▶ Lemma 5 (Characterization, gapless setting [18]). We say that a segment [x..y] of a gapless
MSA[1..m, 1..n] is repeat-free if string MSA[i, x..y] occurs in the MSA only at position x of
any row. Then G(S) is repeat-free if and only if all segments of S are repeat-free.

▶ Lemma 6 (Characterization [10]). We say that segment [x..y] of a general MSA[1..m, 1..n]
is semi-repeat-free if for any i, i′ ∈ [1..m] string spell(MSA[i, x..y]) occurs in gaps-removed
row spell(MSA[i′, 1..n]) only at position g(i′, x), where g(i′, x) is equal to x minus the number
of gaps in MSA[i′, 1..x − 1]. Similarly, [x..y] is repeat-free if the possible occurrence of
spell(MSA[i, 1..n]) in row i′ at position g(i′, x) also ends at position g(i′, y). Then G(S) is
semi-repeat-free if and only if all segments of S are semi-repeat-free.

Thanks to Lemmas 5 and 6, we can compute recursively the score s(j) of an optimal
segmentation of prefix MSA[1..m, 1..j] under our three scoring schemes, using semi-repeat-free
segments, that is, respecting the global semi-repeat-free property on the whole MSA:

s(j) =
⊕

j′ : 0≤j′<j s.t.
MSA[1..m,j′+1..j] is

semi-repeat-free

E
(
s(j′), j′, j

)
(1)

where operator
⊕

and function E extend the optimal partial solutions, and they depend
on the desired scoring scheme. Indeed, for s(j) to be equal to the optimal score of a
segmentation: i. maximizing the number of blocks, set

⊕
= max and g(s(j′), j′, j) =

s(j′) + 1; for a correct initialization set s(0) = 0 and where there is no semi-repeat-free
segmentation set s(j) = −∞; ii. minimizing the maximum block length, set

⊕
= min and

g(s(j′), j′, j) = max(s(j′), L([j′ + 1..j])) = max(s(j′), j − j′); set s(0) = 0 and if there is no
semi-repeat-free segmentation set s(j) = +∞. iii. minimizing the maximum block height,
set

⊕
= min and g(s(j′), j′, j) = max(s(j′), H([j′ + 1..j])); set s(0) = 0 and if there is no

semi-repeat-free segmentation set s(j) = +∞.

N. Rizzo and V. Mäkinen 19:7

3.2 The linear time solution for the gapless setting

For gapless MSAs, an O(mn) solution for the construction of segmentations minimizing the
maximum block height has been found by Norri et al. [21] for the case where the length of a
block is limited by a given lower bound L, rather than with the repeat-free property. This
result holds under the assumption that Σ is an integer alphabet of size O(m). In this section,
we combine the algorithm by Norri et al. with the computation of values v(j) – that we call
the minimal left extensions – by Mäkinen et al. [18], obtaining a linear-time solution to the
construction of repeat-free founder graphs minimizing the maximum block height.

▶ Observation 7 (Monotonicity of left extensions [21, 8]). Given a gapless MSA[1..m, 1..n],
for any 1 ≤ x ≤ y ≤ n we say that [x..y] is a left extension of suffix MSA[1..m, y + 1..n].
Then:

if [x..y] is repeat-free then [x′..y] is repeat-free for all x′ < x;
m ≥ H([x′..y]) ≥ H([x..y]) for all x′ < x.

Thus, for each j ∈ [1..n] we define value v(j) as the greatest column index smaller or equal
to j such that [v(j)..j] is repeat-free, and we say that v(j) or [v(j)..j] is the minimal left
extension of MSA[1..m, j + 1..n]. If there is no valid left extensions then v(j) = −∞.

▶ Definition 8 (Meaningful left extensions [21, 8]). Given a gapless MSA[1..m, 1..n], for any
j ∈ [1..n] we denote with Lj = ℓj,1, . . . , ℓj,cj

the meaningful (repeat-free) left extensions of
MSA[1..m, j + 1..n], meaning the strictly decreasing sequence of all positions smaller than or
equal to j such that:

ℓj,cj
< · · · < ℓj,2 < ℓj,1 = v(j), so that Lj captures all repeat-free left extensions of

MSA[1..m, j + 1..n];
H([ℓj,k..j]) > H([ℓj,k + 1..j]) for 2 ≤ k ≤ cj, so that each ℓj,k marks a column where the
height of the left extension increases; it follows from Observation 7 that |Lj | = cj ≤ m.

If MSA[1..m, j + 1..n] has no repeat-free left extension, we define Lj = () and cj = 0.
Otherwise, for completeness we define ℓj,cj+1 = −1.

Under score iii. Equation (1) can be rewritten using Lj = ℓj,1, . . . , ℓj,cj
as follows:

s(j) = min
k∈[1..cj]

max
(

min
j′∈[ℓj,k+1+1..ℓj,k]

s(j′), H
(
[ℓj,k..j]

))
(2)

and s(j) = +∞ if cj = 0, so knowing values Lj , H([ℓj,k..j]), and minj′∈[ℓj,k+1+1..ℓj,k] s(j′)
for k ∈ [1..cj] makes it possible to compute s(j) in O(m) time. On one hand, given a fixed
length L, Norri et al. [21] developed an algorithm to compute these values under the variant
of Definition 8 considering segments of length at least L – instead of repeat-free segments
– in O(mn) total time. On the other hand, Mäkinen et al. [18] developed a linear-time
algorithm to compute values v(j) of a gapless MSA. The two solutions can be combined by
finding values v(j) with the latter, and by using the values as a dynamic lower bound on the
minimum accepted segment length. Since the algorithm we develop in Section 3.3 for the
general setting also solves this problem, using the symmetrically defined right extensions, we
will not describe such modification in this paper.

▶ Theorem 9. Given a gapless MSA[1..m, 1..n] from an integer alphabet Σ of size O(m), an
optimal repeat-free segmentation of MSA[1..m, 1..n] minimizing the maximum block height
can be computed in time O(mn).

CPM 2022

19:8 Elastic Founder Graphs of Minimum Height

3.3 Revisiting the linear time solution for right extensions
For MSAs with gaps and under the semi-repeat-free notion, the monotonicity of left extensions
(Observation 7) fails [11, Table 1]: fixing j ∈ [1..n], left-extensions MSA[1..m, x..y] are not
always semi-repeat-free, or valid, from x = v(j) backwards, and their height could decrease
when extending a valid segment. For example, in the MSA of Figure 1, segment [5..9] is
semi-repeat-free but segment [4..9] is not, and H([5..9]) < H([6..9]). In this section, we
resolve the former of the two issues, developing an algorithm exploiting right extensions and
computing the optimal MSA segmentation from left to right, in the same fashion as [10,
Algorithms 1 and 2] and [23, Algorithm 2]. We will discuss the complexity of computing
these right extensions in Section 3.4.

▶ Observation 10 (Semi-repeat-free right extensions [10]). Given general MSA[1..m, 1..n], for
any 0 ≤ x < y ≤ n we say that [x + 1..y] is an extension of prefix MSA[1..m, 1..x]. If segment
[x + 1..y] is semi-repeat-free, then segment [x + 1..y′] is semi-repeat-free for all y′ > y. Thus,
for each x ∈ [0..n− 1] we define value f(x) as the smallest column index greater than x such
that [x + 1..f(x)] is semi-repeat-free, and we say that f(x) or [x + 1..f(x)] is the minimal
right extension of MSA[1..m, 1..x]. If there is no valid right extension, then f(x) =∞.

▶ Definition 11 (Meaningful right extensions). Given general MSA[1..m, 1..n], for any x ∈
[0..n−1] we denote with Rx = rx,1, . . . rx,dx

the meaningful (semi-repeat-free) right extensions
of MSA[1..m, 1..x], meaning the strictly increasing sequence of all positions greater than x

such that:
f(x) = rx,1 < rx,2 < · · · < rx,dx , so that Rx captures all semi-repeat-free right extensions
of MSA[1..m, 1..x];
H([x + 1..rx,k]) ̸= H([x + 1..rx,k − 1]) for 2 ≤ k ≤ dx, so that each rx,k marks a column
where the height of the right extensions changes.

If MSA[1..m, 1..x] has no semi-repeat-free right extension, then Rx = () and dx = 0. Other-
wise, for completeness we define value rx,dx+1 = n + 1.

Since we will treat all R0, . . . , Rn−1 together, we complement each value rx,k with column x

and the height of the corresponding MSA segment, obtaining triple (x, rx,k, H([x + 1..rx,k])).
Thus, under score iii. Equation (1) can be rewritten as follows:

s(j) = min
x∈[0..j−1], k∈[1..dx] :

rx,k≤j<rx,k+1

max
(

s(x), H
(
[x + 1..rx,k]

))
. (3)

Since each Rx defines non-overlapping ranges [rx,k, rx,k+1 − 1] over [1, n], at most one
range [rx,k..rx,k+1 − 1] per Rx with x < j is involved in the computation of s(j), and the
corresponding score depends on which range contains j. Also, note that Equation (3) is
simpler than Equation (2). Finally, the algorithm computing the score of an optimal semi-
repeat-free segmentation minimizing the maximum block height is described in Algorithm 1,
and it works by processing all meaningful right extensions in R0, . . . , Rn−1 expressed as
triples (x, r, h) and sorted from smallest to largest order by second component. The main
strategy is to keep at each iteration j the best scores of the semi-repeat-free segmentations
of MSA[1..m, 1..j] ending with a right extension [1, j], [2, j], . . . , or [j, j] described by ranges
in R0, R1, . . . , or Rj−1. Checking each currently valid range individually would result in a
quadratic-time solution, so we need to represent these ranges in some other form. Indeed, by
counting these scores with an array C[1..m] such that C[i] is equal to the number of available
solutions having score i, score s(j) can be computed by finding the smallest i such that C[i] is
greater than zero. Array C needs to be updated only when j reaches some rx,k; in other words,

N. Rizzo and V. Mäkinen 19:9

Algorithm 1 Main algorithm to find the optimal score of a semi-repeat-free segmentation
minimizing the maximum block height.

Input: Meaningful right extensions (x1, r1, h1), . . . , (xk, rk, hk) sorted from smallest
to largest order by second component.

Output: Score of an optimal semi-repeat-free segmentation minimizing the
maximum block height.

1 Initialize array R[0..n− 1] with values in [0..m] ∪ {⊥} and set all values to ⊥;
2 Initialize array C[1..m] with values in [0..m] and set all values to 0;
3 y ← 1;
4 minmaxheight[0]← 0;
5 for j ← 1 to n do
6 while j = ry do
7 if R[xy] ̸= ⊥ then
8 C[R[xy]]← C[R[xy]]− 1; ▷ Remove last solution of Rxy

9 s← max(minmaxheight[xy], hy);
10 R[xy]← s; ▷ Save score corresponding to (xy, ry, hy)
11 C[s]← C[s] + 1; ▷ Add solution corresponding to (xy, ry, hy)
12 y ← y + 1;
13 minmaxheight[j]← minm

i=1{i : C[i] > 0};
14 return minmaxheight[n];

when j = r for some (x, r, h), the score max(s(x), h) of an optimal segmentation ending with
[x + 1..j] must be added to C, and the old score relative to the previous range of Rx must be
removed. We can keep track of the scores in an array R[0..n− 1] such that R[x] is equal to the
score associated with the currently valid extension of Rx. A possible implementation of the
solution is described in Algorithm 1. To compute the actual segmentation, instead of just its
score, we can use two backtracking arrays B and Cbt: Cbt[i] = x where [rx,k..rx,k+1 − 1] is a
currently valid range of minimum score finishing last, that is, with maximum value of rx,k+1;
values in Cbt can be used to compute B[j], equal to x where [x + 1..j] is the last segment
of an optimal solution for MSA[1..m, 1..j]. Then, B reconstructs an optimal segmentation.
Algorithm 1 can be easily modified to update these arrays, if each meaningful right extension
(x, rx,k, H([x + 1..rx,k])) is augmented with value rx,k+1 − 1.

▶ Lemma 12. Given the meaningful right extensions R0, R1, . . . , Rn−1 of MSA[1..m, 1..n],
we can compute the optimal semi-repeat-free segmentation minimizing the maximum block
height in time O(mn + R), with R :=

∑n−1
x=0 |Rx|.

Proof. The correctness follows from Equation (3) and from the arguments above. Sorting
the meaningful right extensions (x, r, h) by their second component can be done in time
O(n + R), as the meaningful right extensions take value in [1..n]. Moreover, the management
of arrays R and C takes constant time per meaningful right extensions, and the computation
of each s(j) takes O(m) time, reaching the time complexity of O(mn + R). ◀

For the gapless case, this is an alternative solution to that of Section 3.2, since R ∈ O(mn)
and the algorithms by Norri et al. and Equi et al. can be used to compute the meaningful
right extensions.

CPM 2022

19:10 Elastic Founder Graphs of Minimum Height

3.4 The complexity of minimizing the maximum block height
As Lemma 12 states, we can process the meaningful right extensions of Definition 11 to
compute the score of an optimal segmentation minimizing the maximum block height.
Unfortunately, in the general setting with gaps, the total number of meaningful right
extensions is O(n2): as it can be seen in Figure 2, if any two row suffixes starting from the
same column x spell the same string but the spelling is interleaved by gaps, then the height
of segment [x..y] can change at any column y; this pattern could involve any two rows in any
segment of a general MSA[1..m, 1..n].

T − A − A − A − A − C
T − − A − A − A − A C

. . .

1 2 3 4 5 6 7 8 n − 2 n
1
2

1 1 2 1 2 1 2 1 2 1 1. . .H ([1..y])

Figure 2 Example of MSA[1..2, 1..n] such that |R0| ∈ O(n).

▶ Observation 13. Given MSA[1..m, 1..n] over alphabet Σ ∪ {−}, we have that H([x..y]) >

H([x..y+1]) only if there exist rows i, i′ ∈ [1..m] such that MSA[i, y+1] = −, MSA[i′, y+1] = c,
and spell(MSA[i, x..y]) = spell(MSA[i′, x..y + 1]) = S · c, with c ∈ Σ and S ∈ Σ+.

The example of Figure 2 and the context described by Observation 13 seem intuitively
artificial, as a high-scoring MSA would try to align the rows to avoid such a situation.
Nonetheless, without further assumptions about gaps in the MSA portions reading the same
strings, we are left to compute all meaningful right extensions. Indeed, let Kx,y be the keyword
tree of the set of strings Sx..y := {spell(MSA[i, x..y]) : 1 ≤ i ≤ m}; since |Sx..y| = H([x..y]),
the height of [x..y] is equal to the number of distinct nodes of Kx..y corresponding to the
strings in Sx..y. We can obtain a parameterized solution by noting that if Kx..y has m leaves
then no two strings in Sx..y are one prefix of the other and H([x..y′]) = m for all y′ > y.

▶ Lemma 14. Given general MSA[1..m, 1..n] over integer alphabet Σ ∪ {−} of size σ ∈
O(mn), we denote with α the maximum length y − x + 1 of any segment [x..y] such that
spell(MSA[i, x..y]) is a prefix of spell(MSA[i′, x..y]) for some i, i′ ∈ [1..m]. Then, we can
compute all meaningful right extensions in time O(mnα log σ).

Proof. For each x ∈ [0..n− 1], we can find Rx by incrementally computing trees Kx+1..x+1,
Kx+1..x+2, . . . , Kx+1..n using a dynamic keyword tree T supporting the traversal from the
root to the leaves and the insertion of a c-child to an arbitrary node v, with c ∈ Σ. A possible
implementation of the procedure is described by Algorithm 3 in Appendix A. During the
computation, array V[1..m] keeps track of the nodes corresponding to strings spell(MSA[i, x +
1..r]), each variable v.count counts the number of rows reading the corresponding string, and
a variable h counts the number of distinct nodes v such that v.count is greater than zero:
if h changes then the corresponding meaningful right extension of [x + 1..r] is (x, r, h). For
each Rx, the algorithm stops if the number of leaves of T is m, that is it computes at most
α keyword trees; no meaningful right extension is missed, thanks to Observation 13 and the
above arguments. We can compute R0, . . . , Rn−1 in time O(mnα log σ), since the traversal
and insertion operations of T can be implemented in time O(log σ),2 the other operations
can be supported in constant time. ◀

2 Since only insertion is needed and alphabet Σ is fixed, the addition of a children to each node v can be
implemented with a dynamic binary tree with height at most ⌈log2 σ⌉ leaves, growing downwards as the
number of children grows.

N. Rizzo and V. Mäkinen 19:11

Since the total number of meaningful right extensions is O(mnα), Lemma 14 and
Lemma 12 give the following solution to our segmentation problem.

▶ Theorem 15. Given general MSA[1..m, 1..n] over an integer alphabet Σ of size O(mn),
we can compute the score of an optimal segmentation minimizing the maximum block height
in time O(mnα log σ), where α is the length of the longest MSA segment where any two rows
spell strings S, S′ such that S is a prefix of S′.

In the worst case, the number of meaningful right extension is O(mn2), α ∈ Θ(n), and the
time complexity of Lemma 14 is Θ(mn2 log σ): thus, we introduce a different generalization
of block height from the gapless setting to the general one.

▶ Definition 16 (Prefix-aware height). Given MSA[1..m, 1..n], we define the prefix-aware
height of a segment [x..y], denoted as H(MSA[1..m, x..y]) or just H([x..y]), as the number
of distinct strings S in {spell(MSA[i, x..y]) : 1 ≤ i ≤ m} such that S is not a prefix of some
other string of the set.

Since H([x..y]) is equal to H([x..y]) minus the number of strings spelled in [x..y] that are
proper prefixes of other strings of the segment, this refined height is always smaller or
equal to the original height: the relative optimal segmentation provides a lower bound for
the maximum height in the original setting. Moreover, the necessary condition for the
decrease in height stated in Observation 13 is no longer valid, and it is easy to see that the
monotonicity of prefix-aware right extensions holds (see Observation 7). Indeed, if we define
the meaningful prefix-aware right extensions R0, . . . , Rn−1 as in Definition 11, it is easy to
see that |Rx| ≤ m + 1 for all x ∈ [0..n− 1], so the number of these extensions is O(mn) in
total. Finally, given R0, . . . , Rn−1 as input, Algorithm 1 correctly computes the score of an
optimal segmentation under our refined height, since Equation (3) still holds. In Section 4,
we will provide an algorithm based on the generalized suffix tree of the gaps-removed MSA
rows computing the prefix-aware extensions in time linear in the MSA size, obtaining the
following result.

▶ Theorem 17. Given MSA[1..m, 1..n] over integer alphabet Σ ∪ {−} of size σ ≤ mn,
computing a semi-repeat-free segmentation minimizing the maximum prefix-aware block height
takes O(mn) time.

4 Preprocessing the MSA for the prefix-aware height

As stated in Section 3.4, the meaningful prefix-aware right extensions are O(mn) in total,
so the goal of this section is to compute them in time linear in the MSA size. First, in
Section 4.1 we provide an overview of the O(mn) time computation of the minimal right
extensions f(x) (Observation 10), that we recently obtained in [22]. The solution consists in
solving multiple instances of the exclusive ancestor problem – a novel ancestor problem on
trees asking for the shallowest nodes covering all and only the given set of leaves – on the
following structure, built from the gaps-removed rows of the MSA.

▶ Definition 18 ([10, 22]). Given a general MSA[1..m, 1..n] from alphabet Σ, we define
GSTMSA as the generalized suffix tree of the set of strings {spell(MSA[i, 1..n]) ·$i : 1 ≤ i ≤ m},
with $1, . . . , $m m new distinct terminator symbols not in Σ.

An example of GSTMSA is given in Figure 3. Then, in Section 4.2, we extend these techniques
to show that the forests inside GSTMSA identified by the exclusive ancestors can describe the
meaningful prefix-aware right extensions: by computing for each node of these forests the

CPM 2022

19:12 Elastic Founder Graphs of Minimum Height

position indicating where the first occurrence of the related string ends, and by sorting these
positions, we can compute the meaningful right extension in O(m2n) global time. Finally,
in Section 4.3 we describe how these positions can be computed efficiently, thanks to the
generalized prefix tree of the gap-removed rows and the data structure for weighted ancestor
queries of Belazzougui et al. [2]. This structure, after its linear-time construction, makes it
possible to navigate from the suffix tree to the prefix tree in constant time, reaching global
O(mn) time.

AG

C

A

C G

A

C AG

A C G

C G

C

A

AC

T

$1 $2 $3 $4 $5 $6

$3

$5 $6

AG$5

A$3 G$4

C$2 G$4 $5 $6 $3

A$3 G$4 $5 $6

$2 CG$1 G$1 $1 $4

$1 $4 $5 $6 CAAG$6

AG$5

A$3 G$4

C$2

CCCG$1
AG

C

A

C G

A

C AG

A C G

C G

C

A

AC

T

T C − C − − C G − $1
T − A C − − C − − $2
T − A C − A C − A $3
T − A C − A C G − $4
T − A C A A − G − $5
G C A − − A − G − $6

1 2 3 4 5 6 7 8 9 10

Figure 3 Example of an MSA[1..6, 1..9] and its GSTMSA, where the label to each leaf has been
moved inside the leaf itself. Leaves are colored according to the corresponding row. We have also
highlighted, with a black outline, the leaves L0 corresponding to suffixes spell(MSA[i, 1..n]); their
exclusive ancestors W0, the nodes corresponding to G · CAAG$6 and T, are marked with arrows.

4.1 Computing the minimal right extensions
Consider the generalized suffix tree GSTMSA (Definition 18) built from the gaps-removed
rows Si := spell(MSA[i, 1..n])$i, for i ∈ [1..m]. Each suffix Si[x..|Si|] corresponds to a unique
leaf ℓi,x of GSTMSA and vice versa, for 1 ≤ x ≤ |Si|. Moreover, each substring Si[x..y]
corresponds to an explicit or implicit node of GSTMSA in the root-to-ℓi,x path, and each
explicit or implicit node v of GSTMSA corresponds to one or more such substrings, described
by the leaves of GSTMSA(v), the subtree rooted at v. Note that in GSTMSA we stripped away
essential gap information: we will implicitly add it back by considering a certain set of leaves
and of nodes, corresponding to the strings occurring at a certain MSA column x.

But first, the notion of semi-repeat-free segment can be broken down into each single row.

▶ Definition 19 (Semi-repeat-free substring [22]). Given a substring MSA[i, x..y] such that
spell(MSA[i, x..y]) ∈ Σ+, we say that MSA[i, x..y] is semi-repeat-free if, for all 1 ≤ i′ ≤ m,
string spell(MSA[i, x..y]) occurs in gaps-removed row spell(MSA[i′, 1..n]) only at position
g(i′, x) (defined as in Lemma 6), or it does not occur at all.

Indeed, Observation 10 holds also for single rows and we can split the computation of f(x),
the smallest integer making segment [x + 1, f(x)] semi-repeat-free: if substring MSA[i, x..y] is
semi-repeat-free, then MSA[i, x..y′] is semi-repeat-free for all y′ > y. For each x ∈ [0..n− 1]
we can define f i(x) as the smallest column index greater than x such that MSA[i, x+1..f i(x)]
is a semi-repeat-free substring. Then, it is easy to see that f(x) = maxm

i=1 f i(x).

N. Rizzo and V. Mäkinen 19:13

Let Lx be the set of leaves of GSTMSA corresponding to suffixes spell(MSA[i, x + 1..n]) · $i,
for i ∈ [1..m]. In [22] we proved that the exclusive ancestors of these leaves, defined as
the shallowest of their ancestors covering only leaves in Lx, correspond to the shortest
semi-repeat-free strings starting from column x + 1. For example, in the MSA of Figure 3
there are two exclusive ancestors for L0, corresponding to strings G · CAAG$6 and T; for L2
they are four and correspond to strings AAG · $6, AC · A, AC · C$2, and CC · G$1. Let Wx be
the set of exclusive ancestors of Lx: for each leaf ℓi,x+1 covered by some w ∈Wx, the first
character of the label from w’s parent to w in GSTMSA– the relative node is implicit or is w

itself – corresponds to the smallest semi-repeat-free prefix of MSA[i, x + 1..n].
Thus, we have that f i(x) corresponds to the k-th non-gap symbol of row i, with k =

rank(MSA[i, 1..n], x) +stringdepth(parent(w)) +1, where rank(MSA[i, 1..n], x) is the number
of non-gap symbols in MSA[i, 1..x] and stringdepth(u) = |string(u)|. For example, in the
MSA of Figure 3 we have that values f i(0) for i ∈ [1..6] are equal to 1, 1, 1, 1, 1, and 2,
and values f i(2) are equal to 8, 7, 6, 6, 5, and 10; in particular, f1(2) = 8 because CCG is
the shortest semi-repeat-free substring of MSA[1, 3..10], and the last G of CCG corresponds
to column position 8 in MSA[1, 1..10]. Each Lx can be transformed into Lx+1 by following
the suffix links of rows i ∈ [1..m] such that MSA[i, x + 1] ̸= −, and the exclusive ancestor
set problem on each Lx can be solved in time O(m): the minimal right extensions can be
computed in time O(mn), provided Σ is an integer alphabet of size σ ≤ mn [22].

4.2 Computing the meaningful prefix-aware right extensions
Given GSTMSA and its leaves Lx corresponding to the suffixes starting at column x + 1, the
forest with m leaves identified by the exclusive ancestors Wx of Lx can also be used to study
the meaningful prefix-aware right extensions Rx (Definitions 11 and 16).

▶ Definition 20 (First ending occurrence). Given GSTMSA, let Fx be the set of all explicit nodes
of GSTMSA belonging to the subtree rooted at some exclusive ancestor w ∈Wx. Then, for each
v ∈ Fx we define value pos(v) as the first ending occurrence of string string(parent(v))·char(v)
in the MSA, where char(v) is the first character of the label from v’s parent to v. In other
words, if S = string(parent(v)) ∈ Σ+ and c = char(v) ∈ Σ, then pos(v) is the minimum
column index y ∈ [1..n] such that Sc = spell(MSA[i, x + 1..y]) for some 1 ≤ i ≤ m.

An example of set Fx and of values pos(v) is shown in Figure 4. After plotting these values
in a horizontal line, it is easy to notice that all increases in H correspond to some pos(v),
but not the other way around: the pos values that do not affect H, because they do not
correspond to two or more rows reading strings that are not one prefix of the other, are the
first-born children – with respect to the value of pos – of branching nodes.

▶ Definition 21 (First-born nodes). Given GSTMSA and its forest Fx corresponding to all
semi-repeat-free strings starting from column x + 1, with 0 ≤ x < n, for each internal node
v ∈ Fx we arbitrarily choose one of its children with minimum value of pos to be a first-born
node of Fx. Then, let F̂x be the subset of non-first-born nodes of Fx, obtained by removing
these nodes from Fx.

▶ Lemma 22. Given GSTMSA and the set of non-first-born nodes F̂x associated with column
x, for any y ∈ [f(x)..n] the prefix-aware height of segment [x + 1..y] is equal to the number
of nodes in F̂x having pos value equal or smaller than y, in symbols H([x + 1..y]) =

∣∣{v̂ ∈
F̂x : pos(v̂) ≤ y}

∣∣.

CPM 2022

19:14 Elastic Founder Graphs of Minimum Height

C

A

AC

T
CAAG$6 2 1

3

5

AG$56 7

A$39 G$4 8

C$2 7

CCCG$1 2

C

A

AC

T

CCCG$1
C$2

A$3
G$4

AG$5
CAAG$6

TT ACAC
AA CC

1 2 3 4 5 6 7 8 9 10

- 2 3 3 3 3 5 5 6 6H ([1..y])

Figure 4 On the left, the forest F0 of the example MSA of Figure 3, annotated with values pos(v).
On the right, the same forest plotted against the MSA columns, with only the non-first-born nodes
of F̂0 highlighted. Note that f(0) = f6(0) = 2.

Proof. For any v ∈ Fx, let Iv be the set of indexes of the rows whose suffix is covered by v.
From the properties of GSTMSA it follows that if any v1, v2 ∈ Fx are not one ancestor of the
other, then the corresponding strings string(parent(v1)) · char(v1) and string(parent(v2)) ·
char(v2) are not one prefix of the other: if y ≥ pos(v1) and y ≥ pos(v2), then H(MSA[Iv1 ∪
Iv2 , x + 1..y]) = H(MSA[Iv1 , x + 1..y]) + H(MSA[Iv2 , x + 1..y]). We call this key property the
independence of collateral relatives.3 In particular, the property holds for any subset U of
children of some node v ∈ Fx, provided y ≥ maxu∈U pos(u), and it holds for the exclusive
ancestors of Wx ⊆ Fx, because y ≥ f(x) ≥ maxw∈Wx pos(w):

H
(
MSA[1..m, x + 1..y]

)
=
∑

w∈Wx

H
(
MSA[Iw, x + 1..y]

)
. (4)

We can now prove the modification of the thesis restricted to the rows Iv of any node v ∈ Fx.
To do so, we introduce one final notation: we denote with F̂ v

x the set (F̂x∩GSTMSA(v))∪{v},
that also deals with the case when v is a first-born node. Then, for any v ∈ Fx and
y ∈ [maxi∈Iv

f i(x)..n] we have that

H
(
MSA[Iv, x + 1..y]

)
=
{

1 if y < pos(v),∣∣{v̂ ∈ F̂ v
x : pos(v̂) ≤ y

}∣∣ otherwise.
(5)

The proof of Equation (5) proceeds by induction on the height of the subtree rooted at v.
Base case: If v is a leaf then F̂ v

j = {v}, Iv = {i} for some i ∈ [1..m], and H(MSA[{i}, x +
1..y]) = 1, so Equation (5) is easily verified.

Inductive hypothesis: Equation (5) holds for all nodes v such that the subtree rooted at v

has height less than or equal to h ≥ 0.
Inductive step: Let the height of the subtree rooted at v be equal to h+1, and let u1, . . . , up

be the p ≥ 2 children of v, with u1 the first-born. If y < pos(v) then all occurrences of Sc =
string(parent(v)) · char(v) in the MSA end after column y, so all strings spell(MSA[i, x +
1..y]) with i ∈ Iv are prefixes of Sc and H

(
MSA[Iv, x + 1..y]

)
= 1. Using the same

argument, Equation (5) is also verified if y < pos(u1), so we can assume y ≥ pos(u1) >

3 In genealogical terms, the ancestor relationship is described as a direct line, opposed to a collateral line
for relatives that are not in a direct line.

N. Rizzo and V. Mäkinen 19:15

pos(v). Consider the children uk of v such that y < pos(uk), for 2 ≤ k ≤ p; the strings
spelled in the corresponding rows Iuk

are prefixes of string(parent(u1)), so they are
ignored in the prefix-aware height. If U≤ := {uk : 1 ≤ k ≤ p ∧ pos(uk) ≤ y} then

H
(
MSA[Iv, x + 1..y]

)
= H

(
MSA

[⋃
u∈U≤

Iu

][
x + 1..y

])

=
∑

u∈U≤

H
(
MSA[Iu, x + 1..y]

)
indep. collateral relatives

=
∑

u∈U≤

∣∣{û ∈ F̂ u
x : pos(û) ≤ y

}∣∣ inductive hypothesis

=
∣∣{v̂ ∈ F̂ v

x : pos(v̂) ≤ y
}∣∣.

Note that the last equality holds because pos(u1) of F̂ u1
x is replaced by pos(v) of F̂ v

x .
The thesis follows from Equations (4) and (5), because the exclusive ancestors partition the
rows [1..m] into |Wx| sets. Also, note that |F̂x| = m. ◀

An example of sets Fx and F̂x can be seen in Figure 4. Unfortunately, their naive compu-
tation takes time O(m2) if done locally, because GSTMSA does not contain the information
on the ending occurrences of MSA substrings – and it cannot be easily augmented to do so.

▶ Lemma 23. Given a general MSA[1..m, 1..n], GSTMSA, and the exclusive ancestors Wx,
we can compute the meaningful prefix-aware right extensions Rx in time O(m2).

Proof. For each v ∈ Fx, we can compute pos(v) by finding for each row i ∈ Iv the ending
position yi of the occurrence of Sc = string(parent(v)) · char(v) in MSA[i, 1..n] (Sc is a semi-
repeat-free substring so there is at most one occurrence per row). In other words, position
yi correponds to the k-th non-gap character of row i, where k = rank(MSA[i, 1..n], x) +
stringdepth(parent(v))+1. Then, pos(v) = mini∈Iv

yi. The first-born child of v can be found
by choosing one of its children with minimum pos values, and the removal of first-born nodes
results in the pos values of F̂x. Given f(x) and the ordered pos values, a simple algorithm
like Algorithm 2 in Appendix A considers all columns containing pos values and outputs the
relative prefix-aware right extension as a triple (x, y, H([x + 1..y])).

Since we can preprocess in linear time the MSA rows to answer rank and select queries in
constant time, the computation of each pos(v) takes O(|Iv|) time. Forest Fx is composed
of compacted trees with m total leaves, so it contains O(m) nodes: the subtrees of Fx can
be unbalanced, hence the total time is O(m2). Then, these values can be sorted in time
O(m log m) and then processed in O(m) time. ◀

4.3 Speedup using weighted ancestor queries
Thanks to Lemma 23, we can compute the meaningful prefix-aware right extensions in O(m2n)
time, the bottleneck being the computation of values pos(v) (Definition 20). The other tasks
can be executed in time O(mn) by generalizing the solution to a global computation: the
pos values of all F̂0, . . . , F̂n−1 are O(mn) in total; together they can be sorted in O(mn)
time since they take values in [1..n], and they can be separately processed again in total
linear time. GSTMSA does not contain the information about the ending occurrences of MSA
strings, but it does contain the information on the (starting) occurrences: indeed, the sets
of leaves L0, . . . , Ln−1 consider each and every suffix starting from a certain MSA column.
This gives us the key idea of symmetry to compute values pos(v) efficiently.

CPM 2022

19:16 Elastic Founder Graphs of Minimum Height

▶ Definition 24. Given a general MSA[1..m, 1..n] from alphabet Σ∪ {−}, we define GPTMSA
as the generalized prefix tree of the set of strings {$i · spell(MSA[i, 1..n]) : 1 ≤ i ≤ m},
with $1, . . . , $m m new distinct terminator symbols not in Σ. Alternatively, GPTMSA can be
constructed as the generalized suffix tree of {spell(MSA[i, 1..n])−1 · $i : 1 ≤ i ≤ m}.

AC

T

A

C T

A

CAT T

A C

C

AAC C

G T
$1 $2 $3 $4 $5 $6

AT$5
6

CAT$3
9

5

$3
6

$4
6

$5
5

G$6

3

$2
3

$3
3

$4
3

$5
3

7

$3
7

$4
7

$2 $3 $4 $5

AT$2
7

CT$1 T$1

G$6
2

T$1
2

$6

AT$5 G$6 ACAT$4
9

CCT$1

1

$1
1

$2
1

$3
1

$4
1

$5
1

AC

T

A

C T

A

CAT T

A C

C

AAC C

G T

$1 T C − C − − C G −
$2 T − A C − − C − −
$3 T − A C − A C − A
$4 T − A C − A C G −
$5 T − A C A A − G −
$6 G C A − − A − G −

0 1 2 3 4 5 6 7 8 9

Figure 5 Example of the GPTMSA built from the MSA of Figure 3, annotated with the pos−1

values relevant for the computation of R0 (Figure 4), the meaningful right extensions starting from
column 1.

▶ Observation 25. Note that in GPTMSA strings are read from right to left. For each node u

of GPTMSA, let pos−1(u) be the first ending occurrence of string(u) in some MSA row:
for any leaf ℓ of GPTMSA corresponding to row i ∈ [1..m], we have that pos−1(ℓ) is equal
to the k-th non-gap character of MSA[i, 1..n], with k = |string(ℓ)|;
for any internal node u of GPTMSA, let v1, . . . , vp be its children; then pos−1(u) =
minp

k=1 pos−1(vk);
given a node v of GSTMSA, let v−1 be the node of GPTMSA corresponding to string
string(parent(v)) · char(v) read from right to left; if this is an implicit node, then we
define v−1 as the first explicit ancestor in GPTMSA; then pos(v) = pos−1(v−1).

For example, if v is the GSTMSA node of Figures 3 and 4 corresponding to string TAC · A, v−1

corresponds to ACAT in the GPTMSA of Figure 5 and pos−1(v−1) = 5.

▶ Lemma 26. Given a general MSA[1..m, 1..n], GSTMSA, and GPTMSA, values pos(v) for
any node v of GSTMSA can be computed in O(mn) time.

Proof. As shown in Observation 25, the tree structure of GPTMSA makes it possible to
compute pos−1(v) recursively: similar to the computation of L0, . . . , Ln−1 this can be done
in O(mn) time. It remains to show that given v ∈ GSTMSA we can find v−1 ∈ GPTMSA in
O(1) time: it is straightforward to locate one occurrence of string(parent(v)) · char(v) in
the MSA, so we can find v−1 by answering the corresponding weighted ancestor query in
GPTMSA. Belazzougui et al. recently proved that we can preprocess suffix trees in linear time
to be able to answer weighted ancestor queries in constant time [2]. ◀

This concludes the proof of Theorem 17: as we have already shown in Section 3.4, the
meaningful prefix-aware right extensions are a drop-in replacement of the original meaningful
extensions, so Lemma 26 implies that the optimal segmentation minimizing the maximum
prefix-aware height can be computed in linear time.

N. Rizzo and V. Mäkinen 19:17

References
1 Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Iliopoulos,

Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Degenerate string comparison and
applications. In Laxmi Parida and Esko Ukkonen, editors, 18th International Workshop on
Algorithms in Bioinformatics, WABI 2018, August 20-22, 2018, Helsinki, Finland, volume
113 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.WABI.2018.21.

2 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
ancestors in suffix trees revisited. In Pawel Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, July 5-7, 2021,
Wrocław, Poland, volume 191 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CPM.2021.8.

3 Giulia Bernardini, Pawel Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone.
Even faster elastic-degenerate string matching via fast matrix multiplication. In Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece, volume 132 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.21.

4 Bastien Cazaux, Dmitry Kosolobov, Veli Mäkinen, and Tuukka Norri. Linear time maximum
segmentation problems in column stream model. In Nieves R. Brisaboa and Simon J. Puglisi,
editors, String Processing and Information Retrieval - 26th International Symposium, SPIRE
2019, Segovia, Spain, October 7-9, 2019, Proceedings, volume 11811 of Lecture Notes in
Computer Science, pages 322–336. Springer, 2019.

5 The Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises
and challenges. Briefings Bioinform., 19(1):118–135, 2018. doi:10.1093/bib/bbw089.

6 Rene De La Briandais. File searching using variable length keys. In Papers Presented at the
the March 3-5, 1959, Western Joint Computer Conference, IRE-AIEE-ACM ’59 (Western),
pages 295–298, New York, NY, USA, 1959. Association for Computing Machinery. doi:
10.1145/1457838.1457895.

7 Hannes P. Eggertsson, Snaedis Kristmundsdottir, Doruk Beyter, Hakon Jonsson, Astros
Skuladottir, Marteinn T. Hardarson, Daniel F. Gudbjartsson, Kari Stefansson, Bjarni V.
Halldorsson, and Pall Melsted. Graphtyper2 enables population-scale genotyping of structural
variation using pangenome graphs. Nature Communications, 10(1):5402, November 2019.
doi:10.1038/s41467-019-13341-9.

8 Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On the complexity
of string matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.55.

9 Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. In Tomás
Bures, Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdzinski, Claus Pahl,
Florian Sikora, and Prudence W. H. Wong, editors, SOFSEM 2021: Theory and Practice
of Computer Science - 47th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021,
Proceedings, volume 12607 of Lecture Notes in Computer Science, pages 608–622. Springer,
2021. doi:10.1007/978-3-030-67731-2_44.

10 Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli
Mäkinen. Algorithms and complexity on indexing elastic founder graphs. In Hee-Kap Ahn and
Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation,
ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 20:1–20:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.
20.

CPM 2022

https://doi.org/10.4230/LIPIcs.WABI.2018.21
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20

19:18 Elastic Founder Graphs of Minimum Height

11 Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli
Mäkinen. Algorithms and complexity on indexing founder graphs. CoRR, abs/2102.12822,
2021. arXiv:2102.12822.

12 Martin Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE, 1997.

13 Erik Garrison, Jouni Sirén, Adam Novak, Glenn Hickey, Jordan Eizenga, Eric Dawson, William
Jones, Shilpa Garg, Charles Markello, Michael Lin, and Benedict Paten. Variation graph
toolkit improves read mapping by representing genetic variation in the reference. Nature
Biotechnology, 36, August 2018. doi:10.1038/nbt.4227.

14 Daniel Gibney and Sharma V. Thankachan. On the hardness and inapproximability of
recognizing wheeler graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 51:1–51:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.51.

15 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

16 G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–554, 1989.
17 Daehwan Kim, Joseph Paggi, Chanhee Park, Christopher Bennett, and Steven Salzberg.

Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nature
Biotechnology, 37:1, August 2019. doi:10.1038/s41587-019-0201-4.

18 Veli Mäkinen, Bastien Cazaux, Massimo Equi, Tuukka Norri, and Alexandru I. Tomescu.
Linear time construction of indexable founder block graphs. In Carl Kingsford and Nadia
Pisanti, editors, 20th International Workshop on Algorithms in Bioinformatics, WABI 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 172 of LIPIcs, pages 7:1–7:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.WABI.2020.7.

19 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

20 Tuukka Norri, Bastien Cazaux, Saska Dönges, Daniel Valenzuela, and Veli Mäkinen. Founder
reconstruction enables scalable and seamless pangenomic analysis. Bioinformatics, 37(24):4611–
4619, July 2021. doi:10.1093/bioinformatics/btab516.

21 Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen. Linear time minimum
segmentation enables scalable founder reconstruction. Algorithms Mol. Biol., 14(1):12:1–12:15,
2019.

22 Nicola Rizzo and Veli Mäkinen. Linear time construction of indexable elastic founder graphs.
In Proc. 33rd International Workshop on Combinatorial Algorithms (IWOCA 2022), 2022. To
appear.

23 Nicola Rizzo and Veli Mäkinen. Linear time construction of indexable elastic founder graphs.
CoRR, abs/2201.06492, 2022. arXiv:2201.06492.

24 Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman Warthmann, Sandra
Gesing, Oliver Kohlbacher, and Detlef Weigel. Simultaneous alignment of short reads against
multiple genomes. Genome Biology, 10:R98, 2009.

25 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, 2014.

http://arxiv.org/abs/2102.12822
https://doi.org/10.1038/nbt.4227
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.1093/bioinformatics/btab516
http://arxiv.org/abs/2201.06492

N. Rizzo and V. Mäkinen 19:19

A Pseudocode implementations of the algorithms

Algorithm 2 Algorithm computing the meaningful prefix-aware right extensions, given
the sorted pos values of F̂x. Set F̂x is obtained by removing the first-born nodes from Fx.

Input: Value f(x), values pos(w1), . . . , pos(wm) of nodes in F̂x, sorted from smallest to
largest order.

Output: Meaningful prefix-aware right extensions Rx.
1 h← 1;
2 while pos(wh) < f(x) do
3 h← h + 1;
4 while h ≤ m do
5 if h = m ∨ pos(wh+1) ̸= pos(wh) then
6 output (x, pos(wh), h);
7 h← h + 1;

Algorithm 3 Algorithm computing all meaningful right extensions R0, . . . , Rn−1. To
efficiently compute keyword trees Kx+1..r for y ∈ [x + 1..n], we need a dynamic tree data
structure T supporting navigation and insertions in time O(log σ).

Input: MSA[1..m, 1..n] from an integer alphabet Σ ∪ {−} of size σ ∈ O(mn), minimal right
extensions f(x) for x ∈ [0..n− 1].

Output: Meaningful prefix-aware right extensions R0, . . . , Rn−1 represented as triples(
x, rx,k, H([x + 1..rx,k])

)
.

1 for x← 0 to n− 1 do
2 Initialize empty keyword tree T , containing only node root;
3 Initialize array V[1..m] with values pointers to nodes of T and set all values to node root;
4 h← 0;
5 r ← x;
6 while T .leaves < m ∧ r ≤ m do
7 h′ ← h;
8 for i← 1 to m do
9 if MSA[i, r] ̸= − then

10 V[i].count← V[i].count− 1;
11 if V[i].count = 0 then
12 h← h− 1;
13 if V[i] has an (MSA[i, r])-child v then
14 V[i]← v;
15 else
16 Add new (MSA[i, r])-child v to V[i];
17 V[i]← v;
18 if V[i].count = 0 then
19 h← h + 1;
20 V[i].count← V[i].count + 1;

21 if r = f(x) then
22 output (x, r, h);
23 else if r ≥ f(x) ∧ h ̸= h′ then
24 output (x, r, h);
25 r ← r + 1;

CPM 2022

