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ABSTRACT
A new mixture autoregressive model based on Student’s t–distribu-
tion is proposed. A key feature of our model is that the conditional
t–distributions of the component models are based on autoregres-
sions that have multivariate t–distributions as their (low-dimensional)
stationary distributions. That autoregressions with such stationary
distributions exist is not immediate. Our formulation implies that the
conditional mean of each component model is a linear function of
past observations and the conditional variance is also time-varying.
Compared to previous mixture autoregressive models our model
may therefore be useful in applications where the data exhibits
rather strong conditional heteroskedasticity. Our formulation also has
the theoretical advantage that conditions for stationarity and ergodicity
are always met and these properties are much more straightforward to
establish than is common in nonlinear autoregressive models. An
empirical example employing a realized kernel series constructed from
S&P 500 high-frequency intraday data shows that the proposed model
performs well in volatility forecasting. Our methodology is imple-
mented in the freely available StMAR Toolbox for MATLAB.

ARTICLE HISTORY
Received 27 August 2020
Accepted 7 April 2021

KEYWORDS
Conditional heteroskedastic-
ity; mixture model; regime
switching; Student’s
t–distribution

1. Introduction

Different types of mixture models are in widespread use in various fields. Overviews of
mixture models can be found, for example, in the monographs of McLachlan and Peel
(2000) and Fr€uhwirth-Schnatter (2006). In this paper, we are concerned with mixture
autoregressive models that were introduced by Le, Martin, and Raftery (1996) and fur-
ther developed by Wong and Li (2000, 2001a, 2001b) (for further references, see
Kalliovirta, Meitz, and Saikkonen (2015)).
In mixture autoregressive models the conditional distribution of the present observa-

tion given the past is a mixture distribution where the component distributions are
obtained from linear autoregressive models. The specification of a mixture autoregres-
sive model typically requires two choices: choosing a conditional distribution for the
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component models and choosing a functional form for the mixing weights. In a major-
ity of existing models a Gaussian distribution is assumed whereas, in addition to con-
stants, several different time-varying mixing weights (functions of past observations)
have been considered in the literature.
Instead of a Gaussian distribution, Wong, Chan, and Kam (2009) proposed using

Student’s t–distribution. A major motivation for this comes from the heavier tails of the
t–distribution which allow the resulting model to better accommodate for the fat tails
encountered in many observed time series, especially in economics and finance. In the
model suggested by Wong, Chan, and Kam (2009), the conditional mean and condi-
tional variance of each component model are the same as in the Gaussian case (a linear
function of past observations and a constant, respectively), and what changes is the dis-
tribution of the independent and identically distributed error term: instead of a standard
normal distribution, a Student’s t–distribution is used. This is a natural approach to for-
mulate the component models and hence also a mixture autoregressive model based on
the t–distribution.
In this paper, we also consider a mixture autoregressive model based on Student’s

t–distribution, but our specification differs from that used by Wong, Chan, and Kam
(2009). Our starting point is the characteristic feature of linear Gaussian autoregressions
that stationary distributions (of consecutive observations) as well as conditional distribu-
tions are Gaussian. We imitate this feature by using a (multivariate) Student’s t–distri-
bution and, as a first step, construct a linear autoregression in which both conditional
and (low-dimensional) stationary distributions have Student’s t–distributions. This leads
to a model where the conditional mean is as in the Gaussian case (a linear function of
past observations) whereas the conditional variance is no longer constant but depends
on a quadratic form of past observations. These linear models are then used as compo-
nent models in our new mixture autoregressive model which we call the StMAR model.
Our StMAR model has some very attractive features. Like the model of Wong, Chan,

and Kam (2009), it can be useful for modeling time series with leptokurtosis, regime
switching, multimodality, persistence, and conditional heteroskedasticity. As the condi-
tional variances of the component models are time-varying, the StMAR model can
potentially accommodate for stronger forms of conditional heteroskedasticity than the
model of Wong, Chan, and Kam (2009). Our formulation also has the theoretical
advantage that, for a pth order model, the stationary distribution of pþ 1 consecutive
observations is fully known and is a mixture of particular Student’s t–distributions.
Moreover, stationarity and ergodicity are simple consequences of the definition of the
model and do not require complicated proofs.
Finally, a few notational conventions. All vectors are treated as column vectors and

we write x ¼ ðx1, :::, xnÞ for the vector x where the components xi may be either scalars
or vectors. The notation X � ndðl,CÞ signifies that the random vector X has a
d–dimensional Gaussian distribution with mean l and (positive definite) covariance
matrix C: Similarly, by X � tdðl,C, �Þ we mean that X has a d–dimensional Student’s
t–distribution with mean l, (positive definite) covariance matrix C, and degrees of free-
dom � (assumed to satisfy � > 2); the density function and some properties of the
multivariate Student’s t–distribution employed are given in Appendix A. The notation
0d (1d) is used for a d–dimensional vector of zeros (ones), ıd signifies the vector
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ð1, 0, :::, 0Þ of dimension d, and the identity matrix of dimension d is denoted by Id. The
Kronecker product is denoted by �, and vec(A) stacks the columns of matrix A on top
of one another.

2. Linear Student’s t autoregressions

In order to formulate our new mixture model, this section briefly considers linear pth
order autoregressions that have multivariate Student’s t–distributions as their stationary
distributions. First, for motivation and to develop notation, consider a linear Gaussian
autoregression zt (t ¼ 1, 2, :::) generated by

zt ¼ u0 þ
Xp
i¼1

uizt�i þ ret, (1)

where the error terms et are independent and identically distributed with a standard
normal distribution, and the parameters satisfy u0 2 R,u ¼ ðu1, :::,upÞ 2 S

p, and r >

0, where

S
p ¼ fðu1, :::,upÞ 2 R

p : uðzÞ ¼ 1�
Xp
i¼1

uiz
i 6¼ 0 for jzj � 1g (2)

is the stationarity region of a linear pth order autoregression. Denoting zt ¼
ðzt , :::, zt�pþ1Þ and zþt ¼ ðzt , zt�1Þ, it is well known that the stationary solution zt to (1)
satisfies

zt � npðl1p,CpÞ,
zþt � npþ1ðl1pþ1,Cpþ1Þ,

ztjzt�1 � n1ðu0 þ u0zt�1, r
2Þ ¼ n1ðlþ c0pC

�1
p ðzt�1 � l1pÞ, r2Þ,

(3)

where the last relation defines the conditional distribution of zt given zt�1 and the
quantities Cp, c0, cp, l, and Cpþ1 are defined via

vecðCpÞ ¼ ðIp2 � ðU� UÞÞ�1 ıp2 r2, U ¼ u1 � � �up�1 up

Ip�1 0p�1

" #
,

c0 ¼ r2 þ u0Cpu, cp ¼ Cpu, l ¼ u0=ð1� u1 � � � � � upÞ, Cpþ1 ¼
c0 c0p
cp Cp

" #
:

(4)

Two essential properties of linear Gaussian autoregressions are that they have the distri-
butional features in (3) and the representation in (1).
It is not immediately obvious that linear autoregressions based on Student’s t–distri-

bution with similar properties exist (such models have, however, appeared at least in
Spanos (1994), Heracleous and Spanos (2006), and Pitt and Walker (2006)). Suppose
that for a random vector in R

pþ1 it holds that ðz, zÞ � tpþ1ðl1pþ1,Cpþ1, �Þ where � > 2
(and other notation is as above in (4)). Then (for details, see Appendix A) the condi-
tional distribution of z given z is zjz � t1ðlðzÞ, r2ðzÞ, � þ pÞ, where
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lðzÞ ¼ u0 þ u0z, r2ðzÞ ¼ � � 2þ ðz � l1pÞ0C�1
p ðz � l1pÞ

� � 2þ p
r2: (5)

We now state the following theorem (proofs of all theorems are in Appendix B).

Theorem 1. Suppose u0 2 R, u ¼ ðu1, :::,upÞ 2 S
p, r > 0, and � > 2. Then there exists

a process zt ¼ ðzt , :::, zt�pþ1Þ (t ¼ 0, 1, 2, :::) with the following properties.

i. The process zt (t ¼ 1, 2, :::) is a Markov chain on R
p with a stationary distribution

characterized by the density function tpðl1p,Cp, �Þ. When z0 � tpðl1p,Cp, �Þ, we
have, for t ¼ 1, 2, :::, that zþt � tpþ1ðl1pþ1,Cpþ1, �Þ and the conditional distribu-
tion of zt given zt�1 is

ztjzt�1 � t1ðlðzt�1Þ, r2ðzt�1Þ, � þ pÞ: (6)

ii. Furthermore, for t ¼ 1, 2, :::, the process zt has the representation

zt ¼ u0 þ
Xp
i¼1

ui zt�i þ rt et (7)

with conditional variance r2t ¼ r2ðzt�1Þ (see (5)), where the error terms et form a
sequence of independent and identically distributed random variables with a marginal
t1ð0, 1, � þ pÞ distribution and with et independent of fzs, s < tg:
Results (i) and (ii) in Theorem 1 are comparable to properties (3) and (1) in the

Gaussian case. Part (i) shows that both the stationary and conditional distributions of zt
are t–distributions, whereas part (ii) clarifies the connection to standard AR(p) models.
In contrast to linear Gaussian autoregressions, in this t–distributed case zt is condition-
ally heteroskedastic and has an ‘AR(p)–ARCH(p)’ representation (here ARCH refers to
autoregressive conditional heteroskedasticity).

3. A mixture autoregressive model based on Student’s t–distribution

3.1. Mixture autoregressive models

Let yt (t ¼ 1, 2, :::) be the real-valued time series of interest, and let F t�1 denote the
r–algebra generated by fyt�j, j > 0g: We consider mixture autoregressive models for
which the conditional density function of yt given its past, f ð�jF t�1Þ, is of the form

f ðytjF t�1Þ ¼
XM
m¼1

am, tfmðytjF t�1Þ, (8)

where the (positive) mixing weights am, t are F t�1–measurable and satisfy
PM

m¼1 am, t ¼
1 (for all t), and the fmð�jF t�1Þ,m ¼ 1, :::,M, describe the conditional densities of M
autoregressive component models. Different mixture models are obtained with different
specifications of the mixing weights am, t and the conditional densities fmð�jF t�1Þ:
Starting with the specification of the conditional densities fmð�jF t�1Þ, a common

choice has been to assume the component models to be linear Gaussian autoregressions.
For the mth component model (m ¼ 1, :::,M), denote the parameters of a pth order lin-
ear autoregression with um, 0 2 R, um ¼ ðum, 1, :::,um, pÞ 2 S

p, and rm > 0: Also set
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yt�1 ¼ ðyt�1, :::, yt�pÞ: In the Gaussian case, the conditional densities in (8) take the
form (m ¼ 1, :::,M)

fmðytjF t�1Þ ¼ 1
rm

/
yt � lm, t

rm

� �
,

where /ð�Þ signifies the density function of a standard normal random variable, lm, t ¼
um, 0 þ u0

myt�1 is the conditional mean function (of component m), and r2m > 0 is the
conditional variance (of component m), often assumed to be constant. Instead of a
Gaussian density, Wong, Chan, and Kam (2009) considered the case where fmð�jF t�1Þ is
the density of Student’s t–distribution with conditional mean and variance as above,
lm, t ¼ um, 0 þ u0

myt�1 and a constant r2m, respectively.
In this paper, we also consider a mixture autoregressive model based on Student’s

t–distribution, but our formulation differs from that used by Wong, Chan, and Kam
(2009). In Theorem 1 it was seen that linear autoregressions based on Student’s t–distri-
bution naturally lead to the conditional distribution t1ðlð�Þ, r2ð�Þ, � þ pÞ in (6).
Motivated by this, we consider a mixture autoregressive model in which the conditional
densities fmðytjF t�1Þ in (8) are specified as

fmðytjF t�1Þ ¼ t1ðyt;lm, t, r
2
m, t, �m þ pÞ, (9)

where the expressions for lm, t ¼ lmðyt�1Þ and r2m, t ¼ r2mðyt�1Þ are as in (5) except that
z is replaced with yt�1 and all the quantities therein are defined using the regime spe-
cific parameters um, 0,um, rm, and �m (whenever appropriate a subscript m is added to
previously defined notation, e.g., lm or Cm, p). A key difference to the model of Wong,
Chan, and Kam (2009) is that the conditional variance of component m is not constant
but a function of yt�1: An explicit expression for the density in (9) can be obtained
from Appendix A and is

fmðytjF t�1Þ ¼ Cð�mÞr�1
m, t 1þ ð�m þ p� 2Þ�1ðyt � lm, t

rm, t
Þ2

� ��1þ�mþp
2

, (10)

where Cð�Þ ¼ Cðð1þ�þpÞ=2Þ
ðpð�þp�2ÞÞ1=2Cðð�þpÞ=2Þ (and Cð�Þ signifies the gamma function).

Now consider the choice of the mixing weights am, t in (8). The most basic choice is
to use constant mixing weights as in Wong and Li (2000) and Wong, Chan, and Kam
(2009). Several different time-varying mixing weights have also been suggested, see, e.g.,
Wong and Li (2001a), Glasbey (2001), Lanne and Saikkonen (2003), Dueker, Sola, and
Spagnolo (2007), and Kalliovirta, Meitz, and Saikkonen (2015, 2016).
In this paper, we propose mixing weights that are similar to those used by Glasbey

(2001) and Kalliovirta, Meitz, and Saikkonen (2015). Specifically, we set

am, t ¼ amtpðyt�1; lm1p,Cm, p, �mÞPM
n¼1antpðyt�1; ln1p,Cn, p, �nÞ

, (11)

where the am 2 ð0, 1Þ, m ¼ 1, :::,M, are unknown parameters satisfying
PM

m¼1 am ¼ 1:
Note that the Student’s t density appearing in (11) corresponds to the stationary distri-
bution in Theorem 1(i): If the yt’s were generated by a linear Student’s t autoregression
described in Section 2 (with a subscript m added to all the notation therein), the
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stationary distribution of yt�1 would be characterized by tpðyt�1; lm1p,Cm, p, �mÞ: Our
definition of the mixing weights in (11) is different from that used in Glasbey (2001) and
Kalliovirta, Meitz, and Saikkonen (2015) in that these authors employed the
npðyt�1; lm1p,Cm, pÞ density (corresponding to the stationary distribution of a linear
Gaussian autoregression) instead of the Student’s t density tpðyt�1; lm1p,Cm, p, �mÞ we use.

3.2. The Student’s t mixture autoregressive model

Equations (8), (9), and (11) define a model we call the Student’s t mixture autoregres-
sive, or StMAR, model. When the autoregressive order p or the number of mixture
components M need to be emphasized we refer to an StMAR(p,M) model. We collect
the unknown parameters of an StMAR model in the vector h ¼ ð#1, :::,#M , a1, :::, aM�1Þ
(ðMðpþ 4Þ � 1Þ � 1), where #m ¼ ðum, 0,um, r

2
m, �mÞ (with um 2 S

p, r2m > 0, and
�m > 2) contains the parameters of each component model (m ¼ 1, :::,M) and the am’s
are the parameters appearing in the mixing weights (11); the parameter aM is not

included due to the restriction
PM

m¼1 am ¼ 1:
The StMAR model can also be presented in an alternative (but equivalent) form. To

this end, let Pt�1ð�Þ signify the conditional probability of the indicated event given
F t�1, and let em, t be a sequence of independent and identically distributed random var-
iables with a t1ð0, 1, �m þ pÞ distribution such that em, t is independent of fyt�j, j > 0g
(m ¼ 1, :::,M). Furthermore, let st ¼ ðs1, t , :::, sM, tÞ be a sequence of (unobserved)
M–dimensional random vectors such that, conditional on F t�1, st and em, t are inde-
pendent (for all m). The components of st are such that, for each t, exactly one of them
takes the value one and others are equal to zero, with conditional probabilities
Pt�1ðsm, t ¼ 1Þ ¼ am, t, m ¼ 1, :::,M: Now yt can be expressed as

yt ¼
XM
m¼1

sm, tðlm, t þ rm, tem, tÞ ¼
XM
m¼1

sm, tðum, 0 þ u0
myt�1 þ rm, tem, tÞ, (12)

where rm, t is as in (9). This formulation suggests that the mixing weights am, t can be
thought of as (conditional) probabilities that determine which one of the M autoregres-
sive components of the mixture generates the observation yt.
It turns out that the StMAR model has some very attractive theoretical properties;

the carefully chosen conditional densities in (9) and the mixing weights in (11) are cru-
cial in obtaining these properties. The following theorem shows that there exists a
choice of initial values y0 such that yt is a stationary and ergodic Markov chain.
Importantly, an explicit expression for the stationary distribution is also provided.

Theorem 2. Consider the StMAR process yt generated by (8), (9), and (11) (or (12) and
(11)) with the conditions um2 S

p and �m > 2 satisfied for all m ¼ 1, :::,M. Then yt ¼
ðyt, :::, yt�pþ1Þ (t ¼ 1, 2, :::) is a Markov chain on R

p with a stationary distribution char-

acterized by the density f ðy; hÞ ¼PM
m¼1 amtpðy; lm1p,Cm, p, �mÞ. Moreover, yt is ergodic.

As can be seen from the proof of Theorem 2 (in Appendix B), the Markov property,
stationarity, and ergodicity are obtained as reasonably simple consequences of the defin-
ition of the StMAR model. The stationary distribution of yt is a mixture of M
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p–dimensional t–distributions with constant mixing weights am. Hence, moments of the
stationary distribution of order smaller than minð�1, :::, �MÞ exist and are finite.
Furthermore, the stationary distribution of the vector ðyt , yt�1Þ is also a mixture of M

t–distributions with density of the same form,
PM

m¼1 amtpþ1ðlm1pþ1,Cm, pþ1, �mÞ (for
details, see Appendix B). Thus the mean, variance, and first p autocovariances of yt are
(here the connection between cm, j and Cm, pþ1 is as in (4))

l ¼def E yt½ � ¼
XM
m¼1

amlm, cj ¼
def

Cov yt , yt�j½ � ¼
XM
m¼1

amcm, j þ
XM
m¼1

amðlm � lÞ2, j ¼ 0, :::, p:

Subvectors of ðyt, yt�1Þ also have stationary distributions that belong to the same family
(but this does not hold for higher dimensional vectors such as ðytþ1, yt , yt�1Þ).
The fact that an explicit expression for the stationary (marginal) distribution of the

StMAR model is available is not only convenient but also quite exceptional among mix-
ture autoregressive models or other related nonlinear autoregressive models (such as
threshold or smooth transition models). Previously, similar results have been obtained
by Glasbey (2001) and Kalliovirta, Meitz, and Saikkonen (2015) in the context of mix-
ture autoregressive models that are of the same form but based on the Gaussian distri-
bution (for a few rather simple first order examples involving other models, see Tong
(2011, Section 4.2)).
From the definition of the model, the conditional mean and variance of yt are

obtained as

E½ytjF t�1� ¼
XM
m¼1

am, tlm, t , Var½ytjF t�1� ¼
XM
m¼1

am, tr
2
m, t þ

XM
m¼1

am, t

�
lm, t �

XM
n¼1

an, tln, t

�2

:

(13)

Except for the different definition of the mixing weights, the conditional mean is as in
the Gaussian mixture autoregressive model of Kalliovirta, Meitz, and Saikkonen (2015).
This is due to the well-known fact that in the multivariate t–distribution the conditional
mean is of the same linear form as in the multivariate Gaussian distribution. However,
unlike in the Gaussian case, the conditional variance of the multivariate t–distribution
is not constant. Therefore, in (13) we have the time-varying variance component r2m, t

which in the models of Kalliovirta, Meitz, and Saikkonen (2015) and Wong, Chan, and
Kam (2009) is constant (in the latter model the mixing weights are also constants). In
(13) both the mixing weights am, t and the variance components r2m, t are functions of
yt�1, implying that the conditional variance exhibits nonlinear autoregressive condi-
tional heteroskedasticity. Compared to the aforementioned previous models our model
may therefore be useful in applications where the data exhibits rather strong conditional
heteroskedasticity.
In many applications in economics, finance, and other fields, the data is often multi-

modal and contains periods with markedly different behaviors. In such a situation a
multiple regime StMAR model would be more appropriate than a linear model. This
applies also to the StMAR model with a single regime (M¼ 1) which corresponds to
the linear Student’s t autoregression considered in Section 2. Furthermore, the
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conditional mean and variance are much more flexible in a mixture model than in a
linear one.

4. Estimation

The parameters of an StMAR model can be estimated by the method of maximum like-
lihood (details of the numerical optimization methods employed and of simulation
experiments are available in the Supplementary Appendix). As the stationary distribu-
tion of the StMAR process is known it is even possible to make use of initial values and
construct the exact likelihood function and obtain exact maximum likelihood estimates.
Assuming the observed data y�pþ1, :::, y0, y1, :::, yT and stationary initial values, the log-
likelihood function takes the form

LTðhÞ ¼ log

�XM
m¼1

amtpðy0; lm1p,Cm, p, �mÞ
�
þ
XT
t¼1

ltðhÞ, (14)

where

ltðhÞ ¼ log

�XM
m¼1

am, tt1ðyt; lm, t , r
2
m, t , �m þ pÞ

�
: (15)

An explicit expression for the density appearing in (15) is given in (10), and the nota-
tion for lm, t and r2m, t is explained after (9). Although not made explicit, am, t , lm, t , and

r2m, t, as well as the quantities lm, cm, p, and Cm, p, depend on the parameter vector h:

In (14) it has been assumed that the initial values y0 are generated by the stationary
distribution. If this assumption seems inappropriate one can condition on initial values
and drop the first term on the right hand side of (14). In what follows we assume that

estimation is based on this conditional log-likelihood, namely LðcÞT ðhÞ ¼ T�1PT
t¼1 ltðhÞ

which we, for convenience, have also scaled with the sample size. Maximizing LðcÞT ðhÞ
with respect to h yields the maximum likelihood estimator denoted by ĥT :

The permissible parameter space of h, denoted by H, needs to be constrained in
various ways. The stationarity conditions um 2 S

p, the positivity of the variances r2m,
and the conditions �m > 2 ensuring existence of second moments are all assumed to
hold (for m ¼ 1, :::,M). Throughout we assume that the number of mixture components
M is known, and this also entails the requirement that the parameters am (m ¼ 1, :::,M)
are strictly positive (and strictly less than unity whenever M> 1). Further restrictions
are required to ensure identification. Denoting the true parameter value by h0 and
assuming stationary initial values, the condition needed is that ltðhÞ ¼ ltðh0Þ almost
surely only if h ¼ h0: An additional assumption needed for this is

a1 > � � � > aM > 0 and #i ¼ #j only if 1 � i ¼ j � M: (16)

From a practical point of view this assumption is not restrictive because what it essen-
tially requires is that the M component models cannot be ‘relabeled’ and the same
StMAR model obtained. We summarize the restrictions imposed on the parameter space
as follows.
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Assumption 1. The true parameter value h0 is an interior point of H, where H is a com-

pact subset of fh ¼ ð#1, :::,#M , a1, :::, aM�1Þ 2 R
Mðpþ3Þ � ð0, 1ÞM�1 : um 2 S

p, r2m > 0,
and �m > 2 for all m ¼ 1, :::,M, and ð16Þ holdsg:
Asymptotic properties of the maximum likelihood estimator can now be

established under conventional high-level conditions. Denote IðhÞ ¼ E
h
@ltðhÞ
@h

@ltðhÞ
@h0

i
and J ðhÞ ¼ E

h
@2ltðhÞ
@h@h0

i
:

Theorem 3. Suppose yt is generated by the stationary and ergodic StMAR process of

Theorem 2 and that Assumption 1 holds. Then ĥT is strongly consistent, i.e., ĥT ! h0

almost surely. Suppose further that (i) T1=2 @
@h L

ðcÞ
T ðh0Þ!d Nð0, Iðh0ÞÞ with Iðh0Þ finite and

positive definite, (ii) J ðh0Þ ¼ �Iðh0Þ, and (iii) E½suph2H0
j @2ltðhÞ
@h@h0 j� < 1 for some H0, a

compact convex set contained in the interior of H that has h0 as an interior point.

Then T1=2ðĥT � h0Þ!d Nð0, � J ðh0Þ�1Þ:
Of the conditions in this theorem, (i) states that a central limit theorem holds for the

score vector (evaluated at h0) and that the information matrix is positive definite, (ii) is
the information matrix equality, and (iii) ensures the uniform convergence of the
Hessian matrix (in some neighborhood of h0). These conditions are standard but their
verification may be tedious.
Theorem 3 shows that the conventional limiting distribution applies to the maximum

likelihood estimator ĥT , which implies the applicability of standard likelihood-based
tests. It is worth noting, however, that here a correct specification of the number of
autoregressive components M is required. In particular, if the number of component
models is chosen too large then some parameters of the model are not identified and,
consequently, the result of Theorem 3 and the validity of the related tests break down.
This particularly happens when one tests for the number of component models. Such
tests for mixture autoregressive models with Gaussian conditional densities (see (8)) are
developed by Meitz and Saikkonen (2021). The testing problem is highly nonstandard
and extending their results to the present case is beyond the scope of this paper.
Instead of formal tests, in our empirical application we take a pragmatic approach and

resort to the use of information criteria to infer which model fits the data best. Similar
approaches have also been used by Wong, Chan, and Kam (2009) and others. Note that
once the number of regimes is (correctly) chosen, standard likelihood-based inference can
be used to choose regime-wise autoregressive orders and to test other hypotheses of inter-
est. Validity of (quantile) residual-based misspecification tests to check for model adequacy
also relies on the correct specification of the number of regimes.

5. Empirical example

Modeling and forecasting financial market volatility is key to manage risk. In this appli-
cation we use the realized kernel of Barndorff-Nielsen et al. (2008) as a proxy for latent
volatility. We obtained daily realized kernel data over the period 3 January 2000
through 20 May 2016 for the S&P 500 index from the Oxford-Man Institute’s Realized
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Library v0.2 (Heber et al. 2009). Figure 1 shows the in-sample period (Jan 3, 2000–June
3, 2014; 3597 observations) for the S&P 500 realized kernel data (RKt), which is non-
negative with a distribution exhibiting substantial skewness and excess kurtosis (sample
skewness 14.3, sample kurtosis 380.8). We follow the related literature which frequently
use logarithmic realized kernel (log ðRKtÞ), to avoid imposing additional parameter con-
straints, and to obtain a more symmetric distribution, often taken to be approximately
Gaussian. The log ðRKtÞ data, also shown in Figure 1, has a sample skewness of 0.5 and
kurtosis of 3.5. Visual inspection of the time series plots of the RKt and log ðRKtÞ data
suggests that the two series exhibit changes at least in levels and potentially also in vari-
ability. A kernel estimate of the density function of the log ðRKtÞ series also suggest the
potential presence of multiple regimes.
For brevity, we focus our attention on StMAR models with p ¼ 1, 2, 3, 4 and M¼ 1,

2, 3; higher-order models were also tried but their forecasting performance was qualita-
tively similar to the models with p � 4: Following Wong and Li (2001a), Wong, Chan,
and Kam (2009), and Li et al. (2015), we use information criteria for model comparison.
Of these models, the Akaike information criterion (AIC) and the Hannan-Quinn infor-
mation criterion (HQC) favor the StMAR(4,3) model, and the Bayesian information cri-
terion (BIC) the simpler StMAR(4,1) model. Estimation results for these two models, as
well as the intermediate StMAR(4,2) model, are reported in Table 1. As the estimated
mixture weight of the third component of the StMAR(4,3) model is rather small
(â3 	 0:023) and the first two components are very similar to the StMAR(4,2) model,
including this intermediate StMAR(4,2) model seems reasonable. In view of the approxi-
mate standard errors in Table 1, the estimation accuracy appears quite reasonable
except for the degrees of freedom parameters (for large values of the degrees of freedom
parameters the likelihood function becomes very flat; in particular �̂3 and its standard
error may be rather inaccurate). Taking the sum of the autoregressive parameters as a
measure of persistence, we find that the estimated persistence for the first regime of the

Figure 1. Left panel: Daily RKt (lower solid) and log ðRKtÞ (upper solid), and mixing weights based on
the estimates of the StMAR(4,2) model in Table 1 (dot-dash) for the log ðRKtÞ series. The mixing
weights â1, t are scaled from ð0, 1Þ to ðmin log ðRKtÞ, max log ðRKtÞÞ: Right panel: A kernel density
estimate of the log ðRKtÞ observations (solid), and the mixture density (dashes) implied by the same
StMAR model as in the left panel.
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StMAR(4,2) is 0.909 and 0.489 for the second regime, suggesting that persistence is
rather strong in the first regime and moderate in the second regime.
Numerous alternative models for volatility proxies have been proposed. We employ

Corsi’s (2009) heterogeneous autoregressive (HAR) model as it is arguably the most
popular reference model for forecasting proxies such as the realized kernel. We also
consider a pth-order autoregression as the AR(p) often performs well in volatility proxy
forecasting. The StMAR models are estimated using maximum likelihood, and the refer-
ence AR and HAR models by ordinary least squares. We use a fixed scheme, where the
parameters of our volatility models are estimated just once using data from Jan 3,
2000–June 3, 2014. These estimates are then used to generate all forecasts. The remain-
ing 496 observations of our sample are used to compare the forecasts from the alterna-
tive models. As discussed in Kalliovirta, Meitz, and Saikkonen (2016), computing
multi-step-ahead forecasts for mixture models like the StMAR is rather complicated.
For this reason we use computer driven forecasts to predict future volatility: For each
out-of-sample date T, and for each alternative model, we simulate 1,000,000 sample
paths. Each path is of length 22 (representing one trading month) and conditional on
the information available at date T. In these simulations unknown parameters are
replaced by their estimates. As the simulated paths are for log ðRKtÞ, and our object of
interest is RKt , an exponential transformation is applied.
We examine daily, weekly (5 day), biweekly (10 day), and monthly (22 day) volatility

forecasts generated by the alternative models; for instance, the weekly volatility forecast
at date T is the forecast for RKTþ1 þ � � � þ RKTþ5 (the 5-day-ahead cumulative realized

Table 1. Parameter estimates for three selected StMAR models and the log ðRKtÞ data over the
period 3 January 2000–3 June 2014.

StMAR(4, 1) StMAR(4, 2) StMAR(4, 3)

u1, 0 –0.746 (0.089) –0.851 (0.112) –0.859 (0.116)
u1, 1 0.428 (0.017) 0.432 (0.024) 0.407 (0.024)
u1, 2 0.224 (0.019) 0.221 (0.025) 0.216 (0.025)
u1, 3 0.121 (0.019) 0.122 (0.025) 0.123 (0.025)
u1, 4 0.150 (0.017) 0.134 (0.024) 0.162 (0.024)
r21 0.298 (0.011) 0.285 (0.015) 0.283 (0.015)
�1 11.999 (1.173) 10.510 (1.628) 10.695 (2.070)
u2, 0 –5.381 (1.036) –5.745 (1.050)
u2, 1 0.289 (0.046) 0.300 (0.049)
u2, 2 0.129 (0.049) 0.121 (0.051)
u2, 3 0.023 (0.047) 0.015 (0.049)
u2, 4 0.047 (0.053) 0.019 (0.056)
r22 0.287 (0.022) 0.290 (0.023)
�2 29.031 (1.957) 32.143 (4.503)
u3, 0 –5.459 (1.068)
u3, 1 0.479 (0.102)
u3, 2 0.334 (0.125)
u3, 3 0.206 (0.111)
u3, 4 –0.728 (0.122)
r23 0.088 (0.032)
�3 35438.182 (0.137)
a1 0.724 (0.065) 0.721 (0.060)
a2 0.256 (0.062)
TLðcÞT ðĥTÞ –2854.153 –2832.665 –2814.469
AIC 5722.306 5695.330 5674.937
HQC 5737.741 5728.406 5725.653
BIC 5765.613 5788.131 5817.233

Numbers in parentheses are standard errors based on a numerical Hessian.
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kernel). Table 2 reports the percentage shares of (1, 5, 10, and 22-day) cumulative RKt

out-of-sample observations that belong to the 99%, 95%, and 90% one-sided upper pre-
diction intervals based on the distribution of the simulated sample paths; these upper
prediction intervals for volatility are related to higher levels of risk in financial markets.
Overall, it is seen that the empirical coverage rates of the StMAR based prediction inter-
vals are closer to the nominal levels than those obtained with the reference models. By
comparison, the accuracy of the prediction intervals obtained with the popular HAR
model quickly degrade as the forecast period increases. The StMAR model performs
well also when two-sided prediction intervals and point forecast accuracy are considered
(for details, see the Supplementary Appendix).
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f ðxÞ ¼ C ðd þ �Þ=2ð Þ
p�ð Þd=2C �=2ð Þ detðRÞ

�1=2 1þ ��1ðx� lÞ0R�1ðx� lÞ
� ��dþ�

2 ,

where Cð�Þ is the gamma function and l 2 R
d and R (d� d), a symmetric positive definite

matrix, are parameters. For a random vector X possessing this density, the mean and covariance
are E½X� ¼ l and Cov½X� ¼ C ¼ �

��2R (assuming � > 2). The density can be expressed in terms
of l and C as

f ðxÞ ¼ C ðd þ �Þ=2ð Þ
pð� � 2Þð Þd=2C �=2ð Þ

detðCÞ�1=2 1þ ð� � 2Þ�1ðx� lÞ0C�1ðx� lÞ
� ��dþ�

2 :

This form of the density function, denoted by tdðx; l,C, �Þ, is used in this paper, and the nota-
tion X � tdðl,C, �Þ is used for a random vector X possessing this density. Condition � > 2 and
positive definiteness of C will be tacitly assumed.

For marginal and conditional distributions, partition X as X ¼ ðX1,X2Þ where the components
have dimensions d1 and d2 (d1 þ d2 ¼ d). Conformably partition l and C as l ¼ ðl1, l2Þ and

C ¼ C11 C12

C0
12 C22

� �
:

Then the marginal distributions of X1 and X2 are td1ðl1,C11, �Þ and td2ðl2,C22, �Þ, respectively.
The conditional distribution of X1 given X2 is also a t–distribution, namely (see Ding (2016,
Sec. 2))

X1jðX2 ¼ x2Þ � td1ðl1j2ðx2Þ,C1j2ðx2Þ, � þ d2Þ,

where l1j2ðx2Þ ¼ l1 þ C12C�1
22 ðx2 � l2Þ and C1j2ðx2Þ ¼ ��2þðx2�l2Þ0C�1

22 ðx2�l2Þ
��2þd2

ðC11 � C12C�1
22 C

0
12Þ:

Furthermore, tdðx;l,C, �Þ ¼ td1ðx1;l1j2ðx2Þ,C1j2ðx2Þ, � þ d2Þtd2ðx2; l2,C22, �Þ:
Now consider a special case: a (pþ 1)–dimensional random vector X � tpþ1ðl1pþ1,Cpþ1, �Þ,

where l 2 R and Cpþ1 is a symmetric positive definite Toeplitz matrix. Note that the mean vec-
tor l1pþ1 and the covariance matrix Cpþ1 have structures similar to those of the mean and
covariance matrix of a (pþ 1)–dimensional realization of a second order stationary process. More
specifically, assume that Cpþ1 is the covariance matrix of a second order stationary
AR(p) process.

Partition X as X ¼ ðX1,X2Þ ¼ ðX1,Xpþ1Þ with X1 and Xpþ1 real valued and X1 and X2 both
p� 1 vectors. The marginal distributions of X1 and X2 are X1 � tpðl1p,Cp, �Þ and X2 �
tpðl1p,Cp, �Þ, where the (symmetric positive definite Toeplitz) matrix Cp ¼ Cov X1½ � ¼ Cov X2½ � is
obtained from Cpþ1 by deleting the first row and first column or, equivalently, the last row and
last column (here the specific structures of l1pþ1 and Cpþ1 are used). The conditional distribu-
tion of X1 given X2 ¼ x2 is

X1jðX2 ¼ x2Þ � t1ðlðx2Þ, r2ðx2Þ, � þ pÞ,
where expressions for lðx2Þ and r2ðx2Þ can be obtained from above as follows. Partition Cpþ1 as

Cpþ1 ¼ c0 c0p
cp Cp

� �
,

and denote u ¼ C�1
p cp and r2 ¼ c0 � c0pC

�1
p cp (r2 > 0 as Cpþ1 is positive definite). From above,

lðx2Þ ¼ l1j2ðx2Þ ¼ lþ c0pC
�1
p ðx2 � l1pÞ ¼ lð1� c0pC

�1
p 1pÞ þ u0x2,

r2ðx2Þ ¼ C1j2ðx2Þ ¼
� � 2þ ðx2 � l1pÞ0C�1

p ðx2 � l1pÞ
� � 2þ p

r2:
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Appendix B: Proofs of Theorems 1–3

Proof of Theorem 1. Corresponding to u0 2 R, u ¼ ðu1, :::,upÞ 2 S
p, r > 0, and � > 2,

define the notation Cp, c0, cp, l, and Cpþ1 as in (4), and note that Cp and Cpþ1 are, by construc-
tion and due to assumption u 2 S

p, symmetric positive definite Toeplitz matrices. To prove (i),
we will construct a p–dimensional Markov process zt ¼ ðzt , :::, zt�pþ1Þ (t ¼ 1, 2, :::) with the
desired properties. We need to specify an appropriate transition probability measure and an ini-
tial distribution. For the former, assume that the transition probability measure of zt is deter-
mined by the density function t1ðzt;lðzt�1Þ, r2ðzt�1Þ, � þ pÞ, where lðzt�1Þ and r2ðzt�1Þ are
obtained from the last two displayed equations in Appendix A by substituting zt�1 for x2: This
shows that zt can be treated as a Markov chain (see Meyn and Tweedie (2009, Ch. 3)).
Concerning the initial value z0, suppose it follows the t–distribution z0 � tpðl1p,Cp, �Þ:
Furthermore, if zþt ¼ ðzt , zt�1Þ ¼ ðzt, zt�pÞ, we find from Appendix A that the density function
of zþ1 is given by

tpþ1ðzþ1 , l1pþ1,Cpþ1, �Þ ¼ t1ðz1; lðz0Þ, r2ðz0Þ, � þ pÞtpðz0;l1p,Cp, �Þ: (A1)

Thus, zþ1 � tpþ1ðl1pþ1,Cpþ1, �Þ and, as in Appendix A, it follows that the marginal distribution
of z1 is the same as that of z0, that is, z1 � tpðl1p,Cp, �Þ (the specific structure of Cpþ1 is used
here). Hence, as zt is a Markov chain, we can conclude that it has a stationary distribution char-
acterized by the density function tpðz, l1p,Cp, �Þ (see Meyn and Tweedie (2009, pp. 230–231)).
This completes the proof of (i).

To prove (ii), note that, due to the Markov property, ztjF z
t�1 � t1ðlðzt�1Þ, r2ðzt�1Þ, � þ pÞ

where F z
t�1 signifies the sigma-algebra generated by fzs, s < tg: Thus we can write the condi-

tional expectation and conditional variance of zt given F z
t�1 as

E ztjF z
t�1

� 	 ¼ E ztjzt�1½ � ¼ lþ c0pC
�1
p ðzt�1 � l1pÞ ¼ u0 þ u0zt�1,

Var ztjF z
t�1

� 	 ¼ Var ztjzt�1½ � ¼ � � 2þ ðzt�1 � l1pÞ0C�1
p ðzt�1 � l1pÞ

� � 2þ p
r2:

Denote this conditional variance by r2t ¼ r2ðzt�1Þ (and note that r2t > 0 a.s. due to the assumed
conditions r2 > 0,Cp > 0, and � > 2). Now the random variables et defined by

et ¼defðzt � u0 � u0zt�1Þ=rt
follow, conditional on F z

t�1, the t1ð0, 1, � þ pÞ distribution. Hence, we obtain the
‘AR(p)–ARCH(p)’ representation (7). Because the conditional distribution etjF z

t�1 � t1ð0, 1, � þ
pÞ does not depend on F z

t�1 (or, more specifically, on the random variables fzs, s < tg), the same
holds true also unconditionally, et � t1ð0, 1, � þ pÞ, implying that the random variables et are
independent of F z

t�1 (or of fzs, s < tg). Moreover, from the definition of the et ’s it follows that
fes, s < tg is a function of fzs, s < tg, and hence et is also independent of fes, s < tg:
Consequently, the random variables et are IID t1ð0, 1, � þ pÞ, completing the proof of (ii). w

Proof of Theorem 2. First note that yt is a Markov chain on R
p: Now, let y0 ¼ ðy0, :::, y�pþ1Þ

be a random vector whose distribution has the density f ðy0; hÞ ¼
PM

m¼1 amtpðy0; lm1p,Cm, p, �mÞ:
According to (8, 9, 11), and (A1), the conditional density of y1 given y0 is

f ðy1jy0; hÞ ¼
XM
m¼1

amtpðy0;lm1p,Cm, p, �mÞXM

n¼1
antpðy0;ln1p,Cn, p, �nÞ

t1ðy1; lðy0Þ, r2ðy0Þ, �m þ pÞ

¼
XM
m¼1

amXM

n¼1
antpðy0;ln1p,Cn, p, �nÞ

tpþ1ððy1, y0Þ; lm1pþ1,Cm, pþ1, �mÞ:

It follows that the density of ðy1, y0Þ is f ððy1, y0Þ; hÞ ¼
PM

m¼1 amtpþ1ððy1, y0Þ; lm1pþ1,Cm, pþ1, �mÞ:
Integrating y�pþ1 out (and using the properties of marginal distributions of a multivariate
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t–distribution in Appendix A) shows that the density of y1 is f ðy1; hÞ ¼
PM

m¼1 amtpðy1;
lm1p,Cm, p, �mÞ: Therefore, y0 and y1 are identically distributed. As fytg1t¼1 is a (time homoge-
neous) Markov chain, it follows that fytg1t¼1 has a stationary distribution pyð�Þ, say, characterized

by the density f ð�; hÞ ¼PM
m¼1 amtpð�;lm1p,Cm, p, �mÞ (cf. Meyn and Tweedie (2009, pp. 230–231)).

For ergodicity, let Ppyðy, �Þ ¼ Prðypjy0 ¼ yÞ signify the p–step transition probability measure of
yt: It is straightforward to check that Ppyðy, �Þ has a density given by

f ðypjy0; hÞ ¼
Yp
t¼1

f ðytjyt�1; hÞ ¼
Yp
t¼1

XM
m¼1

am, tt1ðyt;lðyt�1Þ, r2ðyt�1Þ, �m þ pÞ:

The last expression makes clear that f ðypjy0; hÞ > 0 for all yp 2 R
p and all y0 2 R

p: Now, one can
complete the proof that yt is ergodic in the sense of Meyn and Tweedie (2009, Ch. 13) by using argu-
ments identical to those used in the proof of Theorem 1 in Kalliovirta, Meitz, and Saikkonen (2015). w

Proof of Theorem 3. First note that Assumption 1 together with the continuity of LðcÞT ðhÞ
ensures the existence of a measurable maximizer ĥT: For strong consistency, it suffices to show
that a certain uniform convergence condition and a certain identification condition hold.
Specifically, the former required condition is that the conditional log-likelihood function obeys a

uniform strong law of large numbers, that is, suph2H jLðcÞT ðhÞ � E½LðcÞT ðhÞ�j ! 0 a.s. as T ! 1: As

the yt’s are stationary and ergodic and E½LðcÞT ðhÞ� ¼ E½ltðhÞ�, condition E suph2H ltðhÞj j� 	
< 1

ensures that the uniform law of large numbers in Ranga Rao (1962) applies.
The validity of condition E suph2H ltðhÞj j� 	

< 1 can be established by deriving suitable lower
and upper bounds for ltðhÞ: Recall from (10) and (15) that

ltðhÞ ¼ log

�XM
m¼1

am, tt1ðyt;lm, t , r
2
m, t , �m þ pÞ

�
,

where

t1ðyt;lm, t, r
2
m, t , �m þ pÞ ¼ Cð�mÞr�1

m, t 1þ ð�m þ p� 2Þ�1 yt � lm, t

rm, t

� �2
 !�1þ�mþp

2

and Cð�Þ ¼ Cðð1þ�þpÞ=2Þ
ðpð�þp�2ÞÞ1=2Cðð�þpÞ=2Þ : The following arguments hold for some choice of finite positive

constants c1, :::, c10, and all staments are understood to hold ‘for all m ¼ 1, :::,M’ whenever
appropriate. The assumed compactness of the parameter space (Assumption 1) and the continuity
of the gamma function on the positive real axis imply that

c1 � Cð�mÞ � c2: (A2)

Next, recall that r2m, t ¼
�m�2þðyt�1�lm1pÞ0C�1

m, pðyt�1�lm1pÞ
�m�2þp r2m, where the matrix Cm, p is positive definite

and r2m > 0: Thus, by the compactness of the parameter space, r2m, t 
 c3: On the other hand, as
Cm, p is a continuous function of the autoregressive coefficients, the continuity of eigenvalues
implies that the smallest eigenvalue of Cm, p, kminðCm, pÞ, is bounded away from zero by a con-

stant. This, together with elementary inequalities, yields ðyt�1 � lm1pÞ0C�1
m, pðyt�1 � lm1pÞ �

k�1
minðCm, pÞjjyt�1 � lm1pjj2 � c4ð1þ y2t�1 þ � � � þ y2t�pÞ: Thus, by the compactness of the param-

eter space, we have c3 � r2m, t � c5ð1þ y2t�1 þ � � � þ y2t�pÞ so that also

c�1
5 ð1þ y2t�1 þ � � � þ y2t�pÞ�1 � r�2

m, t � c�1
3 : (A3)

Therefore

1 � 1þ ð�m þ p� 2Þ�1
�
yt � lm, t

rm, t

�2

� c6ð1þ y2t þ y2t�1 þ � � � þ y2t�pÞ,
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which, together with the compactness of the parameter space, implies that

c7ð1þ y2t þ y2t�1 þ � � � þ y2t�pÞ�c8 � 1þ ð�m þ p� 2Þ�1 yt � lm, t

rm, t

� �2
 !�1þ�mþp

2

� 1: (A4)

Using (A2)–(A4) it now follows that

c9ð1þ y2t�1 þ � � � þ y2t�pÞ�1=2ð1þ y2t þ y2t�1 þ � � � þ y2t�pÞ�c8 � t1ðyt; lm, t , r
2
m, t , �m þ pÞ � c10:

Using this and the fact that
PM

m¼1 am, tðhÞ ¼ 1 we can now bound ltðhÞ from above by a constant,
say ltðhÞ � �C < 1: Furthermore, for some C < 1,

�Cð1þ log ð1þ y2t þ y2t�1 þ � � � þ y2t�pÞÞ � ltðhÞ:
Hence, as the StMAR process has finite second moments, we can conclude that E suph2H ltðhÞj j� 	

< 1:

As for the latter condition required for consistency, we need to establish that E½ltðhÞ� �
E½ltðh0Þ� and that E½ltðhÞ� ¼ E½ltðh0Þ� implies h ¼ h0: For notational clarity, let us make the
dependence on parameter values explicit in the expressions in (5) and write lð�,#Þ and r2ð�,#Þ,
and let amðy, hÞ stand for am, t (see (11)) but with yt�1 therein replaced by y and with the
dependence on the parameter values made explicit (m ¼ 1, :::,M). Making use of the fact that the
density of ðyt , yt�1Þ has the form f ððyt , yt�1Þ; hÞ ¼

PM
m¼1 amtpþ1ððyt , yt�1Þ;lm1pþ1,Cm, pþ1, �mÞ

(see proof of Theorem 2) and reasoning based on the Kullback-Leibler divergence, we can now
use arguments analogous to those in Kalliovirta, Meitz, and Saikkonen (2015, p. 265) to conclude
that E½ltðhÞ� � E½ltðh0Þ� with equality if and only if for almost all ðy, yÞ,
XM
m¼1

amðy, hÞt1ðy;lðy,#mÞ, r2ðy,#mÞ, �m þ pÞ ¼
XM
m¼1

amðy, h0Þt1ðy; lðy,#m, 0Þ, r2ðy,#m, 0Þ, �m, 0 þ pÞ:

(A5)

For each fixed y at a time, the mixing weights, conditional means, and conditional variances in (A5)
are constants, and we may apply the results on identification of finite mixtures of Student’s t–distribu-
tions in Holzmann, Munk, and Gneiting (2006, Example 1) (their parameterization of the t–distribu-
tion is slightly different than ours, but identification with their parameterization implies identification
in our parameterization). Consequently, for each fixed y at a time, there exists a permutation
fsð1Þ, :::, sðMÞg of f1, :::,Mg (where this permutation may depend on y) such that

amðy, hÞ ¼ asðmÞðy, h0Þ, lðy,#mÞ ¼ lðy,#sðmÞ, 0Þ, r2ðy,#mÞ ¼ r2ðy,#sðmÞ, 0Þ, and

�m ¼ �sðmÞ, 0 for almost all y ðm ¼ 1, :::,MÞ: (A6)

The number of possible permutations being finite (M!), this induces a finite partition of R
p

where the elements y of each partition correspond to the same permutation. At least one of these
partitions, say A � R

p, must have positive Lebesque measure. Thus, (A6) holds for all fixed y 2
A with some specific permutation fsð1Þ, :::, sðMÞg of f1, :::,Mg: The fact that lðy,#mÞ ¼
lðy,#sðmÞ, 0Þ for m ¼ 1, :::,M, almost all y, and all y 2 A, can be used to deduce that
ðum, 0,umÞ ¼ ðum, 0, 0,usðmÞ, 0Þ for m ¼ 1, :::,M (see (4, 5), and Kalliovirta, Meitz, and Saikkonen
(2015, pp. 265–266)). Similarly, using condition r2ðy,#mÞ ¼ r2ðy,#sðmÞ, 0Þ (and the knowledge
that ðum, 0,um, �mÞ ¼ ðum, 0, 0,usðmÞ, 0, �m, 0Þ), it follows that r2m ¼ r2sðmÞ, 0 so that #m ¼ #sðmÞ, 0
(m ¼ 1, :::,M). Now am ¼ asðmÞ, 0 (m ¼ 1, :::,M) follows as in Kalliovirta, Meitz, and Saikkonen
(2015, p. 266). In light of (16), the preceding facts imply that h ¼ h0: This completes the proof of
consistency.

Given conditions (i)–(iii) of the theorem, asymptotic normality of the ML estimator can now
be established using standard arguments. The required steps can be found, for instance, in
Kalliovirta, Meitz, and Saikkonen (2016, proof of Theorem 3). We omit the details for brevity. w
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