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ABSTRACT Thanks to the rise of quantum computers, many variations of the variational quantum eigen-
solver (VQE) have been proposed in recent times. This is a promising development for real quantum
algorithms, as the VQE is a promising algorithm that runs on current quantum hardware. However, the
popular method of comparing your algorithm versus a classical baseline in a small basis set is not meaningful
in the big picture. Moreover, many papers use a different molecular representation or a different quantum
computer to test their algorithms such that the used baselines are different between different papers. Thus,
it is almost impossible to compare the different algorithms to each other. As a solution, we have built a
benchmarking framework to standardize the VQE performance metrics, such that they can be analyzed more
easily. Using our framework, any researcher working on the VQE can easily test their own algorithms against
previous ones on the leaderboard without the need to reproduce previous work themselves.

INDEX TERMS Algorithms, benchmarking and performance characterization, noisy intermediate-scale
quantum algorithms and devices, quantum computing, variational quantum eigensolver (VQE).

I. INTRODUCTION
Since the dawn of physically realized quantum computers,
quantum chemistry calculations have been considered “low-
hanging fruit” for quantum computers. However, it has re-
cently become more clear that achieving quantum advantage
in quantum chemistry is still a distant goal [1], [2]. This
means that current research into quantum chemistry algo-
rithms for quantum computers needs to be replicable and
comparable such that new research can be efficiently built
on previous work.
In this article, we focus on the variational quantum eigen-

solver (VQE) algorithms [3], a type of hybrid quantum–
classical algorithm where a parameterized quantum circuit is
measured on a quantum computer such that themeasured val-
ues should correspond to the energy of a molecule. Then, the
parameters are optimized classically such that the measured
energy isminimized, according to the variational principle. A
recent overview of VQE algorithms and a detailed explana-
tion of their differences were presented by Fedorov et al. [4].
The accuracy of the minimized energy with respect to the

true ground state energy of the molecule depends on how
the molecule is represented by the qubits and the quantum
circuit. Particularly, the quality of the basis set and the choice
of qubit encoding is important, as well as the choice of the
structure of the quantum circuit, be it chemically inspired

(e.g., UCCSD ansatz [3]) or not (e.g., hardware-efficient
ansatz [5]). Moreover, the noise of the quantum computer
and the ability of the classical optimizer to explore the search
space and find the global minimum are crucial factors gov-
erning the performance of the VQE algorithm.
Clearly, VQE algorithms have many components that

are interchangeable. As such, results from different VQE
algorithms have different choices of components in pa-
pers. For example, ADAPT-VQE [6] was tested using
the Jordan–Wigner (JW) encoding and optimized with
Broyden-Fletcher-Goldfarb-Shannon (BFGS), but the origi-
nal hardware-efficient ansatz was tested using Bravyi–Kitaev
(BK) binary tree encoding [7] and optimized with simul-
taneous perturbation stochastic approximation (SPSA) [8].
This makes it very difficult to say at first glance whether any
performance difference is due to the change in the algorithm
or the change in the experiment. Thus, it is very difficult to
compare results across different papers.
However, comparing the differences between different

VQE algorithms is particularly important for identifying and
verifying the effect of those differences on the barren plateau
problem [9]–[13].
Unfortunately, replicating results from an existing paper is

even more difficult and extremely time-consuming because
the experimental differences between papers are not always
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clear from the text, and the source code is not always
available.
Additionally, the existing research has mainly compared

the VQE algorithms against classical baselines using the
same basis set. Although this shows how close the quantum
algorithm can get to its theoretical optimum (precision), it
does not show how well the algorithm approximates reality
(accuracy) because the classical optimizer is asked to find an
approximation of the real problem.
As an analogy, consider an algorithm that attempts to esti-

mate π , but the algorithm can only get at best two decimals
right by design. If it were to find π = 3.146, it would have
high precision (it found the two decimals it could find), but a
poor accuracy (it did not find π ). Similarly, when comparing
a VQE algorithm to the full configuration interaction (FCI)
of the molecule in a small basis set, you are ignoring the
inaccuracies that are caused by the choice of the basis set.
Thus, you can incorrectly conclude that the algorithm works
well, as pointed out by Elfving et al. [1].

Hence, the field of VQE research needs a tool that: 1)
can show not only the precision but also the accuracy of an
algorithm; 2) makes it easy to compare different algorithms
to each other; and 3) makes it easy to replicate results, such
that we can create new insights into which the algorithm is
performing better, and why that is the case, and make predic-
tions about how the algorithms would perform in the future.
We created QuantMark1 as a beginning to increase the

value of VQE research. QuantMark has a web interface with
multiple ranked tables (leaderboards) for different VQE per-
formance metrics to make it possible to compare different
VQE algorithms more easily. QuantMark has a Python ap-
plication programming interface (API) that is integrated with
the Tequila library [14] for a uniform VQE representation. A
detailed description of QuantMark can be found in Section II.
QuantMark attempts to address the above challenges. How-
ever, they do not have clear-cut solutions, and we discuss the
pros and cons of our choices in Section III. QuantMark is
still under active development, and the field of VQE is still
young; therefore, in Section IV, we briefly give an overview
of what questions still need to be answered on the road to
quantum advantage.

II. DESCRIPTION
The aim of QuantMark is to make it easier to test and com-
pare VQE algorithms. Particularly, we want our users to
know the accuracy of their algorithm, compare it to other
algorithms, and replicate results from others. In this section,
we describe how QuantMark achieves these three things.
As of the time of writing, QuantMark assumes that the

VQE simulates the stretching of the bond distances between
the two hydrogen atoms in an H2 molecule. We specify a
“ground truth” classical baseline to calculate the accuracy of
the VQEs. The method we used (see Section II-A) is based

1QuantMark is available on Github under the MIT open-source license:
https://github.com/QuantMarkFramework/LibMark/

on basis sets and is, therefore, also an approximation, but
finding the exact energy curve for arbitrary molecules with
classical means is infeasible. More research is needed on
the topic, as discussed in Sections III and IV. Nevertheless,
we use this baseline to construct three leaderboards (see
Section II-C). Because new performance criteria might still
be added, QuantMark collects enough data about the VQE
to calculate new metrics. Since these are enough data to
replicate the results found on the leaderboard, QuantMark
exposes these data such that users can replicate results
themselves and even adjust parts of them for continued
research (see Section II-D).
To make all of these features possible, QuantMark also

contains basic data management features, such as deleting
your data and toggling public availability. Users can provide
a link to their source code and a link to a paper if the users
were to publish the results. This not only improves awareness
of existing research but also allows users to compare results
from different papers, even if they were not compared in the
papers themselves.

A. BUILT-IN CLASSICAL BASELINE
A key feature of QuantMark is that it has a consistent clas-
sical baseline for VQE algorithms to compare against. In
recent research, different papers have been using different
basis sets (e.g., STO-3G in [6] and 6-31G in [15]) and dif-
ferent qubit encodings (e.g., JW in [6] and BK [5]). These
differences not only influence the number of qubits and the
size of the circuit needed to simulate the molecule on a quan-
tum computer but can also bound the best energy that can
be found by the VQE algorithm. Most VQE algorithms are
compared against this bound of the precision of themolecular
representation (i.e., the FCI calculated with the same basis
set), not against a realistic ground truth. This gives a skewed
view of the performance of the VQE, as discussed in [1].
Additionally, it makes a comparison of VQE algorithms in
different basis sets very difficult, since they are compared
against different baselines.
In an attempt to eliminate the problem of comparing

against different baselines, QuantMark employs precalcu-
lated classical FCI baselines to compare against. In contrast
to baselines in literature, QuantMark uses not only the
“STO-3G” and “6-31G” basis sets but also a large basis set
(”def2_QZVPPD”) for the classical baselines. Using such a
large basis set allows us to compare the VQE algorithm to
a baseline that is beyond the best energy that the VQE can
find. This allows a fair comparison between VQE algorithms
that use different smaller basis sets. Moreover, the difference
between this classical baseline and the VQE performance
(accuracy) indicates the amount of work that still needs to be
done in improving the representation of the molecule or the
nature of the VQE algorithm, whereas the VQE performance
versus the FCI in the same basis set only (precision) indicates
how much the VQE can improve with better classical
optimizers or less noise on the quantum computer.
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In QuantMark, users can get access to the precalculated
energies that are stored in the database as well as their corre-
sponding bond distances with a simple API call:

Using the stored energies as opposed to calculating them
yourself saves time and energy.
A downside to this approach for classical baselines is that

even the large basis set that QuantMark uses right now is an
approximation of the real energy and, therefore, not a perfect
“ground truth” baseline. However, with the state of the VQE
research at the time of writing, the use of a better baseline
than the one used right now would be excessive.
In addition to precision and accuracy, resource metrics,

such as the number of qubits, gates, and parameters, can also
be found in QuantMark.

B. UPLOADING YOUR VQE RESULTS
When a user has created a VQE in Tequila, they can fetch the
interatomic distances at which QuantMark has precalculated
the classical baselines (as discussed in Section II-A). Users
can create the hydrogen molecule object and then run their
algorithm as desired.
When running the VQE, users create a tracker to which

the results, molecule, Hamiltonian, and quantum circuit are
given. When done, users can push the results to QuantMark
in bulk using their personal OAuth [16] tokens2 to identify
themselves. See the script below for a simple example script
that would run on the user’s local device.
After pushing the results to QuantMark, the data are pro-

cessed and made privately available on the QuantMark web-
site. Users can view their results in comparison with publicly
available results on the data management page. The different
comparison tables and figures, as discussed in Section II-C,
will be automatically generated by QuantMark. As such,
QuantMark calculates the precision and accuracy of the up-
loaded VQE results.
The data management page also contains basic data man-

agement functionality such as the ability to make results
publicly available on the leaderboards as well as adding a
reference to the paper describing the method and a link to
the source code that created the results.

C. LEADERBOARDS
An important feature of QuantMark is the ability to see the
current state-of-the-art accuracy of different VQE algorithms

2Using your QuantMark account that can be linked to your ORCID,
Google, and/or Facebook account.

at first glance. Since the benchmark problem in QuantMark
is energy simulation, the goal of the VQE is to find the en-
ergy curve for the hydrogen molecule at different interatomic
distances. This energy curve has interesting properties de-
pending on its application: 1) the minimum energy found;
2) the equilibrium bond distance; 3) the shape of the curve
itself. Therefore, the QuantMark leaderboard is split into
three different leaderboard tables.
In the first leaderboard table, VQEs are simply ranked by

theminimum energy they found. By the variational principle,
a VQE should never find smaller energy than the “ground
truth” minimum; therefore, QuantMark can order the VQEs
by the lowest energy found.
In the second leaderboard table, VQEs are ranked based on

how close the found equilibrium bond distance is to the equi-
librium bond distance of the “ground truth.” A VQE might
find a very low energy, but if its minimum is at the wrong
bond distance, it cannot be used for applications where the
equilibrium bond distance is important.
In the last leaderboard table, the VQEs are ranked based on

how well they approximate the curve found by the classical
“ground truth” baseline. As a metric, we use the variance in
error with respect to the ground truth over all bond distances.
A VQE might not find the lowest energy, but approximating
the shape of the curve can still be useful for applications
where the curve can be calibrated in some way.
Moreover, each of the three tables in the leaderboard has

the functionality to select rows for a detailed comparison.
Users can also double-click on the row to inspect the details
of an experiment.
Additionally, it is possible to make a selection of VQEs

to plot their respective energy curves in a single figure [see
Fig. 1(a)]. Moreover, if the VQEs in the selection are tested
with the same basis set, we can plot the CNOT gate depth of
the used quantum circuit against the accuracy of the VQE (as
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FIG. 1. Screenshots from different comparison plots on the QuantMark website. (a) Energy curves found by different VQEs. (b) CNOT depth versus
accuracy.

was used in [17]) at equilibrium bond distance. This gives
a clear overview of the tradeoff of accuracy versus circuit
depth for different algorithms. An example plot is shown in
Fig. 1(b), in which the x-axis is the accuracy with respect to
our predefined ground truth. The green (left) and red (right)
vertical lines, respectively, show the energy found by the FCI
and Hartree–Fock methods in the same basis set as the VQE.
By the design of the VQE, its performance is bound by the
green line. In contrast, the red line shows the performance
of a classical algorithm that only takes a single Slater de-
terminant into account and is, therefore, a less computation-
ally expensive approximation. Thus, the performance of a
reasonably good VQE should lay between those two lines.
Combining these insights with the depth of the circuit gives
users new and interesting insights into the performance of
their algorithm with respect to other methods.

D. DOWNLOADING AND RECONSTRUCTING VQES
One of the most versatile features of QuantMark is the abil-
ity to download the experimental data of publicly available
results. We strive to collect enough data about the VQE al-
gorithm to be able to replicate the results such that they can
easily be verified by third-party researchers. This is simply
good science, but the lack of experimental details in papers
or the lack of source code has made it too time-consuming
to faithfully replicate results. Fortunately, since one only
needs to know the Hamiltonian, the quantum circuit, and the
classical optimizer (including hyperparameters), QuantMark
collects enough data for replication. Thus, it stands to reason
that users should be able to download it and immediately run
the VQE when it was published in QuantMark.
The QuantMark Python API exposes the downloading of

the raw stored data from the database. Moreover, there is a
simple API call that allows users to rerun an experiment from

the leaderboard on their own device. The script below gives
an example of how this can be done. Note that the experiment
will be executed locally on the user’s device.

With this, they can either verify the results on the leader-
board ormake adjustments to the previous research tomake it
better. For example, suppose I see a VQE on the leaderboard
that performs reasonably well on a quantum simulator. I have
access to a real quantum computer and I wonder how well
it would perform. With QuantMark, I can simply download
the data and adjust the reconstructed VQE to work with the
quantum computer that I have access to. This is much simpler
and faster than asking the authors for the source code or
trying to reimplement the algorithm from the paper.
Moreover, the trained VQE might be repurposed for other

simulations or optimization problems. For example, the
trained parameters could be used for a “warm start” of an-
other parameterized circuit, similar to transfer learning in
neural networks [18]. Or, using perturbation theory, the orig-
inal parameterized circuit can be slightly adjusted to account
for a new problem.
Thus, QuantMark will help with the cycle of improvement

and collaboration.

III. DISCUSSION AND CONCLUSION
In this article, we have shown how QuantMark can help with
the evaluation and benchmarking of new VQE algorithms, as
well as the replication of existing ones. In Table I, we give an

3101206 VOLUME 3, 2022
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TABLE I Overview of Challenges Addressed in QuantMark

overview of the four challenges that QuantMark attempts to
solve, how a solution is implemented, and the pros and cons
of that choice of implementation.
The challenge of evaluating a VQEs performance lies

between the choice of precision and accuracy. Precision is
what we want to measure, but the true energies might not be
known.
Similarly, the choice of performance metrics might influ-

ence how future VQEs are tuned for the leaderboard. We
needed metrics that can be generalized for different tasks,
such that we know what choice of VQE is good for which
task. Hence, we created three different leaderboards for three
different aspects of the VQEs results: the minimum energy
found, the closest equilibrium bond distance found, and the
best shape of the full energy curve.
Comparing different VQE algorithms is also challenging.

When using the same molecule, basis set, and qubit encod-
ing, the differences are clearly due to the VQE itself. How-
ever, some choices of ansatz might not be suitable for the
same qubit encoding, and then, the different VQEs cannot
be compared. Alternatively, when using the same molecule,

basis set, and qubit encoding, you can never make claims
about qubit cost versus performance. Thus, if two VQE
experiments use the same molecule, we can compare their
precision. If the experiments also use the same basis set, we
can compare their accuracies and their quantum circuits.
Finally, before the creation of QuantMark, it was very

difficult to replicate an existing VQE paper as a starting
point for continued research because the source code was
not available and hyperparameters are not always present in
the paper. Now, if a VQE result is available on QuantMark,
you can download its data and find the hyperparameters there
and rerun the VQE on your own device. However, the orig-
inal code is still unknown. Nevertheless, it might be easily
found if the creator of the VQE added a link to the source
code.

IV. FUTURE WORK
QuantMark is still under active development. Therefore, the
user interface, Python API, and data management function-
ality will still be improved and extended. However, these
are only small changes in the scope of the research that still
needs to be done for benchmarking VQEs and the future of
QuantMark.
Current VQE experiments are toy problems to show that

the concept works, which has been established now. Next,
we need to figure out how well this VQE works on larger
problems.
First, we need to investigate the scalability of the VQE

with the support of QuantMark. By using the gathered per-
formance data, we can try to make predictions about the
scalability of the VQE in terms of quantum resources and
trainable parameters. How many qubits and quantum gates
are needed? Gonthier et al. [2] showed that quantum advan-
tage in quantum chemistry requires hundreds of fault-tolerant
qubits and months of runtime. However, when we have hun-
dreds of fault-tolerant qubits, would we be able to classically
optimize the thousands of parameters in the VQE?
Then, we need to create a more realistic leaderboard. The

current QuantMark leaderboard reflects the toy model prob-
lems that VQEs are used for. Ideally, wewant quantum chem-
istry problems that are small enough to be calculated on a
near-term quantum computer, but large enough to be clas-
sically challenging. We need to develop interesting bench-
marking problems, such as the ones proposed in [1], and
create a leaderboard for those.
Additionally, we need to carefully consider the classical

baselines for larger problems. Fortunately, because Quant-
Mark shares its classical baselines, it is worthwhile to spend
a lot of computational power on FCI baselines. However, for
large enough problems, it will not be feasible to compute
the full FCI at all. In that case, we need to think carefully
about which approximate classical computational methods
will make good baselines. For example, complete active
space configuration interaction or complete active space self-
consistent field.

VOLUME 3, 2022 3101206
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Moreover, the biggest challenge in creating a benchmark
of good candidates of quantum advantage is that we will not
have a classical baseline. In which case, how can we know
that our optimizer found the right answer? How do we make
sure that what we created is actually solving the problem?
And if we were to use all the computational power in the
world to find a classical baseline, how can we make sure that
the algorithm that can find that baseline can also be used for
a larger analogous problem for which there is no classical
baseline? These are the questions on which the future of
VQE hinges.
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