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ARTICLE

Systematic comparison of family history
and polygenic risk across 24 common diseases

Nina Mars,1,2 Joni V. Lindbohm,3,4,5 Pietro della Briotta Parolo,1 Elisabeth Widén,1 Jaakko Kaprio,1,3

Aarno Palotie,1,2,6 FinnGen,7 and Samuli Ripatti1,3,5,*
Summary
Family history is the standard indirect measure of inherited susceptibility in clinical care, whereas polygenic risk scores (PRSs) havemore

recently demonstrated potential for more directly capturing genetic risk in many diseases. Few studies have systematically compared

how these overlap and complement each other across common diseases. Within FinnGen (N ¼ 306,418), we leverage family relation-

ships, up to 50 years of nationwide registries, and genome-wide genotyping to examine the interplay of family history and genome-wide

PRSs. We explore the dynamic for three types of family history across 24 common diseases: first- and second-degree family history and

parental causes of death. Covering a large proportion of the burden of non-communicable diseases in adults, we show that family history

and PRS are independent and not interchangeable measures, but instead provide complementary information on inherited disease sus-

ceptibility. The PRSs explained on average 10% of the effect of first-degree family history, and first-degree family history 3% of PRSs, and

PRS effects were independent of both early- and late-onset family history. The PRS stratified the risk similarly in individuals with and

without family history. In most diseases, including coronary artery disease, glaucoma, and type 2 diabetes, a positive family history

with a high PRS was associated with a considerably elevated risk, whereas a low PRS compensated completely for the risk implied

by positive family history. This study provides a catalogue of risk estimates for both family history of disease and PRSs and highlights

opportunities for a more comprehensive way of assessing inherited disease risk across common diseases.
Introduction

Family history (FH) is a risk factor in most common, non-

communicable diseases.1 With multiple advantages,

including low cost and non-invasiveness, it captures

both genetic and non-genetic familial risk and is therefore

widely applied for risk stratification and health promotion.

Common clinical applications include assessment of FH of

breast cancer for targeted screening, earlier initiation of

cardiovascular disease prevention, and evaluating the like-

lihood of rheumatic disease in individuals with inflamma-

tory arthritis.2–4 Despite the advantages, assessment of FH

also has important limitations in capturing inherited dis-

ease risk. Many individuals with common diseases have

no FH, or may not know the diseases their relatives have,

and the same level of familial risk is assigned to all relatives

of similar degree. The accuracy of FH is fairly low owing to

factors such as recall bias, and sensitivity to wording in

queries may lead to misinterpretation of risk.5,6 With

average family sizes declining in many developed coun-

tries,7 FH will also provide increasingly less information

for a comprehensive assessment of familial risk.

The algorithmic developments and rapid growth in

genome-wide genetic testing provide a more personalized

approach for measuring genetic susceptibility through

polygenic risk scores (PRSs).8,9 PRSs employ information
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from large-scale genetic screens comparing allele fre-

quencies in thousands of individuals with a disease to

healthy controls and have identified numerous genetic

loci for virtually all common diseases.10 To estimate poly-

genic risks, the common genetic variation and the effects

on the disease risks are integrated into a single metric,

the PRS. The effectiveness of PRSs in risk stratification

has been demonstrated for many diseases, with predictive

value demonstrated alongside established clinical risk

assessment tools.11 Similarly, PRSs modify risk among

individuals with high-risk variants and identify high-risk

individuals for whom existing prediction tools are subopti-

mal.11–16

Given the initial expense of implementing PRS estima-

tion in a clinical setting relative to the seemingly simple

questions pertaining to family history, systematic evalua-

tion of the independent added benefit of PRS across com-

mon diseases is essential. Studies on individual diseases

have observed fairly independent effects of PRS and first-

degree FH,11,15,17–27 but few studies have systematically

compared the relative contributions and overlap of PRS

and FH across different types of familial risk, across varying

genetic architectures, and across a wide range of diseases.

Moreover, only a few studies have used genome-wide

PRSs, although these contemporary PRSs containing a

large number of variants have demonstrated improved
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performance beyond PRSs with less variants due to high

polygenicity in common diseases.13,28–30 Here we study

the interplay of first- and second-degree FH, parental

causes of death, and genome-wide PRSs for 24 diseases us-

ing FinnGen (N ¼ 306,418), showing that FH and PRSs are

largely independent and provide complementary informa-

tion in risk assessment.
Material and methods

Participants and diseases
This observational study uses FinnGen study Data Freeze 7, a

collection of 306,418 adults (age R18) from epidemiological co-

horts, disease-based cohorts, and hospital biobanks (Table S1). We

used three binary definitions for FH: (1) any type of first-degree

FH (FH1st morbidity or mortality), (2) any type of second-degree

FH (FH2nd), and (3) parental cause of death (FHP). Both for the in-

dex individual and their relatives (i.e., how FHwas obtained), cases

were identified through nationwide healthcare registries. The first

two definitions were mapped using the genetic information to

identify pairs of related FinnGen participants, whereas information

on parental causes of death was available for all FinnGen partici-

pants. The 24 diseases were chosen based on availability of large

published genome-wide association studies (GWASs) with full sum-

mary statistics available for genome-wide PRSs (Table S2). Disease

definitions are in Table S3. Registry follow-up ended on December

31, 2019, with parental causes of death available until December

31, 2018. For FHP, we studied 15 out of the 24 diseases, identifying

causes of death (immediate, contributing, and underlying causes of

death). The study was conducted in accordance with the ethical

standards of the institutional and national research committees,

with participants providing informed consent. Ethics statement

and details on genotypes, PRS generation, and inference of related-

ness are in the supplemental material and methods.

Polygenic risk scores
For each of the 24 diseases, we constructed disease-specific PRSs in

a systematic manner. PRS-CS31 was used for inferring posterior ef-

fect sizes from the GWASs listed in Table S2, with the number of

cases in the GWASs ranging from 3,769 (epilepsy) to 567,460

(eGFR used for chronic kidney disease). The 1000 Genomes Project

European sample (N ¼ 503) served as the external linkage disequi-

librium (LD) reference panel.32 The posterior effect sizes were then

used for calculating the PRSs.

The PRS was analyzed primarily as a continuous variable, with

selected analyses applying either a (1) binary definition of FH,

with high PRS defined as a PRS in the top decile of the distribution,

with the rest as the reference group, or (2) PRS categories 0%–10%,

10%–20%, 20%–40%, 40%–60%, 60%–80%, 80%–90%, and 90%–

100%, with the reference group being 40%–60%. To assess the

impact of high versus low PRS, the reference category was 33rd

to 90th percentiles, and low PRS was defined as the lowest tertile

of the distribution, to allow for a sufficient number of cases with

low PRSs.

Statistical analysis
Associations between FH, PRS, and risk of disease were assessed

with logistic regression, with models adjusted for sex, birth year,

genotyping array, cohort, and the first ten genetic principal com-

ponents of ancestry. Interactions between FH and the continuous
The American Jour
PRS (scaled to zeromean and unit variance) were assessed by intro-

ducing their interaction term to the regression model, assessing

statistical significance set at a p value threshold of 0.0013 (Bonfer-

roni correction for 24þ 15 tests). Cumulative incidences by age 80

were estimated with Kaplan-Meier survival curves (R package surv-

miner). Statistical analyses were performed using R, version 4.1.0.
Results

FinnGen comprises 306,418 individuals (56.3% women;

mean age 59.8 at the end of follow-up in 2019, SD 17.3).

For the 24 diseases, FHwas defined as (1) first-degree family

history, FH1st (morbidity or mortality), (2) second-degree

family history, FH2nd, and (3) parental cause of death,

FHP. Each identifies the relatives’ diagnoses systematically

through nationwide registries, including the hospital

discharge registry (available from 1968 onward), causes

of death registry (from 1964), and the Finnish Cancer Reg-

istry (from 1953). FH1st and FH2nd leverage the genetic

relatedness within FinnGen: out of 306,418 individuals,

we identified 39,444 with first-degree relative pairs based

on the KING kinship coefficient33 (see supplemental mate-

rial andmethods for details; 60.3%women;mean age 53.0,

SD 16.5; parent-offspring relationship in 19,261 individ-

uals, full-sibling relationship in 20,183). For breast cancer,

we studied only women (15,281 individuals, mother-

daughter relationship in 7,770; full sisters in 7,511), and

for prostate cancer, only men (9,473 individuals; father-

son relationship in 3,932; full brothers in 5,541). Similarly,

we identified 47,154 individuals with a second-degree rela-

tive in the dataset (63.2% women, mean age 47.5, SD 15.0;

N ¼ 18,973 for breast cancer; N ¼ 12,355 for prostate can-

cer). Parental causes of death (FHP) were linked through

the causes of death registry available from 1964 to 2019,

and we excluded 78,436 whose parents had both died

before 1964 or who had missing data on both parents

(e.g., due to emigration), resulting in 227,982 individuals

(mean age 53.6, SD 15.1; N ¼ 133,653 for breast cancer;

N ¼ 94,329 for prostate cancer; 70,225 [30.1%] with one

and 73,299 [32.2%] with two dead parents). See Figure S1

for study flow diagram.

Family history and risk of disease

First, we systematically evaluated the effects of FH on risk

of disease. Figure 1 shows the prevalence of the diseases

and the prevalence and effect sizes for positive FH. The

most common diseases were cardiometabolic diseases, fol-

lowed by knee osteoarthritis and hypothyroidism. Positive

FH1st was significantly associated with higher risk of dis-

ease in all diseases except stroke. The effect sizes ranged

from odds ratio (OR) 3.25 (95% confidence interval, CI,

2.41–4.37) in chronic kidney disease to OR 1.17 (0.98–

1.39) in stroke (Table S4). For FH2nd, 18 of 24 diseases

showed evidence of an association, with their effect sizes

ranging from OR 1.85 (1.19–2.89) in colorectal cancer to

OR 1.17 (1.09–1.25) in hypertension (Table S5). Compared

to FH1st, the effect sizes for FH2nd were on average 69.1%
nal of Human Genetics 109, 2152–2162, December 1, 2022 2153
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Figure 1. Disease prevalence and prevalence and effect sizes of positive family history
(A) Disease prevalence in individuals for whom we studied risk of first-degree family history.
(B) Prevalence of first-degree family history (left column), second-degree family history (middle column), and parental cause of death
(right column).
(C) Effect size of first-degree family history (left column), second-degree family history (middle column), and parental cause of death
(right column) with respective diseases. For parental causes of death, we studied 15 out of the 24 diseases.
Sample size in (A): total N ¼ 39,444, N ¼ 15,281 for breast cancer, N ¼ 9,473 for prostate cancer. Sample sizes in (B) and (C): first-degree
family history as in (A); second-degree family history total N ¼ 47,154, N¼ 18,973 for breast cancer, N ¼ 12,355 for prostate cancer; and
parental causes total N ¼ 227,982, N ¼ 133,653 for breast cancer, N ¼ 94,329 for prostate cancer. Odds ratios (ORs) were obtained from
logistic regression models adjusted for sex (except for breast and prostate cancer), birth year, genotyping array, cohort, and the first ten
genetic principal components of ancestry.
lower (SD 25.0%; calculated from log odds), i.e., a third of

the effect of FH1st. For FHP, out of the 24 diseases, we

studied 15 diseases that are well captured by causes of

death and used information from all recorded causes

of death (immediate, contributing, and underlying causes

of death on the death certificate). For all 15 diseases, we

observed an association between FHP and risk of disease,

with effect sizes ranging from OR 2.82 (2.25–3.53) in sero-

positive rheumatoid arthritis to OR 1.12 (1.04–1.20) in

stroke (Table S6). Compared to FH1st, the effect sizes for

FHP were on average 30.1% lower (SD 22.4%), i.e., two-

thirds of the effect of FH1st.

Overlap of family history and polygenic risk

Next, we compared the overlap between FH and PRSs. We

constructed 24 genome-wide PRSs with uniform method-

ology using PRS-CS,31 one for each disease (Table S2). We

first compared the effect sizes per standard deviation (SD)

increase for PRS and FH1st (Figure 2, Table S4). The PRS

was associated with elevated risk in all 24 diseases. The

higher the PRS, the higher the proportion of positive FH

(Figure S2). Effect sizes for the PRS ranged from OR 2.33

(95% CI 2.10–2.58) in prostate cancer to OR 1.12 (1.05–
2154 The American Journal of Human Genetics 109, 2152–2162, Dec
1.20) in epilepsy. Adjusting the PRS effect size with FH1st,

the change in effect size was small (mean decrease as log

odds �3.0%, SD 1.3%). Adjusting the effect of FH1st with

PRS led to a mean decrease of �10.3% (SD 6.0%), i.e.,

PRS explained one-tenth of first-degree family history. No

decrease in effect size was observed for PRS adjusting

with FH2nd (Table S5). We observed similar results for FHP

(Table S6; effect size decrease adjusting PRS effects with

FHP�0.7%, SD 0.6%; vice versa�14.5%, SD 9.2%). Propor-

tional decreases in log odds by disease for all definitions of

FH are in Figure 3. FH generally explained a much smaller

fraction of the effect of PRS than vice versa. A similar

pattern was observed categorizing the PRS and comparing

high PRS (>90th percentile) to the rest of the distribution

(Table S7 and Figure S3). A high PRS conferred on average

similar effect sizes as FH1st. The effect sizes particularly in

common cancers and cardiometabolic diseases were higher

for the PRS, whereas the effect sizes for psychiatric diseases

were higher for FH1st.

As early-onset FH is considered a particularly important

familial risk factor, we also assessed the impact of FHP

divided into tertiles of age at death. The largest effect size

was observed for FHP with the lowest age tertile, in line
ember 1, 2022
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Figure 2. Cross-adjustment effects for first-degree family history (FH1st), and respective polygenic risk scores (PRS)
(A and B) The impact of adjusting the PRS effect with first-degree FH1st (A) and vice versa (B). The diamonds represent the unadjusted
effects and the squares the adjusted effects. The PRS explained on average 10% of the effect of FH1st, but FH1st only 3% of the PRSs. The
PRS effect is shown per one SD increase. Total N ¼ 39,444, N ¼ 15,281 for breast cancer, N ¼ 9,473 for prostate cancer. Odds ratios (ORs)
were obtained from logistic regression models adjusted for sex (except for breast and prostate cancer), birth year, genotyping array,
cohort, and the first ten genetic principal components of ancestry.
with early-onset FH being a stronger risk factor than late-

onset FH. Adjusting the PRS with this FHP divided into

age tertiles hadno impact on the effect sizes of the PRSs. Ad-

justing this FHP by PRS resulted in the largest effect size de-

creases for the youngest age tertile, but the decreases were

overall small. These show that the PRS was independent

of both early- and late-onset FHP (Table S8 and Figure 4).

With formal interaction testing, we did not identify any

systematic interactions between FH and PRS (Figure S4),

which was further supported by observing similar PRS ef-

fect sizes in individuals with positive and negative FH1st

(Figure 5).

Moreover, we compared the performance of our

contemporary genome-wide PRSs to previously published

PRSs containing a smaller number of variants, ob-

tained from PGS Catalog (https://www.pgscatalog.org/).

Genome-wide PRSs had on average larger effect sizes

(mean absolute difference in log odds 0.13 larger for

genome-wide PRSs), whereby they also explained on

average a larger proportion of the effect size of family his-

tory than the smaller PRSs (Figure 6).

Polygenic risk in individuals with a positive family

history

Next, having assessed the overlap between FH and the

PRSs, we estimated how high and low PRSs impact disease

risk in individuals with positive FH1st. Looking at cumula-

tive incidence of risk of disease with the PRSs divided into

three groups (high PRS >90%, average PRS 33%–90%, and

low PRS <33%), we observed that a low PRS systematically

compensated for the impact of positive FH1st, and individ-
The American Jour
uals with a combination of high PRS and positive FH1st had

a particularly high risk (Figure 7). Survival curves for a

broader set of diseases and survival curves stratifying indi-

viduals with no FH1st into similar PRS groups are in

Figures S5 and S6.
Concordance of high polygenic risk in relatives

Lastly, we assessed concordance—detection of a high PRS

among first- and second-degree relatives, relevant for

cascade screening in relatives of individuals with high

PRS. We evaluated two questions: (1) ‘‘What is the proba-

bility of having high PRS, if a relative has high PRS?’’ and

(2) ‘‘How does this probability differ with relative’s disease

status?’’ For (1), on average 33.7% of the first-degree and

19.8% of second-degree relatives had a similarly high PRS

(Figures S7 and S8). For (2), the concordance was some-

what higher with positive FH1st than with negative FH1st,

with an average difference of 2.5% (range 0.0%–7.9%).

For FH2nd, no difference with disease status was observed

(average 0.6%).
Discussion

Covering a large proportion of the burden of non-commu-

nicable diseases in adults, we systematically compared

the overlap of polygenic risk and different types of family

history, showing that they provide independent and com-

plementary information of inherited disease susceptibility

in all 24 studied diseases. PRS explained on average 10% of

the effect of FH1st, but FH1st only 3% of the PRSs, and the
nal of Human Genetics 109, 2152–2162, December 1, 2022 2155
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Figure 3. Cross-adjustment effect size decreases
(A–F) Proportional decreases in log odds by disease for first-degree family history, FH1st (A and B), for second-degree family history, FH2nd

(C and D), and parental causes of death, FHP (E and F). The left column (A, C, and E) represents decreases in effect size of high polygenic
risk score (PRS, per SD) adjusting for family history. The right column (B, D, and F) represents decreases in effect size of family history
adjusting for high PRS. The y axis represents the decrease in the effect size, calculated by dividing the log odds from the adjusted logistic
regression model with the log odds from the non-adjusted model. For instance, in (A), the y axis represents the following quantity: (log
odds of PRS adjusting for FH1st) / (log odds of PRS without adjusting for FH1st). In (D), the proportion of Alzheimer’s disease was set at
1.00 as we did not observe any association for second-degree family history of Alzheimer’s disease.
PRSs were independent of both early- and late-onset family

history. The PRS estimates stratified risk similarly in indi-

viduals with and without positive FH: a high PRS conferred

a considerably elevated risk, whereas a low PRS compen-

sated for the effect of FH.
2156 The American Journal of Human Genetics 109, 2152–2162, Dec
Our results are in line with previous disease-specific re-

ports observing at most a modest attenuation in the effect

of FH adjusting for PRS in cardiometabolic diseases, can-

cers, and depression.11,15,17–27,34 We extend these by a sys-

tematic comparison across 24 common diseases, using
ember 1, 2022
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Figure 4. Polygenic risk is independent of both early- and late-onset family history
(A and B) As early-onset family history is considered a particularly important familial risk factor, we also assessed the impact of FHP

divided into tertiles of age at death. (A) Adjusting the effect of polygenic risk score (PRS; per SD) by parental causes of death (FHP) divided
into tertiles of age at death had no impact on the effect sizes of the PRSs. (B) Adjusting the effects FHP by tertiles of age at death by PRS
resulted in the largest effect size decreases for the youngest age tertile; however, for most diseases the difference by age tertile was small.
The diamonds represent the unadjusted effects and the squares the adjusted effects. In (B), the effect sizes from lowest to highest age at
death are displayed from left to right, and the reference group for each disease is individuals with negative FHP. Sample size: total N ¼
227,982, N ¼ 133,653 for breast cancer, N ¼ 94,329 for prostate cancer. Odds ratios (ORs) were obtained from logistic regression models
adjusted for sex (except for breast and prostate cancer), birth year, genotyping array, cohort, and the first ten genetic principal compo-
nents of ancestry. Age limits for tertiles of FHP and the number of individuals with parental cause of death in each tertile are reported in
Table S8.
genome-wide PRSs generated with uniform methodology,

by measuring FH uniformly through nationwide health-

care registries, and by leveraging genetic relatedness. Our

results show that effects of FH and polygenic risk scores

are independent, indicating that these measures comple-

ment each other for assessment of inherited disease risk.

Compared to prevention guidelines that do not recom-

mend use of PRS when FH is available,3 these results pro-

vide important data supporting the use of PRS for

improving risk assessment of several diseases with major

public health importance.

The largely independent effects have several potential

explanations. In addition to capturing shared DNA, FH

measures non-genetic exposures and behaviors shared by

families. In contrast, PRSs capture each person’s unique

combinations of common, disease-associated genetic vari-

ants, including genetic risk variation not shared by the rel-

atives. PRSs can be measured in any phase of life, whereas

FH relies on disease events having actualized in relatives

with most utility in late-onset diseases. FH also assigns a

similar risk for all relatives of the same degree, despite

everyone carrying a unique set of genetic variants measur-

able through PRSs. Our observation of independent effects

is also in line with earlier reports showing the importance

of FH of breast and ovarian cancers in individuals with

high-risk variants in BRCA1 and BRCA2.35
The American Jour
Genetic information is typically considered in clinical

care only when evidence-based prevention strategies to

attenuate risk are available.36 For instance, risk assess-

ment of cancers has long tradition of comprehensive

ascertainment of FH to identify familial clustering37

when targeted interventions and screening tools are

available.2,38 Our results indicate that PRSs could be

used to refine risk assessment of breast, prostate, and

colorectal cancer, even when information about FH is

available. In glaucoma, a high PRS and FH had equal

and largely independent effects, but only FH is currently

used for assessing risk of glaucoma in individuals with

ocular hypertension.39 The risk of coronary artery disease

and type 2 diabetes can be decreased by lifestyle inter-

ventions and medications, and FH is commonly used

for assessing their risk.3,40 For both diseases, we observed

larger effects for high PRS than for FH. Moreover, a high

PRS may identify individuals more likely to benefit from

preventive treatments: for coronary artery disease, a high

PRS can result in higher relative efficacy of statins and

disclosing PRS risk together with traditional risk factors

can motivate lifestyle changes.41–43 In contrast, stroke

PRSs and FH show lower effect sizes than other cardiovas-

cular diseases, likely owing to the heterogeneity of the

disease and differing etiological patterns of stroke

subtypes.44,45
nal of Human Genetics 109, 2152–2162, December 1, 2022 2157
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Figure 5. Effect sizes of polygenic risk scores stratified by first-degree family history (FH1st)
The effect sizes were calculated for the 10 most prevalent diseases. The gray box represents the reference category.
This study has multiple strengths. FH was assessed sys-

tematically and comprehensively by using linkages to

high-quality nationwide registries, including hospital dis-

charges, causes of death, and medication reimbursement

registries and by overcoming several limitations of self-re-

ported FH, such as recall bias, sensitivity to wording, and

inter-individual differences in knowledge about FH.5,6,46

We report effects of FH for disorders challenging to cap-

ture precisely from self-reported data, such as alcohol

use disorder and atrial fibrillation, and show effects for

diseases less studied in the field of PRSs, including glau-

coma and hypothyroidism. Unlike FH, extremes of PRSs

can also be used to identify individuals at particularly

high or low risk. Moreover, our contemporary genome-

wide PRSs had on average much larger effect sizes than

previously published PRSs that are based on a smaller

number of variants. This observation highlights the com-

plex genetic architecture of common diseases and is in

line with earlier reports on individual diseases.29,30

FinnGen’s wide age range is a key strength of the study,

allowing systematic comparison of polygenic risk and

FH across 24 diseases. Our results are also supported by

quantitative genetic theory.47,48 Average concordances of

a high PRS among first- and second-degree relatives was

33.7% and 19.8%, in line with estimates on cardiometa-

bolic diseases in UK Biobank49 and in agreement with

theoretically derived concordance estimates of 32.4%

and 19.3%.48 Moreover, the study provides catalogue of

risk estimates for both FH of disease and PRSs in a large-

scale biobank study.

The study was limited to individuals of European

ancestry, among whom current PRSs have the highest

utility.50 Although our recording of FH1st and FH2nd was
2158 The American Journal of Human Genetics 109, 2152–2162, Dec
primarily based on only one relative, FH estimates are

well in line with earlier reports from epidemiological co-

horts and large registry studies (Table S9). For some dis-

eases such as breast and prostate cancer, our effect sizes

for FH were slightly larger than previously reported esti-

mates, which may reflect the higher precision of regis-

try-obtained family history compared to self-reported

family history. As information on FHP was available for

all individuals, analyses on FHP strengthen the results

and conclusions by providing a complementary source

of data that does not have the same limitations as the

FH1st and FH2nd, which rely on inference of genetic relat-

edness. Not being able to account for family size may un-

der- or overestimate the clinical impact of family history.

Although the various registries are efficient in capturing

disease diagnoses, milder disease forms such as mild oste-

oarthritis or atopic dermatitis may remain uncaptured.

Similarly, common conditions such as depression or

alcohol use disorder are often underreported unless severe

or contributing to somatic pathologies. With over half of

the study participants in the dataset ascertained from hos-

pital biobanks or disease cohorts, the data are somewhat

enriched in individuals with diseases, resulting in cumula-

tive incidences that may not be fully generalizable to the

population.

In conclusion, we studied the interplay of family history

and genome-wide PRSs, systematically comparing effects

across 24 common diseases. The effects of family history

and PRS were largely independent, and the pattern was

observed across the diseases. We demonstrate that poly-

genic risk and family history are not interchangeable

measures of genetic susceptibility. Instead, they provide

complementary information, bringing opportunities for a
ember 1, 2022
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Figure 6. Comparison of our contemporary genome-wide PRSs to previously published PRSs containing a smaller number of variants
(A)Weights for the small PRSs were obtained from PGS Catalog (www.pgscatalog.org). The PRSs in green were associated with the respec-
tive endpoint in FinnGen, carried on to further comparisons. The PRSs in red showed no associationswith their respective endpoints and
were excluded from further analyses. No PRS for any type of epilepsy was found in PGS Catalog.
(B) Comparison of PRS effect sizes for the genome-wide PRSs and the small PRSs.
(C) Proportional decreases in effect size of first-degree family history adjusting with the PRS, showing adjustments with the genome-wide
PRSs on x axis and adjustment with the small PRSs on y axis.
(D) Proportional decreases in effect size of PRS adjusting for first-degree family history, showing adjustments with the genome-wide PRSs
on x axis and adjustment with the small PRSs on y axis. Similar to Figure 3, the proportional decreases in (C) and (D) represent decreases
in log odds. Total N ¼ 39,444, N ¼ 15,281 for breast cancer, N ¼ 9,473 for prostate cancer.
more comprehensive way of assessing inherited risk. A PRS

can be calculated early in life to serve as risk indicator in in-

dividuals without family history of disease, while also

providing effective risk stratification among individuals

with positive family history.
Data and code availability

The FinnGen data may be accessed through Finnish Biobanks’

FinBB portal (www.finbb.fi; email: info.fingenious@finbb.fi).

Download links for the GWAS summary statistics used for con-

structing PRSs are provided in Table S2. The weights for our poly-

genic risk scores are available at PGS Catalog (https://www.
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Figure 7. The impact of polygenic risk on disease risk in individuals with positive family history
The survival curves show cumulative incidences for individuals with positive first-degree family (FH1st), stratified by level of polygenic
risk score (PRS). High PRS was defined as top decile of the PRS distribution and low PRS as the bottom tertile of the PRS distribution. The
figure shows results for the five diseases with the largest effect sizes for PRS, and for breast and prostate cancer. Survival curves for a
broader set of diseases, and survival curves stratifying individuals with no FH1st into similar PRS groups are in Figures S5 and S6. Total
N¼ 39,444, N¼ 15,281 for breast cancer, N¼ 9,473 for prostate cancer. Analyses were performed for diseases with anOR>2 for high PRS
in Table S7 and over 10 cases in each subgroup, excluding Alzheimer’s disease due to its average onset late in life.
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